Hydrol. Earth Syst. Sci., 28, 1617-1651, 2024
https://doi.org/10.5194/hess-28-1617-2024

© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

A network approach for multiscale catchment

classification using traits

Fabio Ciulla and Charuleka Varadharajan

Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Correspondence: Fabio Ciulla (fciulla@lbl.gov) and Charuleka Varadharajan (cvaradharajan @1bl.gov)

Received: 27 July 2023 — Discussion started: 2 August 2023

Revised: 26 December 2023 — Accepted: 9 February 2024 — Published: 11 April 2024

Abstract. The classification of river catchments into groups
with similar biophysical characteristics is useful to under-
stand and predict their hydrological behavior. The increasing
availability of remote sensing and other large-scale geospa-
tial datasets has enabled the use of advanced data-driven ap-
proaches to classify catchments using traits such as topog-
raphy, geology, climate, land cover, land use, and human
influence. Unsupervised clustering algorithms based on the
Euclidean distance are commonly used for trait-based clas-
sification but are not suitable for highly dimensional data. In
this study we present a new network-based method for multi-
scale catchment classification, which can be applied to large
datasets and used to determine the traits associated with dif-
ferent catchment groups. In this framework, two networks
are analyzed in parallel: the first being where the nodes are
traits and the second being where the nodes are catchments.
In both cases, edges represent pairwise similarity, and a net-
work cluster detection algorithm is used for the classification.
The trait network is used to investigate redundancy in the trait
data and to condense this information into a small number of
interpretable categories. The catchments network is used to
classify the catchments into clusters and to identify repre-
sentative catchments for the different groups using the de-
gree centrality metric. We apply this method to classify 9067
river catchments across the contiguous United States at both
regional and continental scales using 274 non-categorical
traits. At the continental scale, we identify 25 interpretable
trait categories and 34 catchment clusters of sizes greater
than 50. We find that catchments with similar trait categories
are typically located in the same region, with different spatial
patterns emerging among clusters dominated by natural and
anthropogenic traits. We also find that the catchment clusters
exhibit distinct hydrological behavior based on an analysis of

streamflow indices. This network approach provides several
advantages over traditional means of classification, including
better separation of clusters, the use of alternate similarity
metrics that are more suitable for highly dimensional data,
and reducing redundancy in the trait information. The paired
catchment—trait networks enable analysis of hydrological be-
havior using the dominant trait categories for each catchment
cluster. The approach can be used at multiple spatial scales
since the network topologies adjust automatically to reflect
the trait patterns at the scale of investigation. Finally, the rep-
resentative catchments identified as hub nodes in the network
can be used to guide transferable observational and modeling
strategies. The method is broadly applicable beyond hydrol-
ogy for classification of other complex systems that utilize
different types of trait datasets.

1 Introduction

Catchments are complex environmental systems that consist
of diverse natural and anthropogenic components interacting
non-linearly in space and time. A fundamental challenge in
hydrology is to understand how these interacting components
influence critical catchment functions such as streamflow and
solute exports (Troch et al., 2015). This is difficult to deter-
mine even for catchments with little to no human influence
because of the spatial heterogeneity of processes across re-
gions with different characteristics leading to the problem
of “uniqueness of place” (Beven, 2000). For the majority
of catchments, this challenge is compounded due to anthro-
pogenic activities that cause more complex behaviors that are
not easily modeled (Sivakumar et al., 2015; Sivapalan, 2006).
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The classification of river catchments into groups with
similar characteristics has been called out as a practical ap-
proach to address the diversity of hydrologic behavior (Mc-
Donnell and Woods, 2004; McDonnell et al., 2007; Wagener
et al., 2007). A classification system would establish the
baseline for similarities and differences among catchments,
and would be extremely beneficial for both modeling and
experimental analysis (Dooge, 1986). Several regionaliza-
tion approaches that attempt to transfer knowledge (observa-
tions, theory, or model predictions) from well-observed sites
to other less-observed regions, such as those used for predic-
tions in ungaged basins (PUBs), rely on the concept of simi-
larity for extrapolation (Guo et al., 2021; Merz and Bloschl,
2004). The ultimate goal of a classification process is to dis-
cover the laws governing the behavior of a system under in-
vestigation. By looking at the collective behavior of a group
of similar elements, the unique contributions from individual
elements average out, revealing the fundamental characteris-
tics that regulate catchment functions (Sokal, 1974).

