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Abstract. Accurate flood event simulation and prediction,
enabled by effective models and reliable data, are critical
for mitigating the potential risk of flood disaster. This study
aims to investigate the impacts of spatiotemporal resolutions
of precipitation on flood event simulation in a large-scale
catchment of China. We use high-spatiotemporal-resolution
Integrated Multi-satellite Retrievals for Global Precipitation
Measurement (IMERG) products and a gauge-based prod-
uct as precipitation forcing for hydrologic simulation. Three
hydrological models (HBV, SWAT and DHSVM) and a data-
driven model (long short-term memory (LSTM) network) are
utilized for flood event simulation. Two calibration strate-
gies are carried out, one of which targets matching of the
flood events, with peak discharge exceeding 8600 m3 s−1 be-
tween January 2015 and December 2017, and the other one is
the conventional strategy for matching the entire streamflow
time series. The results indicate that the event-based calibra-
tion strategy improves the performance of flood event sim-
ulation compared with a conventional calibration strategy,
except for DHSVM. Both hydrological models and LSTM
yield better flood event simulation at a finer temporal resolu-
tion, especially in flood peak simulation. Furthermore, SWAT
and DHSVM are less sensitive to the spatial resolutions of
IMERG, while the performance of LSTM obtains improve-
ment when degrading the spatial resolution of IMERG-L.
Generally, LSTM outperforms the hydrological models in
most flood events, which implies the usefulness of the deep
learning algorithms for flood event simulation.

1 Introduction

The global climate change increases the risk of floods, which
brings heavy casualties and losses of property (Hirabayashi
et al., 2013). In China, flood events seem to become more fre-
quent over the middle to lower reaches of the Yangtze River
due to the increasing intensity and frequency of rainfall ex-
tremes (Piao et al., 2010). In June 2017, large-scale flood
events induced by heavy rainfall in Hunan Province, located
in southern China, affected more than 10 million people and
caused economic losses of more than CNY 40 billion. Re-
liable flood event simulation and prediction are the keys to
minimizing the losses and impacts caused by flood events.

Numerous models are applied to simulate the flood events,
most of which are conceptual or physically based hydrologi-
cal models (Dutta et al., 2000; Koutroulis and Tsanis, 2010;
Nikolopoulos et al., 2013; Wu et al., 2014; Mei et al., 2016;
Yang et al., 2017; Yu et al., 2018; Grimaldi et al., 2019),
and others are based on artificial neural networks (Shrestha
et al., 2005; Badrzadeh et al., 2015). Owing to the continu-
ous development of artificial neural networks, deep learning
(DL) has emerged as a dominant tool, which has impacted
various scientific disciplines in recent years (Akbari Asan-
jan et al., 2018; Shen, 2018; Shen et al., 2018; Zhang et al.,
2018). Among various DL methods, a long short-term mem-
ory (LSTM) network is appropriate for capturing the rela-
tionship between rainfall and runoff because of its ability
to learn long-term dependencies and delays between input
and output, and it shows extraordinary potential in hydrolog-
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ical simulation (Hu et al., 2018; Liao et al., 2019; Fan et al.,
2020; Kao et al., 2020; Ni et al., 2020; S. Zhu et al., 2020).
Both hydrological models and deep-learning-based models
require multisource inputs, particularly precipitation, which
is the key forcing variable in hydrological processes for sim-
ulating and predicting flood events.

Traditionally, in situ precipitation is utilized for hydrolog-
ical simulation. However, because of the uneven distribution
of in situ observations and their unavailability in less de-
veloped regions, satellite-based precipitation products have
been widely used as an alternative precipitation source and
further applied for flood event simulation (Maggioni and
Massari, 2018). Among them, the Integrated Multi-satellite
Retrievals for Global Precipitation Measurement (IMERG)
(Huffman et al., 2015) is a high-spatiotemporal-resolution
satellite-based precipitation product released by the National
Aeronautics and Space Administration (Rafieeinasab et al.,
2015) whose accuracy and hydrological utility have been
evaluated in multiple aspects, such as on different temporal
scales (e.g., daily and subdaily) (Tang et al., 2016; Yuan et
al., 2018; Su et al., 2020) and on basins with different climate
conditions (O et al., 2017; Wang et al., 2017; Zubieta et al.,
2017; Fang et al., 2019; Jiang and Bauer-Gottwein, 2019).
Many studies show that the performance of IMERG varies
across different climate regions and terrain. In addition, most
of the IMERG-related studies are conducted to assess its
performance at a specific spatiotemporal resolution, a few
of which consider the impacts of different spatiotemporal
resolutions on its accuracy. Among limited studies, Tang et
al. (2016) evaluated the IMERG products at hourly, 3-hourly
and daily scales, and they revealed that the statistical indices
of IMERG increase with coarser temporal resolutions. Su et
al. (2020) assessed the IMERG products at multiple spatial
and temporal resolutions by upscaling, and they summarized
that degrading the spatiotemporal resolution improves the ac-
curacy of IMERG products. However, these two studies just
evaluated the accuracy of IMERG products at multiple spa-
tiotemporal scales rather than the effects of spatiotemporal
resolutions of IMERG products on their hydrological appli-
cations (e.g., flood simulation).

As proven by Huang et al. (2019), the spatiotemporal res-
olutions affect the accuracy of precipitation estimates, and
the effects can be propagated to the flood event simulation
through the hydrological processes. However, the impact of
precipitation with different spatiotemporal resolutions on hy-
drological simulation has not yet been determined, which is
related to many different factors, such as the structure of hy-
drological models (Arnaud et al., 2011; Yu et al., 2014) and
the scale of catchment and event characteristics (Lobligeois
et al., 2014; Ficchì et al., 2016). Most studies investigated the
sensitivity of hydrological models to spatiotemporal resolu-
tion based on one model structure with in situ precipitation,
and they concluded that the accuracy of hydrological simu-
lation is not always higher with shorter time steps or higher
spatial resolutions (Liang et al., 2004; Arnaud et al., 2011;

