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This supporting information contains additional information on how the model used in 16 

our simulations was set up in COMSOL. We use the same methods, equations, and 17 

metrics described in Gomez-Velez et al. (2017), however, we implement here a 18 

deformed geometry method to capture the dynamic evolution of the wetting front along 19 

the sloping banks, while Gomez-Velez et al. (2017) assumed a vertical river bank. Due 20 

to their large file size, the COMSOL model files and the raw data to the figures in the 21 

manuscript are available upon request. For this please contact Yiming Li 22 

(liym@cug.edu.cn) or Zhang Wen (wenz@cug.edu.cn). 23 

S1 Water flow model 24 

The water flow model is based on that of Gomez-Velez et al. (2017), comprising 25 

an alluvial valley with a sinusoidal meandering river that overlies non-permeable river 26 

deposits, as shown in Fig. S1. To simplify the model, aquifer properties are assumed to 27 

be spatially homogeneous and isotropic. This means they can be modeled by the 28 

commonly used vertical-integrated approach which can reduce a 3-D groundwater flow 29 

problem to a two-dimensional (2-D) one, as shown in Fig. S2a. The model is bounded 30 

by hillslopes and a two-period fully penetrating sinusoidal river. By neglecting the 31 

compression of groundwater, unsteady, 2-D transient groundwater flow through the 32 

deformable aquifer is described by the Boussinesq’s equation: 33 

 Sy
∂h
∂t

 = ▽[K(h - 𝑧𝑧b)▽h]  (S1a) 34 

 h(x, t = 0) = h0(x)  (S1b) 35 

 n ·▽ [K(h - zb)▽h] = 0    for Ωv  (S1c) 36 

 h(xu, y, t) = h(xd, y, t) + 2 λJx   for Ωu and Ωd (S1d) 37 

 h(x, t) = ( Jx

σ
)s(x) + Hs(t) + 2 λJx   for Ωin ∪ Ωout  (S1e) 38 

where x = (x, y) [L] is the spatial coordinate with x positive in the upstream direction, t 39 

[T] is simulation time, Sy [-] is specific yield, K [LT-1] is the hydraulic conductivity, ▽ 40 

is the Laplace operator, h(x, t) and h0(x) [L] represent the hydraulic head at t and t =0, 41 



while zb(x) [L] is the elevation of the underlying impermeable layer with respect to the 42 

reference datum z = 0 (see Fig. S2b and S2c), respectively. H(x, t) = h(x, t) - zb(x) [L] 43 

is the thickness of the saturated aquifer, n is the outward normal vector along the model 44 

boundary, Ωv, Ωu and Ωd are the valley, upstream and downstream boundaries, 45 

respectively, while Ωin and Ωout are the inlet and outlet boundaries along the river. The 46 

fluxes are calculated by Darcy’s law via q = -K▽h [LT-1]. Here, 𝐪𝐪  is the specific 47 

discharge or Darcy flux, q/θ [LT-1] is the pore water velocity with θ [-] as effective 48 

porosity, and Q = q(h - zb) [L2T-1] is the aquifer-integrated discharge in our 2-D model. 49 

The valley boundary (Ωv) is assigned as a no-flow boundary and located at y = nλ, with 50 

the scaling number n = 4.5, which has proven to be sufficiently large for this simulation 51 

based on a series of pre-simulation tests while λ [L] is the wavelength of the river 52 

sinusoid. The river has been assigned a known transient hydraulic head, hr(x, t) = 53 

(Jx/σ)s(x) + Hr(t) [m], where Jx [-] is the base head gradient of ambient flow along the 54 

valley in positive x direction, Hr(t) [L] is the elevation of river stage above the 55 

impermeable deposit at the downstream end. 56 

 57 

 58 

Figure S1. Conceptual model of the study area. Colored lines represent the river, up-59 

valley, down-valley and valley side boundary conditions set in the model. Modified 60 

from Schmadel et al. (2016) 61 

 62 



 63 

Figure S2. Modified after Gomez-Velez et al. (2017): (a) Schematic representation of 64 

the boundary conditions for the non-submerged alluvial system. The colors of the 65 

boundaries correspond to those in Fig. S1. (b) Representation of the stream stage 66 

variation along the channel thalweg. (c) Cross-section of unconfined aquifer and 67 

floodplain of vertical (δ = 90°) and sloping riverbank (δ < 90°). Green and red lines 68 

refer to the sediment-water interface (SWI) during base flow condition and flood event, 69 

respectively; the dashed lines on the riverbank surface and the vertical bold lines in Fig. 70 

