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Abstract. Estimating groundwater recharge rates is im-
portant to understand and manage groundwater. Numer-
ous studies have used collated recharge datasets to un-
derstand and project regional- or global-scale groundwater
recharge rates. However, recharge estimation methods all
have distinct assumptions, quantify different recharge com-
ponents and operate over different temporal scales. We use
over 200 000 groundwater chloride measurements to esti-
mate groundwater recharge rates using an improved chloride
mass balance (CMB) method across Australia. Groundwa-
ter recharge rates were produced stochastically using grid-
ded chloride deposition, runoff and precipitation datasets.
After filtering out groundwater recharge rates where the
assumptions of the method may have been compromised,
98 568 estimates of recharge were produced. The resulting
groundwater recharge rates and 17 spatial datasets were in-
tegrated into a random forest regression algorithm, generat-
ing a high-resolution (0.05°) model of groundwater recharge
rates across Australia. The regression reveals that climate-
related variables, including precipitation, rainfall seasonal-
ity and potential evapotranspiration, exert the most signifi-
cant influence on groundwater recharge rates, with vegeta-
tion (the normalised difference vegetation index or NDVI)
also contributing significantly. Importantly, the mean val-
ues of both the recharge point dataset (43.5 mm yr−1) and
the spatial recharge model (22.7 mm yr−1) are notably lower
than those reported in previous studies, underscoring the
prolonged timescale of the CMB method, the potential dis-
parities arising from distinct recharge estimation method-
ologies and limited averaging across climate zones. This

study presents a robust and automated approach to estimate
recharge using the CMB method, offering a unified model
based on a single estimation method. The resulting datasets,
the Python script for recharge rate calculation and the spa-
tial recharge models collectively provide valuable insights
for water resource management across the Australian con-
tinent, and similar approaches can be applied globally.

1 Introduction

Groundwater is a critical component of the water cycle, pro-
viding baseflow to streams and supporting ecosystems and
livelihoods (Brunke and Gonser, 1997; Eamus, 2006; Shah,
2005). With impacts from climate change, population growth
and increased usage, groundwater resources are expected
to become even more important in the future (Döll, 2009;
Famiglietti, 2014; Wada et al., 2010), requiring a detailed
understanding of hydrogeological processes through desk-
top studies, numerical modelling and direct field measure-
ments. Assessing groundwater resources requires not only
understanding their distribution, natural discharge and ex-
traction rates but also understanding mechanisms and rates
of resource replenishment.

Groundwater recharge is one of the most important, albeit
challenging, components to quantify in groundwater assess-
ments due to its wide spatiotemporal variability, which is in-
fluenced by a range of geo-eco-climatic factors (de Vries and
Simmers, 2002). Recharge estimation is further complicated
by the conceptualisation of recharge mechanisms (e.g. dif-
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fuse versus focused; Lerner et al., 1990). Similarly, the un-
certainties in recharge estimation techniques provide further
challenges (Scanlon et al., 2002). Additional complexities
need to be carefully considered in recharge studies, includ-
ing understanding the timescales associated with the tech-
nique(s) being used (e.g. Scanlon et al., 2002, and Cartwright
et al., 2017) and the component of recharge being estimated
(e.g. gross, potential or net recharge; Crosbie et al., 2010a).

Large-scale studies of groundwater recharge (e.g. global
and continental scale) that are based on the compilation of
recharge estimates typically utilise recharge estimates ob-
tained from different techniques (e.g. Petheram et al., 2002;
Scanlon et al., 2006; Crosbie et al., 2010a; Mohan et al.,
2018; Moeck et al., 2020; MacDonald et al., 2021; and
Berghuijs et al., 2022). These combined datasets allow an
assessment of the changes in recharge rates over time due
to climate variability or land cover change (e.g. Scanlon et
al., 2006). However, such datasets add extra uncertainty to
the predictive models that utilise them, given that they in-
clude recharge estimates with different assumptions, tempo-
ral scales and mechanisms (e.g. Crosbie et al., 2010a, and
Mohan et al., 2018). Utilising different recharge estimation
techniques may result in widely different recharge rates (e.g.
Crosbie et al., 2010a; King et al., 2017; Walker et al., 2019;
and Cartwright et al., 2020).

Selecting recharge estimates from a single technique from
these global studies could overcome the issues mentioned
above but could also lead to insufficient spatial coverage for
meaningful continental-scale assessments. For example, the
issue of spatial coverage of recharge estimates is evident in
Australia from the sparseness of recharge estimates in the in-
terior of Australia (e.g. Moeck et al., 2020, and Berghuijs
et al., 2022). Studies in Australia have addressed the issue
of data sparsity through creation of a series of empirical re-
lationships between rainfall and recharge by investigating
key factors such as vegetation and soil types (e.g. Crosbie et
al., 2010a, and Leaney et al., 2011). More recent Australian
studies have utilised statistical methods to investigate the in-
fluence of environmental variables on groundwater recharge
(e.g. Fu et al., 2019) or have applied machine-learning tech-
niques to predict future recharge (e.g. Huang et al., 2019,
2023). Others have focused on the upscaling of point esti-
mates from a single technique (e.g. chloride mass balance)
to a regular grid across regional study areas using regres-
sion kriging (e.g. Crosbie et al., 2018, 2022, and Crosbie and
Rachakonda, 2021).

The chloride mass balance (CMB) method is one method
that provides the opportunity for detailed studies of dif-
fuse groundwater recharge rates, given the wide availability
of groundwater chloride concentration measurements. The
CMB method is also the most widely used recharge estima-
tion technique globally (Moeck et al., 2020), in semi-arid and
arid regions (Scanlon et al., 2006) and in Australia (e.g. Cros-
bie and Rachakonda, 2021; Crosbie et al., 2018, 2010a, b;
and Petheram et al., 2002). The CMB method provides long-

term estimates of diffuse recharge over the timescale required
for chloride to accumulate in the subsurface, which ranges
from years to decades in temperate settings (Cartwright et
al., 2020) and up to thousands of years in semi-arid and
arid areas (Scanlon et al., 2002, 2006). Spatially, the CMB
method estimates diffuse recharge over the areas upgradient
from the measurement location, ranging from a few hundred
metres to several kilometres (Scanlon et al., 2002). Gener-
ation of chloride deposition maps (e.g. Davies and Crosbie,
2018, and Wilkins et al., 2022) has allowed for the large-
scale (regional) use of the CMB method (e.g. Crosbie et al.,
2018). Irvine and Cartwright (2022) utilised the chloride de-
position maps from Davies and Crosbie (2018) to automate
the application of the CMB method in Python. Automating
the application of the CMB method provides opportunities
for large datasets of recharge to be efficiently generated from
chloride measurements.

This study utilises recently developed chloride deposition
maps from Wilkins et al. (2022) and approaches to automate
analyses to estimate long-term diffuse groundwater recharge
rates based on the CMB method across the Australian conti-
nent. We collate a large dataset of groundwater chloride and
associated spatial datasets to facilitate the recharge estimates.
We utilise these datasets and the random forest algorithm to
develop a regression model for long-term diffuse groundwa-
ter recharge rate estimation for the Australian continent. Us-
ing the model, we explore the control of environmental vari-
ables on groundwater recharge rates, quantify the uncertainty
in recharge rate predictions, and produce point datasets and
high-resolution gridded maps of diffuse recharge for Aus-
tralia.

2 Methods

2.1 Collation of groundwater chloride dataset

Groundwater chloride measurements were collated from the
following sources: the Geoscience Australia Portal (Geo-
science Australia, 2022), the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) Hydrogeochemi-
cal Mapping of the Australian Continent series dataset (Gray
et al., 2019; Gray and Bardwell, 2016a, b, c, d, e, f; Henne
and Reid, 2021), a dataset collated for the state of South
Australia (Broad, 2020), Visualising Victoria’s Groundwa-
ter (FedUni, 2022) and a Northern Territory government
isotope dataset (Steven Tickell, personal communication,
12 April 2022). The preliminary collated dataset contained
a total of 226 954 chloride measurements (including bores
with time series data and duplicate values). A breakdown of
the individual counts of each dataset compiled is provided in
Table S1 of the supporting information.