There is a long history of using physical characteris-
tics and other properties (i.e., their traits) to classify catch-
ments in hydrology, as described in Wagener et al. (2007).
The simplest approach uses dimensionless numbers or in-
dices such as stream order (Horton, 1945; Strahler, 1952)
and Peclet numbers (Redner, 2001) as organizing constructs.
More complex approaches use distribution functions (e.g.,
hypsometric curve; Langbein, 1947) and conceptual or math-
ematical models. A common approach is to group catch-
ments by hydroclimatic region, such as in the Koppen classi-
fication (Koppen, 1918) or the Budyko framework (Budyko,
1974). Many studies use the dynamic behavior of a catch-
ment as quantified by the signatures of a function of inter-
est as the basis for classification instead of traits (see refer-
ences in McMillan, 2020) and find the results to be consis-
tent with knowledge about watershed processes (McMillan
et al., 2022). However, signature-based classification cannot
be used for unmonitored sites, which is a significant issue
given the paucity of streamflows and other hydrological mea-
surements.

There has been a dramatic increase in the amount of
regional- to global-scale geospatial datasets produced over
the past 2 decades, which has enabled a new era of data-
driven hydrology (Hubbard et al., 2020). A few data products
such as the Geospatial Attributes of Gages for Evaluating
Streamflow version II (GAGES-II; Falcone, 2011), Stream-
Cat (Hill et al., 2016), Caravan (Kratzert et al., 2023), and
Hysets (Arsenault et al., 2020) now provide extensive infor-
mation on hundreds of traits such as land surface structure,
climate conditions, vegetation, land use, and other human in-
fluences across thousands of catchments. Thus, new methods
for classification that go beyond simplistic trait representa-
tions to account for a diverse array of natural and anthro-
pogenic catchment properties are now possible and would
be extremely useful to understand or predict complex sys-
tem behavior. A classification approach would use the trait
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features as vectors in a multidimensional space and the rela-
tionships among the catchments defined by a distance metric
in this space. This approach has been used in recent attempts
to group regions with unsupervised machine learning algo-
rithms such as k-means and hierarchical clustering (Sawicz
et al., 2011; Wainwright et al., 2022; Kumar et al., 2011).

However, the analysis of large multivariate datasets has
two main challenges that need to be addressed. The first is
multicollinearity, which is the possibility of information re-
dundancy in the data due to the presence of multiple vari-
ables that provide similar information. Machine learning al-
gorithms for classification generally have degraded perfor-
mance when multicollinearity is present. The second issue
is the “curse of dimensionality” (Bellman, 2010), a phe-
nomenon that emerges when using distance metrics to com-
pute the relationship amongst data points represented as vec-
tors of features (e.g., traits) in a multidimensional space.
When the number of dimensions increases, the density of
data points drastically decreases, making the feature space
more sparse (Houle et al., 2010) and causing the difference
between the furthest and the closest distances to a point to
approach zero (Beyer et al., 1999). This results in degraded
performance of similarity measures, and, in particular, some
metrics such as the commonly used Euclidean distance are
more affected than others (Aggarwal et al., 2001).

