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Abstract. Backward probabilities, such as the backward
travel time probability density function for pollutants in
natural aquifers/rivers, have been used by hydrologists for
decades in water quality applications. Calculating these
backward probabilities, however, is challenging due to non-
Fickian pollutant transport dynamics and velocity resolution
variability at study sites. To address these issues, we built
an adjoint model by deriving a backward-in-time fractional-
derivative transport equation subordinated to regional flow,
developed a Lagrangian solver, and applied the model/solver
to trace pollutant transport in diverse flow systems. The ad-
joint model subordinates to a reversed regional flow field,
transforms forward-in-time boundaries into either absorb-
ing or reflective boundaries, and reverses the tempered sta-
ble density to define backward mechanical dispersion. The
corresponding Lagrangian solver efficiently projects back-
ward super-diffusive mechanical dispersion along stream-
lines. Field applications demonstrate the adjoint subordi-
nation model’s success with respect to recovering release
history, groundwater age, and pollutant source locations
for various flow systems. These include systems with up-
scaled constant velocity, nonuniform divergent flow fields,
or fine-resolution velocities in a nonstationary, regional-
scale aquifer, where non-Fickian transport significantly af-
fects pollutant dynamics and backward probabilities. Cau-
tion is needed when identifying the phase-sensitive (aqueous
vs. absorbed) pollutant source in natural media. The study

also explores possible extensions of the adjoint subordination
model for quantifying backward probabilities of pollutants in
more complex media, such as discrete fracture networks.

1 Introduction

Backward probabilities of pollutants in natural aquifer-
s/rivers, such as the backward travel time probability (BTTP)
density function, have been used by hydrologists for decades
in water quality applications. For example, the BTTP esti-
mates the time that contaminants take to reach a sampling
location (e.g., a monitoring well screen or stream sampling
location) from their source(s) (Neupauer and Wilson, 2001;
Ponprasit et al., 2023). It provides useful insights for water
management, remediation, and assessment. For instance, a
common application of BTTP is to recover contamination
history and identify responsible parties, where the BTTP’s
peak captures the most likely release time of contaminants
from the source (Skaggs and Kabala, 1994; Woodbury and
Ulrych, 1996; Woodbury et al., 1998; Sun et al., 2006a, b; Jha
and Datta, 2015; Yeh et al., 2016; Jamshidi et al., 2020; Chen
et al., 2023). The BTTP can also be used to date ground-
water, as it characterizes the age distribution of groundwa-
ter due to borehole mixture and/or hydrodynamic disper-
sion in regional-scale aquifers (Weissmann et al., 2002; Cor-
naton and Perrochet, 2006; LaBolle et al., 2006; Zinn and
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Konikow, 2007a, b; Janssen et al., 2008; McMahon et al.,
2008; Maxwell et al., 2016; Ponprasit et al., 2022; Mao et
al., 2023). In addition, the BTTP provides a more compre-
hensive method to assess aquifer vulnerability than classical
statistics-based approaches through the generation of three-
dimensional (3D), transient vulnerability maps for ground-
water to non-point-source contamination (Fogg et al., 1999;
Zhang et al., 2018). The BTTP can also be used to estimate
solute concentration trends (Green et al., 2014) as well as
rates of oxygen and nitrate reduction in regional groundwa-
ter settings (Green et al., 2016). These diverse applications
underscore the need for a general BTTP model, which is the
focus of this study.

There are two main challenges in numerically quantifying
backward probabilities, including the BTTP, for contaminant
transport in surface water and groundwater. Firstly, a novel
model is required to address the impact of complex trans-
port dynamics of contaminants on the BTTP. Previous BTTP
models, usually based on inverse or backward advection–
dispersion equations (ADEs), assumed Fickian diffusion of
contaminants, where the plume variance grows linearly over
time; see the extensive review by Moghaddam et al. (2021).
Real-world contaminant transport, however, is often non-
Fickian at various scales, exhibiting either slower-than-linear
temporal plume variance growth (known as “sub-diffusion”)
or faster-than-linear growth (known as “super-diffusion”), as
recently reviewed by Guo et al. (2021). Particularly, super-
diffusion can be driven by factors like turbulence or flood-
ing events in streams (Phillips et al., 2013; Boano et al.,
2014), preferential flow pathways consisting of fractures
in fractured porous media (Reeves et al., 2008), or high-
permeability paleochannels within alluvial deposits (Bianchi
et al., 2016). Sub-diffusion is more common in natural water
systems due to pervasive solute retention or storage mech-
anisms such as physical/chemical sorption–desorption, het-
erogeneous advection (meaning a broad range of advective
velocities), and multi-rate mass exchange between mobile
and relatively immobile flow zones (Haggerty et al., 2000;
Zhou et al., 2021). Classical Fickian-diffusion models cannot
effectively capture super-/sub-diffusive non-Fickian trans-
port when the velocity field lacks sufficient resolution (e.g.,
coarser than the centimeter scale; see Zheng et al., 2011) or
when the model underestimates the spatial interconnectivity
of high-permeability deposits (Yin et al., 2020). To address
this issue, various nonlocal transport models, which are typi-
cally non-Markovian models considering the spatiotemporal
memory during solute transport, have been developed to effi-
ciently simulate forward-in-time non-Fickian transport (Neu-
man and Tartakovsky, 2009). However, their corresponding
BTTP models have remained less explored (Zhang et al.,
2022; Zhang, 2022).

The second challenge is how to integrate the observed
velocity field, which often varies significantly in resolution
across field sites, into backward probability calculations, in-
cluding the BTTP. Many field sites lack extensive hydrologic

data, necessitating an upscaled BTTP model capable of op-
erating with coarsely resolved velocity or uniform velocity
fields. Contrarily, well-studied sites with abundant geologic
and hydrologic data should incorporate detailed spatiotem-
poral velocity distributions to enhance the BTTP calculation
reliability. Ideally, an efficient BTTP model should seam-
lessly incorporate velocity fields without resolution con-
straints.

To fill these two knowledge gaps, this study proposes an
adjoint subordination approach by deriving a backward-in-
time model (also known as an “adjoint”) for the 3D time
fractional-derivative equation (FDE) subordinated to water
flow with or without a highly resolved velocity field. Such a
forward-in-time FDE was proposed by Zhang et al. (2015)
as a general forward model for pollutant transport in various
geological media. Notably, two other vector nonlocal trans-
port models, the well-known continuous-time random walk
(CTRW) framework (Hansen and Berkowitz, 2020) and the
multi-scaling FDE model (Zhang, 2022), can also incorpo-
rate local velocity variations into non-Fickian diffusion. The
CTRW framework allows for various memory functions to
define solute transition times, but it does not separate sub-
diffusion (due to solute retention) and super-diffusion (e.g.,
due to preferential flow paths) (Lu et al., 2018). This study
selects the subordinated time-FDE, as explained in Sect. 2,
for two key reasons: (i) it can capture both sub-diffusion
(using the time fractional derivative) and sub-grid super-
diffusion (via subordination, distinct from the space frac-
tional derivative) and (ii) it offers computational efficiency
compared with the multi-scaling FDE (introduced in Sect. 4).

The remainder of this work is structured as follows: Sect. 2
applies a sensitivity analysis approach to build the adjoint of
the subordinated time-FDE and then develops and validates
a Lagrangian solver of the resulting BTTP model; Sect. 3
checks the feasibility of the adjoint model and its solver by
quantifying the BTTP, identifying the release history of con-
taminants in an alluvial aquifer and a river with uniform
velocity, and calculating groundwater ages dated using en-
vironmental tracers in a regional-scale alluvial aquifer with
fine velocity resolution; Sect. 4 discusses the identification of
contaminant source locations based on the backward location
probability (BLP) density function and extends the backward
probability model; and Sect. 5 draws the main conclusions.

2 Methodology development

This section derives the model and solver for backward-in-
time subordination to water flow in heterogeneous media.
The concept of subordination to regional flow was initially
proposed by Baeumer et al. (2001) and later extended to mul-
tidimensional flow by Zhang et al. (2015). Subordination is
a statistical method that randomizes the operational time ex-
perienced by individual particles in a random process (Feller,
1971). When applied to regional flow, this process captures
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fast displacement of pollutant particles along streamlines
during the randomized operational time, as shown and ex-
plained in the following model (Eq. 1a).

2.1 Forward and backward models

2.1.1 The 3D transport and adjoint models

We propose the following 3D subordinated time-FDEs to
track pollutants in streams and aquifers with vector veloc-
ity, after adding source/sink and reaction terms and ini-
tial/boundary conditions in the vector model proposed by
Zhang et al. (2015):

b
∂(θC)

∂t
+β

∂γ,λ(θC)

∂tγ,λ
=−∇V (θC)

+ σ ∗(∇V )
α,κ (θC)+ qICI− qoC− θrC, (1a)

C (x, t = 0)=
M0

θ
δ (x− x0) , (1b)

C (x, t)|ξ1 = g1 (t) , (1c)[
σ ∗(∇V )

α−1,κ (θC)
]
·n2

∣∣∣
ξ2
= g2 (t) , (1d)[

V (x, t) θC− σ ∗(∇V )
α−1,κ (θC)

]
·n3

∣∣∣
ξ3
= g3 (t) . (1e)

Here, C [ML−3] denotes the solute concentration, b (= 0 or
1) [dimensionless] is a factor controlling the type of the time
FDE, θ [dimensionless] is the effective porosity, β [Tγ−1] is
the fractional capacity coefficient, σ ∗ [L] is a scaling factor
for subordination, V [LT−1] is the velocity vector (note that
all vectors in this paper are formatted in bold italic), ∇V is an
advection operator defined via∇V =∇ (VC), qI [T−1] is the
source inflow rate, CI is the inflow concentration, qO is the
sink outflow rate, r [T−1] is the first-order decay constant,
M0 is the initial source mass, gi (i = 1, 2, 3) is a known
function at the type-i boundary (to define the constant con-
centration or pollutant flux at the boundary), ξi (i = 1, 2, 3)
is the domain of the type-i boundary, x [L] denotes the spa-
tial coordinate, t [T] is the (forward) time, and n2 and n3
are outward unit normal vectors on the respective type-2 and
type-3 boundaries. We refer to Eq. (1a) as the subordinated
fractional-derivative equation (S-FDE).

