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Abstract. In many cases, flood frequency analysis (FFA)
needs to be carried out on mean daily flows (MDF) instead
of instantaneous peak flows (IPF), which can lead to un-
derestimation of design flows. Typically, correction methods
are applied to the MDF data to account for such underes-
timation. In this study, we first analyse the error distribu-
tion of MDF-derived flood quantiles over 648 catchments in
Germany. The results show that using MDF instead of IPF
data can lead to underestimation of the mean annual peak
flow (MHQ) by up to 80 % and mainly depends on the catch-
ment area but appears to be influenced by gauge elevation
as well. This relationship is shown to differ for summer vs.
winter floods. To correct such underestimation, different lin-
ear models based on predictors derived from MDF hydro-
graph and catchment characteristics are investigated. Apart
from the catchment area, a key predictor in these models is
the event-based ratio of flood peak to flood volume (p/V ra-
tio) obtained by the MDF data. The p/V models applied to
either MDF-derived events or statistics seem to outperform
other reference correction methods. Moreover, they require a
minimum data input, are easily applied, and are valid for the
entire study area. The best results are achieved when the L
moments of the MDF maximum annual series are corrected
with the proposed model, which reduces the flood quantile
errors by up to 60 %. The approach behaves particularly well
in smaller catchments (< 500 km2), where reference meth-
ods fall short. However, the limit of the proposed approach is
reached for catchment sizes under 100 km2, where the hydro-
graph information from the daily series is no longer capable
of approximating instantaneous flood dynamics and gauge
elevations below 100 m, where the difference between MDF
and IPF floods is very small.

1 Introduction

Common flood frequency analysis (FFA) is based on sam-
ples of maximum flows, e.g. annual maximum-flow se-
ries (AMS). The magnitude and variability of these maxima
form the baseline for the choice of probability distribution,
the estimation of its parameters, and eventually the deduc-
tion of flood quantiles as design criteria for various water
works (Maidmennt, 1993). For FFA to be as accurate as pos-
sible, two criteria need to be met: first, a large number of
observed peak flows is necessary to ensure an adequate se-
lection and fitting of the probability distribution and, second,
it is important that the peak flows are measured with high
precision to account for the best description of the maximum
flood magnitude and dynamics. However, embracing the true
dimension of a peak requires continuous measurement of the
flow at a high temporal resolution (e.g. at 15 min time steps).
Such data are rarely available or, at best, only available for
short periods, which is insufficient for flood frequency anal-
ysis. Typically, long observations of floods are available as
mean daily flow records, and oftentimes FFA needs to be car-
ried out on these records instead. The daily averaging natu-
rally flattens the flood peak and the true maximum becomes
unknowable. Particularly for small basins there is a consid-
erable underestimation of the flood peak by the mean daily
flows (Fill and Steiner, 2003). Hence, it becomes essential
to develop new methods based on easily accessible data to
correct the mean daily flows for a better representation of the
flood peaks.

The degree of the above-mentioned smoothing, i.e. the dif-
ference between the true instantaneous peak flows (IPF) and
the maximum mean daily flows (MDF) (here called the peak
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ratio), depends on the response time of a system, which is
controlled by a multitude of factors. The average relation-
ship between MDF and IPF peaks at a site depends greatly
on its basin area (Fuller, 1914) and characteristics related to
topography, like altitude, relief, and channel slope (Canuti
and Moisello, 1982). For instance, there is a visible trend
where the IPF–MDF ratio decreases with larger basin areas,
which is expected because larger basins have higher base-
flows (Ellis and Gray, 1966). Furthermore, the internal vari-
ability of the IPF–MDF ratio in a site’s flow record is largely
determined by the type of meteorological input causing the
individual flood events (Viglione and Blöschl, 2009; Gaál
et al., 2015). This means that the peak ratios of rainfall and
snowmelt events are different from one another. A variety of
studies make use of the dependencies named above in order
to estimate IPF from MDF and can generally be classified as
methods based only on catchment characteristics, as in Fuller
(1914), Ellis and Gray (1966), Canuti and Moisello (1982),
and Ding et al. (2015), or also including climate character-
istics, as in Muñoz et al. (2012), Taguas et al. (2008), and
Gaál et al. (2015). Mostly, these methods are in the form of
linear models based on the maximum MDF and the selected
catchment or climate predictors.

Other IPF-estimation methods aim to use the bare mini-
mum of available data, i.e. solely the available MDF record.
In these cases, the shapes of hydrographs are used to esti-
mate the instantaneous peaks of events. The shape of a hydro-
graph can hold important information regarding an event’s or
even an entire site’s flashiness and thus its peak ratio. Short
flood events with steep rising and falling limbs are typical
of a quickly reacting system, due to limited storage capac-
ity and/or high-intensity rainfall or due to moderate-intensity
rainfall on snow. In such events, the discrepancy between IPF
and MDF will be significantly greater than for hydrographs
with long durations and gentle slopes. For example, Ellis and
Gray (1966) found that the peak ratio distinctively decreases
with increasing hydrograph width.

Several approaches use the maximum mean daily flow
and the discharge of the previous and/or successive day
(e.g. Langbein, 1944) to estimate IPF. Chen et al. (2017)
compared three of these methods, i.e. those of Sangal (1983)
and Fill and Steiner (2003) and their own new method (re-
ferred to as the slope method). These methods are based on
the rising and falling slopes of the event hydrograph, esti-
mated from the 3 consecutive days around the peak, and dif-
fer in terms of how the information is integrated into the for-
mula. They found out that their slope method and the Fill–
Steiner method outperform the other two approaches and
Fuller’s method (Fuller, 1914) (estimation method based on
basin area) and are probably applicable for a wide range of
climates. However, both methods’ performance deteriorates
with decreasing catchment size, and they work best for areas
larger than 500 km2.

Of course, there exist more complex means to correct the
divergence between MDF and IPF. This includes disaggre-

gation of the daily flow series to a finer scale, as done by
e.g. Stedinger and Vogel (1984), Tarboton et al. (1998), Ku-
mar et al. (2000), Tan et al. (2007), and Acharya and Ryu Jae
(2014). Also, hydrological modelling may be applied for IPF
estimation, e.g. in combination with high-resolution disag-
gregated rainfall (Ding et al., 2016) or by using regional-
ized model parameters (Ding and Haberlandt, 2017). Sev-
eral studies have applied machine-learning techniques to es-
timate instantaneous peaks from mean daily flows, includ-
ing Shabani and Shabani (2012), Dastorani et al. (2013), and
Jimeno-Sáez et al. (2017). While disaggregation, hydrolog-
ical modelling, and machine learning proved to be very ef-
fective in their studies, they often require a number of com-
putational steps and/or a variety of data sources. Indeed, the
estimation methods based on the catchment or hydrograph
characteristics remain even more desirable due to their sim-
plicity, as they are based on easily accessible data and pop-
ular methods (i.e. linear models). So far, the two main IPF-
estimation methods have been developed separately with no
combination of both catchment and hydrograph information.
In this study, on the other hand, we propose linear models
that facilitate IPF estimation using a combination of daily
event hydrographs and functional dependencies with catch-
ment descriptors while keeping the data input to a minimum.
A key predictor in these linear models is the ratio of di-
rect event peak runoff to direct event volume. This ratio is
expected to effectually describe the shape of a flood event,
which in turn gives us an idea about the expected instan-
taneous peak: the larger the daily peak and the smaller the
event volume, the larger the expected difference between IPF
and MDF and vice versa. We assume that the peak-to-volume
ratio (p/V ) holds important information on the general be-
haviour of flood events (Gaál et al., 2015; Fischer, 2018;
Tan et al., 2007) and thus the expected magnitude of the IPF
peaks. Moreover, the p/V of individual events can describe
the internal variability at a site by reflecting different types of
floods caused by different rainfall and/or snowmelt inputs. At
the same time, the p/V accounts for the variability between
sites caused by local flood-generating processes governed by
general physiographic and climatic conditions.

Another important point to be considered is that most of
the studies mentioned above investigate the performance on
the IPF maximum series and pay little attention to how these
methods estimate the design flows with specific return pe-
riods. The general assumption is that, if the IPF maximum
series are estimated well enough on average, so are the IPF
quantiles. However, a well-estimated average IPF maximum
may still lead to underestimation of design flows with a high
return period (say 100 years). It makes sense to also inves-
tigate whether linear models based on MDF moments, pa-
rameters, or quantiles are more favourable for the estima-
tion of the IPF quantiles. Accordingly, p/V models are em-
ployed here to correct MDF information at different levels:
correction of individual flood events from MDF, correction
of MDF annual or seasonal maximum series, and direct cor-
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rection of MDF-derived statistics (like mean maximum flow,
L moments, distribution parameters, or even flood quantiles).

In this study, the linear models based on the p/V as the
key predictor (referred to here as p/V models) are devel-
oped and assessed based on flow data from 648 catchments
in Germany (as described in Sect. 2). The description of the
methods and models used here for the estimation of the IPF
from MDF information is given in Sect. 3.2. We then analyse
the performance of the models in two main parts: their ability
to estimate the mean maximum flow (MHQ) (see Sect. 4.1)
and their ability to estimate probability distributions and the
respective design floods (see Sect. 4.2). For the best model
achieved, an uncertainty estimation is tackled by means of
spatio-temporal resampling (see Sect. 4.3). Finally, the range
and limitations of the proposed methodology and conclu-
sions are given in Sects. 5 and 6, respectively.