Many algorithms typically used for unsupervised classifi-
cation, including machine learning methods such as k-means
and hierarchical clustering, do not address the dual issues of
multicollinearity and data dimensionality. The k-means algo-
rithm (MacQueen, 1967) is widely used across many fields
and relies on the establishment of cluster centroids in a vec-
torial space that act as representative points for the clusters.
The data points are associated with a cluster by minimiz-
ing their Euclidean distance based on the variances within
the clusters. However, as the dimension of the vector space
grows, the Euclidean distance becomes unreliable in properly
quantifying the relationship among the data points (Aggar-
wal et al., 2001). Additionally, the Euclidean distance dis-
cards information about the directionality of the data, pro-
ducing a value that reflects only the relative position of data
points in the vector space and neglecting the contribution of
the different components that can be relevant for classifica-
tion. Another group of algorithms for cluster identification
is referred to as agglomerative hierarchical clustering. This
class of methods aims to build a hierarchy amongst the data
points, and different strategies can be used to find the opti-
mal partitioning. Some of the most notable methods are the
complete- and single-linkage clustering, which, respectively,
aim to maximize and minimize the distance of two points be-
longing to different clusters (Miillner, 2011). Although these
two methods do not necessarily rely on the Euclidean dis-
tance, they are quite sensitive to outliers because they are
based on the extreme (i.e., maximum or minimum) distances
between points. Such dependence on single data points for
partitioning goes against one of the main concepts in the
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characterization of complex systems, where emergent prop-
erties (i.e., the grouping into clusters) are the result of col-
lective phenomena rather than the disproportionate contribu-
tion of a single element. The Ward’s algorithm (Ward, 1963)
mitigates the issue of outliers by introducing the minimum-
variance method, but it is based on the Euclidean distance
and is therefore subject to the same drawbacks as the k-
means method.

Approaches based on network science have been used to
investigate complex systems for many applications involv-
ing large datasets (Newman, 2018; Borner et al., 2007). The
ability of networks to capture complex interactions among
different parts of a system and to highlight emergent be-
haviors has been proven to be extremely powerful (Strogatz,
2001; Boccaletti et al., 2006). By treating each element as
a node and the relationships amongst them as edges, the
structure of a network provides a natural and intuitive rep-
resentation of a complex system (Barrat et al., 2004; Albert
and Barabdsi, 2002). Modeling the relationships amongst el-
ements of a complex system as a network also enables the
use of suitable distance metrics for large datasets, present-
ing a solution to address the issues of data dimensionality
and multicollinearity. Networks are used extensively in many
different scientific domains. For example, in social science,
political polarization has been detected with the presence of
clusters in a social network (Conover et al., 2011). In biol-
ogy, protein—protein interaction networks are essential to un-
derstand the cell physiology (Jeong et al., 2001), and plant
trait networks are used to understand plant adaptation to dif-
ferent environments by examining the complex relationships
between their functional traits (He et al., 2020). In hydrology,
the concept of networks has mainly been associated with the
tree-like structure of rivers and has enabled advancements in
understanding geomorphological processes (Rinaldo et al.,
2006; Rodriguez-Iturbe and Rinaldo, 2001; Tejedor et al.,
2017; Czuba and Foufoula-Georgiou, 2014). The use of net-
works as a generic framework for hydrological investigation
has been postulated (Sivakumar, 2015), and the concepts of
complex flow networks have been used to understand river
transport in deltas (Sivakumar et al., 2015; Tejedor et al.,
2018). However, to date, network theory has not been used
for understanding relationships between catchments or their
traits.

In this study, we introduce a novel, network-based method
to classify catchments at multiple scales based on traits rep-
resenting their climatic conditions, vegetation, topography,
soils, land use, and anthropogenic characteristics. This un-
supervised method utilizes two parallel networks to extract
clusters of similar traits and catchments while using dimen-
sionality reduction and a cosine distance metric to address
the issues of information redundancy and high dimensional-
ity present in large geospatial datasets. This approach enables
the characterization of catchments using a small number of
interpretable trait categories and provides a more generaliz-
able approach to the regionalization of hydrologic behavior.
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We demonstrate the utility of our network-based method for
analyzing catchment properties and associated hydrological
behavior for 9067 catchments and 274 traits across the con-
tinental United States. To our knowledge, this is the first in-
stance where networks have been used for trait-based catch-
ment classification in the hydrological sciences. Our methods
are broadly applicable beyond catchment classification for
the analysis of other environmental traits (e.g., plant func-
tional traits or microbial traits) and large datasets.