The S-FDE (Eq. 1a) captures the concurrent sub-diffusion
and super-diffusion, driven by different mechanisms repre-
sented by different terms. In Eq. (1a), the symbol ∂γ,λ

∂tγ,λ
, which

is the mixed Caputo fractional derivative with an index γ [di-
mensionless] (0< γ ≤ 1) and a temporal truncation param-
eter λ [T−1] (Baeumer et al., 2018), defines sub-diffusion
due to solute retention. The operator (∇V )

α,κ , representing
subordination to the flow field with an index α [dimension-
less] (1< α ≤ 2) for the tempered stable density (with the
maximum possible positive skewness β∗ =+1) and a spa-
tial truncation parameter κ [L−1], describes fast downstream
displacements. It is worth noting that pollutant particles un-
dergo advective displacement controlled by local mean ve-

locity, with individual particles migrating along various flow
paths in a heterogeneous medium, leading to random me-
chanical dispersion due to local speeds deviating from the
mean velocity. Equation (1a) assumes a (tempered) α-stable
density distribution for random mechanical dispersive jumps,
rescaled by the mean local velocity. This (tempered) α-stable
density encompasses both Gaussian and power-law densities
as two end-members. Therefore, subordination to regional
flow extends standard symmetric mechanical dispersion to
nonsymmetric, super-diffusive mechanical dispersion along
streamlines, driven by local velocity variations, like super-
diffusion along preferential flow paths. Notably, if molecular
diffusion is not negligible, it can be included in Eq. (1), com-
bining with the subordination term responsible for mechani-
cal dispersion to define hydrodynamic dispersion.

To derive the backward model for the S-FDE (Eq. 1) us-
ing the adjoint approach (Neupauer and Wilson, 2001), we
first convert it to the model governing the state sensitivity
φ = ∂C

∂f
, where f is a system parameter and is selected as

the initial mass M0, as in Neupauer and Wilson (2001) and
Zhang (2022). This can be done by taking the first-order
derivative of each term in the S-FDE (Eq. 1) with respect
to M0, which leads to the following:(
b
∂

∂t
+β

∂γ,λ

∂tγ,λ

)
(θφ)=−∇V (θφ)

+ σ ∗(∇V )
α,κ (θφ)− (qo+ θr)φ, (2a)

φ (x, t = 0)=
∂C (xi)

∂M0
=

1
θ
δ (x− x0) , (2b)

φ (x, t)|ξ1 = 0, (2c)[
σ ∗(∇V )

α−1,κ (θφ)
]
·n2

∣∣∣
ξ2
= 0, (2d)[

V θφ− σ ∗(∇V )
α−1,κ (θφ)

]
·n3

∣∣∣
ξ3
= 0. (2e)

Here, the time fractional derivative operator commutes.
We then incorporate the adjoint state of the concentration

in the S-FDE (Eq. 2a) by taking the inner product of each
term of Eq. (2a) with an arbitrary function A, which repre-
sents the adjoint state:∫ T

0

∫
�

[
Ab
∂ (θφ)

∂t
+Aβ

∂γ,λ

∂tγ,λ
(θφ)+A∇V (θφ)

−Aσ ∗(∇V )
α,κ (θφ)+A(qo+ θr)φ

]
d�dt = 0, (3)

where � denotes the whole model domain. Afterward,
through sensitivity analysis, we derive the backward model
(please refer to Appendix A for details):
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b
∂(θA)

∂s
+β

∂γ,λ(θA)

∂sγ,λ
=∇V (θA)− θσ

∗

(
∇←
V

)α,κ
A

− (qI+ θr)A+
∂h

∂C
, (4a)

A(x, s) |s=0 = 0, (4b)
A(x, s)|ξ1 = 0, (4c)[
−AθV + σ ∗θ (∇V )

α−1,κ (A)
]
·n2

∣∣∣
ξ2
= 0, (4d)[

σ ∗θ (∇V )
α−1,κ (A)

]
·n3

∣∣∣
ξ3
= 0. (4e)

Here, s (= T − t) represents backward time (with T as the

detection time), and the operator
(
∇←
V

)α,k
denotes subor-

dination to the reversed flow field
(
←

V

)
with a tempered

α-stable density characterized by maximum negative skew-
ness (β∗ =−1), indicating fast displacements from down-
stream to upstream during backtracking. The initial condi-
tion (Eq. 4b) A(x, t) |t=T = A(x, s) |s=0 = 0 and the bound-
ary conditions Eq. (4c)–(4e) are obtained by making sure that
the remaining terms in Eq. (A6) in Appendix A define the
following marginal sensitivity:

dP
dM0
=∫

�

{[
(Abθ) |t=0+ θ |t=0 βI

1−γ,λ
− (A) |t=0

] ∂Ci
∂M0

}
d�. (5)

Therefore, to convert the forward-in-time S-FDE (1) to its
backward counterpart (Eq. 4), we need to (i) reverse the flow
field, (ii) convert the source/sink terms and boundary con-
ditions, and (iii) reverse the skewness in the stable density
defining backward mechanical dispersive jumps. The first
two changes were identified before by Neupauer and Wilson
(2001) for the classical ADE (although the exact forward–
backward transition is new here), and the last change is
new. In the following, we name the backward-in-time model
(Eq. 4) as the adjoint S-FDE.

2.1.2 The 1D simplifications

The 1D simplification of the vector forward-in-time S-FDE
(Eq. 1) takes the following form:

b
∂(θC)

∂t
+β

∂γ,λ(θC)

∂tγ,λ
=−

∂(V θC)

∂x

+ σ ∗
(
∂

∂x

)α,κ
V

(θC)+ qICI− qoC− θrC,

C (x, t = 0)=
M0

θ
δ(x− x0),

C(x, t)|ξ1 = g1 (t) ,

[
σ ∗
(
∂

∂x

)α−1,κ

V

(θC)

]∣∣∣∣∣
ξ2

= g2 (t) ,[
V θC− σ ∗

(
∂

∂x

)α−1,κ

V

(θC)

]∣∣∣∣∣
ξ3

= g3 (t) .

If the velocity V in the equations listed above is constant, this
1D S-FDE reduces to the following 1D standard FDE:

b
∂(θC)

∂t
+β

∂γ,λ(θC)

∂tγ,λ
=−V

∂(θC)

∂x

+D∗
∂α,κ

∂xα,κ
(θC)+ qICI− qoC− θrC, (6a)

C (x, t = 0)=
M0

θ
δ(x− x0), (6b)

C(x, t)|ξ1 = g1 (t) , (6c)[
D∗

∂α−1,κ

∂xα−1,κ (θC)

]∣∣∣∣
ξ2

= g2 (t) , (6d)[
V θC−D∗

∂α−1,κ

∂xα−1,κ (θC)

]∣∣∣∣
ξ3

= g3 (t) . (6e)

Here, D∗ = σ ∗V . Therefore, in 1D transport with a constant
velocity, the scaling factor σ ∗ in the S-FDE is analogous
to dispersivity, a parameter often used to scale mechanical
dispersion (typically fitted by observed plume data), and the
subordination index α is equal to the index of the (tempered)
space fractional derivative.

The 1D adjoint of FDE (Eq. 6) is a simplified version of
the 3D adjoint S-FDE (Eq. 4):

b
∂(θA)

∂s
+β

∂γ,λ(θA)

∂sγ,λ
= V

∂(θA)

∂x
+D∗θ

∂α,κ

∂(−x)α,κ
A

− (qI+ θr)A+
∂h

∂C
, (7a)

A(x,s) |s=0 = 0, (7b)
A(x,s)|ξ1 = 0, (7c)[
AθV −D∗θ

∂α−1,κ

∂(−x)α−1,κ A

]∣∣∣∣
ξ2

= 0, (7d)[
D∗θ

∂α−1,κ

∂(−x)α−1,κ A

]∣∣∣∣
ξ3

= 0. (7e)

The backward FDE (Eq. 7) aligns with the one derived by
Zhang et al. (2022), validating the 1D simplification of the
backward model (Eq. 4).

When the factor b = 1, the capacity coefficient β = 0
(meaning no immobile phase or solute retention), and the
space index α = 2 (representing normal diffusion), the for-
ward S-FDE model (Eq. 6) reduces to the classical second-
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order ADE:

∂(θC)

∂t
=−V

∂(θC)

∂x
+D∗

∂2

∂x2 (θC)+ qICI− qoC− θrC,

C (x, t = 0)=
M0

θ
δ(x− x0),

C(x, t)|ξ1 = g1 (t) ,[
D∗

∂

∂x
(θC)

]∣∣∣∣
ξ2

= g2 (t) ,[
V θC−D∗

∂

∂x
(θC)

]∣∣∣∣
ξ3

= g3 (t) .

Thus, the corresponding backward model (Eq. 7) is simpli-
fied to the following:

∂(θA)

∂s
= V

∂(θA)

∂x
+D∗θ

∂2A

∂x2 − (qI+ θr)A+
∂h

∂C
, (8a)

A(x,s) |s=0 = 0, (8b)
A(x,s)|ξ1 = 0, (8c)[
AθV +D∗θ

∂A

∂x

]∣∣∣∣
ξ2

= 0, (8d)[
D∗θ

∂A

∂x

]∣∣∣∣
ξ3

= 0. (8e)

This is the same as the 1D backward ADE derived by Neu-
pauer and Wilson (1999).