2 Study area and data

This study uses flow data from 648 catchments distributed
over Germany as shown in Fig. 1. For the analyses, continu-
ous average daily flows (MDF) and instantaneous peak flows
provided for each month as monthly peaks (IPF) are avail-
able. The selected sites represent the data sets of the fed-
eral agencies, which provide online access to both data sets
(Lower Saxony, Saxony-Anhalt, Saxony, Bavaria and Baden-
Württemberg; see the Data availability section).

Germany forms a transition zone from an oceanic climate
in the north-west to a humid continental climate in the south-
east. The north-western parts are influenced by wet air and
have mild winters, while the more south-eastern parts are
drier and exhibit larger temperature ranges. The average tem-
perature for the entire country is 8.9 °C, the monthly averages
ranging between 0.4 °C in January and 18 °C in July (refer-
ence period 1981–2010; DWD, 2021). The average annual
precipitation is 819 mm, where amounts generally decrease
from west to east and in strong dependence on the topogra-
phy. Annual rainfall sums are generally highest over the Alps
right at the southern border and the various secondary moun-
tain ranges. The flat continental east is the driest. Temporally,
the summer months are wettest, with rainfall often occurring
in convective events. Snowfall occurs between October and
April, where the amount and depth of snow cover increase
with decreasing oceanic influence and increasing altitude.

Even though the entire area of Germany is not covered by
the available data, the selected sites provide a cross section
through the climatically and topographically distinct regions,
from the flat oceanic north-west to the mountainous conti-
nental south-east.

The lengths of the discharge records vary substantially
from 11 to 183 years, with a mean of 48.4 years (temporal
span from 1831 to 2021). For the general assessment of dif-
ferences in IPF and MDF floods and final model validation,
all 648 sites with their variable record lengths are considered.

Figure 1. The spatial distribution of 648 catchments and their re-
spective discharge gauges employed in this study. The 103 sites
used for model calibration are marked in blue. The elevation is
shown in the background colours and is provided by Jarvis et al.
(2008), while the borders of the German federal states are shown
with black lines.

For the assessment of flood frequency criteria, only sites with
at least 30 years of observations are used (486). Model fit-
ting (herein referred to as calibration) was carried out on a
subset of 103 sites, whose discharge data were thoroughly
checked. Also, their records were cropped to a common pe-
riod from 1979 to 2012 to eliminate potential non-stationary
effects. For the 103 sites used for calibration, a catalogue of
catchment descriptors is available. For the remaining sites,
only rudimentary information was obtained, i.e. catchment
size, geographical position, and altitude of the gauges. Fig-
ure 2 shows how the 648 discharge gauges are distributed in
terms of catchment size and elevation. It is evident that the
majority of the sites have catchment areas under 500 km2 and
gauges situated at elevations higher than 100 m a.s.l.

3 Methods

3.1 Flood frequency analysis

FFA is applied to the two data sets for the available catch-
ments in Germany: MDF and IPF. First, the maximum se-
ries are extracted from each data set either on an annual ba-
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Figure 2. Distribution of catchment size and elevation for all
648 sites employed in this study.

sis (AMS) or for each season of summer and winter (sea-
sonal maximum series). For extrapolation of the maximum
series and estimation of floods with specific return periods,
distributions are fitted to the annual and seasonal samples of
both IPF and MDF data sets. This enables the direct compar-
ison of both flood quantiles and distribution parameters. For
this study, the general extreme value distribution (GEV) of
the following form is used for all the samples (Maidmennt,
1993):

F(x)= exp

{
−

[
1−

κ · (x− ξ)

α

] 1
k

}
, (1)

with location parameter ξ , scale parameter α, and shape
parameter κ . The parameters are estimated using sample
L moments (Hosking and Wallis, 1997). The GEV has been
proven before to be a suitable distribution for different catch-
ments in Germany, as indicated by Haktanir and Horlacher
(1993), Villarini et al. (2011), Ding et al. (2015), Ding et al.
(2016) and Ding and Haberlandt (2017), and therefore it has
been chosen in our study as well. The goodness of fit of the
distributions is determined with the Cramér–von Mises test.

When extracting AMS, different flood peaks of differ-
ent genesis (i.e. from convective or stratiform rainfall, from
snowmelt, and so on) are mixed together and described by
a single GEV distribution. However, if a certain flood type
is dominating the annual maximum sample but is not typical
for extremely large floods, then the fitted GEV distribution
becomes misleading. To consider the different genesis in the
flood peaks, maximum series are derived here for two sea-
sons: summer (May–October) and winter (November–April).
Then, a mixed model is applied, which combines two GEV
distributions fitted to each of these sub-samples of the data:

summer and winter floods. A simple maximum-mixing ap-
proach is used to combine the individual distributions to as-
sess the annual non-exceedance probability of specific flood
values:

Fmix(x)=

n∏
i=1
fi(x), (2)

with fi(x) as the annual non-exceedance probability cal-
culated for each sub-sample (summer and winter) and
Fmix(x) as the mixed-model annual non-exceedance proba-
bility for a flood value x. This approach allows the combined
estimation of flood quantiles from multiple underlying dis-
tributions and thus the assessment of errors in seasonal FFA.
The approach is described in detail in Fischer et al. (2016). In
their study, they used thresholds to determine whether a sea-
sonal maximum was actually a flood event, which may not
be the case during dry summers. This threshold was defined
as the minimum annual maximum flow. We do not censor
our data with thresholds. That is, for matters of simplicity,
we assume that every seasonal maximum is indeed a flood
event.

3.2 Analysis and estimation of IPF

3.2.1 Calculation of the p/V predictor from mean
daily flows

Motivated by the recent findings of Fischer et al. (2016) and
Fischer (2018) regarding different flood types, here the p/V
extracted from MDF is considered an important predictor
that can help to estimate more accurately the IPF series from
the MDF ones. This ratio is computed for each flood event
extracted from the MDF data set as shown by Eq. (3):

p\V

(
1
d

)
=
Qdir

[
m3 [d−1]]

Voldir
[
m3
] , (3)

where p/V is the peak-to-volume ratio, Qdir the direct peak
flow, and Voldir the direct flood volume. Both Qdir and
Voldir are calculated for flood events extracted from MDF
series (see below) after subtracting the baseflow.

To separate the flood events from the MDF, the initial
steps of the procedure used by Tarasova et al. (2018) are car-
ried out, which have been proven to be effective and conve-
nient for the German catchments. For the initial step of base-
flow separation, they selected the simple non-parametric al-
gorithm provided by the Institute of Hydology (1980), which
is able to identify the starting points of events in daily flow
series in a wide range of catchments. The same method is ap-
plied to the series of mean daily flows in our study, which in-
volves the following steps. First, 5 d non-overlapping blocks
are used to find the minima, which are identified as turn-
ing points if they are more than 1.1 times smaller than their
neighbouring minima. The baseflow is then derived by sim-
ple linear interpolation between the turning points. Discharge
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peaks are subsequently determined from the flow series, and
for every peak the start and end of the respective flow event
are defined by the nearest surrounding turning points. To
prevent false identification of events due to natural variabil-
ity, events are discarded if their peak discharge is not at
least 10 % larger than the baseflow. Tarasova et al. (2018)
suggested a second step of re-defining events with multiple
peaks in an iterative procedure. This step is not carried out
here, as it requires rainfall and snowmelt information, which
is not available in our case. It is assumed that most of the
events, especially the larger ones relevant for FFA, are sepa-
rated correctly.

3.2.2 Estimation of instantaneous peak flows

In this study, we propose linear models to estimate IPF from
the MDF data, where the peak-to-volume ratio (as described
in Eq. 3) is one of the main predictors (referred to here as
p/V models). Other predictors that describe the catchment
physiology or climate (referred to for simplicity as catchment
descriptors) are also integrated and investigated. The combi-
nation of hydrograph shape and catchment characteristics as
predictors is expected to better reproduce both the on-site and
between-site variabilities in the IPF–MDF relationship and
yield a more universal model. Several catchment descriptors
describing land use, soil type, average climate variables, ge-
ographic information, and catchment morphology were in-
vestigated prior to the study. Two main descriptors, i.e. basin
area and gauge elevation, were found to be more important
for the linear model and hence are included in the study as
shown here.

Since the p/V ratio is calculated for each event, the first
p/V model investigated aims to correct individual flood
events from MDF series. All events that contain maximum
instantaneous monthly peaks are identified. For these events,
the daily MDFevent and instantaneous IPFevent peaks as well
as the p/Vevent are computed. Then, a linear model of the
following form is fitted:

IPFevent =
MDFevent

a+ b1 ·p\Vevent+ b2 ·CD1+ . . . + bn+1 ·CDn
, (4)

where CD denotes additional catchment and climate descrip-
tors that may be included in the models, and a and b are the
parameters of the linear model fitted by the calibration pro-
cedure. The fitting of the model parameters is performed on
the calibration set (as indicated in Sect. 2) only for the period
1972–2012.