2 Methods

In this section, we describe the dataset and the workflow for
unsupervised trait-based classification of watersheds using
the network approach. The steps in our classification work-
flow (Fig. 1) include the following: (1) down-selection and
preprocessing of traits from the GAGES-II dataset (Sect. 2.1)
by transforming and standardizing trait values (Sect. 2.2);
(2) removal of redundant information and multicollinearity
using the principal component analysis (PCA), which pro-
duces lowly dimensional vector representations of both traits
and catchments (Sect. 2.3); (3) computation of the pairwise
similarities of the dimensionally reduced vectors of both
catchments and traits (Sect. 2.4); (4) generation of two sim-
ilarity networks, one where nodes are catchments and an-
other where nodes are traits (Sect. 2.5) — in both cases, edge
weights represent the pairwise similarities within the respec-
tive sets; (5) classification via a clustering algorithm to iden-
tify trait categories and groups of catchments with similar
traits (Sect. 2.6); (6) characterization of the catchment clus-
ters using the over- and under-expression of trait categories
(Sect. 2.8); (7) evaluation of the spatial coherence between
catchment clusters (Sect. 2.7); (8) selection of representative
catchments using network centrality measures (Sect. 2.9);
and (9) identifying hydrological behavior based on stream-
flow indices across the catchment clusters and association
with their characteristic trait expression (Sect. 2.10).

2.1 Datasets

The primary dataset used in this study is the Geospatial
Attributes of Gages for Evaluating Streamflow version II
(GAGES-II), as described in Falcone (2011). This dataset
contains a comprehensive set of geospatial characteristics
for 9322 gaged catchments in the contiguous United States
(CONUS), as well as in Alaska, Hawaii, and Puerto Rico,
with long flow records (at least 20 complete years of dis-
charge records since 1950) or with an active record as of
water year 2009. Here, we refer to catchments as the areas
upstream of each individual gaging station in the GAGES-II
dataset, of which 2057 are considered to be pristine (refer-
ence), while 7265 are disturbed by human influences (non-
reference).
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Figure 1. A schematic of the workflow used in this study.

The geospatial attributes, referred to as traits in this paper,
are compiled from various data sources for the CONUS (see
Falcone et al., 2010, for details). The 354 traits in the dataset
span climate (e.g., historical average precipitation and air
temperature), soil types and composition, geomorphology
(e.g., topography), vegetation (e.g., extent of forests), surface
waters (e.g., extent of lakes and wetlands), stream character-
istics (e.g., sinuosity and stream order), and anthropogenic
influences (e.g., proximity to developed areas, land use, or
presence of dams). Some traits have multiple representa-
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tions; for example, elevation is provided at the location of
the stream gage and as an average across the catchment.
Many of the climate traits are calculated from the 800 m
gridded PRISM dataset (Daly et al., 2000), which is de-
rived from 30-year records that span different time periods
(primarily 1961-1990 or 1971-2000). We highlight that the
runoff variables present in the dataset are not measured val-
ues of the discharge but instead are estimates from the period
of 1951-2000 computed by a water balance model for 4 km
grids using precipitation and temperature as inputs (Wolock
and McCabe, 1999). Land use and land cover data are derived
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from the 2006 USGS National Land Cover Database. We se-
lected the GAGES-II dataset for our unsupervised classifica-
tion because of its comprehensiveness across catchments, its
diversity of traits, and its spatial coverage.

The second dataset used in this study consists of stream-
flow data obtained from the USGS National Water Informa-
tion Service (USGS, 2022) for the period 1971 to 2000. We
chose this time window to overlap with the period of data
availability for most of the traits used from GAGES-II.