The applicability of both the 3D backward model (Eq. 4)
and its 1D simplification (Eq. 7) is examined using real-
world aquifers and streams in Sect. 3. The 3D backward
model (Eq. 4) is needed, as most transport processes in nat-
ural aquifers are multidimensional. The 1D backward model
(Eq. 7) can also be useful because (i) focusing on longitu-
dinal transport is often necessary and (ii) most successful
hydrology applications of FDEs are limited to 1D, as dis-
cussed in the comprehensive review by Zhang et al. (2017).
The classical 1D backward ADE model (Eq. 8) will also be
applied to reveal the impact of non-Fickian transport on the
BTTP via comparison with the adjoint S-FDE solutions.

2.2 Lagrangian solver

The adjoint S-FDE (Eq. 4) with complex boundary condi-
tions lacks an analytical solution for the BTTP; hence, a grid-
free, fully Lagrangian numerical solver is proposed here. The
Lagrangian solver for the forward-in-time S-FDE (Eq. 1) un-
der various boundary conditions was developed and tested
by Zhang et al. (2019a). We briefly introduce it here. This
forward-in-time Lagrangian solver contains three main steps.
Step 1 decomposes mobile and immobile phases using the
following temporal Langevin equation that separates particle
waiting time and operational time, with a probability density
function (PDF) following the tempered stable density with

index γ (Meerschaert et al., 2008):

dti = dMi +

[
cos

(πγ
2

)
β dMi

]1/γ
dLγ,λ

(
β∗ =+1,

ε = 1, µ= 0) ,

where dti denotes the total time for the particle spent in the
ith jump; dMi represents the operational time during this
jump (which can be assigned uniformly); and dLγ,λ is a
tempered stable random variable with the maximum positive
skewness β∗, unit scale ε, and zero shift µ. Step 2 applies
subordination to regional flow by calculating streamline-
oriented random mechanical displacements for each particle
(whose PDF follows the tempered α-stable density), scaled
by local velocity, as described above. Step 3 then adjusts
particle trajectories near boundaries using particle-tracking
schemes developed by Zhang et al. (2015).

We convert the abovementioned forward-in-time La-
grangian solver to its backward counterpart for adjoint S-
FDE (Eq. 4) approximation with three main modifications.
First, we reverse vector components of velocity for back-
ward advective displacement of particles during the opera-
tional time. Second, we change skewness of the (tempered)
α-stable Lévy jumps from positive (to capture downstream
mechanical displacement) to negative maximum (to back-
track pollutants located upstream initially). Third, we mod-
ify source/sink terms and boundary conditions according to
those defined in the adjoint model (Eq. 4) and Table 1. For
example, forward sink term (−qoC in Eq. 1a) becomes the
load term ∂h

∂C
in the adjoint model (Eq. 4a), representing the

initial probability source in the backward Lagrangian solver.
Table 1 details changes and hydrogeologic interpretations of
these boundary conditions (value and type) converted from
the forward S-FDE to backward counterpart at upstream (in-
let) and downstream (outlet) boundaries. In this 1D simpli-
fication, we assume forward flow left to right. The Dirich-
let, Neumann, Robin, and infinite boundaries in the forward
model transform to the absorbing, fully reflective, partially
reflective, and free boundaries in the backward model, re-
spectively, to correctly backtrack particle trajectories around
boundaries and recover the pollutant release history. For ex-
ample, the nonzero Dirichlet boundary condition in the for-
ward model (Eq. 1c) converts to an absorbing boundary in
the backward model (Eq. 4c), which is expected because the
forward source term becomes the sink term in the backward
model. In addition, a nonzero Neumann boundary condition
in the forward model (Eq. 1d) (representing an immobile dif-
fusive source at the inlet boundary) transforms into a fully re-
flective boundary condition in the backward model (Eq. 4d)
(meaning no external sources outside the upstream bound-
ary), ensuring that no particles exit this upstream boundary
(Table 1).

This backward-in-time Lagrangian solver is computation-
ally more efficient than the standard Eulerian solver be-
cause (i) particles in the immobile phase remain motionless,
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Table 1. Changes in boundary conditions from the 1D forward FDE (Eq. 6a) to its backward model (Eq. 7a).

Boundary Forward S-FDE (Eq. 6a) Backward S-FDE (Eq. 7a)

Left
(upstream)

Dirichlet boundary:
C|x=L = g1(t), representing a stagnant source reservoir
at the inlet.

Absorbing boundary:
A|x=L = 0, which can be used for groundwater age
modeling (the foreword source term becomes the back-
ward sink term).

Neumann boundary:
−
∂α−2

∂xα−2

[
θD

∂(eκxC)
∂x

]∣∣∣
x=L
= g1(t), representing an

immobile diffusive source located at the inlet (less
common).

Fully reflective boundary:[
−V θA+ θD

∂α−1(e−κxA)
∂(−x)α−1 eκx

]∣∣∣∣
x=L

= 0, where no

particles can exist this upstream boundary; thus, there
are no external sources outside the upstream boundary.

Robin boundary:{
θVC− ∂α−2

∂xα−2

[
θD

∂(eκxC)
∂x

]}∣∣∣
x=L
= g1(t), defining

the coexistence of an advective source (located outside
of the upstream boundary and moving at a constant rate
V ) and an immobile diffusive source (located at the
upstream boundary).

Partially reflective boundary:

θD
∂α−1(e−κxA)
∂(−x)α−1 eκx

∣∣∣∣
x=L

= 0, representing a partially

free exit boundary. Diffusive particles cannot exit the
boundary x = L, but they are reflected near the boundary
(to capture the diffusive source at the upstream bound-
ary); advective particles, however, can exit the bound-
ary x = L freely, to capture the advective source outside
x = L.

Infinite boundary:
C|x=−∞ = 0, with both an advection and dispersion
contribution to the mass flux in the domain (L < x < R)
via the upstream boundary at x = L.

Free boundary: A|x=−∞ = 0, for infinite domains with
advective and dispersive particles freely crossing the up-
stream boundary at x = L (also called “a fully free exit
boundary”).

Right
(downstream)

Dirichlet boundary:
C|x=R = g2 (t), representing a stagnant source reser-
voir or a mass sink term (with g2 (t)= 0, defining the
absorption well or a groundwater barrier) at the down-
stream boundary.

Absorbing boundary:
A|x=R = 0, representing that a mass sink term in the
forward model at the outlet transforms to a load term
(with an initial probability of 1) in the backward model.

Neumann boundary:
−
∂α−2

∂xα−2

[
θD

∂(eκxC)
∂x

]∣∣∣
x=R
= g2(t), representing diffu-

sive flux leaving the system (with zero advective flux),
which can define an impermeable layer at the outlet.

Fully reflective boundary:[
V θA− θD

∂α−1(e−κxA)
∂(−x)α−1 eκx

]∣∣∣∣
x=R

= 0, to completely

close the outlet; thus, no particles can exit the outlet from
the internal domain and no external sources are located
downstream of the downstream boundary.

Robin boundary:{
θVC− ∂α−2

∂xα−2

[
θD

∂(eκxC)
∂x

]}∣∣∣
x=R
= g2 (t), repre-

senting both advective and diffusive flux leaving the
system, due to, for example, a pumping well.

Partially reflective boundary:

− θD
∂α−1(e−κxA)
∂(−x)α−1 eκx

∣∣∣∣
x=R

= 0; this partially reflective

boundary is functionally analogous to the fully reflective
boundary due to the reversed flow direction, to remove
any external pollutant sources.

Infinite boundary:
C|x=+∞ = 0, with both an advection and dispersion
contribution to the mass flux in the domain (L < x < R)
via the downstream boundary at x = R, which is appli-
cable for a site whose dimension is much longer than the
pollutant displacement.

Free boundary:
A|x=R = 0; this can be one of the predominant back-
ward boundary conditions for real-world applications,
where no physical boundaries exist or can be identified
for forward pollutant transport with a limited scale in a
regional-scale aquifer or river corridor.

and therefore require no calculations, and (ii) the stream-
lines can be semi-analytically calculated (LaBolle, 2006) for
streamline-projected mechanical dispersion during regional
flow subordination.

2.3 Numerical experiments and validation

Here, we check this Lagrangian solver using either simpli-
fied cases (1D) or qualitative evaluation due to the lack of
other numerical solvers for the 3D adjoint S-FDE (Eq. 4a).
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The number density of particles exiting the source location,
rescaled by velocity, defines the flux-concentration-based
BTTP. This method estimates the PDF of each release time
(s) for the pollutants identified at the monitoring well at
present.

Results of the first numerical experiments are plotted in
Fig. 1. For validation, we developed an implicit Eulerian fi-
nite difference solver for the 1D adjoint FDE (Eq. 7a), adopt-
ing the Grünwald approximation scheme proposed by Meer-
schaert and Tadjeran (2004) for efficient fractional deriva-
tive approximations. The Lagrangian BTTP solutions align
with the Eulerian solutions, despite some apparent noise at
low BTTPs, arising from the finite number of particles used
in the model (Fig. 1). In these experiments, we assumed the
backward travel distance of 10 (dimensionless) and a model
domain dimension 100 times larger than the backward travel
distance. Consequently, we treated the boundaries as effec-
tively infinite and applied the free boundary condition as out-
lined in Table 1. Our numerical analysis also revealed that
varying the time truncation parameter λ impacts the BTTP
peak time and the late-time tail. A larger λ delays the BTTP
peak time (because a larger λ leads to a longer peak wait-
ing time in the truncated stable density) and narrows the
late-time tail of the BTTP (because a larger λ significantly
narrows the particle’s waiting time PDF by truncating ex-
tremely long waiting times) (Fig. 1a, b). When λ is very
small (i.e., λ≤ 10−6 T−1, representing an untruncated, stan-
dard stable density for the random waiting time), the late-
time BTTP tail declines at a rate of s−1−γ (Fig. 1d). In ad-
dition, a small and negligible space truncation parameter κ
results in an early-time BTTP tail increasing at a rate of s1, a
characteristic stable across various subordination indexes α
varying from 1 to 2 (Fig. 1b, d). When all the other parame-
ters remain unchanged, a smaller subordination index α and
a larger time index γ accelerates the BTTP peak, because a
smaller α engenders a faster-moving plume peak and a larger
γ describes weaker retention. Therefore, the BTTP early-
time tailing behavior (representing super-diffusion) is gov-
erned by α and κ , while the late-time tailing behavior (repre-
senting sub-diffusion) is mainly controlled by γ and λ. The
BTTP peak is affected by all four of these parameters, reflect-
ing the interplay between super- and sub-diffusive transport.
These BTTP features can be critical signals for real-world
applications. For example, the BTTP peak time describes the
most likely release time of an instantaneous point source, and
the BTTP tails control the backward travel time distribution
which also defines the groundwater age distribution (see the
application in Sect. 3.2) and transient indexes for assessing
aquifer vulnerability (Zhang et al., 2018).