Lobligeois et al., 2014; Yu et al., 2014; Rafieeinasab et al.,
2015; Ficchì et al., 2016; Melsen et al., 2016; Buitink et al.,
2019; Huang et al., 2019). For instance, some studies present
better hydrological simulation forced by in situ precipitation
with lower spatiotemporal resolutions to some extent (Liu et
al., 2012; Apip et al., 2012; Lobligeois et al., 2014; Ficchì
et al., 2016). As we all know, high spatiotemporal resolu-
tion is one of the advantages of satellite-based precipitation
products. However, there are also studies pointing out that
degrading the spatiotemporal resolution can improve the ac-
curacy of precipitation (Su et al., 2020). However, rare stud-
ies have been conducted to probe the effects of spatiotem-
poral satellite-based precipitation on flood simulation, not to
mention its impact on flood simulation with models based
on DL methods (e.g., LSTM). More importantly, to the best
of our knowledge, the sensitivities of models with different
structures, such as the lumped hydrological model, the semi-
distributed or distributed hydrological model and the data-
driven model, to the spatiotemporal resolutions of precipita-
tion has not been investigated. Therefore, three widely used
and typical conceptual and physically based models (lumped
HBV model, semi-distributed SWAT model and distributed
DHSVM model) and one data-driven model (LSTM), which
shows good performance in hydrological simulation, are em-
ployed to probe the impacts of spatiotemporal resolutions of
precipitation on flood event simulation.

Apart from the factors mentioned above, the rationality of
calibration is another important factor affecting the accuracy
of hydrological simulation. Many studies investigate the in-
fluences of the choice of objective function and calibration
method on hydrological simulation, but most of them use
the calibration strategy based on entire streamflow time se-
ries instead of flood events (Moussa and Chahinian, 2009;
Noilhan et al., 2010; Nikolopoulos et al., 2013; Badrzadeh
et al., 2015; Yoshimoto and Amarnath, 2017; Spellman et
al., 2018). However, some studies prove that the event-based
calibration can improve the performance of streamflow sim-
ulation. For instance, Yu et al. (2018) developed the sub-
daily SWAT-EVENT model for event-based flood simula-
tion, which particularly improved the performance of flood
event simulation, especially the accuracies of the flood peaks.
Xie et al. (2019) compared the continuous modeling and
event-based modeling based on the generalized likelihood
uncertainty estimation (GLUE) and found that the event-
based simulation showed better overall performance. How-
ever, studies about event-based calibration are still quite lim-
ited, particularly for LSTM. Therefore, in this study, we con-
duct different calibration strategies aimed at obtaining the
best possible flood event simulation.

The main objectives of this study are (1) to investigate
the impact of spatiotemporal resolutions of satellite-based
precipitation estimates derived from IMERG on streamflow
simulation, particularly flood event simulation, over a water-
shed of 82 375 km2; (2) to explore and compare the perfor-
mance of hydrological models with different structures and
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LSTM on flood event simulation based on gauge-based and
satellite-based precipitation products; and (3) to study the
potential benefits of the calibration strategy based on flood
events. The remaining sections of the paper are organized as
follows: the descriptions of the study area and data are pre-
sented in Sect. 2, the methodology is introduced in Sect. 3,
Sect. 4 provides the results, the discussion is given in Sect. 5,
and the conclusions are summarized in Sect. 6.

2 Study area and data

2.1 Study area

The Xiang River basin is a humid region located in the
middle reach of the Yangtze River within 24.50–28.25° N,
110.50–114.25° E in southern China, which covers an area
of about 82 375 km2 above the Xiangtan hydrological sta-
tion (Fig. 1). Together with the impact of diverse topographic
types and a dominant subtropical monsoon climate, the pre-
cipitation is characterized by strong temporal and spatial
variability (Zhu et al., 2017). The average annual tempera-
ture of the basin is around 17°, and the mean annual total
precipitation is around 1400–1700 mm, most of which falls
from April to September.

Concentrated storm events during the flood season cause
frequent floods throughout the basin. Since the Xiang River
basin is the most densely populated and economically devel-
oped area in Hunan Province (Q. Zhu et al. 2020), it is critical
to accurately simulate and predict flood events in the region
for effective flood risk management.

2.2 Data description

IMERG V05B is a widely used satellite-based precipita-
tion product with a spatiotemporal resolution of 0.1° and
30 min released by NASA, which consists of multiple rain-
fall retrieval algorithms and combines various precipitation-
relevant remote sensing data sources obtained from the GPM
sensors (Huffman et al., 2015). The IMERG system is firstly
run twice to produce IMERG Early Run and IMERG Late
Run (hereafter IMERG-E and IMERG-L) with latencies of
4 and 12 h in near real time (NRT). Then, through the
bias adjustment with monthly Global Precipitation Climatol-
ogy Centre (GPCC) gauge observations, IMERG Final Run
(hereafter IMERG-F) is generated with 2.5 months of la-
tency.

A precipitation product released by the China Meteoro-
logical Administration (hereafter the CMA), which merges
rain gauge data from more than 30 000 automatic weather
stations (AWSs) in China with the Climate Prediction Cen-
ter MORPHing technique (CMORPH) precipitation product
through an improved probability density function optimal in-
terpolation method (PDF-OI), is used as the reference pre-
cipitation dataset in this study (Shen et al., 2014). The CMA
provides precipitation estimates at a spatial resolution of 0.1°

and a temporal resolution of 1 h, which is proven to be a re-
liable precipitation product as a result of the high density of
the AWSs and the rigorous quality control of the source data.
Therefore, the CMA has already been applied as a bench-
mark in some studies (Wang et al., 2017; Tang et al., 2017;
Su et al., 2020).

Daily gauge meteorological variables (maximum and min-
imum temperature, relative humidity, wind speed and so-
lar radiation) at 27 meteorological stations over the Xiang
River basin are obtained from the CMA. The available hourly
streamflow observation at the Xiangtan station is provided
by the Hunan Hydrological Bureau of China. Figure 2 shows
the time series of the hourly streamflow and the correspond-
ing gauge-based precipitation between 2015 and 2017, where
11 historical flood events are selected with this study. The
flood events are the streamflow time series with a 1-month
span whose peak flow exceeded 8600 m3 s−1, corresponding
to approximately 97 times the quantile level (Q. Zhu et al.,
2020). The period of the time series containing the selected
flood events is from April 2014 to December 2017. The DEM
(digital elevation model) with 90 m resolution is derived from
NASA’s Shuttle Radar Topographic Mission (SRTM) (Farr et
al., 2007). Land cover and soil data with a resolution of 1 km
are obtained from the Global Land Cover 2000 and Environ-
mental and Ecological Science Data Center for West China
as well as the National Natural Science Foundation of China,
respectively.