2.2 Data filtering and preprocessing

This study focuses on the 9067 stream gages from catch-
ments that are present within the CONUS in the GAGES-
II dataset, excluding the gages in Alaska, Puerto Rico, and
Hawaii. Out of the 354 traits present in the dataset, we se-
lected 274 that had numerical values and discarded 74 cate-
gorical variables (e.g., geology type) or textual labels (e.g.,
county name). We also discarded six additional traits: station
identification number (STAID), the two-digit hydrological
unit (HUCO02; Seaber et al., 1987 that each station belongs to,
the latitude (LAT_GAGE) and longitude (LNG_GAGE) of
the station, soil with variable drainage characteristics (HG-
VAR), and mean watershed aspect (ASPECT_DEGREES).
The STAID, HUCO02, LAT_GAGE, and LNG_GAGE vari-
ables contain explicit information about the location of the
gaging stations. We chose to exclude them to develop the
classification scheme solely using natural and anthropogenic
features, which avoids bias due to spatial proximity and is
transferable to any location. Additionally, their exclusion
from the classification enables an unbiased evaluation of the
emerging spatial patterns amongst the resulting catchment
clusters. The HGVAR variable is removed because it has zero
variance and thus cannot be standardized in the preprocess-
ing routine. The ASPECT_DEGREES trait is removed be-
cause its periodicity has poor physical coherence (the quan-
tities of both O and 360 convey the same information but
are represented by the extreme values of the variable range).
Furthermore, the aspect information is present in two other
variables that we include, ASPECT_EASTNESS and AS-
PECT_NORTHNESS, which are the sine and cosine of the
ASPECT_DEGREES variable, respectively.

The preprocessing step is composed of two operations
(step 1 in Fig. 1). The first involves feature transformations of
non-monotonic traits to a consistent monotonic function. For
example, several traits denote the presence of points of in-
terest in the basin, such as dams and canals. However, when
such a point is not present in the basin, the trait is assigned
the value —999. This creates an inconsistency with the phys-
ical distance values and thus is remapped to be physically
coherent for use as an input in the PCA method. Further de-
tails on mapping of variables to monotonic functions are in
Appendix A. The second step is data standardization, which
involves subtracting the arithmetic mean from each variable
and dividing the result by the standard deviation. As a re-
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sult, the standardized values will have zero mean and a stan-
dard deviation equal to 1. The standardization is essential for
the PCA, which requires the data to have a zero mean and
additionally scales variables in the dataset that span up to
5 orders of magnitude into a comparable set of values and
variances needed for the PCA projections. Each of the 9067
catchments is represented as a vector of these 274 filtered and
remapped traits. We provide the GAGES-II dataset, prepro-
cessed according to these steps, as part of the dataset (Ciulla
and Varadharajan, 2023).