The second numerical experiments apply the Lagrangian
solver to backtrack particles in nonuniform flow fields
(Fig. 2). Two 2D Brownian random hydraulic conductiv-
ity (K) fields were first generated using the method devel-
oped by Zhang et al. (2019a) (Fig. 2a, c). Particularly, log-
normal, random K values were distributed in space using

the Fourier filter function. The Hurst parameter in the fil-
ter function defines the spatial correlation of K values: a
relatively “homogeneous” K field exhibits weak correlation
of K (e.g., Fig. 2a), while a “heterogeneous” K field dis-
plays strong correlation (e.g., Fig. 2c). Steady-state ground-
water flow was then calculated by the United States Geologi-
cal Survey (USGS) software MODFLOW (Harbaugh, 2005)
(shown by the black lines in Fig. 2 and d). Backward particle-
tracking plumes were finally obtained by the Lagrangian
solver proposed above (shown by the contour maps in Fig. 2b
and d). InK-field no. 1, characterized by a relatively “homo-
geneous” distribution of K , particles originating from differ-
ent wells move backward at a similar rate, eventually exiting
the system upon reaching the upstream boundary (located at
x = 0 and assumed to be an absorbing boundary in the back-
ward model) (Fig. 2b). These plumes follow local streamline
paths, in accordance with the streamline projection method
outlined earlier. The transverse expansion of the plume is at-
tributed to molecular diffusion incorporated into particle dy-
namics. In K-field no. 2, representing a more heterogeneous
K field with layered deposits, particles starting in the high-
K zone move rapidly and exit the model domain (Fig. 2d).
These backward dynamics follow our logical expectations
but cannot be independently validated, as far as our knowl-
edge extends, due to the absence of alternative solvers for the
vector model (Eq. 4).

3 Field applications

The adjoint S-FDE model is applied in this section to recover
the release history of pollutants in aquifers and rivers and
calculate groundwater ages dated by environmental tracers.
These surface and subsurface flow systems, characterized by
different levels of medium heterogeneity, diverse flow ve-
locity resolutions, boundary conditions, and spatiotemporal
scales, serve as a comprehensive test bed to evaluate the
real-world applicability of the physical model and numerical
solver developed in this study.

3.1 BTTP application case 1: recover release history of
pollutants at the MADE site

Natural-gradient tracer tests were conducted at the Macrodis-
persion Experiment (MADE) site in Columbus, Mississippi,
USA (Adams and Gelhar, 1992; Boggs et al., 1992), identify-
ing mixed sub- and super-diffusive pollutant transport in an
alluvial aquifer measuring approximately 11 m with respect
to thickness and 300 m with respect to length (Bianchi et al.,
2016; Yin et al., 2020). Non-Fickian transport at the MADE
site has motivated the development of various numerical and
stochastic transport models over the last 3 decades (see the
review by Zheng et al., 2011), but the BTTP dominated by
mixed sub-/super-diffusion has remained uncharted. Here,
we calculate its BTTP using the adjoint S-FDE (Eq. 7a), an
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Figure 1. Solver validation 1: Lagrangian solutions (symbols) vs. the Eulerian solutions (lines) for the 1D backward model (Eq. 7a) with
various truncation parameters λ (a) and various subordination index α and time index γ (c). The other model parameters that remain
unchanged in these cases are as follows: velocity V = 1, scaling factor σ∗ = 1, the spatial truncation parameter κ = 1× 10−7, and the
backward travel distance L= 10. Panels (b) and (d) are the log–log plots of panels (a) and (c), respectively, to show the tailing. Free exit
boundary conditions are used in these cases, and parameters are dimensionless here.

upscaled model, with a uniform velocity. The 1D backward
model is selected because the MADE site transport can be
simplified by a 1D process projected into the longitudinal
direction, which is a convention upheld by many previous
models (Zheng et al., 2011).

The seven parameters in the backward model (Eq. 7a)
can be conveniently estimated using mainly literature data.
The strong sub-diffusion and super-diffusion observed at the
MADE site imply that the two truncation parameters (λ and
κ) can be simply neglected, reducing the unknown param-
eters to 5. The subordination index α is analogous to the
spatial index (1.1) estimated by Benson et al. (2001) using
the distribution of measured permeability. The time index
γ (0.39) and capacity coefficient β (0.082 dγ−1) were esti-
mated by Zhang (2010) using the decline rate of the observed
mobile tracer mass. The velocity V (0.24 m d−1) can be ap-
proximated by the mean field velocity, and the scaling factor
σ ∗ is assumed to be 1 m because dispersion at the MADE site
was found to be a similar order to V (Benson et al., 2001).

The predicted BTTPs are plotted in Fig. 3. Here, we
choose the monitoring well located at the bromide plume’s
peak (obtained from the MADE-1 bromide tracer test) as
the detection location, denoted as xw (which is defined as
the location of the monitoring well detecting the maximum
concentration), as this location represents the mass center
of the tracer plume. The known contaminant source is sit-
uated at the origin (x0 = 0). The plume peak during the first
(Day 49) and second (Day 126) sampling cycles is located at
xw = 3.0 m and 7.0 m, respectively, providing two possible

detection locations. These two detection locations lead to the
two predicted BTTPs depicted in Fig. 3, after applying the
adjoint S-FDE (Eq. 7a) with the seven parameters estimated
above.

On the one hand, the model results show that the peak in
the flux-concentration-based BTTP well captures the true re-
lease time (Fig. 3a, b); on the other hand, the peak in the
BTTP based on the concentration profile for “immobile” par-
ticles (which remained nearly stationary at the source loca-
tion during each unit time interval for BTTP calculation) has
a higher value and corresponds to a much later time (twice
that of the flux-concentration-based BTTP peak), which sig-
nificantly overestimates the true release time. This discrep-
ancy is explained by the slower movement of the immobile-
phase source (than the mobile-phase source) due to strong
solute retention, resulting in a more aged release time. For
an aqueous-phase observation, the flux-concentration-based
BTTP describes the PDF of release times for aqueous-
phase (or mobile-phase) sources, while the immobile par-
ticles’ concentration-based BTTP describes the PDF of re-
lease times for absorbed-phase (or immobile-phase) sources.
In the MADE-1 tracer test, bromide tracer was initially in-
jected into the upstream well as a mobile source, necessi-
tating the use of the flux-concentration-based BTTP. This
demonstrates that the adjoint S-FDE (Eq. 7a) successfully
recovers the tracer’s release history. In addition, as shown in
Fig. 3c, the slope of the late-time BTTP for the immobile-
phase sources on a log–log plot (which is −γ ) is −1 smaller
(i.e., heavier) than that for the mobile-phase sources (which
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Figure 2. Solver validation 2: two cases of operator fractional Brownian fields are given in panels (a) and (c). The corresponding backward
particle-tracking plume using the Lagrangian solvers for K-field no. 1 and no. 2 is plotted in panels (b) and (d), respectively. In panels (b)
and (d), black lines represent the hydraulic head calculated by MODFLOW, dotted blue lines denote the streamlines starting from the left
boundary shown by the black diamonds in (d), and the red diamonds show the locations of two monitoring wells.

is−γ −1), describing the sustained release of immobile pol-
lutant mass at the source location and implying a high degree
of uncertainty in the BTTP for the immobile-phase source.

The adjoint ADE is also applied here for compari-
son. When the same velocity V (0.24 m d−1) and disper-
sion coefficient D∗ (σ ∗V = 0.24 m2 d−1) are used, the ad-
joint ADE significantly underestimates the true release time
(not displayed here), as it cannot account for solute reten-
tion. Subsequently, we attempted calibration by adjusting V
(0.068 m d−1) and D∗ (0.68 m2 d−1) to match the mean and
variance of the observed bromide plumes. However, the re-
sulting BTTP peak still underestimated the true release time
by over 1 order of magnitude (shown by the solid black line
in Fig. 3). Finally, we directly fitted V (0.026 m d−1, 1 order
of magnitude smaller than the mean groundwater velocity)
and D∗ (0.031 m2 d−1) using the true release time for the
detection well located at xw = 3.0 m (shown by the dashed
black line in Fig. 3a). Nevertheless, this best-fit adjoint ADE
overestimated the true release time by >50 % for the detec-
tion well at xw = 7.0 m (shown by the dashed black line in

Fig. 3b). Therefore, the adjoint ADE with a constant velocity
cannot reliably recover the release history of pollutants expe-
riencing strong non-Fickian transport in the MADE aquifer,
reaffirming conclusions drawn in previous studies regarding
tracer transport at the MADE site using ADE-based models
(Zheng et al., 2011).

3.2 BTTP application case 2: groundwater age dating
in Kings River alluvial aquifer, California

The vector backward S-FDE (Eq. 4a) is then used to calcu-
late groundwater age distributions for the Kings River al-
luvial aquifer (KRAA) in Fresno County, California, USA
(Fig. 4). The flux-concentration-based BTTP also repre-
sents the groundwater age distribution and serves as crucial
data for groundwater sustainability assessments (Fogg et al.,
1999; Weissmann et al., 2002; Fogg and LaBolle, 2006).