3 Methodology

In this study, the IMERG precipitation products (IMERG-
E, IMERG-L and IMERG-F) are assessed against the ref-
erence precipitation, i.e., the CMA, at different spatiotem-
poral resolutions. As mentioned above, three widely used
and typical conceptual or physically based models (lumped
HBV model, semi-distributed SWAT model and distributed
DHSVM model) and one data-driven model (LSTM) are em-
ployed to probe the impacts of spatiotemporal resolutions
of precipitation on flood event simulation. To investigate the
impacts of spatial resolutions of precipitation on flood sim-
ulation, precipitation estimates with different spatial resolu-
tions, which are obtained by inverse distance interpolation
(Franke, 1982), are used to force the selected models, which
are SWAT and DHSVM, as well as LSTM. To study the influ-
ence of temporal resolutions of precipitation on flood simula-
tion, HBV, DHSVM and LSTM are utilized, which are forced
by precipitation with different temporal resolutions. These
four models are calibrated with two calibration strategies to
investigate the potential benefits of the calibration strategy
based on flood events. Finally, the performances of flood
event simulation in different scenarios are compared and dis-
cussed. The designed framework for this study is shown in a
flowchart in Fig. 3.
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Figure 1. The spatial distribution of meteorological stations, the outlet of the study area and precipitation from IMERG and the CMA.
Publisher’s remark: please note that the above figure contains disputed territories.

Figure 2. Time series of observed hourly streamflow at the Xiangtan station and basin-average precipitation from the CMA, with 11 selected
flood events covered by shaded areas.

3.1 Hydrological models and LSTM

3.1.1 The HBV model

The conceptual HBV model was originally developed by the
Swedish Meteorological and Hydrological Institute (SMHI)
(Bergström and Forsman, 1973). Various versions of the
HBV model have been developed and widely used in hydro-
logical simulation and flood forecasting due to its simplicity
and effectivity (Alfredsen and Hailegeorgis, 2015; Grimaldi
et al., 2019; Huang et al., 2019). A lumped version of the
HBV model (AghaKouchak et al., 2013) is used in this study,
which is operated at hourly and daily time steps with the in-
puts of precipitation, temperature and potential evapotranspi-

ration. The potential evapotranspiration is calculated with the
Penman–Monteith equation (Beven, 1979) based on gauge
meteorological data, and all the inputs are averaged over the
basin with the Thiessen polygon method. Three main mod-
ules (soil moisture routine, response routine and transforma-
tion routine) are contained in the HBV model, while the mod-
ule of the snow routine is not included in this case because of
the temperature above 0◦ C perennially over the Xiang River
basin.

3.1.2 The SWAT model

The SWAT model is a semi-distributed hydrological model
developed by the Agricultural Research Center of the United
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Figure 3. The methodological flowchart adopted in this study.

Figure 4. The (a) subbasin divisions, (b) soil types and (c) land use of the Xiang River basin used in the SWAT model.

States Department of Agriculture (USDA) (Arnold et al.,
1998). SWAT 2012 is used in this study and is operated on a
daily time step with the inputs of geographical data (DEM,
land use and soil) (Fig. 4), precipitation and other meteo-
rological variables mentioned above. The SWAT model di-
vides the watershed into subbasins according to the DEM
and then segregates them into multiple hydrological response
units (HRUs) as the basic computational unit based on differ-
ent types of soil, land use and slope. The Xiang River basin is
divided into 25 subbasins and 495 HRUs in this study. Forest
evergreen is the dominant land cover category with a cov-
erage of 62 %, and Ferralsols is the main soil type with a
coverage of 58 %, as shown in Fig. 4. The hydrologic cy-
cle simulated by SWAT is based on the water balance equa-
tion, which mainly includes surface runoff, evapotranspira-
tion, soil moisture and groundwater.

3.1.3 The DHSVM model

The DHSVM model is a fully distributed, physics-based hy-
drological model developed by the Pacific Northwest Na-
tional Laboratory (PNNL) and the University of Washing-
ton (Wigmosta et al., 1994). DHSVM uses near-surface me-
teorology including air temperature, wind speed, humidity,
precipitation, as well as incoming short- and long-wave radi-
ation as hydroclimate inputs to solve energy and water bal-
ance. The model represents a dynamic watershed process at
specific spatial scales considering the effect of topography,
soil and vegetation. The DHSVM model mainly consists of
seven modules, including an evapotranspiration module, a
surface snowmelt module, a canopy snowmelt module, an
unsaturated soil moisture module, a saturated soil flow mod-
ule, a surface runoff module and a flow routing module. The
version used in this study is DHSVM 3.1.2 with a grid reso-
lution of 3000 m. Six soil types and eight vegetation classes
are derived, and the spatial distributions of them are shown
in Fig. 5.
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Figure 5. The (a) river network divisions, (b) soil types and (c) vegetation types of the Xiang River basin used in the DHSVM model.

3.1.4 The long short-term memory network

LSTM is a type of recurrent neural network (RNN) which
was first proposed by Hochreiter and Schmidhuber (1997).
LSTM is designed to overcome the error backflow problems
with exploding and vanishing gradients by introducing three
gates, i.e., forget, input and output gates, into the repeating
modules of a neural network. The forget gate decides the in-
formation removed from the previous cell state. The input
gate determines information updated to the present cell state,
and the output gate controls which part of the cell state is
output to the new hidden state. Therefore, LSTM can learn
long-term dependencies between input and output features,
which makes it appropriate for rainfall–runoff modeling. In
this study, LSTM is developed using the deep learning frame-
work PyTorch (Paszke et al., 2019), which has 100 hidden
states and a single fully connected layer with a dropout rate
of 0.5 (Srivastava et al., 2014). Precipitation and tempera-
ture are selected as the inputs of LSTM, and the output of
LSTM is streamflow. The inputs for the complete sequence
are x = [x1, . . . , xn], where xt is a vector containing the in-
put features of time t and the dimension of xt corresponds to
the number of grids of the precipitation data. The outputs for
the complete sequence are y = [y1, . . . , yn], where yt is the
streamflow of time t .