Bore log information was downloaded from the Australian
Groundwater Explorer (Bureau of Meteorology, 2022b) to
provide locations, bore hole depths, drilled depths and
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screened interval depths. The depth assigned to each chloride
measurement was applied in the following order of prefer-
ence: screen mid-point depth, sample depth, bore depth and
hole depth. Measurements with no depth information were
removed from the analyses.

Several preliminary measures were undertaken for quality
assurance of the chloride data. All measurements without lat-
itude and longitude were removed. Chloride measurements
that were reported below the analytical detection limit (i.e.
< 1 mg L−1) were removed from the dataset. All duplicates
with matching bore identifiers, latitude and longitude (in dec-
imal degrees), sample date, and chloride concentration were
presented as a single measurement, resulting in 192 300 mea-
surements. Measurements without a sample date were re-
tained because excluding them would remove 99.8 % of mea-
surements from the state of Western Australia (n= 19967).

Bores with repeat measurements from different sample
dates were represented as the mean of the time series, pro-
ducing a final dataset with 115 630 bores, each with a single
chloride value for the analyses. Due to the size of the dataset,
analysis of charge balance errors was not undertaken in this
study. The final chloride dataset is provided as a download-
able electronic data file in the supporting information.

2.2 Collation of spatial datasets

To investigate factors that influence groundwater recharge,
we identified 17 different spatial datasets – 16 of which are
available as gridded maps (Table 1). These variables were
chosen based on their use in previous global groundwater
recharge studies (e.g. Mohan et al., 2018, and Moeck et al.,
2020) or in regional-scale to continental-scale recharge stud-
ies in Australia (e.g. Crosbie et al., 2010a, and Leaney et al.,
2011). All analyses in our study utilise the native resolution
of the datasets shown in Table 1.

The decadal rainfall maps from the Bureau of Meteo-
rology (2023) were chosen over the Australian Water Out-
look precipitation data (Bureau of Meteorology, 2022c)
used in the Australian Water Resources Assessment Land-
scape (AWRA-L) model (Frost and Shokri, 2021) due to
missing and unreliable data in the Australian Water Outlook
dataset for a large area of north-central Western Australia
and other smaller areas in South Australia and the Northern
Territory. Non-gridded spatial data were also used, including
the Australian coastline (Geoscience Australia, 2004; for the
purposes of approximating the distance from bore holes to
the coast; Table 1) and a halite deposit dataset of Australia
(Feitz et al., 2019).

Spatial maps of the variables from Table 1 and the halite
deposits are provided as Fig. S1 in the supporting informa-
tion.

To assist with later assessments, all gridded spatial data
collated in Sect. 2.2 (Table 1) were appended to the recharge
output produced later in Sect. 2.3. The Point Sampling Tool
in QGIS was used to extract the corresponding value from the

raster pixel in which the groundwater recharge rate derived
from CMB is located. The Distance Matrix tool in QGIS was
used to measure the nearest distance to the Australian coast-
line. Some groundwater recharge rates were located outside
of the extents of some gridded spatial data.

To produce a continental-scale recharge estimator, all spa-
tial resolutions were converted to a 0.05° grid. For conver-
sion, the GDAL Warp (reproject) tool in QGIS was used,
utilising the average resampling method. The average resam-
pling method was chosen as opposed to one of the more com-
monly used methods that take the value or aggregation of a
limited number of the nearest pixels (e.g. nearest neighbour,
bilinear interpolation or cubic convolution). The average re-
sampling method considers all pixels that contribute to the
output pixel in its calculation, preserving the overall statis-
tical characteristics of the data while producing a smooth
output (similar to cubic convolution) and covering areas of
the coastline that were not observed using other resampling
methods.

2.3 Chloride mass balance analysis

The CMB method produces estimates of long-term ground-
water recharge by comparing groundwater (or soil water)
chloride concentration to that measured in rainfall (and
dry deposition), provided that various assumptions are met
(Wood, 1999; Leaney et al., 2011). The method assumes that
chloride acts conservatively, that chloride is solely sourced
from precipitation and that groundwater has returned to
steady-state conditions following any land-use changes (e.g.
vegetation clearing; Leaney et al., 2011). Following Davies
and Crosbie (2018), recharge (R; mm yr−1) from the CMB
method can be calculated using the following equation:

R =
100D
Clgw

, (1)

where D is the chloride deposition rate due to rain-
fall (kg ha−1 yr−1), Clgw is the chloride concentration in
groundwater (mg L−1) and a multiplier of 100 is applied for
unit conversion.

While Eq. (1). assumes that no chloride is exported later-
ally, the input and output of chloride through runoff or run-
on can be accounted for by modifying Eq. (1) (e.g. Crosbie
et al., 2018). Accounting for lateral export of chloride can be
especially important in upland areas with steep topography
and high rainfall (Leaney et al., 2011). The uncertainty asso-
ciated with run-on is suggested to be negligible (e.g. Crosbie
et al., 2018), while the uncertainty associated with chloride
concentration in runoff is small compared to that of chlo-
ride deposition (Leaney et al., 2011). However, due to the
large number of bores and the continental scale of this study
where a range of landscapes may be covered, runoff was ac-
counted for to address this uncertainty. Following Crosbie et
al. (2018) and Crosbie and Rachakonda (2021), a modified
version of Eq. (1) can be used:
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Table 1. Spatial datasets of factors that are known to influence groundwater recharge. Variables are grouped into climatological-related,
surface-process- and hydrogeological-related, soil-property-related, and vegetation-related datasets. AHD denotes the Australian Height
Datum.

Variable (symbol) Unit Resolution Description Reference

Climatological datasets

Precipitation (P ) mm yr−1 0.05°× 0.05° The mean annual P , PET and Bureau of Meteorology
aridity index were calculated (Bureau of Meteorology,
by averaging data from 21 2023)

Potential mm yr−1 0.05°× 0.05° overlapping decadal periods Bureau of Meteorology
evapotranspiration spanning from 1911 to 2020. (Bureau of Meteorology,
(PET) 2022c)
Aridity index (P/PET) – 0.05°× 0.05° Bureau of Meteorology

(Bureau of Meteorology,
2022c, 2023)

Köppen–Geiger – 0.0833°× 0.0833° Climate classification for the Beck et al. (2018)
classification present day, from 1980 to

2016.

Rainfall seasonality – 0.25°× 0.25° Based on median annual Bureau of Meteorology
(all zones) rainfall and seasonal (Bureau of Meteorology,

incidence from 1900 to 1999. 2022d)

Surface process and hydrogeological datasets

Ground elevation m AHD 0.0008°× 0.0008° Geoscience Australia 3 s
Shuttle Radar Topographic Gallant et al. (2009)
Mission (SRTM) Digital
Elevation Model (DEM)
version 1.0.

Depth to water table m 0.008°× 0.008° Output of global numerical Fan et al. (2013)
groundwater model. Mean
simulated water table depth.

Regolith depth m 0.0008°× 0.0008° Soil and Landscape Grid Wilford et al. (2018)
National Soil Attribute Maps –
Depth of Regolith (3 arcsec
resolution), Version 6.

Slope % 0.0008°× 0.0008° CSIRO data published in Gallant and Austin (2012)
2016. Slope derived from 1 s
SRTM DEM-S v4.

Distance to coast km – Not a national gridded Geoscience Australia
dataset. Calculated using (2004)
GEODATA Coast 100K 2004
coastline and the Distance
Matrix tool in QGIS.

Geology – 0.001°× 0.001° Surface Geology of Australia Raymond et al. (2012)
1 : 1 million scale,
categorised into simpler groups.

Soil property datasets

Sand fraction % 0.0008°× 0.0008° CSIRO data published in Malone and Searle
2022 as release 1 v6 (2022b)

Silt fraction % 0.0008°× 0.0008° (sand and silt) and release 2 Malone and Searle
v4 (clay). 100 to (2022c)

Clay fraction % 0.0008°× 0.0008° 200 cm interval. Malone and Searle
(2022a)
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Table 1. Continued.