To assess the performance of the new methodology, we
also employ here the slope method developed by Chen et al.
(2017) as a reference. The slope method estimates an IPFevent
based on the slopes of the daily peak Qpeak to its preced-
ing Qpre and following daily flows Qsuc as shown in Eq. (5):

IPFevent =Qpeak+

(
Qpeak−Qpre

)
·
(
Qpeak−Qsuc

)
2 ·Qpeak−Qpre−Qsuc

. (5)

Both of these estimation methods need information from the
MDF hydrograph selected for each flood event observed.
Hence, these methods can be applied in two ways: (1) IPF
are estimated for all separate events in the average daily
flow (MDF) series, even if these events have small daily
peaks. Then, the flood frequency analysis is performed on
the estimated event-based IPF (after selecting the maximum
events for each year or season). (2) IPF are estimated for the
maximum daily peak only. This means that the event hydro-
graph corresponding to the annual or seasonal daily maxi-
mum is considered for the calculation of p/V in Eq. (4)
or the peak discharges in Eq. (5). The obtained annual or
seasonal maximum series are then used as a basis for the
flood frequency analysis. In both cases, statistics are derived
from the estimated IPF series and compared to the observed
IPF ones. Procedure (1) is theoretically more accurate, since
maxima in IPF and MDF do not necessarily occur at the same
time (no temporal overlap). More precisely, events with max-
imum instantaneous peaks can have rather small mean daily
peaks in some instances. Correcting only the maximum MDF
would lead to underestimation of the IPF in these cases. On
the other hand, Procedure (2) may prove more robust in cases
where smaller events are not properly separated. That is, their
volumes are overestimated or underestimated. These events
would lead to unrealistic IPF estimates when using p/V as
a primary predictor. The larger events containing the annual
maximum MDF are expected to be more properly separated
by the algorithm described above.

Alternatively to the event-based estimation, the proposed
p/V model can also be applied directly to the MDF-derived
statistics with the aim of reproducing the IPF statistics. These
involve the estimation of flood statistics, i.e. MHQ, sam-
ple L moments, estimated distribution parameters, and de-
rived flood quantiles based on averaged peak-to-volume ra-
tios (p/Vmean). These average p/V ratios are obtained from
all the annual and seasonal maximum MDF events at each
site. As described above, these maximum events are expected
to be properly separated, and although the maximum MDF
events may not necessarily be identical to the maximum IPF
events, their shape may hold important information about lo-
cal processes. The model set-up is analogous to the event
correction approach:

IPFstat =
MDFstat

a+ b1 ·p\Vmean+ b2 ·CD1+ . . . + bn+1 ·CDn
, (6)

where “stat” is the desired statistic being estimated, CD the
selected catchment or climate descriptors, a and b the pa-
rameters of the model as fitted to the calibration set, and
p/Vmean the average p/Vevent for annual or seasonal series.
The model is expected to represent the average conditions
that determine the average deviation of MDF from IPF esti-
mates. p/Vmean in itself is expected to be a good predictor
that reflects local conditions like spatial scale, climate, ge-
ology, and other external factors that control flow variability
obtainable from daily flow records. The additional inclusion
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of catchment descriptors is tested case by case and may con-
tribute to the reproduction of the spatial variability of the tar-
get variable.

An overview of all the methods employed here together
with their descriptions is given in Table 1. All methods con-
sisting of the linear models based on the p/V ratio as the
main predictor (p/V methods) have been optimized based on
the calibration set only for the period 1972–2012. To select
the best model, the coefficient of determination (R2) and the
significance of the model parameters (based on the p value)
are considered. For validation, all the sites with their respec-
tive observed periods are used. Through the validation we
compare and assess the ability of the proposed models to cap-
ture the MHQ and the probability distribution and respective
design floods.

3.2.3 Analysis of the instantaneous peak flows

Since the IPF series are not continuous but rather one max-
imum per month (see Sect. 2), a direct comparison for each
flood event is not possible. Instead, we focus here on the
analysis of flood statistics. For this purpose, the general dif-
ferences between IPF statistics IPFstat and MDF-estimated
flood statistics MDFstat are calculated as follows:

error(%)=
MDFstat− IPFstat

IPFstat
· 100, (7)

where the error is computed at each site for any desired sta-
tistical quantity, like MHQ, L moments (Hosking, 1990), dis-
tribution parameters, and flood quantiles.

Apart from the error (%) at each site, two additional per-
formance criteria are calculated over all the sites: the normal-
ized root mean square error (nRMSE) as per Eq. (8 and the
percent bias (pBIAS) as per Eq. (9):

nRMSE(%)= 100 ·

√
1
N
·

N∑
i=1

(
MDFstati − IPFstati

)2
sdIPFstat

, (8)

pBIAS(%)=

N∑
i=1

MDFstati − IPFstati

N∑
i=1

IPFstati

, (9)

where N is the number of validation sites, MDFstati and
IPFstati are the respective statistics from MDF and IPF series,
and sdIPFstat is the standard deviation of IPF statistics over all
the considered sites. These criteria are computed for each of
the methods described in Table 1.

3.3 Uncertainty analysis

Since both the distribution fitting and the IPF estimation via
p/V models are approximations and not fully accurate, we
eventually assess the overall level of uncertainty in the fi-
nal IPF flood quantile estimates. As will be shown later in

Table
1.D

escription
ofallthe

m
ethods

em
ployed

here
forthe

com
putation

ofIPF
series

and
theirrespective

statistics.

A
pplication

N
am

e
D

escription

R
eference

M
D

F
IPF

are
taken

directly
w

ithoutcorrection
from

M
D

F.

E
vent-based

Slope-events
E

stim
ates

IPF
forallflood

events
derived

from
M

D
F

according
to

E
q.(5).

analysis
p
/
V

-events
E

stim
ates

IPF
forallflood

events
derived

from
M

D
F

according
to

E
q.(4).

A
M

S-based
Slope-A

M
S

E
stim

ates
IPF

as
perE

q.(5)only
forthe

flood
events

thatcorrespond
to

annualorseasonalm
axim

a
from

M
D

F
series.

analysis
p
/
V

-A
M

S
E

stim
ates

IPF
as

perE
q.(4)only

forthe
flood

events
thatcorrespond

to
annualorseasonalm

axim
a

from
M

D
F

series.

Statistics-based
p
/
V

-L
m

om
s

E
stim

ates
IPF

L
m

om
ents

as
perE

q.(6)based
on

L
m

om
ents

derived
from

annualorseasonalm
axim

um
series

ofthe
M

D
F

data
set.

analysis
p
/
V

param
eters

E
stim

ates
IPF

G
E

V
param

eters
as

perE
q.(6)based

on
G

E
V

param
eters

derived
from

annualorseasonalm
axim

um
series

ofthe
M

D
F

data
set.

p
/
V

-quants
E

stim
ates

IPF
quantiles

as
perE

q.(6)based
on

quantiles
derived

from
annualorseasonalm

axim
um

series
ofthe

M
D

F
data

set.
p
/
V

-M
H

Q
IPF

m
ean

annualm
axim

a
(M

H
Q

)as
perE

q.(6)based
on

the
average

daily
M

H
Q

.

Hydrol. Earth Syst. Sci., 28, 1687–1709, 2024 https://doi.org/10.5194/hess-28-1687-2024



A. Bartnes et al.: Flood frequency analysis using mean daily flows vs. instantaneous peak flows 1693

Sect. 4.2, the best correction approach is chosen to be the
p/V -Lmoms – the model directly correcting the L moments
of the MDF series. This is done using simple resampling with
replacement procedures, resampling in time when selecting
the maximum series for FFA, resampling in space when se-
lecting the sites for the p/V model (either for calibration or
validation of the models), and resampling in both space and
time. In the first step, the series of annual or seasonal max-
ima from both MDF and IPF data sets are analogously resam-
pled 1000 times with replacement (temporal sample and pa-
rameter uncertainty). For each resampling, the desired flood
quantiles are estimated using L moments. The range of these
estimates provides the baseline level of uncertainty due to
sample and parameter uncertainty. The temporal sample un-
certainty is calculated at each site for the original IPF and
MDF series (IPF-bs and MDF-bs, respectively) and is con-
sidered as a benchmark for comparison.

In the second step, p/V models are fitted to each pairing
of temporally resampled IPF and MDF series while consid-
ering all sites in the study area that have more than 30 years
of observations. This means that the temporal sample uncer-
tainty is propagated through the p/V model (p/V -full). To
assess the uncertainty of the selected p/V model, another
resampling is carried out, this time shuffling the set of con-
sidered sites, where the original MDF L moments are resam-
pled again 1000 times with replacements before fitting the
p/V model (p/V -bs). Lastly, the total uncertainty in both
space and time is assessed by combining the temporal sample
and parameter uncertainty with the uncertainty of the fitted
models: this means that the maximum series are resampled
1000 times, and for each of these sets, the sites are resam-
pled 1000 times as well before fitting the p/V model. So, the
total uncertainty will be derived by 1000 ·1000 quantile esti-
mates (p/V -bs-bs). Of course, the uncertainty ranges might
change slightly if more realizations are included. For method
comparison in terms of their uncertainty range, the number of
random resamplings will influence all the methods similarly.
On the other hand, 1000 realizations are enough to investi-
gate the dominant sources of uncertainty. Finally, to capture
the overall uncertainty, a previously conducted test showed
that 1 000 000 realizations are enough to capture the overall
trends of the uncertainty.

To assess the overall level of uncertainty, several indices
are computed at each site. The first one is the relative width
of the 95 % confidence intervals (CIs) calculated for all the
aforementioned resampling estimates of the desired flood
quantile:

CI95%bs =
xbs,0.975− xbs,0.025

xbs,0.5
, (10)

where xbs,0.025 and xbs,0.975 are the 2.5 % and 97.5 % quan-
tiles and xbs,0.5 is the median of the respective sample.

The second one is the deviation of the IPF-estimated sam-
ples from the IPF original sample, which allows the assess-
ment of error distributions:

errorbs =
xbs− IPFbs

IPFbs
· 100%, (11)

where IPFbs is the temporal resample of the IPF original data
and xbs is the resample estimated from either the original
MDF series or the modelled IPF series. From the resulting
error vector, a variety of statistics can be computed for com-
parison.