The KRAA system comprises five paleosol-bounded
stratigraphic sequences recognized by Weissmann and
Fogg (1999). One realization of the 3D hydrofacies model
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Figure 3. BTTP application 1 – MADE-1 aquifer: the calculated BTTP using the adjoint 1D S-FDE (red lines) and the adjoint 1D ADE
(black line) for the observation well located at xw = 3.0 m (a) and xw = 7.0 m (b). Panels (c) and (d) are the log–log plots of panels (a) and
(b), respectively, to show the tailing behavior. The vertical gray bar denotes the true release time. The solid red line represents the BTTP for
a mobile source, whereas the dashed red line represents the BTTP for an immobile source.

built upon the Markov chain model developed by Weissmann
et al. (2004) is shown in Fig. 4, where the hydrofacies model
incorporates both the large-scale stratigraphic sequences and
the intermediate-scale hydrofacies within each sequence.
This 3D Markov chain model was built using hydrofacies
distribution data from 11 cores, 132 drillers’ logs, and soil
survey data. All cores and drillers’ logs were integrated as
hard conditional data, maximizing the incorporation of ob-
served information into the numerical model. This regional-
scale model contains∼ 1 million cells, each with dimensions
of 200, 200, and 0.5 m in the depositional strike, deposi-
tional dip, and vertical directions, respectively, with a total
model domain size of 12 600 m× 15 000 m× 100.5 m along
these three directions. We calculated steady-state groundwa-
ter flow using MODFLOW, applying parameters and bound-
ary conditions described by Weissmann et al. (2004) and
Zhang et al. (2018). Specifically, we assigned measured K
values to each facies (gravel, sand, muddy sand, mud, and pa-
leosol). The top of the model accounted for a recharge bound-
ary, and the lateral and basal boundaries of the model were
general head boundaries to allow inflow and outflow. The
modeled hydraulic heads closely matched the measured data
(Zhang et al., 2018). We used the resulting fine-resolution

velocity field to calculate the BTTP using the adjoint S-FDE
(Eq. 4a).

We begin with a parameter sensitivity test using the adjoint
S-FDE (Eq. 4). In these backward particle-tracking models,
the water table (representing an internal boundary) and the
lateral upstream boundary of the model are both set as ab-
sorbing boundaries, representing the source locations. The
remaining model boundaries are treated as fully reflective
boundaries. An effective porosity of 0.33, a value previously
determined as the best fit in Weissmann et al. (2004) and
Zhang et al. (2018), is applied for these simulations. We
consider three cases to explore decreasing super-diffusion
and increasing sub-diffusion. Case 1 exhibits strong super-
diffusion, characterized by a time index γ = 0.80, a capacity
coefficient β = 0.1 yrγ−1, a subordination index α = 1.40,
and a scaling factor σ ∗ = 0.4 m. Case 2 represents an in-
termediate scenario with γ = 0.72, β = 0.2 yrγ−1, α = 1.45,
and σ ∗ = 0.3 m. Case 3 describes strong sub-diffusion, fea-
turing γ = 0.65, β = 0.3 yrγ−1, α = 1.50, and σ ∗ = 0.2 m.
The subordination truncation parameter (κ) remains the same
for all three cases (κ = 1.0×10−5 m−1). The resultant back-
ward particle-tracking snapshots at the backward time s =
50 years are plotted in Fig. 5a, b, and c for these three
cases. Driven by subordination to regional flow, particles
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Figure 4. BTTP application 2 – KRAA: location and the multiscale 3D hydrofacies model for the Kings River alluvial aquifer, Fresno
County, California, USA.

follow streamlines and expand, particularly within high-
permeability deposits (due also to molecular diffusion simul-
taneously along all three axis directions). Case 1 captures
rapid backward (i.e., toward upstream) movement of parti-
cles due to strong super-diffusion, resulting in most particles
reaching the water table within 50 years and then leaving the
system, leaving only a few particles behind (Fig. 5a). Con-
trarily, Case 3 captures the most delayed backward move-
ment due to strong sub-diffusion, resulting in the majority
of particles remaining in the aquifer with limited spatial ex-
pansion, as depicted in Fig. 5c. This parameter sensitivity
test demonstrates the capability of the adjoint S-FDE (Eq. 4)
to reasonably interpret non-Fickian dynamics in multidimen-
sional aquifers. In addition, the corresponding BTTP for each
case, representing the age distribution for groundwater sam-
pled at the well screen indicated in Fig. 5a (the green rect-
angle), is plotted in Fig. 5d. Notably, as the adjoint S-FDE
transitions from Case 1 to Case 3, characterized by a larger
subordination index α and a smaller time index γ , the BTTP
shifts towards older ages, with a decreasing peak and an ex-
panding distribution. This illustrates the impact of decreasing
super-diffusion and increasing sub-diffusion on groundwa-
ter age distributions. This test underscores that key proper-
ties of the BTTP, including the mean, peak, and variance of
groundwater ages, are sensitive to the two indexes α and γ .
In further comparisons, it becomes evident that the classical
adjoint ADE fails to capture the early arrivals in the BTTP,

primarily due to its inability to account for super-diffusion
(figures not shown).

Finally, we compared the adjoint S-FDE solutions with
chlorofluorocarbon-11 (CFC-11) ages measured by Burow
et al. (1999) from USGS data for the KRAA in 1994. The
S-FDE model parameters cannot be predicted using the
hydrofacies property-based method proposed by Zhang et
al. (2014) for stationary hydrofacies models, due to the non-
stationary distribution of hydrofacies in the KRAA. Instead,
an alternative approach was employed by fitting the age dis-
tribution for groundwater, particularly shallow groundwater,
calibrated using environmental tracers such as CFCs. Fig-
ure 6a–d present the calculated BTTP for the USGS wells
sampled by Burow et al. (1999) (listed in Fig. 4). Both
the adjoint S-FDE (Eq. 4a) and the adjoint ADE (Eq. 8a)
were first calibrated to fit the measured CFC-11 age of Well
B41, following the methodology proposed by Weissmann
et al. (2002). Preliminary tests revealed that the simulated
CFC-11 age is insensitive to the two truncation parameters,
as these parameters primarily affect very early (i.e., < 1 d)
or very late (i.e., > 50 years) times in the BTTP. The ve-
locity field was directly resolved from the MODFLOW so-
lutions of hydraulic head; therefore, velocity was not a fit-
ted parameter. Hence, the adjoint S-FDE (Eq. 4a) has four
unknown parameters: the subordination index α and scaling
factor σ ∗, which control the climbing limb of the BTTP, and
the time index γ and capacity coefficient β, which govern
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Figure 5. BTTP application 2 – Kings River alluvial aquifer (KRAA): a snapshot (of particle plumes) within the vertical cross-section along
the X-strike direction, with a coordinate of X = 3700 m shown in the hydrofacies model in Fig. 4. This snapshot was obtained through
backward particle tracking over a backward time of s = 50 years using the adjoint S-FDE (Eq. 4a) for Case 1 (a), Case 2 (b), and Case 3
(c). The green rectangle in each panel represents the well screen (with a length of 0.5 m) where the groundwater sample was collected. In
all cases, 5000 particles were released initially at s = 0. Panel (d) shows the corresponding BTTPs for these three cases, and panel (e) is the
log–log version of panel (d).

the declining limb of the BTTP. The interplay between these
two groups of parameters, particularly the two indexes, af-
fects the BTTP peak, as discussed in Sect. 2.3. Here, the
primary objective is to determine the best-fit parameters for
the two indexes defining super- and sub-diffusion while stay-
ing within their established range. To represent strong super-
diffusion within a very coarse velocity field, such as a uni-
form velocity, the subordination index α (1< α ≤ 2) should
approach the lower limit. For example, the MADE-1 site uti-
lized a best-fit α = 1.1 with a uniform, upscaled velocity.
Conversely, when modeling strong sub-diffusion with a uni-
form velocity, the time index γ (0< γ ≤ 1) should approach
the lower end. For example, the MADE-1 site had a best-fit
γ = 0.39. With the availability of a fine-resolution velocity
field, values of α (or γ ) increase and may approach the up-
per limit of 2 (or 1) if velocity is resolved at the pore scale.
The fine-resolution velocity field available for the KRAA al-
lowed for the selection of α and γ close to their upper ends
in trial-and-error calibrations, leading to the following best-
fit results: the subordination index α = 1.90, the scaling fac-
tor σ ∗ = 0.2 m−1, the time index γ = 0.80, and the capacity
coefficient β = 0.2 dγ−1. For the adjoint ADE, the sole fit-
ting parameter is dispersivity, with the best-fit isotropic dis-

persivity (longitudinal and transverse dispersivities αL and
αT) of 0.04 m. This same value of isotropic dispersity has
also been applied in previous studies modeling KRAA trans-
port processes using ADE-based models by Weissmann et
al. (2002, 2004) and Zhang et al. (2018). These studies found
that (i) simulation results were insensitive to the value of αL,
as plume spreading is mainly controlled by the hydrofacies-
scale heterogeneity captured by the geostatistical model, and
(ii) the Lagrangian solver operated more efficiently with iso-
topic dispersivity.