Variable (symbol) Unit Resolution Description Reference

Climatological dataset

Australian Soil – 0.0025°× 0.0025° Australian Soil Resource CSIRO (CSIRO, 2023)
Classification Information System,

Australian Soil Classification.

Vegetation-related datasets

NDVI – 0.05°× 0.05° Indicator of vegetation Bureau of Meteorology
greenness. Values presented (Bureau of Meteorology,
as the mean of the 3-month 2022a)
averages from July 1992 to
January 2019.

Vegetation class (major) – 0.0009°× 0.0009° Present (extant) major Department of Climate
vegetation groups from the Change, Energy, the
National Vegetation Environment and Water
Information System. (Department of Climate
Categorised based on Eamus Change, Energy, the
et al. (2016). Environment and Water,

2022)

R =
100D(1−α ·RC)

Clgw
, (2)

where RC (–) is the runoff coefficient determined by dividing
the long-term average annual runoff by the long-term average
annual precipitation and α is a scalar.

In this study, we used a modified version of the Chloride
Mass Balance Estimator of Australian Recharge (CMBEAR;
Irvine and Cartwright, 2022). The modified version of CM-
BEAR utilises the Australian gridded dataset of chloride de-
position (i.e. Wilkins et al., 2022) to automate recharge es-
timation using the CMB method. The modified version also
applies Eq. (2) where the previous version applied Eq. (1). In
this updated version of CMBEAR, when applying Eq. (2) un-
certainty, each input variable is quantified using a stochastic
approach adopted from Crosbie et al. (2018).

Out of 115 630 bores in our dataset, 79 % had only one
groundwater chloride measurement available. To estimate an
uncertainty in groundwater chloride, bores with more than
10 measurements (n= 1516) were used to calculate a mean
coefficient of variation (CVµ). As per Crosbie et al. (2018),
the coefficient of variation was calculated for each bore, with
the resulting CVµ as the mean of these values. The CVµ
of 0.37 was multiplied by the mean chloride value (Clgwµ)
for each bore in our dataset to estimate the standard devia-
tion (Clgwσ ). The Clgwµ and Clgwσ were then used to gener-
ate normal distributions for each bore. A normal distribution
was adopted because 52 % of bores with more than 10 mea-
surements passed a normality test (p value> 0.05). The ap-
proach of using the CV rather than using a standard deviation
directly was made since the CV scales with the mean chlo-

ride value, whereas applying the same standard deviation to
all values could be problematic for small values (i.e. values
becoming negative).

For each bore, the mean, standard deviation and skew of
the chloride deposition (Dµ, Dσ and Dskew, respectively)
were extracted from the chloride deposition map in Wilkins
et al. (2022) from the pixel in which the bore was located and
were used to generate a Pearson type III distribution follow-
ing the description from Wilkins et al. (2022).

While the RC extracted from the location of the bore
is held constant, this value is scaled down by the α value
(Eq. 2), which is sampled from a uniform distribution be-
tween 0.33 and 0.66. This scaling approach is adopted from
Crosbie et al. (2018) to deal with uncertainty in the propor-
tion of baseflow contributing to runoff and the below-average
chloride concentration in high-intensity rainfall events that
typically generate runoff. Long-term annual runoff was cal-
culated by averaging annual runoff data from 21 overlap-
ping decadal periods spanning from 1911 to 2020 (Bureau
of Meteorology, 2023). As these runoff data were an out-
put from the AWRA-L model (Frost and Shokri, 2021) and
were reliant on precipitation inputs that contained missing
and unreliable values (see Sect. 2.2), the runoff data were
therefore unreliable in certain areas. The problematic areas
were identified as those with long-term annual precipita-
tion< 100 mm yr−1; a dataset was created using these areas
and was used to convert all RC values in problematic ar-
eas to 0.0018 (the minimum RC calculated for an adjacent
rectangular area covering similar latitudes and longitudes,
from −29.5 to −20.5° and from 133.0 to 136.0°, respec-
tively, compared to the problematic areas). Long-term aver-
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age annual precipitation was calculated from decadal rainfall
maps (Bureau of Meteorology, 2023) as mentioned in Ta-
ble 1. While further investigation into the range and distribu-
tion type for the α value could be conducted, the range used
has been used across multiple climate zones (e.g. Crosbie et
al., 2018, 2022, and Crosbie and Rachakonda, 2021).

A probability distribution was created for each bore by
calculating recharge (R) 1000 times using the 1000 sam-
pled replicates from the distributions of Clgw, D and α.
To quantify the uncertainty in recharge estimates, the me-
dian recharge (R50), 95th-percentile recharge (R95) and 5th-
percentile recharge (R5) values were calculated from each
probability distribution and provided as outputs for each
bore. The median was chosen as it is unaffected by extreme
outliers, as is not the case with the arithmetic mean.

2.4 Data filtering

The assessment of the suitability of input data for the appli-
cation of the CMB method is a vital step to ensure that the
assumptions of the method are met (Irvine and Cartwright,
2022). In our study, this assessment (hereafter referred to
as “data filtering process”) involved six steps that were per-
formed after obtaining the recharge estimates.

The data filtering process removed recharge estimates
where the following conditions likely invalidate the CMB
method or where unrealistic recharge estimates were pro-
duced.

1. Bores where the screen mid-point is ≥ 150 m b.g.s. (be-
low ground surface) that are unlikely to be in an uncon-
fined aquifer (e.g. Crosbie and Rachakonda, 2021, and
Crosbie et al., 2022) were removed.

2. Bores with mean chloride concentrations< 2 mg L−1

are unlikely to be representative of groundwater where
poor bore construction allows rainwater to rapidly reach
the well screen (e.g. Crosbie and Rachakonda, 2021,
and Crosbie et al., 2022).

3. Bores with mean chloride concentration≥ 2000 mg L−1

and with a depth to the water table of≤ 1 m b.g.s. are
likely to be in or downstream of discharge areas (crite-
ria modified from Crosbie and Rachakonda, 2021, and
Crosbie et al.,2022).

4. Bores located within the known area of the Amadeus
Basin halite deposit, which could be a potential addi-
tional source of chloride, were removed.

5. Bores located < 1 km from the coast containing possi-
ble additional chloride from marine sources and bores
in coastal areas prone to large chloride deposition vari-
ability and uncertainty were removed.

6. Cases where estimated recharge equals or exceeds mean
annual rainfall were also removed (e.g. West et al.,
2023).

The outcomes of the data filtering process are provided in
Sect. 3.2 and in more detail in the supporting information.

2.5 Random forest analyses

Random forest analyses have been utilised for a wide range
of applications in hydrogeological studies, including predic-
tive modelling of groundwater pollutants (e.g. Rodriguez-
Galiano et al., 2014, and Ouedraogo et al., 2019), source
aquifer attribution of hydrogeochemical samples (e.g. Bau-
dron et al., 2013), modelling groundwater levels (e.g. Koch
et al., 2019), modelling groundwater potential (e.g. Rahmati
et al., 2016) and predicting groundwater recharge (e.g. Si-
hag et al., 2020, and West et al., 2023). In this study, we im-
plemented the random forest regressor from the scikit-learn
Python library (Pedregosa et al., 2011) to develop groundwa-
ter recharge prediction models.

Our dataset comprised groundwater recharge as the target
variable and 17 influential factors (i.e. the spatial variables
from Table 1). These factors were utilised for feature impor-
tance analyses and to produce a model to predict recharge.
Random forest feature importance provides insight into how
each input variable contributes to the predictive performance
of the random forest model. The feature importance for a
variable is generated according to the mean decrease in vari-
ance produced by including that variable at a split in the de-
cision tree.