3.2 Two strategies for parameter calibration

3.2.1 Calibration Strategy I

As stated above, almost all of the parameter calibration for
hydrological modes is based on entire streamflow time series
and is defined as Calibration Strategy I in this study. It is a
conventional calibration method for optimizing the parame-
ters of a hydrological model. For the HBV model, the whole
period is divided into three periods: a warm-up period (April
to December 2014), a calibration period (January 2015 to
December 2016) and a validation period (January to Decem-
ber 2017). The calibration is conducted by maximizing the
Nash–Sutcliffe efficiency coefficient (NSE) of the stream-

flow simulated during the calibration period via the SCE-UA
algorithm (Duan et al., 1994).

For the SWAT model, the whole period is also divided into
three periods, and they are the same as HBV. The calibration
is accomplished with a separate tool named the SWAT Cal-
ibration and Uncertainty Program (SWAT-CUP) (Abbaspour
et al., 2007). Parallel Sequential Uncertainty Fitting Ver-
sion 2 (SUFI-2) is stable and always converging, and it is
very appropriate for global optimization (Abbaspour et al.
2007), which is the reason why it is adopted in this study for
parameter calibration. The objective function is also to reach
the maximum value of NSE for the streamflow simulated in
the calibration period.

The warm-up, calibration and validation periods of
DHSVM are the same as HBV and SWAT as well as the ob-
jective function. The parameter calibration of DHSVM is ex-
ecuted by an autocalibration module based on ε-dominance
non-dominated sorted genetic algorithm II (ε-NSGAII) (Pan
et al., 2018). Parallel computing with a message-passing in-
terface (MPI) program is applied in this study.

Regarding the training of LSTM, the learnable parame-
ters of the network are updated depending on a given loss
function. As with the selected hydrological models, the NSE
is chosen as the objective criterion for LSTM (Kratzert et
al., 2019), and adaptive moment estimation (Adam) (Kingma
and Ba, 2014) with a learning rate of 0.0001 is used as the
optimization algorithm. The dataset is generally divided into
three parts, i.e., training, validation and test data. The first
two parts are used to determine the parameters of the net-
works, and the last one is used to evaluate the performance
of actual application. In this study, the whole dataset is di-
vided into a training set (October 2015 to December 2017)
and a validation set (April 2014 to September 2015). The ab-
sence of a test set is due to the limited available period of the
data, while the selection of the training period will be dis-
cussed in detail in Sect. 5.3. Each LSTM network is trained
with three different random initial seeds for 1500 epochs to
account for the stochasticity in the network initialization. Of
a total of 4500 trained models, the best model is selected
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through comprehensive consideration of both the calibration
and validation NSE of the streamflow simulation.

3.2.2 Calibration Strategy II

Calibration Strategy II is designed in this study particu-
larly for flood events and conducts the calibration based on
the performance of flood event simulation. Eleven historical
flood events that occurred between January 2015 and De-
cember 2017 are selected to conduct the flood event sim-
ulation (Fig. 2). The calibration is conducted by maximiz-
ing the mean NSE of the flood events simulated during the
calibration period for the HBV model. For the SWAT and
DHSVM models, numerous sets of parameters (the number
is 1000 in this study) are obtained through the optimization
algorithm, and the best-fitted parameter set is selected with
the largest NSE for the flood event simulation. Considering
LSTM, among a total of 4500 trained models, the best model
is also selected by maximizing the mean NSE of the flood
event simulation (four flood events during calibration and
four flood events during validation).

3.3 Diagnostic statistics

To quantitatively evaluate the performance of streamflow and
flood event simulation, three evaluation indices are selected
in this study, i.e., NSE, BIAS-P and KGE. The formulas of
these indices are listed as follows:

NSE= 1−

T∑
t=1

(
Qt

o−Q
t
s
)2

T∑
t=1

(
Qt

o−Qo
)2 , (1)

BIAS−P =
∣∣∣∣Qp

s −Q
p
o

Q
p
o
× 100

∣∣∣∣ , (2)

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (3)

where Qt
o and Qt

s are the values of the observed and sim-
ulated flood events at time t , Qp

o and Qp
s are the observed

and simulated flood peaks of the flood events, r is the lin-
ear correlation between observations and simulations, α is a
measure of the flow variability error, and β is a bias term.

4 Results

4.1 The performance of flood event simulation based
on two different calibration strategies

Figure 6 shows the distributions of NSE and BIAS-P values,
which are used to evaluate the performance of four precipi-
tation sources on flood events with two different calibration
strategies at the daily scale.

For the performance of HBV, it can be seen that flood event
simulation with Calibration Strategy II shows better perfor-

mance. For the mean NSE, the values of the CMA, IMERG-
E, IMERG-L and IMERG-F increase from 0.78, 0.54, 0.54
and 0.72 with Calibration Strategy I to 0.79, 0.62, 0.67 and
0.75, respectively, with Calibration Strategy II (Fig. 6). The
corresponding mean BIAS-P values decrease from 12.0 %,
27.0 %, 29.0 % and 14.6 % to 11.4 %, 21.2 %, 16.7 % and
13.1 %. Meanwhile, the uncertainty of NSE and BIAS-P val-
ues of flood event simulation is reduced, with fewer occur-
rences of poor flood event simulation. The flood events sim-
ulated by the CMA have the highest NSE among all the
precipitation sources, ranging from 0.61 to 0.95, and their
averaged value is 0.79. This proves the capability of HBV
in flood event simulation. When comparing the performance
of IMERG precipitation estimates, IMERG-F performs best
with both calibration strategies.

In terms of the streamflow and flood event simulation
based on SWAT, Fig. 6 shows that the performance of the
two calibration strategies with the CMA is comparable, while
for IMERG precipitation estimates, Calibration Strategy II
outperforms the other one. Specifically, for streamflow simu-
lation, the NSE values in the validation period of IMERG-
E, IMERG-L and IMERG-F show a significant increase
from 0.70, 0.58 and 0.63 with Calibration Strategy I to 0.75,
0.78 and 0.73 with Calibration Strategy II, respectively. For
flood event simulation, the mean NSE values based on Cal-
ibration Strategy II are 0.57, 0.58 and 0.63 forced with
IMERG-E, IMERG-L and IMERG-F, which are 0.53, 0.44
and 0.57 based on Calibration Strategy I. The corresponding
mean BIAS-P values are reduced from 29.8 %, 28.4 % and
26.1 % to 23.9 %, 28.0 % and 13.2 %. Compared to HBV and
SWAT, the two calibration strategies present little difference
in streamflow and flood event simulation based on DHSVM,
which indicates that the performance of DHSVM is stable
when using different calibration strategies.