2.3 Dimensionality reduction

The next step in the workflow (step 2 in Fig. 1) involves re-
ducing the dimensionality of the preprocessed dataset using
the principal component analysis (PCA) algorithm (Pearson,
1901), which is required for two reasons. First, it is used
to mitigate the issue of the curse of dimensionality, which
results in a reduction in the performance of distance met-
rics in highly dimensional vector spaces, such as the 274-
dimensional trait vectors used to represent catchments in our
study (Aggarwal et al., 2001). Secondly, the dimensionality
reduction minimizes the redundancy in the dataset caused
when information present in one trait is also represented (par-
tially or totally) in other traits. Information redundancy is
generally detrimental for machine learning algorithms and
needs to be addressed. This information redundancy can be
detected by computing the trait correlations and is referred
to as multicollinearity. The traits in the GAGES-II dataset
contain significant redundancies, with 84 % of pairwise Pear-
son correlation coefficients (Pearson, 1895) and 92 % of pair-
wise Spearman coefficients, which account for non-linear re-
lationships (Spearman, 1987), having a significant p value
of 0.05. The coefficient of determination between these two
metrics is equal to 0.76, which indicates that, although non-
linear relationships among the traits are present, they are not
so dominant as to prevent the use of a linear dimensionality
reduction method such as PCA. Another factor that can affect
the PCA algorithm’s performance is the presence of outliers.
We determined that the PCA is a reasonable choice for the
GAGES-II dataset since only 8.1 % of the traits lie outside
their “inner fence”, a common threshold for outliers, defined
as the range between Q1 — 1.5-IQR and Q3 + 1.5 - IQR for
each trait, where Q1 and Q3 are the first and third quartiles,
respectively, and IQR = Q3 — Q1 is the interquartile range.
The PCA algorithm collapses the dimensions of linearly
correlated variables into a lower-dimensional vector repre-
sentation. The information of the variables is retained in di-
rections called principal components that maximize the vari-
ance of the original data, thus addressing the issues of multi-
collinearity and high dimensionality. In the PCA, the dataset
is represented as a matrix M € R"*/ — where 7 is the number
catchments, and f is the number of traits — and each catch-
ment is represented by a multidimensional vector of traits in
the f-dimensional space (Fig. 2). The PCA transforms the
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Figure 2. Pictorial representation of (a) dimensionality reduction
via PCA of the original matrix M into the transformed matrix My,
encoding information about catchments and the matrix of princi-
pal components PC and encoding information about the traits, and
(b) the generation of the catchment similarity matrix Sc from the
L2-normalized My, and the trait similarity matrix St from the L2-
normalized PCy.

n x f matrix M into a new n x k matrix My, where the catch-
ments are represented by n lowly dimensional vectors of size
k. The only free parameter of the algorithm is the number
of final dimensions k, which reflects the amount of informa-
tion retained. By using Cao’s implementation (Cao, 1997) of
the false nearest-neighbor (FNN) method (Krakovska et al.,
2015), we set k = 20 (see Appendix B for details).

Hence, the original matrix M is transformed into the ma-
trix My € Rexk, containing 9067 vectors of dimension 20,
where each vector is a lowly dimensional representation of
the traits in each of the catchments, used in the follow-
ing steps of our analysis. Complementarily to My € R"**,
the matrix of principal components PCy € R/** contains
f = 274 vectors of size k that encode information about how
the traits are expressed in the catchments. The analysis of
PC; € R/*¥ is used to identify the relationships and infor-
mation redundancy amongst the different traits. To summa-
rize, the PCA results in a set of n k-dimensional vectors that
encode the trait information for each catchment and f k-
dimensional vectors that describe the trait expressions.

2.4 Similarity measure

We identify the relationships between catchments and traits
using the cosine similarity as a distance metric. Cosine simi-
larity is defined as in Eq. (1) (Salton, 1983):

xX-y

V. 1
Iyl M

SC(x,y)=

where x and y are two vectors with the same lengths. The co-
sine similarity is preferred over the classical Euclidean dis-
tance metrics for two reasons. First, the reduced-order vec-
tors from the PCA are still considered to be highly dimen-
sional data for distance calculations. Secondly, the cosine
distance retains information about the directionality of the
data (see Appendix C for an additional explanation about the
rationale for the choice of this similarity measure).
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The cosine similarity is computed as the dot product of
the L2-normalized matrices My and PC; with their corre-
sponding transposed matrices (Fig. 2b). This results in two
matrices, Sc and St, of size n x n and f x f that contain the
pairwise similarities between catchments and traits, respec-
tively. The diagonal elements of both matrices are unit values
because they are the results of the dot product of vectors nor-
malized with themselves.