Three models were produced using R50, R95 and R5 long-
term annual recharge from the CMB analysis. The dataset
was split into a randomly selected training subset (70 %) and
validation subset (the remaining 30 %), following the train
test split procedure (e.g. West et al., 2023; Sihag et al., 2020;
and Rahmati et al., 2016). Each tree in the random forest
model (the model) was trained on n randomly selected obser-
vations with replacement (i.e. bootstrapping) from the train-
ing subset, where n is equal to the total number of observa-
tions in the training subset. The observations chosen to train
the model are referred to as “in-the-bag” samples, whereas
those not chosen are known as “out-of-bag” samples (Cutler
et al., 2012). The random forest algorithm introduces further
randomness at each split in a tree by random selection of a
subset of the total number of input variables (Pedregosa et
al., 2011). Once a model had been trained, external valida-
tion was conducted by making predictions using the reserved
validation subset. The locations of the bores used in the train-
ing and validation datasets are provided in Fig. S3.

Multiple models were produced using R50 as the target
variable, as well as various combinations of the 17 input fea-
tures, to determine the impact of the choice of input features
on model performance. The grid search with cross-validation
method was used to determine the best values to use for
hyperparameters, including maximum depth, maximum fea-
tures, minimum samples in a leaf and minimum samples per
split (Pedregosa et al., 2011). No limit was set for maximum
leaf nodes as per the default random forest regressor settings

Hydrol. Earth Syst. Sci., 28, 1771–1790, 2024 https://doi.org/10.5194/hess-28-1771-2024



S. Lee et al.: A high-resolution map of diffuse groundwater recharge rates for Australia 1777

from the scikit-learn Python library (Pedregosa et al., 2011).
Each model was run using 50, 100, 150, 200, 250, 300, 350
and 400 trees. The performance of a model was assessed
through goodness of fit using the training score, i.e. the Pear-
son R2 value obtained from comparing the point recharge
training data value to the modelled recharge value.

External validation of the model was performed by run-
ning predictions on the 30 % of data that were reserved for
testing the model. A test score (R2) was obtained through
comparing point to modelled recharge. Internal validation
of the model was performed by running predictions for the
out-of-bag samples in trees whose samples were not used in
training. An out-of-bag prediction score (R2) was obtained.
The model with the highest test score was further evaluated
through its training score to assess whether the model was
“over-fitting”. Hyperparameters were adjusted accordingly
to reduce the difference between the training score and test
score to limit over-fitting. The optimal number of trees to use
in the model was determined as the point when increasing the
number of trees did not increase the out-of-bag score. Cross-
validation was also conducted on the training subset through
a k-fold test with 10 folds to ensure the model was not biased
by data selection.

The feature importance tool was used to determine the rel-
ative importance of each input feature in our random for-
est model. Finally, three gridded recharge maps (R5, R50
and R95) were produced using the optimal combination of
spatial variables and trees as initially explored using R50.

3 Results

3.1 Distribution of chloride measurements

The Clgw data collated in this study and their distributions
are shown in Fig. 1. Clgw varies widely across the Australian
continent, ranging from 1 to > 200000 mg L−1 (Fig. 1a).
Moderate to high Clgw concentrations predominantly oc-
cur in inland Australia. High Clgw concentrations are par-
ticularly prominent in southern Australia, in areas includ-
ing the Murray–Darling Basin near the South Australia–
Victoria–New South Wales junction where dryland salinity
issues have been reported (e.g. Cartwright et al., 2007). Other
Clgw hotspots such as in southern Western Australia cor-
respond with where salt lakes exist (e.g. Bowen and Beni-
son, 2009). As expected, the lowest Clgw concentrations are
mainly located in the monsoon-influenced tropical north of
Australia and along much of the temperate east coast of
Australia, where rainfall is typically high (> 1000 mm yr−1;
Fig. 1a).

Figure 1b shows the variation in chloride by depth. Most of
the data are within 150 m of the ground surface (n= 171681;
median Clgw is 250 mg L−1). The median Clgw decreases
with depth between 0 and 900 m, followed by an increase
between 1050 and 3902 m. This notably contrasts with other

regions in the world (e.g. Ferguson et al., 2023) due to Aus-
tralia’s unique climatic and geologic conditions (see Fig. S2
for more details).

The cumulative distribution function (CDF) plot (Fig. 1c)
shows the difference in Clgw distribution between shallow
(< 150 m) and deep (> 150 m) bores in Australia, with the
shallow bores spanning a much wider range of Clgw val-
ues compared to the deeper bores. The CDF plot also high-
lights the proportionally lower number of low Clgw values
(47 % of deep bores have Clgw < 100 mg L−1) and the lower
median value of deeper bores (median Clgw is 110 mg L−1)
compared to shallow bores (30 % of shallow bores have
Clgw < 100 mg L−1; median Clgw is 250 mg L−1).

3.2 Recharge estimates and data filtering

Figure 2 shows the data filtering process applied to remove
values that do not meet the assumptions required to apply the
CMB method. It is important to note that the same bores that
were excluded from R50 during each step of the data filter-
ing process (Fig. 2) were also excluded from R5 and R95.
The recharge dataset prior to data filtering is provided as an
electronic data file in the supporting information.

The box plots in Fig. 2 present the R50 distribution binned
by P in 200 mm yr−1 intervals (except the > 1600 mm yr−1

bin) at each step after data filtering. P ranged from 109 to
4231 mm yr−1. The 600–800 mm yr−1 bin contained the
greatest number of R50 values (∼ 33 %), followed by the
400–600 mm yr−1 bin (∼ 21 %). Throughout the data filter-
ing process, each bin was affected in different ways. R50 val-
ues in the 400–600 mm yr−1 bin had the highest number of
exclusions (n= 5460 between Fig. 2a and g). While the num-
ber of exclusions from the 0–200 mm yr−1 bin was low (n=
422), as a percentage this was a substantial cut of ∼ 20 % to
the recharge estimates within this P range.

A map visualising the spatial locations of data being re-
moved is shown for each step of the data filtering process in
Fig. 2 (Fig. 2; right column). While clear spatial trends could
be inferred from data removed in step 1 where deep bores
were removed from the dataset (e.g. mostly bores in the Great
Artesian Basin), step 4 where known halite deposits were re-
moved (e.g. Amadeus Basin halite deposit) and step 5 where
bores near the coast were removed, no obvious factors could
be identified from most of the other steps without detailed
analyses. A visual assessment shows that bores removed in
step 3 broadly align with areas likely to contain areas of high
hazard or risk of dryland salinity (National Land and Water
Resources Audit, 2001).

At the end of the data filtering process (Fig. 2g) ∼ 12 %
of the original dataset was removed, leaving 98 568 recharge
values. Overall, the change in mean R50 (µR50) was min-
imal, with ∼ 2 % decrease from an initial µR50 of 44.3 to
43.5 mm yr−1. The largest change inµR50 between steps was
in the depth-filtering step (i.e. sample depth> 150 m b.g.s.),
with a 7 % increase in µR50 (Fig. 2b). Removing sample
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Figure 1. Spatial distribution of groundwater chloride (Clgw) shown as (a) locations and concentrations of Clgw with Australian states
and territories marked as NT (Northern Territory), Qld (Queensland), NSW (New South Wales), Vic (Victoria), Tas (Tasmania), SA (South
Australia) and WA (Western Australia); (b) box plots showing the depth distribution of Clgw. Box plots were binned by 150 m depth intervals
except for the last box which contains Clgw measurements sampled from a depth of> 1050 m. The blue box corresponds to the data used for
recharge estimation. The upper and lower extents of the boxes represent the 75th and 25th percentiles of Clgw, respectively. The upper and
lower whiskers represent the 95th and 5th percentiles of Clgw, respectively. The medians are shown as black lines and outliers are shown as
hollow black circles. (c) The cumulative distribution function (CDF) of Clgw for shallow wells (depth of sample from 0 to 150 m) and deep
wells (> 150 m).

depths more than 150 m b.g.s. is crucial because most of
the deep bores are located within the Great Artesian Basin
and similar deep confined aquifers. The recharge area of
these deep systems is likely to be hundreds of kilometres
away from the bore location, whereas our analyses assume
recharge occurs within the 0.05°×0.05° pixel from the chlo-
ride deposition map that contains the bore.