For LSTM, the NSE values of flood event simulation also
show higher mean values and smaller uncertainty based on
Calibration Strategy II for all the precipitation products. The
flood event simulation based on IMERG-L shows the most
significant improvement, with the mean NSE value increas-
ing from 0.62 with Calibration Strategy I to 0.77 with Cali-
bration Strategy II. The flood event simulation based on the
CMA and IMERG-E shows slightly lower medium NSE val-
ues of 0.94 and 0.88 with Calibration Strategy II than 0.95
and 0.99 with Calibration Strategy I. However, they show
a higher 25th NSE with Calibration Strategy II, especially
LSTM driven by IMERG-E, which increases from 0.58 with
Calibration Strategy I to 0.66 with Calibration Strategy II.
Therefore, although Calibration Strategy II has a lower me-
dian performance than Calibration Strategy I in individ-
ual cases, it still significantly improves the performance of
LSTM, particularly in terms of uncertainty.

According to the above results, it can be concluded that
Calibration Strategy II outperforms Calibration Strategy I.
Therefore, the following parts are based on Calibration Strat-
egy II.
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Figure 6. The NSE and BIAS-P of flood event simulation forced by (a, e) the CMA, (b, f) IMERG-E, (c, g) IMERG-L and (d, h) IMERG-F
using two calibration strategies (the white box is based on Calibration Strategy I; the red box is based on Calibration Strategy II). The box
plots show the 25th, 50th and 75th percentiles, and the mean value is given and shown with a square. The cross represents the NSE of
simulated streamflow during calibration, and the triangle represents the NSE of simulated streamflow during validation.

4.2 Impact of the spatial resolutions of precipitation on
flood event simulation

To investigate the impact of spatial resolutions of precip-
itation on flood event simulation, IMERG-E, IMERG-L,
IMERG-F and the CMA are adopted to force the SWAT
model, the DHSVM model and the LSTM model at 0.1,
0.25 and 0.5°, respectively.

Figure 7 shows the distributions of statistical indices, i.e.,
NSE, BIAS-P and KGE, which are used to evaluate the
performance of different precipitation sources with differ-
ent spatial resolutions in flood event simulation. From the
BIAS-P of flood events simulated with SWAT, it can be
seen that spatial resolution significantly affects the perfor-
mance of precipitation in flood event simulation. For in-
stance, the CMA performs best at 0.25° with the mean BIAS-
P of 26.5 %, while IMERG-E, IMERG-L and IMERG-F dis-
play the best performance at 0.5° with mean BIAS-P val-
ues of 23.7 %, 22.9 % and 13.8 %, respectively. Similar to
its performance in BIAS-P, in terms of the mean NSE, the
CMA also performs best at 0.25° with a mean NSE of 0.66.
IMERG-E presents little difference at different spatial reso-
lutions, while IMERG-L performs slightly better at 0.5° with
a mean NSE of 0.61 and a medium NSE of 0.76. The perfor-
mance of IMERG-F gets worse as the resolution is coarser,
regardless of the NSE or BIAS-P values. According to the
KGE values, the performances based on the CMA, IMERG-
E and IMERG-L show improvement at coarser spatial reso-
lutions, except for IMERG-F, whose KGE values are stable
at 0.71.

Compared to SWAT, DHSVM shows a different perfor-
mance forced by precipitation with different spatial reso-
lutions. The mean NSE of flood events simulated with the
CMA declines from 0.68 to 0.45 when the spatial resolu-
tion of precipitation changes from 0.1 to 0.5°, the mean KGE
declines from 0.77 to 0.66, and the mean BIAS-P increases
from 13.9 % to 19.3 %. By contrast, the difference in flood
events simulated with IMERG forcing at different spatial res-
olutions is smaller. For instance, the mean NSE values de-
crease from 0.29 to 0.27 for IMERG-E, from 0.30 to 0.29 for
IMERG-L and from 0.58 to 0.53 for IMERG-F. However, the
uncertainty of NSE, KGE and BIAS-P values of flood events
simulated with IMERG decreases as the spatial resolution
is finer. Of 11 flood event simulations, the performances of
four flood event simulations get better as the spatial resolu-
tion gets coarser. The difference between the three IMERG
precipitation estimates is illustrated clearly in Fig. 7b: the
distributions of NSE, KGE and BIAS-P of simulated flood
events forced with IMERG-E are more scattered than the oth-
ers, while the uncertainty of IMGER-F is the smallest.

Similar to DHSVM, LSTM shows a different performance
forced by precipitation with different spatial resolutions. The
CMA and IMERG-F perform best at 0.1°, with mean BIAS-P
values of 18.64 % and 15.55 % and mean NSE values of 0.78
and 0.78. The 25th NSE of flood events simulated with the
CMA increases from 0.52 to 0.72, the 75th NSE increases
from 0.78 to 0.83, and the spatial resolution is finer. The KGE
shows the same pattern as NSE for the CMA and IMERG-F.
By contrast, IMERG-E performs best at 0.5°, with a mean
NSE of 0.69 and a medium NSE of 0.68, while IMERG-
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Figure 7. The performance of flood event simulation based on (a) SWAT, (b) DHSVM and (c) LSTM forced by precipitation with different
spatial resolutions. The box plots show the 25th, 50th and 75th percentiles, and the mean value is given and shown with a square.

L performs best at 0.25°, with a mean NSE of 0.80 and a
medium NSE of 0.81. In the light of BIAS-P, IMERG-E
and IMERG-L achieve the best performance in flood event
simulation at 0.5°, the mean values of which are 24.55 %,
18.27 % and 0.77 %. In contrast to BIAS-P, LSTM driven
by IMERG-L shows the best KGE at 0.25° with a mean
KGE of 0.76 and the smallest uncertainty, which is the same
as NSE.

Compared with SWAT and DHSVM, LSTM shows better
performance in flood event simulation. The mean NSEs of
LSTM are higher than 0.7 in most cases, while the mean NSE
of SWAT is around 0.6 and the largest mean NSE of DHSVM
is 0.68. The 25th NSE of LSTM is higher than 0.5 in most
cases, while the 25th NSE of DHSVM is around 0.15. The
smallest 75th NSE of LSTM is 0.78, while the 75th NSE of
DHSVM is around 0.6. The mean KGEs of SWAT and LSTM

are similarly around 0.7 and are around 0.6 for DHSVM. In
addition, LSTM also shows a relatively lower BIAS-P (mean
values less than 25 %).