The best-fit parameters were then applied to predict the
CFC-11 age for the other wells. The CFC-11 age calcu-
lated by the adjoint S-FDE matched the observed age better
than the adjoint ADE for all wells under consideration. The
adjoint ADE produced BTTPs with multiple or secondary
peaks, often deviating significantly from the measured CFC-
11 ages. In contrast, the adjoint S-FDE typically generated a
single BTTP peak closer to the true CFC-11 age, simplifying
the interpretation of environmental tracer dating: the appar-
ent age determined from the tracer data usually fell within
the range of the 25th to 75th percentiles of the BTTP peak.
In addition, Fig. 6e shows the joint BTTP for all wells, rep-
resenting groundwater recharge times for all four wells si-
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Figure 6. BTTP application 2 – KRF (Kings River alluvial fan): the simulated BTTP using the adjoint S-FDE (red line) and the adjoint ADE
(black line) for Well B11 (a), B31 (b), B41 (c), and 51 (d). The right panels are the log–log versions of the respective left panels, to show the
tailing. The vertical lines show the CFC-11 age measured in the lab (vertical gray line), estimated by the adjoint S-FDE (dashed red line),
and estimated by the adjoint ADE (dashed black line).

multaneously. The joint BTTP, depicted in a log–log plot
(Fig. 6j), exhibited narrower uncertainty compared with in-
dividual marginal BTTPs. This reduction in uncertainty re-
sults from the availability of concentration data from mul-
tiple observation wells. Importantly, this represents the first
validated large-scale transport model that combines nonlo-
cal super-/sub-diffusion and local velocities. This application
confirms the suitability of the adjoint S-FDE (Eq. 4a) and
its Lagrangian solver for capturing BTTP in a 3D, regional-
scale, nonstationary alluvial aquifer with a fine-resolution ve-
locity field.

3.3 BTTP application case 3: recover the release time
for tracers in Red Cedar River, Michigan

Phanikumar et al. (2007) conducted a study involving the re-
lease of fluorescein dye into the Red Cedar River (RCR), a
fourth-order stream in Michigan, USA. They then measured
breakthrough curves (BTCs) at three locations with travel
distances of 1.4, 3.1, and 5.08 km, respectively, to explore the
impact of river system retention on dissolved chemicals. The
resulting BTCs were fitted by Chakraborty et al. (2009) us-
ing a standard, 1D space FDE with a constant velocity. The
choice of a 1D model was appropriate due to the relatively
straight nature of the river reach. However, as sub-diffusion
was found in this stream (Phanikumar et al., 2007) (likely
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due to open channel retention and/or hyporheic exchange)
and the space FDE cannot account for sub-diffusion, we ap-
plied the more versatile backward FDE (Eq. 7a). This model
encompasses both space and time fractional derivatives and
offers a solution to predict the tracer release time.

We first estimated the seven parameters in the 1D adjoint
S-FDE (Eq. 7a) using the tracer data. The tracer BTCs mea-
sured by Phanikumar et al. (2007) displayed characteristic
behaviors, including an exponential mass increase in their
ascending limb and rapid mass decrease in their descend-
ing limb. These behaviors suggest Fickian diffusion in the
operational time (meaning that the subordination index α is
close to 2 and the spatial truncation parameter κ is negli-
gible) and weak solute retention (so that the time index γ
should be large, and we initially tried γ = 0.9). The capac-
ity coefficient β should be small, considering the high mass
recovery rate in the field (approximately 90 %) (Phanikumar
et al., 2007); hence, we approximated β = 0.08 min1−γ (rep-
resenting 90 % of mobile mass recovery). The temporal trun-
cation parameter λ (0.034 min−1) was approximated by the
reverse of the time interval from the BTC peak to the inflec-
tion point of the BTC slope, as shown by Zhang et al. (2022).
The mean velocity V (0.0317 km min−1) was estimated by
the speed of the BTC peak moving from the first sampling lo-
cation (L= 1.4 km) to the second one (L= 3.1 km). The last
parameter, dispersion coefficientD∗ (σ ∗V ), was estimated to
be 0.00317 km2 min−1 by assuming that dispersion is 1 order
of magnitude smaller than advection, as solute transport in
rivers is usually dominated by advection. These estimations,
while inherently uncertain, served to simplify the application
of a complex model with seven unknown parameters in the
field.

The peak in the predicted flux-concentration-based BTTPs
using the 1D adjoint S-FDE (Eq. 7a) captures the true re-
lease time for stream gauges located at L= 3.1 km (gauge
no. 2) and 5.08 km (gauge no. 3) (shown by the solid red
line in Fig. 7b and c). However, it slightly underestimates
the true release time for gauge no. 1 located at L= 1.4 km
(Fig. 7a). This discrepancy arises because the velocity was
estimated based on transport data for tracers passing gauge
no. 1. For comparison, we also employed the adjoint ADE
model. When using the same values of V (0.0317 km min−1)
and D∗(0.00317 km2 min−1), the adjoint ADE model con-
sistently underestimates the true release times for all gauges
(illustrate by the solid black line in Fig. 7). Attempts to fit
V and D∗ for the first gauge to match the true release time
for tracers captured at gauge no. 1 still result in the adjoint
ADE model underestimating the true release time for tracers
captured at gauge nos. 2 and 3. Therefore, the adjoint S-FDE
(Eq. 7a) proves to be a more suitable choice than the clas-
sical adjoint ADE for recovering pollutant release history in
this river with a constant velocity.

It is also noteworthy that the BTTP for the immobile-phase
sources exhibits a similar peak time and tailing behavior to
that of the BTTP for the mobile-phase sources (Fig. 7). This

similarity arises from the weak solute retention, as indicated
by the large time index γ (resulting in a relatively narrow
distribution of the waiting time PDF), the small capacity co-
efficient β (indicating a smaller fraction of immobile pollu-
tants at equilibrium), and the relatively large time truncation
parameter λ (indicating that pollutant transport approaches
Fickian scaling once the time exceeds 1

λ
≈ 32 min). This

contrasts with the findings for the MADE aquifer discussed
in Sect. 3.2, suggesting a more pronounced sub-diffusion
in regional-scale alluvial aquifer/aquitard systems compared
with rivers.

4 Discussion: extension of field applications and model
capabilities

The adjoint subordination approach developed and applied
above can also help identify the pollutant source loca-
tion, a critical factor in pollution source control and water
resource management. Furthermore, the backward-in-time
vector model (Eq. 4a) has the potential for extension to ad-
dress more complex transport scenarios. These potential ex-
tensions are discussed in the following two subsections.

4.1 Identify pollutant source location using the
backward location probability density function

Pollutant source location identification has remained an im-
portant topic in hydrology for more than 2 decades, as
extensively reviewed by Atmadja and Bagtzoglou (2001),
Chadalavada et al. (2011), and Moghaddam et al. (2021).
Process-based and statistical models have also been devel-
oped over the last 2 years to successfully identify the pol-
lutant source in groundwater and rivers. These models in-
clude genetic algorithms combined with groundwater mod-
els (Han et al., 2020; Habiyakare et al., 2022) or optimiza-
tion models (Ayaz et al., 2022), modified export coefficient
models integrated with the Soil and Water Assessment Tool
(SWAT; Guo et al., 2022), physical/stochastic inverse models
(Moghaddam et al., 2021), isotope mixing models (Wiegner
et al., 2021; Ren et al., 2021), deep learning models (Kon-
tos et al., 2021; Pan et al., 2021), the model-based backward
probability method (Khoshgou and Neyshabouri, 2022), and
the null-space Monte Carlo stochastic model (Pollicino et al.,
2021), among others.

The adjoint S-FDE (Eq. 4) introduces a new process-based
modeling approach to pollutant source location identifica-
tion by computing a backward location probability (BLP)
density function, which is analogous to the normalized resi-
dent concentration at a previous time. The peak in this BLP
defines the most probable point source location. The term
“BLP” represents a standard backtracking scheme, adhering
to the established standard procedure for calculating particle-
number-density-based PDFs in space. As shown in Sect. 3,
where we recovered pollutant release history, the adjoint S-
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Figure 7. BTTP application 3 – Red Cedar River: the simulated BTTP using the adjoint S-FDE (red lines) and the adjoint ADE (black lines)
for the backward travel distance of L= 1.4 km (a), 3.1 km (b), and 5.08 km (c). The right panel is the semi-log version of the left panel, to
show the tailing. The vertical bar in each panel shows the true release time. In the legend, “FDE: Prediction (mobile source)” represents the
predicted BTTP using the adjoint S-FDE for a mobile source, whereas “FDE: Prediction (immobile source)” represents the predicted BTTP
for an immobile source.

FDE (Eq. 4) offers potential improvements over the classical
process-based pollutant source identification models. It can
(i) identify the source location for pollutants undergoing non-
Fickian diffusion, including super-diffusion, sub-diffusion,
their combination, and transitions between non-Fickian and
Fickian diffusion; (ii) distinguish the initial source phase; and
(iii) accommodate flow fields with varying resolutions. We
will validate this hypothesis using real-world data below.

4.1.1 BLP application case 1: SHOAL test site

The adjoint S-FADE (Eq. 4a) was first applied to pinpoint
the tracer source at the SHOAL test site in Churchill County,
central Nevada, USA. At this site, Reimus et al. (2003) con-
ducted a radial tracer test in a saturated, fractured granite for-
mation. Although the detailed fracture configuration for the
granite aquifer was unavailable, researchers categorized the
discrete fracture networks (DFNs) into three groups based on
fracture aperture (small, medium, and large) using a stochas-
tic approach (Pohll et al., 1999). The ambient groundwa-
ter velocity in this setting was estimated to be 0.3–3 m yr−1

(Pohll et al., 1999), which was considered negligible com-

pared with the radial flow generated by the pumping test.
During the test, 20.81 kg of bromide with an average con-
centration of 3.6 g L−1 was injected into a well located 30 m
from the extraction well. The measured tracer BTC exhibited
power-law tails at both early and late times, although the late-
time BTC data were insufficient to determine the full extent
of mass decline (depicted by symbols in Fig. 8).