It is important to note that while the overall µR50 did not
change significantly at the end of the data filtering process,
the standard deviation of R50 (σR50) decreased by ∼ 40 %.
The noticeable decrease in σR50 is the result of the exclu-
sion of high recharge values generated from chloride con-
centrations< 2 mg L−1 in step 2 (Fig. 2c) and the exclu-
sion of recharge values with R/P > 1 in step 6 (Fig. 2g).
While step 6 (Fig. 2g) did not remove a significant number
of R50 values (n= 118), it is likely that many R50 values
with R/P > 1 had already been removed in previous steps
of the data filtering process due to other factors.

The resulting recharge estimates for R50, R95 and R5 are
shown in Fig. 3a–c, respectively. The mean values of
recharge rates for R50, R95 and R5 are 43.5, 113.4 and
25.8 mm yr−1, respectively.

As expected, high recharge rates are mostly located in ar-
eas with high precipitation, i.e. in the tropical north, along
the east coast and in north-western Tasmania (see Fig. 3 and
rainfall map in Fig. S1a), while low recharge rates are mostly
located inland from the coast. However, there is variability in

recharge rates, spanning 1–3 orders of magnitude in inland
areas, that cannot be explained by rainfall variability alone.

The majority of R50 values in our dataset are either low or
moderate: 1–10 mm yr−1 (35 %) or 10–100 mm yr−1 (38 %),
respectively. Extremely low R50 values (i.e. < 1 mm yr−1)
constitute 16 % of the dataset, while high R50 values
(i.e. 100–1000 mm yr−1) constitute 11 % of the dataset.
Only 0.01 % of R50 values are extremely high (i.e. >
1000 mm yr−1). The point datasets ofR50,R5 andR95 before
and after the data filtering process are available as electronic
data files in the supporting information.

3.3 Random forest models and feature importance

To explore the effects of the selection of variables on the
random forest analyses (Table 1), different variable group-
ings were investigated as input features to train different
R50 random forest models. Table 2 outlines combinations
of variables and their impact on various fit metrics, show-
ing the highest R2 values, the lowest root mean square er-
ror (RMSE), the mean absolute error (MAE) and the number
of trees used.

The results in Table 2 have also been influenced by the
selection of optimal hyperparameters, such as the number
of trees, maximum depth of trees and maximum features.
Aside from grouping variables categorically by climate, sur-
face/hydrogeology, soil properties and vegetation, various
other groupings ranging from four to eight variables were
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Figure 2. Data filtering process showing all data (a) and the groundwater recharge rate (R; mm yr−1) estimates that were included at
each step with statistics for R50 (mean, standard deviation and number of measurements remaining) and box plots for R50 binned by P at
200 mm yr−1 intervals (except the > 1600 mm yr−1 bin). The upper and lower extents of the boxes represent the 75th and 25th percentiles
of R50, respectively. The upper and lower whiskers represent the 95th and 5th percentiles of R50, respectively. The medians are shown as
orange lines and outliers are shown as hollow black circles. The remaining number of measurements at each step is shown above the box plot.
The maps on the right show the location of data, the number of measurements removed and cumulative number of measurements removed at
each step.
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Figure 3. Groundwater recharge rates (R; mm yr−1) estimated using CMB from 98 568 bores. Maps show (a) median recharge (R50),
(b) 95th-percentile recharge (R95) and (c) 5th-percentile recharge (R5) rates.

Table 2. Best results from random forest R50 models developed using different variable groupings, showing the optimal number of trees in
each forest, training score (R2), external validation test score (R2), root mean square error (RMSE) and mean absolute error (MAE). P is
precipitation, AI is aridity index, PET is potential evapotranspiration, KG is Köppen–Geiger zone, RS is rainfall seasonality, DTC is distance
to coast, RD is regolith depth, WTD is water table depth, SP is slope percentage, E is elevation, G is geology, SC is soil class, CP is clay
percentage, SiP is silt percentage, SaP is sand percentage, NDVI is the normalised difference vegetation index and VC is vegetation category.
∗ Denotes the model selected for further analyses.

Model/groupings External validation

No. of Training Out-of-bag Test score RMSE MAE
trees score R2 score R2 R2 (mm yr−1) (mm yr−1)

All variables 200 0.795 0.720 0.735 51.5 20.8

Categorical grouping

Climate (P , AI, PET, KG and RS) 150 0.718 0.688 0.705 54.4 22.9
Surface/hydrogeological (DTC, RD, WTD, SP, E and G) 250 0.621 0.520 0.528 68.8 31.9
Soil properties (SC, CP, SiP and SaP) 150 0.361 0.328 0.341 81.3 40.2
Vegetation (NDVI, VC) 350 0.571 0.519 0.524 69.1 32.3

Highest-performing four- to eight-variable grouping

P , RS, PET and E 150 0.745 0.700 0.716 53.4 22.3
P , RS, PET, E and DTC 300 0.758 0.707 0.720 53.0 21.9
P , RS, PET, E, DTC and NDVI 250 0.756 0.708 0.724 52.6 21.8
P , RS, PET, E, DTC, NDVI and CP 200 0.775 0.715 0.731 52.0 21.1
P , RS, PET, E, DTC, NDVI, CP and SC∗ 250 0.772 0.716 0.732 51.9 21.1

also explored. Exploring fewer input variables allows us to
assess whether a model trained on fewer variables could
achieve similar model accuracy while being less computa-
tionally expensive. The strongest-performing four- to eight-
variable groups are shown in Table 2. The best-performing
eight-variable model trained with 250 trees achieved a train-
ing score R2 of 0.772, an external validation test score R2

of 0.732, RMSE of 51.9 mm yr−1 and MAE of 21.1 mm yr−1,
which are similar to the all-variable model (Table 2). Model
accuracy does not improve when a ninth variable (either re-

golith depth, water table depth, geology, sand percentage,
slope percentage, vegetation class, Köppen–Geiger zone,
aridity index or silt percentage) was added (see Table S2);
hence, the best-performing eight-variable model was chosen.

Table 2 demonstrates the importance of the climatologi-
cal variables, for example, which produced an external val-
idation test score R2 value of 0.705, similar to the maxi-
mum external validation test score obtained across all pa-
rameter combinations (0.735). The R50 random forest model
selected for further analyses (the best-performing eight-
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Figure 4. Mean feature importance through mean decrease in vari-
ance for the R50 best-performing eight-variable model (250 trees).
The features are grouped according to the climatological, sur-
face process/hydrogeological, soil property and vegetation variable
groups depicted in Table 1.

variable model) consists of the variables precipitation (P ),
rainfall seasonality (RS), potential evapotranspiration (PET),
elevation (E), distance to coast (DTC), normalised differ-
ence vegetation index (NDVI), clay percentage (CP) and soil
class (SC) (Table 2, bottom row). This observation highlights
that while the climatological variables are strong controls on
recharge, other variables related to surface processes, hy-
drogeology, soil properties and vegetation are also impor-
tant. The vegetation model (containing the variables NDVI
and vegetation class), which had the second-highest score in
the categorical groupings, suggests that in Australia vegeta-
tion could be a more important control on recharge than sur-
face/hydrogeological and soil property variables.

Out of the eight input variables used in our best-
performing R50 random forest model, P , RS, PET and NDVI
are ranked highest, as shown in the feature importance plot in
Fig. 4. The feature importance plots for the R5 and R95 ran-
dom forest models are provided in Figs. S4 and S5, respec-
tively. For comparison, the feature importance plot for the
R50 all-variable model is provided in Fig. S6.

The R50 random forest model achieved a training score
of R2

= 0.772, an “out-of-bag” score of R2
= 0.716, an ex-

ternal validation test score ofR2
= 0.732 and a 10-fold cross-

validation R2
= 0.715, with 250 trees in the random forest

(Fig. 5). The relatively small difference between the train-
ing score and external validation test score indicates that our
model is not over-fitting the training data. The similarR2 val-
ues across different model evaluation methods indicate that
our model should perform relatively well with unseen data.

Figure 5a shows that our model tends to overestimate lower
recharge values and underestimate higher values.