2.5 Network generation

In this study, we adopt networks as a tool to investigate the
relationship among the catchments. For more details on net-
work theory, see Appendix D. We use the cosine similarity
matrix Sc to build a network Nc, where nodes are catch-
ments, and the edges represent their similarity (step 4 in
Fig. 1). In particular, the edge weights are the cosine simi-
larity values mapped to a range between 0 and 1 (Eq. 2):
Sc+1

A= 5 ()

Thus, two nodes are connected if they are similar, as per
the cosine metric, and the strength of the similarity is re-
flected by the edge weights. The self-loops (i.e., an edge that
originates from and ends at the same node) given by the uni-
tary values of the diagonal similarity matrix are deliberately
discarded. The connectivity patterns in the network reveal
clusters of nodes that are more similar to each other than to
the rest of the network.

By assigning an edge to each pair of nodes using the simi-
larity metric, we produce a fully connected network, namely
a network with all the possible |Nc|(|Nc| — 1)/2 edges.

Such a network is a relatively uninteresting one because
the presence of all possible edges hides eventual complex
topological patterns present within the network. In order to
reveal such patterns, we apply a filtering mechanism to our
set of edges. In particular, we use the disparity filter as de-
scribed in Serrano et al. (2009). Such a method takes a net-
work as an input and filters out some of its edges, returning
what is called the network backbone. The disparity filter as-
sumes complete homogeneity among the edge weights, with
the null hypothesis being that the weights of the edges inci-
dent to a node are uniformly distributed. Then it retains only
the edges whose weight magnitude is incompatible with such
a hypothesis according to a certain significance level. By re-
peating this process for each node in the network, we gen-
erate the network backbone, where all the edges are statis-
tically validated against the uniform distribution hypothesis.
Only edges are affected by this technique, while the nodes are
unaffected, and their number in the network stays the same.
The method does not prescribe a universal value for the sig-
nificance level, which has to be evaluated case by case.

In our implementation of the disparity filter, we choose a
significance level where 95 % of the nodes in the network be-
long to the giant component, which is the connected compo-
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nent in a network that includes most of the nodes. The choice
of 100 % of the nodes in the giant component is impracti-
cal because there could be nodes that potentially never con-
nect to any other ones, making the 100 % value impossible to
reach.

The procedure used for generating the catchment network
is also used to produce a network of traits Nt via the ma-
trix St, where each node is a trait, and the edges connect
two traits, with weights representing how similarly they are
expressed across the catchments. Similarly to the catchment
case, we extract the backbone network to reveal complex pat-
terns among groups of traits.

For catchments, the backbone network Nc contains 9067
nodes and 559 207 edges. The number of edges corresponds
to only 1.4 % of the ones that can possibly be present in a
fully connected network of such a size. In the case of the
traits, the backbone network Nt has 274 nodes and 1422
edges, comprising 3.8 % of all the possible edges. These net-
works are used in the following step to identify clusters of
similar catchments and traits.

2.6 Cluster identification

A complex network is a network with non-trivial connectiv-
ity patterns (Strogatz, 2001; Boccaletti et al., 2006). One of
the main hints of the presence of such patterns is given by
the heterogeneous distribution of the values of the cluster-
ing coefficient, a topological measure of the tendency of a
network to form groups of nodes that are more connected to
each other than to the rest of the network (Wasserman and
Faust, 1994; Scott and Carrington, 2023). Appendix E con-
tains a detailed discussion on clustering coefficients. These
groups of nodes are called clusters, and there are a variety of
algorithms to discover them (Fortunato, 2010).

To obtain the division of nodes into clusters, we implement
the Infomap clustering algorithm (Rosvall and Bergstrom,
2008) for both the catchment and the trait networks. This is
an agglomerative clustering method for networks that starts
by assigning each node to its own cluster and uses the map
equation as described in Rosvall et al. (2009) to optimize the
iterative merging of these partitions. One advantage of us-
ing the Infomap algorithm is its capability to split already
formed clusters at successive iterations if this action benefits
the clustering optimization function.