We applied MODFLOW to calculate steady-state flow, ap-
proximating the intricate velocity field as radial flow with an
average pumping rate of Q= 12.4 m3 d−1, consistent with
the SHOAL field test. For the sake of upscaling, we simpli-
fied the aquifer as “homogeneous,” featuring an averageK of
5.78×10−6 m s−1, falling within the range of bulk hydraulic
conductivity, which was 1.48×10−6–4.7×10−5 m s−1, mea-
sured by Pohll et al. (1999). We then applied the vector S-
FDE (Eq. 1a) with a convergent flow field to match the ob-
served bromide BTC. Figure 8 compares the measured and
fitted bromide BTCs. The best-fit parameters in the S-FDE
model (Eq. 1a) are as follows: the time index γ = 0.44 (with-
out truncation), the capacity coefficient β = 0.48dγ−1, the
subordination index α = 1.95, the scalar factor σ ∗ = 1.0, the
truncation parameter κ = 1.3× 10−3 m−1, and the molecu-
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Figure 8. BLP application 1 – SHOAL test site: the measured (symbols) vs. the best-fit (line) bromide breakthrough curve using the vector
model S-FDE (Eq. 1a). Panel (b) is the log–log plot of panel (a), to show the BTC tail.

lar diffusion coefficient D∗ = 1.0× 10−5 m2 d−1. In Fig. 9,
we display the resulting 2D forward-in-time plume snap-
shots (in the horizontal plane) at both early (t = 2 d) and
late (t = 200 d) times for all phases (mobile, immobile, and
total phases). The simulated fractional mass recovery for
tracer bromide at the final sampling cycle (t = 322 d) reached
20.2 %, which is close to the recovery ratio (18.0 %) esti-
mated by Reimus et al. (2003).

The resulting backward streamlines, computed using the
adjoint S-FDE (Eq. 4a), are perpendicular to the groundwater
head contour (Fig. 10a), confirming the validity of the con-
cept of subordination to regional flow and our Lagrangian
solver. This demonstrates that particles move backward
along streamlines, effectively describing backward mechan-
ical dispersion. The simulated BLP is plotted in Fig. 10b, c,
and d, where the peak BLP for the mobile-phase source cap-
tures the true point source location, considering that the ini-
tial point source was within the mobile phase. In contrast, the
peak BLP for the immobile-phase source lags behind and is
closer to the pumping well due to strong retention. Notably,
the divergence in backward flow can disperse particles to dif-
ferent locations, leading to multiple potential sources. There-
fore, the adjoint S-FDE (Eq. 4a) and its Lagrangian solver,
as developed in Sect. 2, can calculate the BLP for a divergent
flow field in a 2D fractured aquifer.

4.1.2 BLP application case 2: KRAA

We then applied the adjoint S-FDE (Eq. 4a) to calculate the
BLP for non-point pollutant sources within the KRAA sys-
tem. Figure 11a shows the resulting BLP for Well B51, rep-
resenting the locations and weights of non-point-source pol-
lutants reaching Well 51 over the past 200 years. This BLP
can also serve as the wellhead protection zone under ambient
flow conditions, i.e., without pumping. To assess BLP sen-
sitivity to the well depth, we modeled a deeper well named
“5b”, located 14.0 m below Well 51, and the resulting BLP is
shown in Fig. 11b. The BLP for Well 5b indicates a source
center relatively closer to the well than that for Well 51, sug-
gesting the presence of preferential flow paths within the

deeper aquifer that the adjoint S-FDE (Eq. 4a) can capture.
Figure 11c presents the joint BLP for both wells 51 and 5b,
identifying locations where non-point-source pollutants can
potentially contaminate both wells. For comparison, we also
calculated the BLP using the adjoint ADE, which covers a
larger area, particularly near the monitoring well (Fig. 11d).
This expansion is likely due to the substantial transverse (ver-
tical) dispersivity (αT = 0.04 m) mentioned in Sect. 3.2. As
well depth increases, the center of related pollutant sources
shifts further upstream (Fig. 11e). Overall, most of the BLPs
calculated by the adjoint S-FDE (Eq. 4a) fall within the BLPs
determined by the adjoint ADE (Fig. 11g). This suggests that
the adjoint S-FDE (Eq. 4a) tends to reduce the uncertainty
in pollutant source identification by emphasizing the impact
of dominant flow paths, including preferential flow paths,
on regional-scale pollutant transport. Furthermore, this ex-
plains why the BLP calculated by the adjoint S-FDE extends
slightly further upstream than that of the adjoint ADE, as the
adjoint S-FDE captures super-diffusive, large-scale jumps.

4.2 Extension to multi-scaling subordinated model

The backward-in-time vector model (Eq. 4a) has two main
limitations. Firstly, it relies on up to seven parameters, the
predictability of which remains a challenge. This study con-
ducted preliminary tests for model parameter estimation (in
Sects. 3 and 4), and further research on parameter pre-
dictability for fractional-derivative models can be found in
Zhang et al. (2022). Additional efforts are necessary in fu-
ture studies to enhance the predictability of FDEs.

Secondly, the subordination index α and scaling factor σ ∗

in model (Eq. 4a) are limited to constant values, whereas
pollutant plumes in natural geological media may exhibit
nonuniform, super-diffusive spreading rates. As a prelimi-
nary test, we propose the following multi-scaling subordina-
tion model as a possible extension of (Eq. 4a), incorporating
the multi-scaling fractional derivative concept proposed by
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Figure 9. BLP application 1 – SHOAL test site: the modeled forward snapshot for the total phase (a), mobile phase (b), and immobile phase
(c) at time t = 2 d. Panels (d), (e), and (f) show the snapshot at time t = 200 d.

Meerschaert et al. (2001):

b
∂(θA)

∂s
+β

∂γ,λ(θA)

∂sγ,λ
=∇V (θA)− θ

(
∇←
V

)H(
←

V )−1

M(
←

V )
A

− (qI+ θr)A+
∂h

∂C
, (9)

where M(
←

V ) denotes the mixing measure that defines the
(rescaled) probability of particle movement in each direction

of the vector velocity
←

V , and H(
←

V )−1 represents the inverse
of the scaling matrix that defines the subordination index

(with tempering) along the water flow direction of
←

V . When

M(
←

V ) remains constant (i.e., reduces to the constant σ ∗) and

the matrix H(
←

V )−1 also reduces to a constant α (with the
truncation parameter κ) in all directions, the multi-scaling
adjoint S-FDE (Eq. 9) reduces to the unique-scaling model
(Eq. 4a).

The general model (Eq. 9) accommodates direction-
dependent scaling rates, enabling the capture of multidimen-
sional transport in complex media like regional-scale frac-
tured systems. This function resembles the multi-scaling ad-

joint fractional-derivative model derived by Zhang (2022):

b
∂(θA)

∂s
+β

∂γ,λ(θA)

∂sγ,λ
=∇ · (θVA)− θD∇H−1

M(dθ)A

− (qI+ θr)A+
∂h

∂C
, (10)

where the mixing measure M(dθ)=M(dθ +π) is reversed
for each discrete angle dθ for backward particle jumps, and
the corresponding scaling matrix H is also reversed by π
along each eigenvector direction. The multi-scaling adjoint
FDE (Eq. 10) is applicable to a space-dependent velocity
vector V , where the spreading angles and weights in the mix-
ing measure M(dθ) can change with velocity. The compu-
tational burden of model (Eq. 10), however, increases with
higher flow resolution. This is because particle displacement
during each jump event must be divided into multiple sec-
tions and then projected into an adjacent streamline deviat-
ing with the angle of dθ +π from the starting velocity vec-
tor. This process, known as the streamline projection method
with nonzero projection angles, was demonstrated by Zhang
(2022). It can result in a prohibitive computational burden
for a regional-scale aquifer with complex flow, such as the
KRAA site. To overcome this challenge, the multi-scaling
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Figure 10. BLP application 1 – SHOAL test site: the modeled backward streamlines starting from the pumping well (a) and the calculated
backward location probability density function (BLP) for pollutants located initially in the total phase (b), mobile phase (c), and immobile
phase (d). It is noteworthy that there is a low-concentration blob on the east side of the pumping well, due to the divergent flow in the
backward model.

adjoint S-FDE (Eq. 9) employs the streamline-orientation ap-
proach, eliminating the need for a deviation angle of dθ +π
because mechanical dispersion follows the streamlines.

Here, we first validate the Lagrangian solution of model
(Eq. 9) using a straightforward scenario with an existing al-
ternative solution. Figure 12c shows the Lagrangian solu-
tion of the multi-scaling S-FDE, based on the mixing mea-
sure (with divergent flow) and the scaling matrix (with a
constant index) depicted in Fig. 12b. This scenario charac-
terizes pollutant transport in a DFN with multiple orienta-
tions (Fig. 12a). The Lagrangian solution matches well with
Nolan’s (1998) multivariate stable distribution (Fig. 12d).

Next, we apply model (Eq. 9) to track pollutant transport
in a 2D DFN. Figure 13a shows the ensemble average of
plume snapshots at time t = 4.6 years obtained from Monte
Carlo simulations of pollutant transport in 100 DFNs gen-
erated by Reeves et al. (2008). These DFNs exhibit mul-
tiple orientations, leading to plume movement in various
directions. The best-fit solution using the forward-in-time
multi-scaling S-FDE is shown in Fig. 13c, effectively cap-
turing plume fingering attributed to super-diffusion along
fractures. For comparison, we also apply the multi-scaling

FDE proposed by Zhang (2022) to capture the plume snap-
shot (Fig. 13b), which closely resembles the multi-scaling
S-FDE results. These best-fit parameters are then applied to
predict plume snapshots at two subsequent time points. It
is noteworthy that the multi-scaling S-FDE slightly outper-
forms the multi-scaling FDE in capturing the plume’s center
density and rear edge, as evidenced by Fig. 13f vs. Fig. 13g
and Fig. 13j vs. Fig. 13k, respectively. The peak in the corre-
sponding BLP calculated by the multi-scaling adjoint S-FDE
(Eq. 9) (where reflective boundary conditions are used for all
boundaries due to the absence of pollutant recharge from out-
side) can capture the true point source location. Notably, the
plume center appears to remain relatively stationary down-
stream, due to strong matrix diffusion effects. Additional de-
tails regarding model parameter estimation for the DFNs can
be found in Zhang (2022). This application shows that the
multi-scaling adjoint S-FDE (Eq. 9) can conveniently iden-
tify the pollutant source location in DFNs characterized by a
uniform, upscaling velocity vector.
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Figure 11. BLP application 2 – KRF: the simulated BLP using the adjoint S-FDE for Well B51 (a), Well B5b (b), and the adjoint BLP for
wells B51 and B5b (c). The adjoint ADE results are shown in the right panels. Panel (g) is the overlap of panels (c) and (f). In the legend,
“np” denotes the number of particles released in the Lagrangian solver.