S2c indicate the realistic SWIs and SWIs of this study, respectively. 71 

 72 

The river (Ωin ∪ Ωout) is implemented as a sinusoid, following the 73 

conceptualizations of Boano et al. (2006), Cardenas (2009a, 2009b), and Gomez-Velez 74 

et al. (2017). The initial condition is represented as: y0(x) = αcos(2πx/λ) - α, where α [L] 75 

is the amplitude of the river boundary. Left- and right-bottom vertices in initial 76 

condition are located at xd = -3λ/4 and xu = 5λ/4, respectively. 77 

The impermeable bottom deposit zb = Jx(x - xd) [L] is assumed to be parallel to 78 

the alluvial valley. Ωu and Ωd are periodic with a known variable hydraulic head drop 79 

h(x = xu, y, t) = h(x = xd, y, t) + 2λJx [L] to eliminate any boundary effects. Thus, the 80 

model domain can represent two periodic parts in horizontal direction of the infinite 81 

aquifer. The river stage fluctuates during the dynamic flood event following (Cooper 82 



and Rorabaugh, 1963): 83 
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 (S2) 84 

where H0(x) [L] is the initial river stage, Hp [L] is the maximum (peak) river stage 85 

during the flood event, while td and tp [T] are the duration of flood event and the time-86 

to-peak river stage, respectively. ω = 2π/td [T-1] is the flood event frequency, η = 87 

ωcot(ωtp/2) [T-1] represents the degree of flood event asymmetry. The peak river stage 88 

and time-to-peak are assumed to be linearly correlated with the base flow stage (Hp = 89 

n0H0) and the duration of the event (tp = ndtd), respectively. Constants n0 [-] and nd [-] 90 

represent river stage hydrograph intensity and skewness.  91 

 92 

S2 Conservative solute transport model and calculation of HZ area (extent) 93 

In this work, we adopt the mathematical model used by Gomez-Velez et al. (2017), 94 

where the transport of a conservative solute within the vertically integrated system is 95 

given by: 96 

 ( )  = ( )HθC C C
t

∂
∇ ⋅ ∇ −

∂
D Q  (S3a) 97 

 
0( , =0) ( )C t C=x x  (S3b) 98 

 ( ) = 0 for vC C⋅ − ∇ Ωn Q D  (S3c) 99 

 ( , , ) = ( , , ) for  and u d u dC x y t C x y t Ω Ω  (S3d) 100 

 ( , ) = ( , ) for s inC t C t Ωx x  (S3e) 101 

 ( ) = 0 for  outC C⋅ − ∇ Ωn Q D  (S3f) 102 

where C(x, t), C0(x), and CS(x, t) are the solute concentrations [ML-3] in the aquifer, 103 

initial concentration and concentration in the river, respectively. The dispersion-104 

diffusion tensor D = {Dij} [L2T-1] is defined according to Bear and Cheng (2010) as: 105 



 ( )L L
i j

ij T ij T

Q Q
D α δ α α DHθ= + − +Q

Q
  (S4) 106 

where αT and αL [L] are the transverse and longitudinal dispersivity, respectively, DL 107 

[L2T-1] is the water diffusivity, ϵ = θ1/3 [-] represents tortuosity (Millington and Quirk, 108 

1961), and δij [-] is the Kronecker delta function. 109 

In order to mimic a periodical repetition of the meanders in x direction and 110 

eliminate potential boundary effects, a periodic boundary condition (Eq. (S3d)) is used 111 

at Ωu and Ωd. This type of boundary condition can produce the periodic nature of the 112 

model domain, flow field as well as the HZ that repeats for each meander bend (Gomez-113 

Velez et al., 2017). However, in order to explore the local HZ that is caused by the HEFs 114 

at the studied meander: 0 < x < λ (i.e., bold black line along the meander in Fig. S2a), 115 

the conservative in-stream concentration is given by 116 

 1     if [0, ]
( )