Figure 5b further demonstrates this point. For example, for
CMB recharge values between 0.001 and 30 mm yr−1, our
model tends to overestimate recharge, while at moderate to
higher recharge rates (i.e. > 30 mm yr−1) our model tends to
underestimate recharge. At high to extremely high recharge
rates (i.e. > 470 mm yr−1) our model only produces under-
estimates, which could be the result of underrepresentation
of samples in extremely high recharge areas. The residuals at
the higher end of recharge in Fig. 5b may appear seemingly
large, but the majority of them represent errors of less than
40 %.

Compared to the µR50 of 43.5 mm yr−1 in Fig. 2g, the
RMSE of 51.9 mm yr−1 from external validation of our
model (Fig. 5a) might suggest relatively high variability
in and overall inaccuracy of model predictions. However,
Fig. 5a shows that most of the recharge rate estimates lie
near the 1 : 1 line (as shown by the density of pixels in
the colour map). When assessing only R50 < 1 mm yr−1

for the validation results (Fig. 5), we obtain an RMSE of
12.4 mm yr−1 or > 1000 %; however, percentage errors can
be misleading when assessing errors in low values. This is
similarly the case for R50 from 1 to 10 mm yr−1 (RMSE=
19.4 mm yr−1), 10–100 mm yr−1 (RMSE= 29.8 mm yr−1)
and 100–1000 mm yr−1 (RMSE= 140.7 mm yr−1). Evaluat-
ing errors in different recharge ranges reveals that some er-
rors are not as severe as they may appear. Model validation
results for the R5 and R95 recharge models are provided in
Fig. S7.

The random-forest-generated groundwater recharge
rate (R5, R50 R95) maps of Australia (utilising P , RS, PET,
E, DTC, NDVI, CP and SC) are shown in Fig. 6a–c.

The CMB method provides recharge estimates that span
the residence time of the groundwater (Crosbie et al., 2010a);
hence, the recharge outputs produced in Fig. 6 represent
recharge that has occurred over the longer term (e.g. hun-
dreds to thousands of years). The variability in modelled
recharge is highest within the arid Köppen–Geiger zones,
which cover almost 80 % of the Australian continent, with
R50 ranging between∼ 0.03 and 278 mm yr−1 and a mean of
6.3 mm yr−1 (n pixels= 220 947). In the temperate Köppen–
Geiger zones, which cover almost 12 % of the Australian
continent, R50 ranges between ∼ 0.6 and 522 mm yr−1, with
a mean of ∼ 60 mm yr−1 (n pixels= 33 177). In the tropi-
cal climates, which only cover 8 % of the Australian con-
tinent, R50 ranges between ∼ 2.6 and 621 mm yr−1, with a
mean of ∼ 125 mm yr−1 (n pixels= 22 897). As shown in
Fig. 6b and c, uncertainties in recharge estimates can vary by
orders of magnitude, regardless of climate zone. For exam-
ple, the town of Tully, Queensland (located in the Af tropical
Köppen–Geiger zone at lat −17.934°, long 145.925°), has
the highest average rainfall in Australia (> 3100 mm yr−1)
and the highest modelled R50, ∼ 621 mm yr−1. However,
the uncertainty ranges from 393 to 1759 mm yr−1. The
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Figure 5. Model validation results for the selected R50 model trained using 250 trees, showing (a) CMB recharge rate (R50) versus predicted
recharge rate (showing the 1 : 1 line) and point density and (b) CMB recharge rate (R50) versus residuals (predicted recharge rate minus
CMB recharge rate) and point density.

town of Coober Pedy, South Australia (located in the BWh
arid Köppen-Geiger zone at lat −29.012°, long 134.753°),
has one of the lowest average rainfalls in Australia (<
150 mm yr−1) and a modelled R50 of ∼ 0.38 mm yr−1, with
uncertainty ranging from 0.09 to 0.56 mm yr−1.

The proportion of rainfall that becomes recharge, repre-
sented by the recharge ratios (R5/P , R50/P and R95/P ),
is shown as gridded maps in Fig. 6d–f, respectively. Like
recharge, the variability in modelled R50/P is the highest
in the arid Köppen–Geiger zones, ranging over 4 orders
of magnitude, from ∼ 0.0001 to 0.42 (mean= 0.02, n pix-
els= 220 947). In temperate and tropical climates, R50/P

ranges are smaller, from ∼ 0.002 to 0.36 (mean= 0.06,
n pixels= 33 177) and ∼ 0.003 to 0.35 (mean= 0.11, n pix-
els= 22 897), respectively. The ranges in R/P reduce signif-
icantly when assessing the 5th and 95th percentiles (i.e. 90 %
of the values are in the following ranges for arid, temperate
and tropical zones: ∼ 0.002–0.06, ∼ 0.01–0.15 and ∼ 0.03–
0.20, respectively). It should be noted that some values of
R95/P exceed 1 due to the data filtering process only fo-
cusing on removing bores with R/P > 1 from the R50 point
recharge dataset. Therefore, both the R95 gridded recharge
dataset and point recharge dataset will contain some unrep-
resentative recharge values with R/P values of more than 1.
However, the number of values equates to< 0.01 % of pixels
in the R95/P gridded map.

Box plots showing the distribution of modelled recharge
values (R50, R5 and R95) and modelled recharge ra-
tios (R5/P , R50/P and R95/P ) categorised by arid, temper-

ate and tropical Köppen–Geiger zones are shown in Fig. S8.
The gridded maps of R50, R5 and R95 are available as elec-
tronic text files in the supporting information.

4 Discussion

4.1 Groundwater recharge rate predictors

Clearly, precipitation has a strong control on groundwater
recharge rates. While some studies have found long-term av-
erage precipitation to be the key predictor of recharge (e.g.
MacDonald et al., 2021, and West et al., 2023), others have
found other precipitation-related factors such as aridity index
(e.g. Berghuijs et al., 2022) or seasonal rainfall (e.g. Fu et al.,
2019) to be the most important. Some investigations high-
lighted the strong explanatory power of vegetation and soils
in addition to climate-related variables (e.g. Petheram et al.,
2002; Crosbie et al., 2010a; Mohan et al., 2018; and Moeck et
al., 2020). Our R50 random forest model incorporated eight
variables from the climatological, surface process/hydrogeo-
logical, soil property and vegetation categories. Using these
eight variables in the feature importance analyses, our study
revealed that the four most important variables influencing
recharge in Australia were precipitation (P ), rainfall sea-
sonality (RS), potential evapotranspiration (PET) and NDVI
(Fig. 4). These four variables highlight the importance of cli-
matic factors for the prediction of recharge, which agrees
with other studies (e.g. Mohan et al., 2018; Berghuijs et al.,
2022; West et al., 2023; and Huang et al., 2023). Overall, the
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Figure 6. Gridded groundwater recharge rate map of Australia generated using the highest-performing random forest model, shown as
(a) median recharge rate (R50), (b) 95th-percentile recharge rate (R95) and (c) 5th-percentile recharge rate (R5) values. Gridded recharge
ratio (R/P ) map of Australia, shown as (d) R50/P , (e) R95/P and (f) R5/P . Gridded datasets are available for download; see “Code and
data availability ” section.

ranking of variables highlighted in our study is most aligned
with the ranking of predictors in Mohan et al. (2018), who
found precipitation, PET and land use (vegetation) to be the
top three factors controlling recharge globally.

The aforementioned studies cover vastly different spatial
scales, ranging from regional areas (e.g. Fu et al., 2019, and
Huang et al., 2023), the African continent (e.g. MacDonald
et al., 2021, and West et al., 2023) and the Australian conti-
nent (e.g. Petheram et al., 2002, and Crosbie et al., 2010a) to
all continents (e.g. Mohan et al., 2018; Moeck et al., 2020;
and Berghuijs et al., 2022) and contain datasets with varying
spatial distributions and resolutions. The spatial variability
across these previous studies suggests that some studies can
have a climatic bias depending on the climates included in
the study area. For example, the chloride data used in our
study to produce recharge estimates were mainly biased to-
wards temperate and arid Köppen–Geiger zones (comprising
∼ 50 % and∼ 40 % of the recharge dataset, respectively) and

less so towards tropical zones (∼ 10 % of recharge values).
The similarities and differences in climate types and recharge
estimation techniques may influence the ultimate ranking of
important variables and may be the reason for differences be-
tween studies.