Finally, the agreement of the 95 % confidence intervals of
the MDF and p/V model samples with the IPF confidence
bands is determined as the percentage overlap at each site:

overlap=

min
(
Xbs,0.975, IPFbs,0.975

)
−max

(
Xbs,0.025, IPFbs,0.025

)
max

(
Xbs,0.975, IPFbs,0.975

)
−min

(
Xbs,0.025, IPFbs,0.025

)
· 100%, (12)

where IPFbs is the temporal resample of the IPF original data
and xbs is the resample estimated from either the original
MDF series or the modelled IPF series.

4 Results

4.1 MHQ

4.1.1 Comparison of MDF and IPF

Figure 3 demonstrates the error in MHQ estimated by MDF
instead of IPF series (as per Eq. 7) in relation to the catch-
ment size and the geographic location. It is clear that the
larger the area, the smaller the deviation between MDF and
IPF. In these cases, the MDF are good representations of the
IPF peaks. Moreover, MHQ errors shown in Fig. 3 appear
to be especially large at higher altitudes. This is indeed as
expected, as mountainous catchments have a fast response
time and are generally more heavily influenced by the me-
teorological forcing (by snowmelt processes or convective
events). Overall, the MHQ error in our catchments seems
to increase in the north–south direction, which could be a
secondary effect of both increasing altitude and decreasing
catchment size.

When assessing the differences between mean daily
and instantaneous peaks, it is also meaningful to take a
closer look at different types of floods. For our German
sites, the two most opposite types are (a) flood events in-
duced by short intense rainfall, especially convective events
dominant mainly in summer (May–October); and (b) ex-
tended flood events with a significant volume, as caused by
snowmelt and/or stratiform rain occurring mainly in winter
(November–April). Presumably, the latter flood type is much
better represented by mean daily flow than the former. In or-
der to roughly distinguish between the two types, the flow
records are divided into summer (May–October) and winter
(November–April) half-years. Due to the limited data avail-
ability, a clear distinction between convective, stratiform, and
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Figure 3. Spatial distribution of the mean annual maximum
flow (MHQ) error (%) between mean daily (MDF) and instanta-
neous peak (IPF) flows obtained from all the sites (calculated as per
Eq. 7).

snowmelt events cannot be achieved here. Some snowmelt
events in the high alpine catchments may still occur in May
and June but are classified as summer events. However, the
coarse division of the data into half-years rather than seasons
is due to the subsequent analysis of seasonal flood statistics
and application of the mixed seasonal model. In Fig. 4a–c,
the MHQ error is shown for the entire year and also for the
summer and winter seasons. The relationship with the catch-
ment area is still clearly visible in all three cases. Also, the
effect of the elevation becomes obvious, as sites at the lowest
elevations (yellow points, below 100 m) show very small er-
rors, even for small catchment sizes down to approximately
100 km2. This is the clearest stratification in the error due
to elevation; the errors at higher altitudes appear less distin-
guishable.

There is, however, a clear distinction between the summer
and winter seasons. As expected, the MHQ error is smaller
overall in the winter months, where snowmelt and stratiform
events prevail, while the convective events in summer are
poorly captured by MDF. The error in the annual peaks is
a mixture of the two seasons: which season contributes more
to the annual peaks depends on the individual flood regimes.
When looking at the IPF data, at 68.8 % of the considered
sites the winter floods exceed on average their summer coun-
terparts, while 29.2 % of the sites are dominated by sum-
mer floods. When considering MDF instead, only 22.1 % of

the sites are identified as having maximum peaks in sum-
mer. This indicates that the mean daily flow significantly
smoothens the summer peaks to a point where they are no
longer relevant for the overall flood behaviour. Figure 4d
shows the percentages of annual maxima at each site that are
attributed to the wrong season when using MDF. Each site is
represented by two dots: negative values show the percent-
ages of all annual maxima that are falsely attributed to sum-
mer, while positive values show the falsely attributed winter
peaks. It is obvious that with decreasing catchment size an
increasing number of annual maxima are falsely identified
in the winter half of the year, while the actual instantaneous
maxima occur in summer.

Another general issue highlighted by this analysis, inde-
pendent of seasonality, is that the peaks of both the IPF and
MDF data sets do not necessarily occur on the same day
(there is no temporal overlap). In their study, Chen et al.
(2017) illustrated that only for 82 % of the events investi-
gated did the peaks of both IPF and MDF series occur on the
same day. This suggests that instantaneous maxima are not
always identifiable in the mean daily flows. That is, the max-
ima obtained from the daily series are inevitably found in
other places. The temporal overlap of IPF- and MDF-derived
peaks for our catchments is shown in Fig. 4e. In general, the
smaller the catchment, the smaller the temporal overlap be-
tween instantaneous and daily peaks. This problem needs to
be kept in mind when attempting to estimate instantaneous
peaks from daily peaks, since the two may belong to signif-
icantly different events (different genesis) and thus to differ-
ent populations.

4.1.2 Estimation of MHQ

So far, the error in the MHQ between MDF and IPF has been
shown to be influenced by both catchment area and gauge el-
evation. Both of these predictors may be helpful in correcting
MDF for better agreement with the IPF data. Moreover, there
seems to be a significant linear dependence between the peak
ratios MDF / IPF, the p/V ratio, and the logarithm of the
catchment size. We first test the suitability of various predic-
tors for predicting MHQ from IPF by fitting the p/V models
to the individual events of MDF (p/V -events), to the MDF
maximum series (p/V -AMS), or, lastly, directly to the MDF
mean maximum flow (p/V -MHQ). Various model combina-
tions with the available predictors (catchment area, elevation,
and p/V ratio) are tested using the calibration data set, and
their respective coefficients of determination are shown in
Table 2. The selected models are marked in bold in Table 2,
and their respective full-model formulas are given in Table 3.
For most models, the majority of variances in the IPF–MDF
relationship are explained by the p/V ratio and the catch-
ment area. For winter, including gauge elevation appeared to
improve the model slightly.

The models show a similar performance for the annual
and summer peak ratios in both the correction of individual
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Figure 4. (a–c) Error (%) in the MHQ (as per Eq. 7) obtained in relation to catchment size and gauge elevation for the entire year (a),
summer (b), and winter (c); (d, e) percentage of peaks falsely attributed by MDF to the winter or summer half-year (d) and percentage of
peaks in MDF and IPF that overlap in time (within a 5 d buffer) (e). Results are illustrated for all the sites.

Table 2. Coefficients of determination for various model combinations (see Table 1 for a description of the models). Values are obtained by
fitting the models only to the calibration set. Bold numbers indicate the best p/V model for each application, and asterisks indicate at least
one non-significant predictor in the p/V models.

Application Event-based (p/V -events) Maximum-based (p/V -AMS) MHQ-based (p/V -MHQ)

Predictor Year Summer Winter Year Summer Winter Year Summer Winter

Area 0.14 0.19 0.12 0.30 0.26 0.25 0.42 0.42 0.38
Elevation 0.01 0.01 0.01 0.04 0.01 0.03 0.06 0.02 0.08
p/V 0.13 0.13 0.09 0.21 0.21 0.20 0.55 0.49 0.49
p/V + area 0.23 0.26 0.17 0.39 0.36 0.35 0.66 0.65 0.63
p/V + area 0.14 0.13 0.10 0.23 0.22 0.23 0.56∗ 0.51 0.56
p/V + area+ elevation 0.23 0.26 0.17 0.40 0.36∗ 0.36 0.67∗ 0.65∗ 0.68
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Table 3. The best p/V models (as shown in bold in Table 2) fitted to the calibration set for correction of individual events (p/V -events),
annual or seasonal maxima (p/V -AMS), and the MHQ (p/V -MHQ).

Type Model

Events Year MDF/(0.59− 0.43 ·p/Vevent+ 0.047 · log(area))
(p/V -events) Summer MDF/(0.44− 0.36 ·p/Vevent+ 0.063 · log(area))

Winter MDF/(0.63− 0.35 ·p/Vevent+ 0.044 · log(area))

Maxima Year MAXMDF/(0.53− 0.42 ·p/Vmax+ 0.057 · log(area))
(p/V -AMS) Summer MAXMDF/(0.61− 0.73 ·p/Vmax+ 0.061 · log(area))

Winter MAXMDF/(0.70− 0.68 ·p/Vmax+ 0.054 · log(area))

MHQ Year MHQMDF/(0.74− 0.94 ·p/Vmean+ 0.043 · log(area))
(p/V -MHQ) Summer MHQMDF/(0.83− 1.19 ·p/Vmean+ 0.054 · log(area))

Winter MHQMDF/(0.99− 1.31 ·p/Vmean+ 0.035 · log(area)− 0.00012 · elevation)

events (p/V -events) and the mean maximum flow (p/V -
MHQ). For winter, the model performance seems to dif-
fer, especially when correcting the individual events (p/V -
events). It appears that the models using the p/V have more
difficulty estimating the winter peak ratio. This could be
due to improper event separation, which will be discussed in
more detail below and which leads to unrealistic p/V ratios.
The fact that elevation is a significant predictor in the MHQ
model (p/V -MHQ) may also suggest that the peak ratios in
winter are more heterogeneous.