0    else 
in

s

x λ
C t

∈ Ω
= 


  (S5) 117 

According to Eq. (S5), the river concentrations are assigned as an open boundary 118 

condition along the studied meander with the external concentration mimicking the 119 

concentration of the tracer (100% of stream water). Then the concentration of the pore 120 

water within the aquifer represents the fraction of water inflow from the river at any 121 

given location and time. 122 

S3 Model of residence time distribution 123 

The residence time (also terms as travel time or age) (RT) in the HZ describes the 124 

characteristic time scale over which water or solute molecule are exposed to the 125 

biogeochemical conditions within the hyporheic sediment. For HEF process, RT is 126 

controlled by the advective and dispersive characteristics of the system, thereby it is 127 

hard to calculate the RT of each molecule due extremely large computational demand. 128 

Thus, the residence time distribution equation was proposed (Ginn, 2000; Gomez-Velez 129 

et al., 2012,), and has been widely applied to calculate the mean residence time 130 



distribution (RTD) in HEF models (Gomez-Velez et al., 2017; Singh et al., 2019). 131 

Similar to Gomez-Velez et al. (2017), here we focus on the orders of moment of RTD 132 

that represent the mean residence time distribution: 133 

 
0

( , ) = ( , , )d       = 0, 1, ...n
nμ t τ ρ t τ τ n

∞

∫x x  (S6) 134 

here, μn(x, t) [Tn] is the n-th moment, ρ(x, t, τ) [T-1] is the residence time distribution, τ 135 

[T] is residence time, and μ0 = 1. The first moment of RTD (μr(x, t)) is the mean 136 

residence time distribution at a given location and time, which can be used to evaluate 137 

the transient variation of RTD. Here, we used the approach provided by Gomez-Velez 138 

et al. (2017) where the moments of RTD are calculated by a form of the advection-139 

dispersion equation following 140 

 1
( )  = ( )n

n n n
Hθμ μ μ nHθμ

t −

∂
∇ ⋅ ∇ − +

∂
D Q  (S7a) 141 

 0( , =0) ( )n n,μ t μ=x x  (S7b) 142 

 ( ) = 0 for n n vμ μ⋅ − ∇ Ωn Q D  (S7c) 143 

 ( , , ) = ( , , ) for  and n u n d u dμ x y t μ x y t Ω Ω  (S7d) 144 

 ( , ) = 0 for n inμ t Ωx  (S7e) 145 

 ( ) = 0 for  n n outμ μ⋅ − ∇ Ωn Q D  (S7f) 146 

where μn,0(x, t) is the initial condition of the n-th RTD that is calculated by the base 147 

flow condition (steady forcing before the arrival of flood event), while the upstream 148 

and downstream boundaries are assigned periodic boundary conditions (Eq. (S7d). As 149 

we ignore the vadose zone, the RT is defined as the time since the water entered the 150 

model domain from the river (i.e., the travel time of the water). Thus, n-th RTD at the 151 

inflow river boundary is zero (Eq. (S7e). A flow boundary is used for the region where 152 

the water exits the model domain (Eq. (S7f)).  153 

S4 Validation of assumptions and using of DGM  154 

 The two main assumptions of this study are: (1) The SWI is always vertical and (2) 155 



the DGM can be used to represent the displacement of the SWI. In order to test the 156 

appropriateness of these assumptions, we built a 1-D horizontal model (from river 157 

channel to valley). Its flow field was calculated by the Boussinesq equation coupled 158 

with the DGM. We then built a 2-D vertical model (river channel to valley) the flow 159 

field of which was simulated by the Richard’s equation. The diagrams of the 1-D and 160 

2-D vertical models for validation are shown in Fig. S3a and Fig. S3b, respectively. 161 

Thus, the horizontal 1-D model (Fig. S3a) represents a reduced 2-D horizontal model 162 

(Fig. S2a, the model we use in our main manuscript) while the vertical 2-D model (Fig. 163 

3b) represents a reduced 3-D model (described as Fig. S1), respectively. Our 164 

comparison neglects river sinuosity and the ambient groundwater flow gradient, but can 165 

efficiently prove the reliability of the vertical SWI assumption and usability of the 166 