It is important to highlight that while feature importance
analyses can provide insight into important variables, over-
interpretation should be avoided. The ranking of features in
the feature importance plot can be affected by the choice
of hyperparameters such as maximum features (e.g. limiting
maximum features to a subset will avoid over-selection of
the most important feature, such as precipitation in our case,
during training of the random forest model). Feature impor-
tance may be influenced by factors such as variable cardinal-
ity (i.e. the tendency to give higher importance to variables
with many unique levels, as they offer more opportunities
for splitting the data; Strobl et al., 2007). Low cardinality
of categorical features such as Köppen–Geiger zone, geol-
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ogy, soil class and vegetation class could be the reason for
their relatively lower feature importance, as shown in Fig. S6.
Variables with lower importance can compete with more im-
portant variables such that having more input variables does
not necessarily improve performance of the model. Corre-
lated variables can also outcompete each other, leading to
unreliable feature importance rankings (Toloşi and Lengauer,
2011). Some highly correlated variable pairs likely act as
proxies for each other during the training process when the
subset of features randomly selected only contains one of the
variable pairs. Such is likely the reason for the climate group
being the most important in the all-variable model (Fig. S6).
Similarly, the relationship between precipitation, distance to
coast and elevation could explain why these variables also
rank highly.

4.2 Comparison of groundwater recharge rate
estimates with previous studies

The average groundwater recharge rate estimates produced
for the Australian continent differ from those found in
other studies for both point recharge (Fig. 3) and modelled
recharge (Fig. 6). For example, the mean point recharge rate
for the Australian studies collated by Crosbie et al. (2010a)
was 257.2 mm yr−1 (n= 4360), compared to 43.5 mm yr−1

in our study (n= 98568). Similar mean recharge values of
246.5 mm yr−1 from Australian studies collated by Moeck
et al. (2020; n= 4579) and 244 mm yr−1 from Berghuijs
et al. (2022) were not surprising given that the data from
Crosbie et al. (2010a) were used in both studies. The mean
recharge rate for the Australian studies collated by Mohan
et al. (2018) was much closer to our study, at 46.2 mm yr−1.
This is likely due to the much smaller dataset of Mohan et
al. (2018; n= 217) and limited spatial coverage – especially
in tropical Northern Australia – compared to other studies.

The higher mean recharge values of the point data re-
ported in other studies that cover Australia (e.g. Crosbie et
al., 2010a; Moeck et al., 2020; and Berghuijs et al., 2022)
compared to ours can be attributed to the difference in spa-
tial distribution of recharge point estimates and the different
recharge estimation methods used. Several differences in the
methods are important, including the following differences.

1. A total of 60 % of the estimates in Crosbie et al. (2010a)
and Moeck et al. (2020) were from an earlier study
(Crosbie et al., 2009), which used a simpler CMB
method and an older chloride deposition map to calcu-
late recharge (see chloride deposition maps in Fig. S9b).

2. Our method incorporates the most recent improved
chloride deposition map with enhanced data and spatial
coverage (Wilkins et al., 2022).

3. There are key differences in chloride deposition rates
between the different chloride deposition maps, espe-
cially within 50 km of the coastline, that can signifi-

cantly affect the resulting recharge rate (see chloride de-
position maps in Fig. S9).

4. The mean of the 2722 CMB recharge estimates from
Crosbie et al. (2009) is 388 mm yr−1. Excluding the
2722 CMB estimates from Crosbie et al. (2009), the
mean of the remaining 1620 estimates from Crosbie et
al. (2010) that were estimated from 14 different meth-
ods (including 38 % from CMB, 25 % from transient
soil CMB and 9 % from water table fluctuation) is
40 mm yr−1. The estimates from Crosbie et al. (2009)
are likely overestimates and were flagged by Crosbie et
al. (2010a) as having very little quality control.

5. Our approach accounts for chloride lost to runoff in the
estimation of recharge, resulting in a reduction in our
recharge rates compared to the simpler method used in
Crosbie et al. (2009), which does not consider this fac-
tor.

6. Following the approach used by Crosbie et al. (2018)
and Crosbie and Rachakonda (2021), our methodology
is stochastic, performing 1000 recharge calculations to
generate a probability distribution. We present the me-
dian and an error range taken as the 5th and 95th per-
centiles of the distribution to provide a more robust in-
terpretation of the results.

The spatial distribution of the recharge estimates (in our
study relative to previous investigations) is important be-
cause the climate at the location of the recharge estimate
strongly influences the annual recharge rate (Moeck et al.,
2020). Figure 7 demonstrates this point using Australian cli-
mate zones that are classified according to different aridity
index values, i.e. in order of increasing aridity or decreas-
ing recharge potential (humid, dry subhumid, semi-arid, arid
and hyper-arid; based on United Nations Environment Pro-
gramme, 1997).

The proportion of recharge estimates from Crosbie et
al. (2010a) and Moeck et al. (2020) located in dry subhu-
mid and humid aridity classes is significantly higher than in
our dataset (Fig. 7), with 46.43 % and 44.91 % for Crosbie et
al. (2010a) and Moeck et al. (2020), respectively, compared
to 22.01 % in our study. The mean recharge rates in Crosbie
et al. (2010a) and Moeck et al. (2020) for each aridity cat-
egory are all higher than in our study – particularly the dry
subhumid and humid categories, which are 3–4 times higher.
The higher proportion of estimates in the dry subhumid and
humid climate zones, together with the significantly higher
mean recharge rates in these climates, results in a higher
overall mean recharge rate for the Crosbie et al. (2010a) and
Moeck et al. (2020) datasets compared to our study. Further
details including limitations in the comparisons with Crosbie
et al. (2010a) and Moeck et al. (2020) are provided in the
supporting information.

Studies that collated recharge estimates from other conti-
nents have also reported higher recharge rates than our point
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Figure 7. Histograms and maps showing the difference in spatial distribution and proportion (%) of the point recharge dataset of (a, d) Crosbie
et al. (2010a), (b, e) Moeck et al. (2020) and (c, f) our study, which are located in various aridity classes (hyper-arid, arid, semi-arid, dry
subhumid and humid; United Nations Environment Programme, 1997). The proportion (%) and mean recharge (mm yr−1) are shown in the
histograms above each bar.

estimates. For example, MacDonald et al. (2021) reported
median decadal point recharge estimates from compiled
studies for different aridity zones on the African continent,
with arid, semi-arid and humid areas equivalent to 6, 20 and
130 mm yr−1, respectively. Point estimates of recharge from
our study had median values of 1.1, 8.0 and 45.8 mm yr−1

for arid, semi-arid and humid areas in Australia, respectively,
across these climate zones. This suggests that in the long
term, aquifer systems in Australia are replenished on aver-
age at a rate 2–4 times lower than those in Africa.

Regarding the methods used, the CMB method produces
long-term average diffuse groundwater recharge rates that are
lower compared to other methods, including the water table
fluctuation method that estimates modern recharge. For ex-
ample, methods such as the water table fluctuation method
and tritium method tend to estimate different recharge rates
relative to those obtained via the CMB method, particularly
in Australia where modern recharge rates have increased due

to large-scale land clearing (Cartwright et al., 2007). Mea-
surements using the water table fluctuation method will also
be heavily influenced by focused recharge in areas where in-
direct recharge processes are dominant (e.g. leakage from
ephemeral streams in arid regions; Cuthbert et al., 2016),
as opposed to the diffuse recharge measured by the CMB
method. These observations likely highlight the importance
of considering recharge estimation type in the collation and
use of large datasets. For example, recharge studies compar-
ing recharge estimation techniques have found large differ-
ences across different methods (e.g. Cartwright et al., 2007,
2020; King et al., 2017; and Walker et al., 2019).