Figure 5 shows the change in mean absolute error in the
annual MHQ after correction with the different methods in
relation to catchment size and elevation: positive values in-
dicate that the error has increased after correction, while
negative values indicate that the error has decreased after
correction. The slope method (Fig. 5a) applied to the indi-
vidual events (slope-events) yields a rather constant reduc-
tion in the error independent of catchment size. However,
there are several outliers produced by this method, which
can be attributed to improper separation of smaller events.
Applying the slope method only to the annual maximum
MDF events (slope-AMS), as done in Fig. 5b, shows a much
smoother and more constant error reduction. The corrections
using the p/V models proposed here (Fig. 5c–e) yield a
much larger improvement for the smaller catchments (where
the original MDF error was generally larger than in the big-
ger catchments). Nevertheless, these corrections simultane-
ously lead to an increase in the error in several cases. This
deterioration appears to affect the sites that were highlighted
before in Sect. 4.1.1, i.e. those with the lowest elevations in
the data set where the original MDF error was quite low.

The differences between correcting the individual
events (p/V -events) and the annual maxima (p/V -AMS)
(as illustrated in Fig. 5c and d, respectively) by means of the
p/V models appear rather small. This suggests that even
though the annual maximum from the MDF in many cases
does not occur at the same time as the annual maximum
from the IPF, the method still yields an appropriate estimate
of the true IPF. On the other hand, directly correcting the

MHQ (p/V -MHQ in Fig. 5e) results in a slightly lower
error reduction for the smaller catchments but also appears
to produce fewer outliers and is thus considered more robust.

It should be noted that working with large data sets and
automatic event separation without manual post-correction
leads to problems that could potentially be avoided when
considering individual time series more carefully. Several
events are identified as too long or too short (or not at
all), so their volumes are overstated or understated, respec-
tively. This results in false p/V ratios and in some cases
severe overestimation or underestimation of the peaks. The
weight of such events is assumed to be significantly lower
when correcting flood statistics based on average p/V ratios.
In addition, the overall performance can only be assessed
for events that contain the monthly instantaneous maximum
flow, i.e. primarily larger events. How the event correction
performs for minor events cannot be analysed here.

Figure 6 summarizes the overall model performances to
estimate the IPF MHQ at all the validation sites and com-
pares the individual methods to the error using MDF directly.
It is obvious that all the methods give significantly better IPF
estimates than the MDF alone. The slope correction methods
(both slope-events and slope-AMS) have quite a large bias
(median error around −10 %), which is, as seen above, not
only disadvantageous. Still, the overall error is smaller for
the p/V models (p/V -events, p/V -AMS, and p/V -MHQ),
where the median error is 0 %–2 %, with fewer positive out-
liers produced by the p/V -MHQ approach.

Table 4 summarizes the nRMSE (%) and pBIAS (%) of
the MHQ estimated by the different model variants. In terms
of nRMSE, the performances of the slope and p/V meth-
ods are comparable, with the slope methods being more
biased. There are a number of outliers produced by the
p/V methods, especially positive ones, that affect the overall
nRMSE. As seen in Fig. 5, this primarily concerns the low-
elevation catchments below 100 m. The values in parentheses
in Table 4 indicate the performance criteria for gauges with
catchment areas under 500 km2. Here, the advantage of the
p/V approaches over the slope methods becomes apparent
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Figure 5. Error reduction (negative values) vs. error increase (positive values) in the MHQ for different IPF-estimation methods when
compared to MDF. For an overview of the methods, the reader is directed to Table 1. Values are obtained by applying the selected methods
to the validation set.

Figure 6. Error (%) comparison of different methods to estimate the mean MHQ for the entire year (a), summer (b), and winter (c). Values
are obtained by applying the selected methods to the validation set. For an overview of the methods, the reader is directed to Table 1.

even though a large number of low-elevation catchments fall
into this category, which negatively affects the overall error.

Table 5 shows the average error between the annual MHQ
predicted by the p/V -MHQ model with the observed in-
stantaneous annual MHQ, distributed for different catchment

sizes and elevations. It becomes obvious that, for the low-
est elevations, the instantaneous annual MHQ is overesti-
mated, especially for smaller catchment sizes. Catchments
in the range of 100 to 200 m altitude also show quite large
errors, but these are mostly negative. It is also apparent that
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Table 4. Normalized root mean square error (nRMSE, %) and percentage bias (pBIAS, %) of estimated vs. observed instantaneous MHQ
over all validation sites for different methods. The values in parentheses show the performances for catchment sizes under 500 km2.

Year Summer Winter

nRMSE (%) nBIAS (%) nRMSE (%) pBIAS (%) nRMSE (%) nBIAS (%)

MDF 17.0 (47.9) −18.0 (−32.4) 18.1 (49.0) −20.6 (−38.1) 14.9 (44.1) −16.4 (−28.7)
Slope-events 8.4 (25.0) −6.8 (−15.8) 7.9 (29.0) −9.2 (−21.8) 9.2 (21.3) −6.5 (−13.0)
Slope-AMS 7.4 (31.2) −8.1 (−19.3) 8.4 (33.6) −10.5 (−25.0) 7.2 (28.0) −7.4 (−16.1)
p/V -events 9.3 (16.7) −2.8 (−1.0) 8.4 (16.6) −2.6 (−0.5) 10.6 (17.6) −5.1 (−4.1)
p/V -AMS 10.7 (20.4) −5.4 (−2.9) 11.0 (19.7) −5.4 (−3.7) 9.4 (21.4) −4.7 (−2.9)
p/V -MHQ 7.7 (19.0) −3.9 (−2.3) 12.5 (20.6) −6.8 (−5.0) 8.5 (20.8) −3.8 (−1.7)

Table 5. Average prediction error (%) of the p/V -MHQ model for the annual MHQ calculated over the validation sites and shown here for
different ranges of area and elevation. Red shades indicate overestimation, blue shades underestimation.

the catchments with outlets at higher elevations exhibit large
negative errors in most cases.

4.2 Probability distributions and derived design flows

So far, the proposed p/V models have been analysed in
terms of their ability to better estimate the MHQ from MDF
data. In this sub-section, the focus is shifted to the ability
of the methods to estimate the parameter distribution of the
IPF and the derived flood quantiles. The GEV distribution
appears to be a generally suitable distribution for the sites in
the data set. A Cramér–von Mises test is carried out for the
original IPF and MDF samples as well as for the slope and
p/V -corrected samples at each site, and they are certified to
be a good fit in all cases (p value= 5 %).

4.2.1 Comparing MDF and IPF distributions

A comparison between the estimated parameters for the IPF
and MDF samples for the year and the seasons is shown in
Fig. 7. As expected, the location parameters are consistently
underestimated by the MDF series, with the largest errors in
summer. This naturally leads to an overall downward shift
of the “true” distribution when estimated from MDF values.
The scales, normalized here by the location, appear to be pri-
marily overestimated in summer, leading to distributions that
are steeper for MDF samples than for IPF samples. For the

year and winter, the errors in the scale parameters appear to
be balanced in their directions. The shape parameters differ
quite substantially between the seasons. In summer, the vast
majority of the estimated parameter values are negative in
both IPF and MDF. This indicates a heavy-tail behaviour for
the summer floods. The fact that these negative values are
in many cases smaller in the MDF sample than in the IPF
sample suggests that the tails are overstated in the former
case. For the year and winter season, again, no clear trend
is visible. The distribution parameters of the low-elevation
gauges appear to be very well-estimated by the MDF. For
the higher elevations, the estimation of the shape parameters
seems especially difficult. For the whole year, the IPF shape
is underestimated at a lot of the gauges, while it is primarily
overestimated in winter. Overall, due to the underestimation
of the location parameter, underestimation of both lower and
higher flood quantiles by the MDF sample is expected.

Generally, the heavy tails of the summer distributions, in
contrast to the flatter tails in winter, let the summer floods
become dominant at higher quantiles. For a return period
of 100 years, the summer floods exceed the winter peaks
at 61.9 % of the sites. For 50 and 10 years, this exceedance
occurs at 51.2 % and 35.7 % of the sites. This behaviour is
also noticeable in the MDF but for fewer gauges, i.e. 53.4 %,
43.2 %, and 21.0 % for 100-, 50-, and 10-year return periods.
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Figure 7. Estimated generalized extreme value (GEV) parameters from the IPF vs. MDF annual or seasonal maximum series. Here, only
validation sites with observations longer than 30 years are shown.

4.2.2 Estimation of IPF distributions and quantiles

Three approaches were tested to estimate IPF flood quan-
tiles based on MDF statistics: (a) correcting the sample L
moments required for parameter estimation (p/V -Lmoms),
(b) correcting the parameters of the fitted distribution (p/V -
params), and (c) directly correcting the desired flood quan-
tiles (p/V -quants). Method (a) is convenient, since a single
model for each L moment facilitates a correction of the com-
plete distribution and hence each desired flood quantile. Es-
timating the L moments has the additional advantage of not
being restricted to a certain type of probability distribution.
A proper distribution can be selected and fitted locally using

the corrected L moments. Still, the other methods may prove
more robust and are hence tested as well. The final models for
each target variable are selected according to the procedure
for the MHQ (see Table 2) using the calibration data set. For
reasons of conciseness, only the final models are presented
in Table 6.

For further comparisons, distributions were also fitted to
the annual and seasonal maxima that were previously cor-
rected using the slope (slope-events) and p/V methods for
events (p/V -events). Since the shape parameter is gener-
ally difficult to estimate, especially for such a short time pe-
riod, and the models’ estimates are generally close to the ob-
served MDF shape parameter, it will not be estimated us-
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Table 6. p/V models fitted to the calibration data set for correction of L moments (p/V -Lmoms), GEV parameters (p/V -params), and flood
quantiles (p/V -quants) derived from the MDF annual or seasonal maximum series. For an overview of the methods, the reader is directed
to Table 1.