DGM.  167 

 168 

Figure S3. Diagrams of the 1-D horizontal and 2-D vertical model that we used to 169 

evaluate the appropriateness of the assumptions of this study. Blue lines and dot indicate 170 

the river boundary, red lines and dot indicate the no-flow boundary 171 

 172 

The upper boundary of the 2-D model was higher than the peak river stage to avoid 173 

its submergence. The model length (nλ) has been shown to have no impact on the flow 174 

field (see S1), so the valley boundaries were set to be no-flow boundaries. The river 175 

boundary (SWI) of the 1-D model was assumed to be always vertical and the 176 



displacement of the SWI was calculated by Eq. (1) coupled with DGM. The model 177 

length and parameters were the same as shown in Table 1 in the main manuscript. The 178 

model mesh was refined near the river boundary with the total number of elements 179 

being 4168. The time step was 0.1 d with a total run time of 2*td. 180 

 For the vertical 2-D model corresponding to the 3-D model the flow field was 181 

simulated by the Richard’s equation for unsaturated conditions which utilizes the van 182 

Genuchten equation for hydraulic properties (Van Genuchten, 1980):  183 
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 1 1/m n= −  (S7d) 187 

Here, k is hydraulic conductivity with specific saturation [LT‐1]; S is soil moisture 188 

content [-]; Sr is residual water content [-], which is assumed to be 0.01; Ss is saturated 189 

water content [-], which is equal to the porosity (0.3); Se is the effective saturation [−]; 190 

α [L‐1] and n [-] are empirical coefficients, and assumed to be constant at 7.5 and 1.89, 191 

respectively while φ is pressure head [L]. The mesh was refined near the river boundary 192 

with a mesh size of 0.001 m, and a total number of mesh elements of 0.48 million. The 193 

total simulation time was 2*td with a time step of 0.1 d. 194 

 To evaluate the accuracy of our model approach for the scenarios tested in this 195 

study, the saturated hydraulic conductivity (parameterized by Γd) and bank slope angle 196 

were assigned to be the same as shown in Table 1 in the main manuscript. Fig. S4 shows 197 

the ratio of peak net flux of the 2-D to 1-D models (Rp = Q*max,2-D/Q*max,1-D). We could 198 

observe differences in net flux estimates between the 2-D vertical model (reduced 3-D) 199 

and the 1-D horizontal model even for vertical riverbank condition (δ = 90°), which 200 

resulted from the effect of the vadose zone (Liang et al., 2020). For sloping riverbank 201 

conditions these differences in net flux estimates remain albeit a change in magnitude.   202 



Overall, the differences in peak net flux between horizontal 1-D and vertical 2-D 203 

models are mostly caused by the effect of the vadose zone. This implies that using the 204 

DGM has a minor influence on the prediction of the net flux in most of scenarios tested 205 

in this study.  206 

 207 

 208 

Figure S4. Ratio of maximum net flux of 2-D vertical model to 1-D horizontal model 209 

Rp = Q*max,2-D/Q*max,1-D and aquifer transmissivities.  210 

 211 

 Figure S5 shows the relative difference in the bank storage between the 1-D 212 

horizontal and 2-D vertical model (Rs) for the scenarios tested in this study, which is 213 

calculated by: 214 

 ( )2 D 1 D 2 D/sR S S S− − −= −  (S8a) 215 

 1 D dS h x− = ∫  (S8b) 216 

 2 D d d    if 1eS x z S− = =∫∫  (S8c) 217 

where S1-D and S2-D are bank storage of 1-D and 2-D models [L2], respectively. Fig. S5 218 

indicates that the maximum difference in prediction of bank slope between 1-D and 2-219 

D model were less than 15％ under the condition with highest aquifer transmissivity 220 

(Γd = 0.1), however, the maximum Rp for Γd = 0.1δ = 90° was 11％, indicating the 221 



model approach of this study has minor influence on the model performance. 222 

 223 

224 

 225 

Figure S5. Relative difference in bank storage between vertical 2-D and horizontal 1-226 

D model for various bank slope angle and aquifer transmissivity conditions. 227 

 228 

While the using the Boussinesq equation neglects the influence of the vadose zone, 229 

this equation as well as the assumption of vertical integrated distribution of hydraulic 230 

head and solute have been widely used in the literature and proven adequate when 231 

simulating sinuosity-driven HEF patterns (Boano et al., 2006; 2010., Cardenas. 2008; 232 

2009a, b; Gomez-Velez et al., 2012; 2017, Kruegler et al., 2020). Despite that, Fig. S4 233 

and Fig. S5 show that differences in the prediction of HEF patterns exist between the 234 

Boussinesq model and Richard’s model for all types of slope angle including a vertical 235 

riverbank indicating a discrepancy between both mathematical approaches. This 236 

discrepancy needs to be studied further to better understand the advantages and 237 

limitations of either approach, e.g., in terms of computability or efficiency in predicting 238 