4.3 Impact of the temporal resolutions of precipitation
on flood event simulation

To investigate the impact of temporal resolutions on flood
event simulation, HBV, DHSVM and LSTM are adopted for
forcing by the selected four precipitation sources at hourly
and daily timescales. To compare the influences of temporal
resolutions, the flood events simulated at the hourly scale are
aggregated into daily time series.

The performance of different precipitation datasets with
different temporal resolutions in flood event simulation is
shown in Fig. 8. In HBV-based simulation, the mean NSE of
the flood event simulation at the hourly scale is about 0.03
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Figure 8. The performance of flood event simulation based on (a) HBV, (b) DHSVM and (c) LSTM forced by precipitation with temporal
resolution. The box plots show the 25th, 50th and 75th percentiles, and the mean value is given and shown with a square.

higher than that at the daily scale for all the precipitation
products. The mean KGE of the flood event simulation at
the hourly scale is also higher than that at the daily scale for
IMERG forcing, while the mean KGE of flood events sim-
ulated with the CMA shows a decrease of about 0.03 at the
hourly scale. In terms of BIAS-P, compared with the small
difference between the performance of flood events simu-
lated with the CMA at the hourly and daily scales, the per-
formance of IMERG-E, IMERG-L and IMERG-F in flood
event simulation at the hourly scale is much better than that
at the daily scale (mean BIAS-P values of 15.1 % vs. 21.2 %,
13.7 % vs. 16.7 % and 11.1 % vs. 13.1 % for IMERG-E,
IMERG-L and IMERG-F, respectively).

Similar performance is also presented in DHSVM-based
simulation. According to the NSE and KGE values, the per-
formances based on all the precipitation products show im-
provement at the hourly scale. More obvious improvement

is shown in terms of BIAS-P, which decreases by 5 % at the
hourly scale for IMERG products.

The performance based on LSTM is also shown in Fig. 8.
Consistent with the results obtained by HBV and DHSVM,
all the precipitation sources also have a relatively better per-
formance at the hourly scale. For example, the mean BIAS-
P of the CMA is reduced from 18.64 % at the daily scale
to 16.7 % at the hourly scale. IMERG-E, IMERG-L and
IMERG-F obtain better performance at the hourly scale with
a mean NSE of 0.65, 0.73 and 0.78 and a mean KGE of 0.78,
0.77 and 0.82, respectively.

Compared with HBV and DHSVM, LSTM shows higher
mean NSE values of flood event simulation, except for the
simulation based on IMERG-L, while the HBV forced by the
CMA and IMERG-F presents smaller uncertainty. In terms of
BIAS-P, the two models show comparable performance, with
mean values of around 15 %. The performance in the flood
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event simulation of HBV is more stable but slightly poorer
than LSTM in general.

5 Discussion

5.1 Comparison of two different calibration strategies

Two different calibration strategies are used to simulate flood
events in this study. Compared with the conventional method
for choosing the fit parameter set based on the entire stream-
flow time series (Calibration Strategy I), selecting the pa-
rameter set that results in the best flood event simulation
(Calibration Strategy II) shows better performance in flood
event simulation (Fig. 6). However, the CMA shows similar
results under two different calibration strategies in SWAT-
based flood event simulation, as does the DHSVM-based
simulation. Furthermore, the CMA shows little difference
with other precipitation forcing. Although we targeted dif-
ferences between the two strategies in flood event simula-
tion, their performances in the whole streamflow simulation
time series are also compared, which is presented in Table 1
(the mean value is the average NSE of the four precipita-
tion products with the same calibration strategy). Accord-
ing to the mean NSE values, Calibration Strategy II outper-
forms Calibration Strategy I. To be specific, for the HBV,
SWAT, DHSVM and LSTM models, among the four precipi-
tation products, there are two, three, three and three NSE val-
ues larger with Calibration Strategy II than with Calibration
Strategy I. These findings indicate that both the precipitation
accuracy and calibration strategy used in hydrological mod-
els are important uncertainty sources for flood simulation.
From the lumped model to the distributed model, precipi-
tation accuracy becomes the major source of uncertainty in
streamflow or flood event simulation instead of the hydrolog-
ical model, the reason for which is that hydrological models
describe the hydrological process more and more compre-
hensively. In the application of LSTM for flood event simula-
tion, a large number of equivalent simulations with different
parameter sets is generated, which is similar to the parameter
equifinality in hydrological simulation. When comparing the
two calibration strategies, Calibration Strategy II is an effec-
tive way of training the LSTM model to obtain the best flood
event simulation.

5.2 Comparison of the performance of precipitation
products in flood event simulation at different
spatiotemporal resolutions

As illustrated in Figs. 7 and 8, the performance of precipita-
tion products in flood event simulation is affected by both the
spatial and temporal resolutions. Impacts of spatial resolu-
tion on flood event simulation behave differently among dif-
ferent models and precipitation sources. For the study area, at
0.25° spatial resolution, the CMA obtains the best flood event
simulation based on SWAT. The impact of spatial resolution

on the capture of precipitation variability during flood event
periods can propagate to the flood event simulation. The best
results are obtained at 0.25° spatial resolution: a possible rea-
son can be that finer spatial resolution (0.1°) increases the
uncertainty of precipitation sets. Nevertheless, coarser spa-
tial resolution (0.5°) decreases the sufficiency of the datasets.
For SWAT driven by the CMA, it shows the best 75th NSE
and the worst 25th NSE at 0.5°, while the DHSVM driven by
the CMA shows the same pattern at 0.5°, which proves that
a coarser spatial resolution decreases the sufficiency of the
datasets. However, the DHSVM driven by the CMA shows
the best performance at 0.1°, which proves that the effects of
increasing and decreasing spatial resolution are simultaneous
and affect different models differently. This indicates that the
choice of dataset is influenced by the resolution range, which
must be adapted to the model definition, for the proper spa-
tial resolution is essential to both minimizing the uncertainty
and ensuring the sufficiency (Grusson et al., 2017).