Type Model R2

L moments L1 Year L1MDF/(0.74− 0.94 ·p/Vmean+ 0.043 · log(area)) 0.66
(p/V -Lmoms) Summer L1MDF/(0.83− 1.19 ·p/Vmean+ 0.054 · log(area)) 0.65

Winter L1MDF/(0.99− 1.31 ·p/Vmean+ 0.036 · log(area))− 0.00012 · elevation 0.67

L2 Year L2MDF/(0.64− 0.65 ·p/Vmean+ 0.048 · log(area)) 0.45
Summer L2MDF/(0.71− 0.86 ·p/Vmean+ 0.062 · log(area)) 0.50
Winter L2MDF/(0.89− 1.09 ·p/Vmean+ 0.043 · log(area))− 0.00016 · elevation 0.53

GEV ξ Year ξMDF/(0.77− 1.02 ·p/Vmean+ 0.042 · log(area)) 0.67
parameters Summer ξMDF/(0.89− 1.39 ·p/Vmean+ 0.052 · log(area)) 0.64
(p/V -params) Winter ξMDF/(0.96− 1.36 ·p/Vmean+ 0.037 · log(area)) 0.63

α Year αMDF/(0.67− 0.77 ·p/Vmean+ 0.048 · log(area)) 0.45
Summer αMDF/(0.78− 1.14 ·p/Vmean+ 0.064 · log(area)) 0.42
Winter αMDF/(0.97− 1.24 ·p/Vmean+ 0.037 · log(area)− 0.00015 · elevation) 0.56

Flood HQ10 Year HQ10MDF/(0.72− 0.87 ·p/Vmean+ 0.043 · log(area)) 0.61
quantiles Summer HQ10MDF/(0.79− 1.09 ·p/Vmean+ 0.058 · log(area)) 0.60
(p/V -quants) Winter HQ10MDF/(0.96− 1.23 ·p/Vmean+ 0.038 · log(area)− 0.00014 · elevation) 0.63

HQ50 Year HQ50MDF/(0.70− 0.75 ·p/Vmean+ 0.044 · log(area)) 0.52
Summer HQ50MDF/(0.73− 0.83 ·p/Vmean+ 0.057 · log(area)) 0.53
Winter HQ50MDF/(0.89− 1.09 ·p/Vmean+ 0.043 · log(are)− 0.00016 · elevation) 0.54

HQ100 Year HQ100MDF/(0.69− 0.70 ·p/Vmean+ 0.044 · log(area)) 0.46
Summer HQ100MDF/(0.70− 0.71 ·p/Vmean+ 0.057 · log(area)) 0.46
Winter HQ100MDF/(0.87− 1.03 ·p/Vmean+ 0.044 · log(area)− 0.00017 · elevation) 0.49

ing the model variants. Instead, the MDF shape parameter
estimate will be used in all instances. Figure 8 shows the
errors (%) in GEV-parameter estimates for the different ap-
proaches in comparison to the original uncorrected MDF er-
ror (%) computed over the 486 validation sites with a min-
imum of 30 years of observations. Since the p/V -quants
method directly corrects the MDF quantiles, it cannot be used
to estimate the GEV parameters and hence is not illustrated
in Fig. 8. All the methods shown clearly improve the esti-
mation for the location and scale parameters when compared
to the original MDF estimates. The corrections based on the
p/V models proposed here (p/V -events, p/V -Lmoms, and
p/V -params) are less biased than the slope method (slope-
events) proposed by Chen et al. (2017). Particularly the cor-
rection of the MDF sample L moments (p/V -Lmoms) shows
the smallest error and bias.

Figure 9 demonstrates the quality of the different correc-
tion approaches for the 10-, 50-, and 100-year floods at the
486 validation sites. With increasing return periods, the per-
formance of all the correction methods appears to decline.
Differences in the tails of the fitted distributions are more dif-
ficult to capture with the analysed approaches. This turns out
to be especially valid for the low-altitude catchments. The
overcorrection that was observed for the mean is even more
pronounced here, which leads to an average decline in model

performance. Also, the general uncertainty in parameter es-
timation and extrapolation far beyond the time series length
needs to be kept in mind. Overall, even the estimation of the
“true” IPF quantiles is potentially defective in itself, as will
be discussed in the next section.

Since the average p/V ratio is used for the direct cor-
rection of L moments, parameters, and flood quantiles, it is
expected that the performance will decrease with increas-
ing return periods, as the p/Vmean may not relate much
to the higher quantiles. Still, even for the 100-year flood,
these approaches appear to work just as well as the p/V -
events approach, as also indicated by the performance crite-
ria (nRMSE, %, and pBIAS, %) given in Table 7. The perfor-
mance of all three methods is comparable, but due to its pre-
viously mentioned advantages, the L-moment method (p/V -
Lmoms) is considered the superior approach in this setting.
Among the event correction techniques, the slope method
performs similarly to the p/V method in terms of over-
all error but is again more biased. When focusing on the
catchments with areas under 500 km2, the superiority of the
p/V methods becomes apparent.

The distribution of the prediction error for the correction
of L moments (p/V -Lmoms) over the different catchment
areas and elevations can be found in Table 8. The errors are
exemplarily shown for the 100-year flood. The error distribu-
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Figure 8. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability
to estimate GEV distribution parameters based on annual or seasonal maximum series. Only validation sites with more than 30 years of
observations are used for the boxplots.

Figure 9. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability to
estimate different flood quantiles based on annual maximum series. Only validation sites with more than 30 years of observations are used
for the boxplots.
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Table 7. Performance of different IPF-estimation methods in terms of nRMSE (%) and pBIAS (%) for different flood quantiles estimated
from annual maximum series. The performance is computed over validation sites with more than 30 years of observations, while the values
in parentheses show the performance for catchment sizes under 500 km2. For a description of the methods shown here, see Table 1.

T = 10 years T = 50 years T = 100 years

nRMSE (%) pBIAS (%) nRMSE (%) pBIAS (%) nRMSE (%) pBIAS (%)

MDF 17.8 (50.0) −18.0 (−32.9) 17.8 (48.1) −18.2 (−32.3) 17.9 (47.5) −18.3 (−39.1)
Slope-events 7.0 (30.3) −5.8 (−17.5) 8.7 (27.7) −4.7 (−15.8) 10.3 (27.8) −4.2 (−15.2)
p/V -events 7.7 (20.1) −2.1 (−1.3) 8.5 (19.1) −0.8 (0.8) 9.8 (21.1) −0.3 (1.8)
p/V -Lmoms 8.2 (21.1) −4.0 (−3.3) 8.7 (21.1) −3.8 (−2.8) 9.3 (22.8) −3.7 (−2.6)
p/V -params 8.1 (20.6) −3.6 (−2.3) 8.5 (20.7) −3.3 (−1.6) 9.1 (22.5) −3.1 (−1.2)
p/V -quants 7.8 (20.9) −3.6 (−3.1) 8.6 (21.4) −4.0 (−3.9) 9.3 (23.2) −4.3 (−4.4)

Table 8. Average prediction error (%) of the p/V -Lmoms model for the 100-year flood (HQ100) calculated over the validation sites and
shown here for different ranges of catchment area and gauge elevation. Red shades indicate overestimation, blue shades underestimation.

tion is comparable to the MHQ shown in Table 5. Again, the
overestimation for the lowest elevations is especially strik-
ing, as is the significant underestimation at higher altitudes.

Finally, the model performance of the mixed models, com-
bining summer and winter floods, is analysed for different
flood quantiles. Their behaviour is generally comparable to
the annual maximum series approach, as shown in Fig. 10.
Even though the quantiles obtained with the mixed models
may be more extreme and more parameters may need to be
estimated and corrected, there is no indication that the IPF
correction will not function in this case. The nRMSE (%)
and pBIAS (%) values for the mixed models are shown in Ta-
ble 9. According to these values, the event correction meth-
ods appear to perform best overall. For the smaller catch-
ments (< 500 km2), the p/V methods outperform the slope
method.

4.3 Uncertainty analysis

The results of the resampling procedure used to assess uncer-
tainty in the IPF estimates are exemplarily shown in Fig. 11
for the 100-year flood (HQ100) at a single site with a re-
duced number of 100 realizations. In Fig. 11a, the IPF and
MDF estimates for each temporal resampling of the annual
maximum series are plotted against each other (IPF-bs and
MDF-bs, respectively). This shows the bandwidths of both

the IPF and MDF estimates as a result of sample and pa-
rameter uncertainty. Figure 11b shows the resampled IPF
flood quantiles (IPF-bs) vs. the quantiles estimated using
the p/V -Lmoms model by considering different sources of
uncertainty; p/V -bs illustrates the uncertainty only due to
the fitting of the p/V -Lmoms model, p/V -full indicates
the sample and parameter uncertainty (MDF-bs) propagated
through the p/V -Lmoms model, and p/V -bs-bs combines
the sample and parameter uncertainty (MDF-bs) with the
p/V -Lmoms model uncertainty (p/V -bs) to tackle the total
uncertainty. In this example, it becomes obvious that uncer-
tainty from the p/V model (p/V -bs) is significantly smaller
than the sample and parameter uncertainty (MDF-bs or even
IPF-bs). This is valid for the majority of the sites and is
hardly affected by the number of realizations.