Figure 12. Solver validation: panel (a) shows the schematic diagram of a 2D discrete fracture network, panel (b) is the polar plot of the
discrete mixing measure and the scaling matrix, panel (c) is the Lagrangian solution of the multi-scaling S-FDE, and panel (d) is Nolan’s
(1998) multivariate stable distribution.
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Figure 13. Application of the multi-scaling S-FDE in DFNs: panel (a) shows the average plume snapshot at time t = 4.6 years from Monte
Carlos simulations of pollutant transport in DFNs (Reeves et al., 2008); panels (b) and (c) are the best-fit solution using the multi-scaling
FDE and multi-scaling S-FDE, respectively; panel (d) shows the resultant BLP using the multi-scaling S-FDE; panels (e)–(h) show the result
at a later time of t = 100 years; and panels (i)–(l) show the result at a later time of t = 464 years. Note that the model solutions in the middle
and bottom rows are prediction results using parameters fitted in the top row.

5 Conclusions

To reliably track pollutants in natural water flow systems,
this study derived the adjoint of the time fractional nonlo-
cal transport model subordinated to regional flow, developed
a complete Lagrangian solver, and then applied this new ap-
proach to trace pollutants experiencing non-Fickian transport
in surface water and groundwater with differing velocity res-
olutions. Through mathematical analysis and practical hy-
drologic applications, four key conclusions have emerged.

First, the adjoint subordination approach yielded an ad-
joint S-FDE model for quantifying backward probabilities,
which takes subordination to the reversed regional flow, con-
verts the forward-in-time boundary conditions, and inverts
the tempered α-stable density for mechanical dispersion. The
resulting backward-in-time boundary conditions can either
capture external pollutant sources using the absorbing/free

boundary or exclude them with the fully reflective bound-
ary, both of which were tested in applications. The adjoint α-
stable density, with tempering, reverses skewness to describe
backward, super-diffusive particle displacements along pref-
erential flow paths, which is combined with the self-adjoint
time fractional derivative term in the model to capture a
broad spectrum of non-Fickian transport dynamics. In ad-
dition, the corresponding Lagrangian solver is computation-
ally efficient, as it can simply reverse streamlines to track the
backward super-diffusive mechanical dispersion of particles.

Second, in real-world applications, the adjoint S-FDE re-
liably tracked pollutants in surface water and groundwa-
ter across various velocity resolutions. The model success-
fully recovered pollutant release history and identified pol-
lutant source location(s) in systems characterized by uni-
form velocity, nonuniform flow fields (i.e., divergent/conver-
gent flow), and fine-resolution velocities in a nonstationary,
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regional-scale alluvial aquifer. These scenarios often exhib-
ited non-Fickian dynamics, especially sub-diffusion, influ-
enced by solute retention, hyporheic exchange, or matrix dif-
fusion. In such cases, the adjoint S-FDE outperformed the
classical ADE-based backward models with respect to cal-
culating BTTP and BLP.

Third, caution regarding the pollutant source phase is
needed when backtracking pollutants in natural geologic me-
dia. For example, in alluvial aquifers characterized by strong
sub-diffusion due to typically abundant aquitard materials,
the mobile-phase pollutant source may exhibit a significantly
shorter release time and present an apparently further source
location compared with the immobile-phase source. How-
ever, for large-scale transport in rivers with weak solute re-
tention, the distinction between mobile and immobile pollu-
tant source phases may be less significant. While many field
tracer tests (including those revisited in this study) usually
involve a mobile initial phase, real-world applications may
also encompass immobile pollutant sources (such as dense
non-aqueous phase liquid, DNAPL), where the method pro-
posed in this study can be applied.

Fourth, field applications of the adjoint S-FDE face chal-
lenges related to the predictability of model parameters, and
the model itself may require extensions to handle more com-
plex transport dynamics. This study offered basic parame-
ter estimations based on field measurements, but further re-
search is necessary to establish a quantitative connection be-
tween model parameters and media/pollutant properties. In
addition, the multi-scaling adjoint S-FDE presents an oppor-
tunity to expand upon the unique-scaling adjoint S-FDE and
streamline the multi-scaling adjoint FDE for backtracking
pollutants in fractured media.

Appendix A: Derivation of the backward model (Eq. 4)

This appendix derives the backward model for the S-FDE
(1). Here, we first change the position of the state sensitivity
φ and the adjoint sate A in the first four terms of Eq. (3)
shown in Sect. 2.1.1. For example, the first term in Eq. (3),
denoted as I1, can be rearranged using integration by parts,
as follows:

I1 =

∫
�

[∫ T

0
Ab
∂ (θφ)

∂t
dt
]

d�=
∫
�

{
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0
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∂t
dt
}

d�. (A1)

The second term in Eq. (3) contains the time fractional
derivative and can be rearranged using the fractional-order
integration by parts (which does not involve vector field flux

through a closed surface), as shown in Zhang (2022):

I2 =

∫
�

[∫ T

0
Aβ

∂γ,λ (θφ)

∂tγ,λ
dt
]

d�

=

∫
�

{
A|t=T β I

1−γ,λ
+ (θφ) |t=T − [θφ] |t=0 β

I
1−γ,λ
− (A) |t=0+

∫ T

0
θφβ

∂γ,λA

∂(−t)γ,λ
dt
}

d�, (A2)

where the symbol I 1−γ,λ
+ (f ) denotes the positive fractional

integral of order 1−γ : I 1−γ,λ
+ (f )= e−λT
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0(1−γ )dt denotes the
negative fractional integral of order 1− γ , and 0(·) is the
gamma function.

The third term in Eq. (3), which describes the net advective
flux, can be rearranged using the integer-order integration by
parts, as follows:
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Here, in the second equality, the Gauss divergence theorem is
used:

∫
�
∇·f d�=

∮
ξ
f ·ndξ , where n is the outward normal

direction on the boundary ξ . Equations (A1)–(A3) are the
same as those shown in Zhang (2022), which is expected as
the same time fractional derivative term was used in these
FDEs.

The fourth term in Eq. (3) contains the subordination op-
erator and can be rearranged using the integration by parts
twice, as shown in Zhang (2022):
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Here, the operator
(
∇←
V

)α,k
denotes subordination to the

reversed flow field (
←

V ) where the tempered stable density
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(with order α) has the maximum possible negative skewness
β∗ =−1, meaning that fast displacements are from down-
stream to upstream (for backward tracking).

Neupauer and Wilson (2001) showed that the adjoint
state A is a measure of the change in concentration for a
unit change in source mass M0. In sensitivity analysis, the
marginal sensitivity of a performance measureAwith respect
to M0 is as follows (Neupauer and Wilson, 2001):

dP
dM0
=

∫ T

0

∫
�

[
∂h(M0,C)

∂C
φ

]
d�dt, (A5)

where h(M0,C) is a functional of the state of the system.
Inserting I1–I4, expressed by Eqs. (A1)–(A4), into the inner
product Eq. (3) and then subtracting this updated Eq. (3) from
the marginal sensitivity Eq. (A5), we obtain the following:

dP
dM0
=

∫
�

∫ T

0
φ

{
∂h

∂C
+ bθ

∂A

∂t
−βθ

∂γ,λA

∂(−t)γ,λ

+θV∇A− σ ∗θ
(
∇←
V

)α,k
(A)− (qo+ θr)A

}
d�dt

−

∫
�

{
[Abθφ] |t=T − [Abθ ] |t=0

∂Ci

∂M0

+A|t=T βI
1−γ,λ
+ (θφ) |t=T − [θφ] |t=0 βI

1−γ,λ
− (A) |t=0

}
d�

−

∫ T

0

∮
ξ

[
AθV φ−AI

2−α,κ
+ (∇V (θφ))

−∇V (θφ) I
2−α,κ
− (A)− θφ (∇V )

α−1,k (A)
]
·ndξdt.

(A6)

To eliminate φ from Eq. (A6), we define A such that the
terms containing φ vanish. As the double integral in Eq. (A6)
(shown by the first line in Eq. A6) can be eliminated when
the summation of all the terms inside the bracket is zero, this
produces the adjoint equation of the S-FDE (1a):

bθ
∂A

∂t
−βθ

∂γ,λA

∂(−t)γ,λ
=−θV∇A

+ σ ∗θ
(
∇←
V

)α,k
(A)+ (qo+ θr)A−

∂h

∂C
. (A7)

Assuming (i) the backward time s = T − t , where T is the
detection time; (ii) steady-state groundwater flow (so that
θV ∇A−qoA=∇ (θVA)−qIA); and (iii) an incompressible
aquifer skeleton (so that ∂θ/∂t = 0), we can rewrite Eq. (A7)
as Eq. (4) listed in Sect. 2.1.1, which is the adjoint of the S-
FDE (1) listed in Sect. 2.1.1.

Data availability. Data for BTTP application 1 are avail-
able from Benson et al. (2001): https://link.springer.com/
article/10.1023/A:1006733002131. Groundwater age data us-
ing CFC-11 are available online from Burow et al. (1999,

https://doi.org/10.3133/wri994059). SHOAL test site data are avail-
able from Reimus et al. (2003): https://agupubs.onlinelibrary.wiley.
com/doi/full/10.1029/2002WR001597. The discrete fracture net-
work data are available from Reeves et al. (2008): https://agupubs.
onlinelibrary.wiley.com/doi/full/10.1029/2008WR006858. All
numerical data are available from the following Zenodo repository:
https://doi.org/10.5281/zenodo.8122954 (Zhang, 2023).
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