The SWAT and DHSVM models driven by IMERG per-
form similarly at different spatial resolutions, which is con-
sistent with previous research (Lobligeois et al., 2014; Huang
et al., 2019), where an insignificant improvement was re-
ported with a higher spatial resolution of observed rainfall
in a large catchment area. This is probably due to the large
catchment area, and only the outlet station is used for cali-
bration. Liang et al. (2004) found a critical resolution (1/8°
for the VIC model) for a watershed with 1233 km2, beyond
which the spatial resolution shows a limited impact on model
performance. For our study area (82 375 km2), when the spa-
tial resolution of precipitation changes from 0.1 to 0.5°, a
small variation is shown in the performance of flood event
simulation, which indicates that the critical resolution may
be larger for a large watershed. For the data-driven model,
the CMA and IMERG-F show better performance at 0.1°
spatial resolution in the LSTM-based simulation, which in-
dicates that a higher spatial resolution, i.e., a larger dataset,
can improve the performance of flood event simulation. A
similar conclusion is drawn from a previous study conducted
by Sun et al. (2017), which also found that a deep learning
model performs better with larger datasets. In addition, the
simulation with IMERG-L and IMERG-E at 0.1° spatial res-
olution is not satisfactory, which may be related to the choice
of hyperparameters and the limited data. However, after up-
scaling, the performance of LSTM in flood event simulation
is greatly improved when the IMERG-L data are applied with
0.25° spatial resolution, which implies that scale transforma-
tion can be regarded as an approach of data enhancement in
hydrological simulation based on deep learning.

In order to compare the performance of different mod-
els on flood event simulation at the same spatial resolutions,
some results presented in Fig. 7 are illustrated in Fig. 9. Over-
all, LSTM shows better performance in most cases. For in-
stance, in Fig. 9a and c, LSTM is better than the other mod-
els, with the largest mean NSE and the smallest range be-
tween the 25th and 75th percentiles. There is also an excep-
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Table 1. The NSE values of the whole streamflow simulation time series forced by the CMA, IMERG-E, IMERG-L and IMERG-F.

Model Strategy CMA IMERG-E IMERG-L IMERG-F Mean

HBV
Strategy I 0.77 0.77 0.72 0.88 0.79
Strategy II 0.73 0.81 0.82 0.86 0.80

SWAT
Strategy I 0.83 0.75 0.76 0.73 0.77
Strategy II 0.83 0.84 0.82 0.70 0.80

DHSVM
Strategy I 0.86 0.75 0.75 0.85 0.80
Strategy II 0.82 0.87 0.86 0.87 0.86

LSTM
Strategy I 0.92 0.89 0.87 0.85 0.88
Strategy II 0.93 0.91 0.86 0.85 0.89

Figure 9. The NSE and KGE of flood event simulation forced by the CMA, IMERG-E, IMERG-L and IMERG-F with different spatial
resolutions. The box plots show the 25th, 50th and 75th percentiles, and the mean value is given and shown with a square.

tion. For example, in Fig. 9b, the range of NSE between the
25th and 75th percentiles of SWAT with the CMA is smaller
than that of LSTM, but its mean and medium values of NSE
are lower. Therefore, it can be summarized that the perfor-
mance of LSTM has a higher likelihood of success than the
other models. For KGE at 0.1° (Fig. 9d), LSTM also shows
better performance than the other models, except for that
simulated with the CMA, with which DHSVM is better than
LSTM, and they show similar results with 0.5° (Fig. 9e).

The influence of spatiotemporal resolution on flood event
simulation is affected by model structure. For instance, based
on NSE, SWAT shows the best performance at 0.25° with
CMA forcing, but LSTM shows the best performance at 0.1°.
Similarly, based on KGE, SWAT performs the best at 0.5°
with CMA forcing, but LSTM has the best performance at
0.1°. On the one hand, the difference in performance between
NSE and KGE is due to their different statistical focus, with
NSE giving larger weights to high values, especially flood
peaks, which leads to different performance with different

statistical metrics. On the other hand, the difference between
SWAT and LSTM is due to their model structure. SWAT op-
erates as a physically driven model, where the impact of the
spatial resolution of the precipitation dataset will propagate
during the hydrological process, which means that finer spa-
tial resolution does not necessarily lead to the improved per-
formance as indicated by studies such as Huang et al. (2019).
This is probably exemplified by SWAT performing better at
0.25° with CMA forcing based on NSE, while it performs
better at 0.5° based on KGE. Regarding LSTM as a deep
learning model, some studies have highlighted significant
performance enhancements when applied to larger, reliable
datasets (Sun et al., 2017). Consequently, when forced by
the CMA and IMERG-F, LSTM shows the best performance
across all the statistical metrics at 0.1° rather than at 0.25 or
0.5°. The deviations from this pattern observed in IMERG-E
and IMERG-L are likely attributable to inherent errors within
the precipitation product itself. We previously evaluated the
applicability of the IMERG dataset in the Xiangjiang River
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Figure 10. The (a) NSE, (b) BIAS-P and (c) KGE of flood event simulation forced by the CMA, IMERG-E, IMERG-L and IMERG-F using
Calibration Strategy II. The box plots show the 25th, 50th and 75th percentiles, and the mean value is given and shown with a square.

basin and found that IMERG-E and IMERG-L have larger
uncertainties and errors than IMERG-F (Q. Zhu et al., 2020).
The CMA has been confirmed by several studies to be a more
reliable precipitation product in the Xiangjiang River basin
and is always used as a reference precipitation product (Wang
et al., 2017; Tang et al., 2017; Su et al., 2020). This probably
makes IMERG-E and IMERG-L not bring enough perfor-
mance improvement to LSTM when the spatial resolution is
finer.

Considering the impacts of temporal resolutions on flood
event simulation, for HBV and DHSVM, the flood event sim-
ulation at the hourly scale outperforms that at the daily scale
in general, which indicates that a higher temporal resolution
can improve the performance of hydrological models. Mean-
while, hourly precipitation sources also show better perfor-
mance of flood event simulation with LSTM, especially for
the simulation of flood peaks.