Figure 12 shows the relative widths of the 95 % confidence
intervals for all types of uncertainty estimated. The average
widths of the IPF-bs, MDF-bs, and p/V -full seem to be sim-
ilar to each other, where the IPF sample and parameter un-
certainty shows greater variability. The width of the aver-
age range of the p/V -Lmoms model uncertainty (p/V -bs) is
very small at all the sites and therefore contributes little to the
overall level of uncertainty (p/V -bs-bs). Thus, the overall
uncertainty of the p/V -Lmoms model is mainly influenced
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Figure 10. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability
to estimate different flood quantiles based on a mixed model of seasonal maximum series. Only validation sites with more than 30 years of
observations are used for the boxplots.

Table 9. Performance of different IPF-estimation methods in terms of nRMSE (%) and pBIAS (%) for different flood quantiles estimated
from mixed models of seasonal maximum series. The performance is computed over validation sites with more than 30 years of observations,
while the values in parentheses show the performance for catchment sizes under 500 km2. For a description of the methods shown here, see
Table 1.

T = 10 years T = 50 years T = 100 years

nRMSE (%) pBIAS (%) nRMSE (%) pBIAS (%) nRMSE (%) PBIAS (%)

MDF 17.7 (50.2) −17.9 (−32.9) 17.5 (48.3) −18.0 (−32.3) 17.6 (48.0) −18.1 (−32.1)
Slope-events 8.1 (31.7) −6.3 (−18.6) 9.6 (28.6) −4.7 (−16.6) 10.6 (28.5) −4.1 (−15.9)
p/V -events 8.1 (21.2) −2.5 (−2.7) 8.5 (20.8) −0.3 (1.2) 9.1 (23.3) 0.7 (3.1)
p/V -Lmoms 12.3 (23.0) −5.7 (−3.9) 12.7 (22.1) −5.8 (−3.0) 13.0 (22.9) −5.8 (−2.6)
p/V -params 12.5 (23.5) −6.2 (−4.7) 13.4 (23.8) −7.3 (−5.7) 14.0 (25.3) −7.9 (−6.6 )

by the sample and parameter uncertainty of the original MDF
series.

In order to assess the full range of the errors in the p/V -
Lmoms model estimates, they are compared to the range of
errors in the MDF estimates. Here, the errors for the uncer-
tainty both in MDF (MDF-bs) and p/V -Lmoms (p/V -bs-
bs) estimates are computed according to Eq. (11). Figure 13
shows the median deviations of the MDF-bs and p/V -bs-bs
quantiles from the respective IPF-bs quantiles, as well as the
lower and upper limits of the 95 % confidence intervals of the
errors for the 10-, 50-, and 100-year flood quantiles. The me-
dian errors from p/V -bs-bs are very similar over the three
quantiles, but the higher quantile HQ100 exhibits higher out-
liers. This is in agreement with the performance of the p/V -
Lmoms model illustrated in Fig. 9. This means that the me-
dian errors obtained over the 1 000 000 realizations are very
similar to the actual model errors at each site. Moreover, it
is obvious that the overall uncertainty gets larger with in-
creasing return periods, as can be seen by the increasing dis-
tance between lower and upper confidence limits. The p/V -

Lmoms estimates appear to be slightly positively skewed,
which is especially noticeable in the 95 % confidence inter-
val for the HQ100. At many of the sites, there is a signifi-
cant overestimation of the true IPF quantile when combining
sample and parameter uncertainty with p/V -Lmoms model
uncertainty. The MDF estimates, on the other hand, exhibit
the expected persistent underestimation.

Figure 14 summarizes the general overlap of the confi-
dence intervals of MDF and estimated IPF with the confi-
dence intervals of the observed IPF for the three flood quan-
tiles (as per Eq. 12). It becomes obvious that the agreement
between IPF and the p/V -Lmoms model estimates is signif-
icantly greater than with the MDF values. This observation
suggests that with high probability the p/V -Lmoms model
estimates are in the range of the “true” IPF quantiles. The
fact that overlaps in both the MDF and the models increase
with increasing return periods suggests again the overall level
of uncertainty in the higher IPF quantiles due to sample and
parameter uncertainty.
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Figure 11. Example of uncertainty ranges with 100 realizations at a single site: (a) HQ100 from IFP-bs vs. MDF-bs, illustrating the sample
and parameter uncertainty; (b) HQ100 from IPFbs vs. estimated IPF, where p/V -bs illustrates the p/V -Lmoms model uncertainty (shown as
dark blue points). p/V -full illustrates the propagation of sample and parameter uncertainty through the p/V -Lmoms model, and p/V -bs-bs
illustrates the total uncertainty that combines both sample and parameter uncertainty with the p/V -Lmoms model uncertainty.

Figure 12. Relative widths of the 95 % confidence interval (as per Eq. 10) of various uncertainty types for different flood quantiles, where
IPF-bs and MDF-bs show the sample and parameter uncertainty of the original series, p/V -full shows the sample and parameter uncertainty
propagated through the p/V -Lmoms model, p/V -bs shows only the uncertainty of the p/V -Lmoms model, and p/V -bs-bs shows the total
uncertainty that combines both sample and parameter uncertainty with the p/V -Lmoms model uncertainty. The boxplots here are obtained
for validation sites with more than 30 years of observations.

5 Discussion

5.1 Factors affecting the correction of MDF to IPF
statistics

In theory, the relative deviation between MDF and IPF peaks
depends greatly on catchment size, as shown, for instance,
in Fuller (1914) and Ellis and Gray (1966). The effect of
the catchment size is clearly visible in our data set. The
larger the area, the smaller the error between the instanta-
neous peak and daily flows and, consequently, the respective

computed statistics. For catchments smaller than 1000 km2,
this error can reach down to −80 %. Small catchments with-
out an appreciable buffering capacity react quickly to even
low rainfall, leading to short and steep flood waves that are
hardly reproduced on coarsely averaged timescales. Factors
like steep slopes, impermeable underground, and short but
intense rainfall contribute to the flashiness of storm events
and make these events less representable through daily flow
records. For areas larger than 5000 km2, this error becomes
very small (<−20 %). This agrees well with the findings of
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Figure 13. Error distribution obtained as per Eq. (11) for three flood quantiles (a HQ10, b HQ50 and c HQ100 years) from considering the
sample and parameter uncertainty of the mean daily flow (MDF) series (MDF-bs in white) and total uncertainty of the p/V -Lmoms model
(p/V -bs-bs in blue). Shown are the median errors as well as the lower and upper limits of the 95 % confidence intervals obtained at the
validation sites with more than 30 years of observations.

Figure 14. Percentage overlap for the three flood quantiles as per Eq. (12) computed from the 95 % confidence intervals of the MDF sample
and parameter uncertainty (MDF-bs) and p/V -Lmoms total uncertainty (p/V -bs-bs). The boxplots are obtained by considering validation
sites with more than 30 years of observations.

Ellis and Gray (1966) and Chen et al. (2017), which state
that, for basins larger than 10 000 km2, the peak ratio be-
tween MDF and IPF series converges to 1. Larger basins are
typically characterized by high baseflow and long response
times, which translates to a good representation of IPF from
the MDF.

Apart from catchment size, elevation can play also an im-
portant role, as shown in Canuti and Moisello (1982). Moun-
tainous catchments have a fast response time and are gen-
erally more heavily influenced by meteorological forcing,
such as snowmelt processes or convective events, as demon-
strated by Gaál et al. (2015). Therefore, the error is expected
to increase with high elevation. In our case study, errors at
high-altitude sites seem to be particularly significant (40 %

to 60 % underestimation). However, this could be a combined
effect of small catchments, as mountainous basins are typi-
cally smaller in size. On the other hand, sites with elevations
lower than 100 m a.s.l. exhibit smaller errors and are stratified
according to catchment size. For example, basins larger than
5000 km2 show a lower error at an elevation of 100 m com-
pared to 300 m a.s.l. The effect of the elevation on the higher
altitudes is less visible in our data set. Apart from the error in
the peak magnitude, a weak link is also visible between the
high elevation and a smaller temporal overlap between the
MDF and IPF peaks.

Different flood genesis, considered here by separating the
data into two seasons (winter and summer), also exhibits dif-
ferent error behaviour. Overall, summer IPF statistics were
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up to 20 % more underestimated than winter IPF statistics.
This occurs mainly due to the presence of frequent convec-
tive events and moderate rainfall on snow – which enable
faster catchment responses. As the summer peaks are un-
derestimated, consequently, when performing a typical an-
nual maximum flow series, summer events will be underrep-
resented, resulting in a non-representative fitted probability
distribution. This is visible in catchments with areas under
500 km2, where up to 40 % of annual peaks are falsely chosen
from the winter season. Apart from not being able to prop-
erly identify flood magnitudes when using mean daily flow,
this is a serious issue for the classification of flood regimes,
identification of dominating flood types, and application of
heterogeneous flood frequency analyses when daily data are
the only available options.

Additionally, other factors such as the type and amount
of precipitation, soil initial conditions and characteristics, or
slope and land use have been shown to influence the on-site
variation between instantaneous peak and daily flows. Since
their combined effect generates a distinctive daily flow hy-
drograph, the p/V ratio becomes an important predictor for
describing the on-site and between-site variations when cor-
recting MDF events or statistics. The same principle also
holds for the slope-method correction suggested by Chen
et al. (2017). However, in contrast to the slope method, the
p/V ratio contains information about the direct flood vol-
ume, which may describe the variability between events and
catchments better. This is shown to be the case mainly for
catchments under 500 km2, where the proposed linear mod-
els based on the p/V ratio outperform the slope method.
However, this can be attributed to the integration of the most
important predictors (such as area, elevation, or p/V ratio)
or to the poor performance of the slope methods for areas
under 500 km2 as discussed in Chen et al. (2017).