HEF under various conditions. 239 



 240 

  241 



S5 Metrics  242 

 We used the following dimensionless metrics to quantify the effects of bank 243 

slope angle on the response of the dynamic hyporheic zone: (i) hyporheic exchange flux 244 

along the river, (ii) in-valley penetration distance (i.e., the distance the river water 245 

penetrates into the aquifer), (iii) the area of the HZ (i.e., the area of the aquifer exposed 246 

to river water), and (iv) RTD and flux-weighted relative RT of HZ water discharging 247 

into the river. In this section, we briefly define and describe each of these terms. 248 

S5.1 Hyporheic exchange flux 249 

 Exchange flux from the river to the HZ (Qin, HZ) and from the aquifer to the river 250 

(Qout, HZ) was defined as： 251 

 
( )

( ) ( , ) d
in ,HZ

in ,HZ
t

Q t t s
∂Ω

− ⋅∫= Q x n  (S9a) 252 

 
( )

( )= ( , ) d
out ,HZ

out ,HZ
t

Q t t s
∂Ω
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where Ωin, HZ (t) and Ωout, HZ (t) correspond to the inflow and outflow boundaries along 254 

the meander of interest (black line along the river boundary in Fig. S2a). The net flux 255 

from the aquifer into the river (Qnet, HZ = Qout, HZ - Qin, HZ) can be expressed in 256 

dimensionless terms following Gomez-Velez et al. (2017) using Q*in, HZ (t) = Qin, HZ 257 

(t)/(KH�s
2), Q*out, HZ (t) = Qout, HZ (t)/(KH�s

2), and Q*net, HZ (t) = Qnet, HZ (t)/(KH�s
2). Note that 258 

these dimensionless fluxes are proportional to the integrated head gradient between the 259 

river stage and the adjacent aquifer along the river boundary. 260 

S5.2 Hyporheic zone area  261 

Dynamic changes of the river-aquifer interface and pressure distribution along 262 

the SWI induce variations of the flow field and changes to the HZ as represented by 263 

area (i.e., the aquifer area exposed to river water) and penetration distance (i.e., how far 264 

river water travels into the aquifer) during the flood event. These are useful metrics for 265 



assessing the opportunity for biogeochemical and geochemical reactions induced by 266 

hyporheic exchange. Here we use a geochemical definition of HZ proposed by Triska 267 

et al. (1989), that defines the HZ as the area within the alluvial valley that contains more 268 

than 50% stream water (C(x, t) > 0.5). It can be calculated using  269 

 ( )= ( , )d dA t a t x y∫∫ x  (S10a) 270 
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x
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 (S10b) 271 

where A(t) [L2] is the area of the HZ. The dimensionless area is then defined similar to 272 

Gomez-Velez et al. (2017) as A*(t) = A(t)/λ2 and the dimensionless variation of the HZ 273 

area relative to base flow conditions can be calculated by A**(t) = A*(t) - A*(0), where 274 

A*(0) is the initial area of HZ under baseflow condition.  275 

S5.3 Penetration distance of the hyporheic zone 276 

The maximum penetration distance d(t) of river water into the HZ in the direction 277 

perpendicular to the axis of the river can be calculated by the maximum y coordinate of 278 

the HZ. Similar to Gomez-Velez et al. (2017), we focus on the evolution of the 279 

dimensionless term of d**(t) = d*(t) - d*(0), where d*(t) = d(t)/λ.  280 

S5.4 Residence time 281 

 The difference in mean residence time distribution between a sloping and a vertical 282 

riverbank model was calculated by μr*(x, t) = log10(μτ-S(x, t)/μτ-V(x, 0). μr* < 0 indicating 283 

that RT was overestimated in these areas when ignoring the bank slope while μr* > 0 284 

indicating the opposite. Furthermore, a representative value of the flux-weighted ratio 285 

of mean RT to mean RT under baseflow conditions along the river boundary is given 286 

by: μ*out(x, t) = n·Q*out(x, t)log10(μτ(x, t)/μτ(x, 0)), which indicates aquifer discharge of 287 

younger water with relatively short travel times (values smaller than zero) or older 288 

water with longer travel times within the alluvial aquifer as compared to the baseflow 289 

conditions. 290 
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