The mean modelled (R50) recharge rate from our gridded
recharge rate map was 22.7 mm yr−1, which is significantly
lower than modelled global estimates. For example, Mohan
et al. (2018) reported a long-term global average recharge of
134 mm yr−1, whereas Müller Schmied et al. (2021) reported
a global mean diffuse recharge rate of 111 mm yr−1. The sig-
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nificant difference between these modelled recharge values
is likely due to the large proportion of arid and semi-arid ar-
eas in Australia. Our gridded map contains 278 253 pixels,
∼ 80 % of which are in an arid Köppen–Geiger climate (see
Fig. S11), compared to ∼ 26 % of the global land area that is
classified as arid (Gaur and Squires, 2018). The mean mod-
elled recharge for the Australian continent was not reported
in either Mohan et al. (2018) or Berghuijs et al. (2022). How-
ever, Berghuijs et al. (2022) highlight that their recharge esti-
mates are higher than those presented in other global studies
(e.g. Döll and Fiedler, 2008; de Graaf et al., 2015; Mohan et
al., 2018; and Müller Schmied et al., 2021) and are therefore,
on average, likely to be higher than those presented here. We
highlight that numerical outputs from these studies should
be provided more routinely. Sharing these numerical outputs
could facilitate further comparisons and produce more useful
outputs for potential users.

4.3 Limitations and implications

In this study, the assumptions for estimating recharge us-
ing the CMB method were implemented through a data fil-
tering process (Sect. 2.4), which was crucial to improving
the reliability of inputs into our model. While we assume
that erroneous recharge estimates have been removed during
the data filtering process, some criteria that were assessed
in other studies (e.g. Crosbie et al., 2022, and Crosbie and
Rachakonda, 2021) were not considered here due to the chal-
lenges of implementing them on a continental scale. For ex-
ample, excluding measurements from bores screened within
alluvium (e.g. Crosbie et al., 2022) would require a thorough
understanding of local conceptual models and hydrogeolog-
ical processes (e.g. cross-aquifer interaction) and existing
recharge processes (e.g. flooding). By not excluding bores
located in alluvium, point and modelled recharge estimates
for these bores can be underestimated if additional chloride
not sourced directly from rainfall is present, for example,
through the application of irrigation water or chloride-based
fertilisers (e.g. potassium chloride).

The tendency of our model to underestimate recharge
where moderate to higher recharge rates (i.e. 30–
1000 mm yr−1) were estimated from the CMB method
may be related to a skew in the distribution of our point
recharge dataset towards lower recharge rates. The tendency
toward overestimation could be due to the aggregation of
random forest leaf node values and tree predictions using
the arithmetic mean, which can be biased by large outlier
values.

Large areas (e.g. inland Western Australia) had no chlo-
ride data, and hence, the modelled recharge for these ar-
eas can be subject to larger ranges of uncertainty. No geo-
logical dataset is available that provides detailed spatial in-
formation on the permeability of bedrock; therefore, mod-
elled recharge rates can be significantly overestimated in ar-
eas such as where low-permeability bedrock crops out at the

surface and underestimated in areas where highly fractured
bedrock exists. Similarly, we highlight that users should be
aware of the range of uncertainty in the modelled recharge
when using values from the analyses presented here. The
same message was emphasised by Leaney et al. (2011) and
Crosbie et al. (2010a) for the “method of last resort”. As is
the case with all hydrogeological measurements and models,
users of our modelled recharge rates should exercise expert
judgement and determine whether the estimates are reliable
and fit for purpose. Preference should always be given to the
collection of field data to constrain recharge estimates where
possible.

Our study provides an extensive database of groundwater
chloride measurements and rigorously interpreted ground-
water recharge rate estimates at a high spatial resolution
that holds potential for further use for researchers and wa-
ter resource managers. We present a more robust stochas-
tic recharge rate estimator modified from CMBEAR (Irvine
and Cartwright, 2022) to include the runoff coefficient term
utilised in recent regional Australian studies (e.g. Crosbie et
al., 2018, and Crosbie and Rachakonda, 2021). Our study
produced long-term recharge maps of the Australian conti-
nent. While Australian recharge maps have been produced
previously (e.g. Leaney et al., 2011), this is the first time that
a model of such scale has been developed from recharge es-
timates derived from only a single recharge estimation tech-
nique. Furthermore, by providing the Python code, point es-
timates and gridded map, we facilitate a transparent and re-
producible workflow that enables the broader community to
utilise our methodology or further improve the approach.

5 Conclusions

We produce a groundwater recharge rate dataset for Australia
with a high resolution based on an improved chloride mass
balance (CMB). This combines more than 200 000 compiled
chloride measurements, existing chloride deposition maps,
17 national spatial gridded datasets and a rigorous ground-
water recharge rate estimation workflow. We enhance an
open-source Python tool, CMBEAR, and leverage existing
methodologies (e.g. Crosbie et al., 2018) to provide an effi-
cient, reproducible and transparent stochastic approach that
can be applied to anywhere in Australia. This approach quan-
tifies uncertainty by creating groundwater recharge rate prob-
ability distributions, providing the 5th and 95th percentiles
of point groundwater recharge rate estimates (R5 and R95)
using distributions of groundwater chloride, runoff and chlo-
ride deposition.

We utilise subsets of the CMB recharge datasets (R5, R50
andR95) to train and test three random forest regression mod-
els for the purposes of upscaling point recharge estimates and
assessing the relative importance of recharge predictors. We
show that climate-related variables (i.e. precipitation, rain-
fall seasonality and PET) have the strongest control on the
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groundwater recharge rate, but vegetation (NDVI) is also im-
portant. Other geographic and soil property variables ranked
lower but are still relatively important. The importance of
climate and vegetation as recharge predictors is generally
aligned with global recharge studies. The use of only 8 of
the 17 variables demonstrates that similar prediction perfor-
mance can be achieved with fewer variables, while reducing
computation time and ensuring adequate performance on un-
seen data.

We present a gridded map of groundwater recharge rate
estimates and uncertainties that could be valuable where
data required to estimate groundwater recharge rates may
be scarce or not available. Our groundwater recharge model
utilises a data-driven approach based on a single recharge
estimation technique to provide long-term groundwater
recharge rates. Our CMB-based groundwater recharge rates
are considerably lower than other studies including global
water balance models (e.g. Döll and Fiedler, 2008; de Graaf
et al., 2015; and Müller Schmied et al., 2021). This is likely
due to the fact that CMB operates at longer timescales that
span the residence time of the groundwater (e.g. chloride
can take between 4000 and 40 000 years to accumulate in
the Murray Basin, South Australia; Scanlon et al., 2006).
Contrary to this, global water balance models estimate mod-
ern recharge (i.e. over the last century, where climate and
soil data are available). Recharge estimation methods oper-
ating over modern timescales tend to be impacted by land-
use change. For example, Scanlon et al. (2006) demon-
strate groundwater recharge both pre- and post-clearing in an
Australian context, showing a significant change (increase)
in recharge. We emphasise that the appropriate recharge
timescales (e.g. long-term or modern) and mechanisms (e.g.
diffuse or focused recharge) should be taken into considera-
tion when collating recharge values produced from different
techniques for the purpose of modelling recharge. We rec-
ommend that users exercise care and expert judgement when
utilising the groundwater recharge rate estimates from these
large-scale groundwater recharge models.

By applying an improved version of the most widely used
recharge estimation method (e.g. Moeck et al., 2020, and
Crosbie et al., 2010b), we provide a robust approach to
automate the estimation of long-term diffuse groundwater
recharge rates, including uncertainties. With chloride data
being amongst the most common of groundwater analytes,
there are significant opportunities to conduct similar analy-
ses elsewhere.

Code and data availability. The code and output data
presented in this paper are available as supporting in-
formation from https://www.hydroshare.org/resource/
5e7b8bfcc1514680902f8ff43cc254b8/ (Lee, 2024). Data pre-
sented in this paper have been visualised using scientific colour
maps created by Crameri (2018). Gridded data inputs for the CMB
recharge estimator Python code, including precipitation, chloride

deposition, runoff coefficient, PET and aridity index, are provided
with attribution in the supporting information. Other gridded
and non-gridded datasets used here can be downloaded from the
references provided.
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