5.2 Range of applications and limitations

All the correction methods applied here, either on MDF peak
flow events or MDF statistics, generated better agreement
with IPF statistics than the statistics from the pure MDF se-
ries. The slope methods overall exhibited a constant under-
estimation around 10 % to 20 % of the IPF statistics. This
also agrees with the results from Chen et al. (2017), where
a similar underestimation for catchments in Iowa, USA, was
also observed. On the other hand, the p/V methods were
less biased than the slope method. Although all the p/V
models proposed had similar performance, the L-moment
method (p/V -Lmoms) is more preferable due to its conve-
nience. Correcting the MDF L moments not only ensures a
complete correction of the distribution, including both low
and high quantiles, but is also not restricted to a type of
probability distribution. The method of correcting the error
in MDF floods using the p/V ratio performs well and is eas-
ily applicable in our study area. However, its great simplifi-
cation and mere approximation of physical flood-generating

processes result in some problems and limitations that will
be listed and discussed here.

The first aspect that may influence the performance of the
proposed IPF correction method is the event separation tech-
nique. The chosen technique determines how flood events
and thus the required hydrograph characteristics are defined.
The choice of baseflow-separating algorithm can greatly af-
fect the identification of start and end points of flood events.
Strict independence criteria and thresholds for event recogni-
tion may lead to rejection of crucial flood events when con-
sidering daily time series. Lax criteria, on the other hand,
may create unnaturally long multi-peak events and false in-
clusion of small events, leading to unrealistic hydrograph
characteristics and IPF estimates. Thus, the additional step of
refining multiple peak events, as suggested by Tarasova et al.
(2018), should be carried out when rainfall and snowmelt in-
formation is available. In their study, the refinement led to
a reduction in multi-peak events from more than 50 % to
44.7 % of all identified events. In this study, the ratio of multi-
peak to single-peak events is 57.9 % for the year, 58.2 % for
summer, and 58.4 % for winter.

Using the p/Vevent in order to correct individual events
and then using the corrected series for FFA in theory repre-
sents a more sensible approach than using the p/Vmean from
the annual MDF maxima. As mentioned above, maximum
MDF events do not necessarily coincide with maximum IPF
events, which is why correcting all events first and then se-
lecting the annual maxima should yield a more appropriate
IPF sample. However, again, correcting individual events de-
pends greatly on a very careful event separation, which could
not be achieved in this case and which led to some unrealis-
tic IPF estimates. Nonetheless, if a proper event separation is
possible, the event correction method may have the greater
potential. In such a case, a single model would be sufficient
to account for all aspects of IPF estimation, including high
flood quantiles.

A problem for IPF correction, which has been exhaustively
discussed above, has to do with the gauges that exhibit little
difference between MDF and IPF floods, even though their
p/V ratio would suggest a much larger error. For our catch-
ments, this applies to the lowest-altitude gauges in the data
set. The MDF at these sites are overcorrected and thus exhibit
severe overestimation of the true IPF. We therefore discour-
age the application of the suggested correction methods at
catchment outlets situated below 100 m a.s.l.

This observation may also suggest that other factors need
to be considered for proper error estimation or that the pa-
rameters of the correction models need to be adjusted for
different subsets of data. This is also relevant for the ques-
tion of the universality of the proposed method. Our data set
is limited and representative of a temperate humid climate
and moderate altitude. Thus, a qualitative sensitivity analysis
was carried out on the full 648-site data set in order to iden-
tify patterns that could be extrapolated to other regions. The
subsets were selected by combinations of geographical loca-
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tion, catchment size, and gauge elevation. The target variable
was the mean annual maximum IPF. Differences in the in-
dividual models due to different degrees of freedom are nat-
ural, which is why only the subsets that lead to significant
deviations from the original model are mentioned here.

Two sets of sites deviate noticeably from the original
model. The first includes the low-altitude gauges discussed
before. Here, the overall error is so small that no correction
yields better results than correction via the p/V approach.
The second group includes the catchments with areas under
50 km2. The errors for these sites appear very scattered and
randomly distributed. Comparing the p/V from the daily
series with the p/V obtained from instantaneous events, it
becomes obvious that the difference increases with decreas-
ing catchment size and becomes excessively large and ran-
dom for catchment sizes under 100 km2. The correction us-
ing the mean daily p/V only functions where unknown in-
stantaneous flood dynamics are roughly approximated by ob-
served daily flow variability. The smaller the temporal scale
of an instantaneous flood event, the more poorly it is repro-
duced in the daily records. If instantaneous events manifest
themselves primarily on a sub-daily basis, the possibility of
describing their dynamics via daily flows becomes ineligi-
ble. This observation is also in accordance with the observed
temporal shifts between MDF and IPF events, which are in-
creasingly pronounced in smaller catchments. In summary,
the proposed correction method flounders at smaller scales
below 100 km2. Even though the IPF estimation leads to a
general improvement at this scale, the daily flood timescale is
a poor predictor in these catchments. In other cases, when the
flood timescale is larger than 1 d, the p/V predictor should
be able to capture the flood dynamics. Still, attention must be
paid to the baseflow separation to ensure that the calculated
p/V predictor is representative of the catchment behaviour.

On the other hand, for catchments between 100 and
500 km2, the p/V models showed the best results. This can
be attributed to the selected predictors, whose combination
is more representative of these catchments. It can also be
attributed to the available data set, as the majority of the
sites have a catchment area under 500 km2 and the fitted lin-
ear models may favour the minimization of the errors for
these catchments, although the conducted uncertainty anal-
ysis showed that the model uncertainty (due to the selected
sites) is very low compared to the local parameter and sample
uncertainty.

Nevertheless, the effect of the data set should not be ne-
glected when determining which and how many locations
should be grouped together for the fitting of the linear model.
Even in the optimal case that the p/V predictor describes the
flood dynamics correctly at each site, the question of how
well a single linear model can represent the whole group of
sites arises. Although L moments are considered more robust
than parameters or quantiles, they may differ significantly for
a particular group. Hence, a more reasonable approach would
be to break the group down into sub-groups. In our case, lon-

gitude and latitude did not appear to have any effect on the
model fitting. Dividing the study area into quadrants did not
result in any differences between the subsets, even when con-
sidering a similar catchment size and elevation. Also, neither
the record length nor the period of record appeared to have
an influence.

The distinction between summer and winter for represen-
tation of the two most opposite flood types is particularly
valid for this study area and should be adjusted where flood
types are otherwise distributed. In general, even the rough
distinction between different flood types for IPF estimation
proved meaningful in our case, as it revealed different dy-
namics and MDF–IPF relationships. This observation could
be further exploited by more carefully defining and distin-
guishing between flood types, as e.g. proposed by Fischer
(2018) or Tarasova et al. (2018).

Finally, one should note that the type of distribution for
flood quantile estimation can only be selected based on daily
data and may differ from the optimal IPF distribution. For our
data, the GEV proved flexible enough to be a good match for
both MDF and IPF, but this could differ in other cases.

6 Conclusions and outlook

As in other studies before this one, it could be shown that the
mean daily flow (MDF) and instantaneous peak flow (IPF)
relationship depends primarily on the catchment size. It
could also be observed that other factors, in this case gauge
elevation, play a role in determining the difference between
MDF and IPF floods. The relationship also appeared to differ
between the two types of floods considered here, i.e. winter
and summer floods. Since summer floods are often caused by
short but intense rain events and thus exhibit steep rising and
falling limbs, their sub-daily peaks are much higher than and
difficult to estimate from the smoothed average daily peaks.
Long, voluminous winter floods, on the other hand, show a
much smaller IPF–MDF ratio and are easier to model.

This study has also shown that hydrograph characteris-
tics, like the peak-to-volume ratio of flood events, can be
used to estimate instantaneous peak flows when only aver-
age daily series are available. The p/V ratio may be used
to predict both the IPF of individual events and instanta-
neous flood statistics, including mean annual and seasonal
maximum flows and flood quantiles. Due to improper flood
event separation, the event correction method produced some
outliers in our case but may work significantly better when
flood events can be defined more carefully. In general, the
p/V method requires a minimum of data and can be applied
using only information from the daily series itself. The per-
formance could be marginally improved by including gauge
elevation as an additional predictor in some of the models.

The general recommendation for estimating IPF flood
quantiles is to use the average p/V approach for correction
of L moments. This method is convenient, since L moments
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can be globally corrected, while distributions may be locally
fitted afterwards. It turns out that the first two L moments are
easily estimated using p/Vmean, while higher-order L mo-
ments or L-moment ratios are more difficult to model with
this approach.

There are two limitations where the proposed method
should be handled with care: (a) at sites with elevations be-
low 100 m, since it overestimates the true difference between
IPF and MDF; and (b) at catchments smaller than 100 km2,
where it underestimates the error, so that the full correc-
tion potential cannot be achieved. Still, in comparison to the
slope method, the p/V approach works significantly better
for smaller catchment areas, especially under 500 km2. For
larger catchments, the slope method appears very robust for
all catchment sizes and elevations. The p/V methods per-
form better in many larger catchments, but outliers may be
produced where the above-mentioned restrictions are met.
For future analyses, it will be meaningful to test the univer-
sality of the proposed approach in other study regions. Also,
the effect of the flood event separation on the IPF-estimation
performance should be analysed in more detail, especially in
order to improve the event correction technique. Finally, it
will be interesting to see whether explicit consideration of
more carefully defined flood types can improve the IFP esti-
mation in mixed models.
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