5.3 Comparison of different models in flood event
simulation

In this study, a lumped hydrological model (HBV), a
semi-distributed hydrological model (SWAT), a fully dis-
tributed hydrological model (DHSVM) and a data-driven
model (LSTM) are utilized to simulate flood events. In or-
der to compare the performance of different models in flood
event simulation more clearly, some results presented in
Fig. 6 are illustrated in Fig. 10. As shown in Fig. 10, HBV
and SWAT forced by the CMA show comparable runoff sim-
ulation performance, while HBV shows better performance
than SWAT in flood event simulation. The inability of the
SWAT model to capture the flood events was also proven
in previous studies (Zhu et al., 2016; Yu et al., 2018). Fur-
thermore, when driven by IMERG, HBV outperforms SWAT
and DHSVM, especially IMERG-E and IMERG-L. This is
because the hydrological model with a simpler structure can
reduce the impact of errors in radar rainfall estimation, which
is better constrained during its propagation in the hydrologi-
cal process (Zhu et al., 2013).

The comparisons of SWAT, DHSVM and LSTM at differ-
ent spatial resolutions are also illustrated. As a data-driven
approach, LSTM shows better performance than SWAT and
DHSVM in terms of flood event simulation and shows re-

duced uncertainty and a higher likelihood of success than
HBV, which is considered an appropriate model in this case.
Among IMERG products, IMERG-F outperforms IMERG-E
and IMERG-L in flood event simulation based on a hydrolog-
ical model, while IMERG-E and IMERG-L show a compa-
rable and even better performance than IMERG-F based on
LSTM. This phenomenon shows that LSTM can deal with
the error in precipitation products during the learning pro-
cess. In many previous studies, LSTM is forced by large
datasets such as the CAMELS dataset. The lower bound of
the data requirements used for calibration is considered the
daily time series of 15 years (Kratzert et al., 2019). In this
study, as mentioned above, the calibration (October 2015
to December 2017) and validation (April 2014 to Septem-
ber 2015) of LSTM are different from those of hydrological
models. For hydrological models, the calibration period is
from January 2015 to December 2016 and the calibration pe-
riod is from January to December 2017. We tried to use the
same calibration data in LSTM as the hydrological model,
but the results from flood event simulation are not satisfac-
tory when its NSE of the validation period is less than 0.5.
The reason is that two major flood events are not included
in the calibration period used in the hydrological model. As
a result, LSTM failed to learn the input–output relationship
during the periods of flood events. Containing the character-
istics of inputs as much as possible is critical for the data-
driven model, e.g., LSTM, to capture the accurate relation-
ship between the inputs and the output. Therefore, we use
the data in the latter part for calibration, through which the
performance of LSTM is significantly improved. It should be
notable that reliance on data may still be a potential barrier
to LSTM in data-sparse areas. In addition to obtaining more
data for the input, such as the remote sensing data, how to
make good use of limited data should also be considered in
future studies. What is more, based on the same computer
specification (Intel i5-9300H CPU, 8 GB memory), the run-
ning times of one simulation based on HBV, SWAT, DHSVM
and LSTM are 0.2 s, 1 min, 54 min and 1.2 s, respectively.
Results obtained from this case show that LSTM can pro-
vide reasonable accuracy in flood event simulation, whilst it
is also competitive in computational efficiency.
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Figure 11. Comparison of HBV-, SWAT-, DHSVM- and LSTM-based flood event simulation from 1 to 31 July 2015 and from 15 March to
14 April 2017 forced by the CMA, IMERG-E, IMERG-L and IMERG-F with different spatiotemporal resolutions.
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In order to compare the performance of flood event simu-
lation with different scenarios, two randomly selected flood
event simulations from 1 to 31 July 2015 and from 15 March
to 14 April 2017 are shown in Fig. 11. The first flood event is
the typical one with a single peak that occurred during the
calibration period of the HBV, SWAT and DHSVM mod-
els and the latter one with twin peaks that occurred during
the validation period of HBV, SWAT and DHSVM, while
for LSTM the occurrence times of the two selected flood
events are in its validation and calibration periods, respec-
tively. From the figure, it can be seen that hydrological mod-
els generally show good ability to capture the first flood
event. However, for the second flood event from 15 March
to 14 April 2017, an obvious underestimation of the first
peak exists in the flood simulation, which is primarily caused
by the bias of precipitation products that are comprehen-
sively evaluated in our previous study (Q. Zhu et al., 2020).
The underestimation of the second flood peak is reduced in
LSTM-based simulations, which implies the ability of LSTM
to correct the propagation of influence from the bias of pre-
cipitation. Since the hydrological models may smoothen the
short-term variability of input, the flood events simulated
with hydrological models show relatively smooth runoff pro-
cesses compared with LSTM. Meanwhile, the performance
of LSTM is not stable at different spatial resolutions com-
pared with SWAT and DHSVM. Compared with spatiotem-
poral resolutions of precipitation and simulation models, the
precipitation source is the primary uncertainty source for
flood event simulation, which indicates the importance of
choosing an appropriate precipitation source for ungauged
regions.

6 Conclusion

In this study, we investigated the impacts of temporal and
spatial resolutions of precipitation on flood event simulation
over a large-scale catchment. We accomplished the study
with the application of HBV, SWAT, DHSVM and LSTM
forced by high-spatiotemporal-resolution gauge-based and
satellite-based precipitation products. The main conclusions
of this study are summarized as follows.

1. According to the comparison of two calibration strate-
gies, an event-based calibration strategy leads to bet-
ter performance of flood event simulation based on
a lumped HBV model and a semi-distributed SWAT
model. However, there is little difference between the
two calibration strategies’ applications to a distributed
DHSVM model. For the data-driven model, LSTM, the
event-based strategy also leads to better results.

2. Considering the impact of temporal resolution, both
hydrological models and LSTM perform better at the
hourly scale in flood event simulation than at the daily
scale, especially in flood peaks. However, the influence
of spatial resolution on flood event simulation has no
significant pattern in this case, which varies with mod-
els and precipitation sources.

3. Three hydrological models and LSTM are used to
simulate the flood events forced by gauge-based and
satellite-based precipitation products in this study. The
hydrological models and LSTM forced by IMERG pre-
cipitation estimates can achieve acceptable flood event
simulation in most cases. In some cases, LSTM outper-
forms the hydrological models. However, it should be
noted that the performance of LSTM largely depends on
the input data and settings, such as the choice of hyper-
parameters, which may be unstable in some other cases.
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Appendix A

Figure A1. Same as Fig. 7, but the results in calibration and validation periods are separated.
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Appendix B

Figure B1. Same as Fig. 8, but the results in calibration and validation periods are separated.
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Appendix C

Figure C1. Same as Fig. 10, but the results in calibration and validation periods are separated.
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