When applied to the catchment network, 95 % of the nodes
in the entire network are contained in the top 71 clusters,
ranked based on their size. We provide the number of clusters
at 95 % coverage because, as is usual for complex networks,
the cluster size spans several orders of magnitude, and, thus,
accounting for all the clusters is inappropriate. The cluster
size ranges from 1 to 953 nodes, with the latter comprising
about 10 % of the nodes of the entire network. Because of
how the catchment network is built, catchments within a clus-
ter have more similar traits than with the rest of the network.
When the Infomap algorithm is applied to the trait network,
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the number of top clusters in terms of size, comprising 95 %
of the network, is 20, and the cluster sizes range from 1 to
25. For this network, the clusters denote groups of traits that
have similar expression patterns across the catchments.

The cluster identification represents the first milestone of
our workflow (step 5 in Fig. 1), resulting in the classifica-
tion of both traits and catchments using a completely unsu-
pervised methodology. The only choices we made were in-
formed by statistical analysis to set the two free parameters
of the framework, namely the number of dimensions for the
PCA algorithm and the confidence level for the backbone dis-
parity filter.

2.7 Spatial homogeneity of catchment clusters

Contrarily to supervised methods that compute model per-
formance using testing data, unsupervised algorithms like
ours do not have a direct means of assessing their perfor-
mance. Thus, to identify a measure of performance for our
unsupervised catchment classification, we use the principle
of Tobler’s first law of geography, which states that “ev-
erything is related to everything else, but near things are
more related than distant things” (Tobler, 1970). This law,
applied to our classification analysis, would mean that there
is a higher probability of catchments that are geographically
close to each other belonging to the same cluster. To quan-
tify this concept, we compute the global homogeneity mea-
sure Hglobal as the average probability that, for each catch-
ment, the nearest neighbor in terms of spatial proximity be-
longs to the same cluster. This quantity can be interpreted as
geographical homogeneity in the sense that catchments sur-
rounded by others within the same cluster make the system
more homogeneous.

1
Hglobal = mzhl (3)

i

1 ifc,- =Cj

hi = “)

0 otherwise

Here, | Nc| is the total number of catchments, j is the clos-
est catchment to catchment 7, and ¢; and c; are the clusters
that catchments i and j belong to. Hglopal provides a single
value for the entire set of catchments, where values closer
to 1 indicate that the system is more homogeneous. Addi-
tionally, we compute a within-cluster homogeneity measure,
H Ciluster, as the probability of finding catchments belonging to
cluster i within the convex hulls A; of all catchments in c;.
This metric is similar to the relative abundance of species in
ecology and is computed for each cluster as the ratio between
the number of catchments Nj'4 belonging to ¢; in convex hull
A; and the overall number of catchments N4 within this area:

. N,
Hclluster = N_A : &)
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If a convex hull contains only one type of catchment clus-
ter — which, by default, will be the cluster that generates the
convex hull — then the value of H Ciluster is equal to 1, indicat-
ing complete homogeneity.

2.8 Characterization of catchment clusters

One of the goals of this study is to provide a methodol-
ogy that enables the interpretability of the resulting catch-
ment classification. This would correspond to answering the
following question: what are the characteristic traits of the
catchments belonging to a particular cluster? We answer this
question by identifying the set of traits that are over- or
under-expressed amongst all the nodes of a particular catch-
ment cluster (step 6 in Fig. 1).

This is done by computing the z score of each trait for each
catchment in the dataset. This value represents the unique ex-
pression of a trait in a specific catchment. Next, the z-score
values are aggregated for each catchment cluster as an arith-
metic average, producing a mean z score of each trait for each
catchment cluster:

1 Xuw — Mu
- . (©6)
T el 2 o

WECy u

Here, z,, is the mean z score of the trait # in the cluster
¢y of size ||cy||. The value x, w is the value of the trait u for
the node w in the cluster ¢,. u, and o, are the average and
standard deviation of the trait « in the entire dataset.

In this way, a high absolute value of the average z score
represents a substantive expression of a trait in a particu-
lar catchment cluster, with positive values indicating over-
expression and negative values denoting under-expression of
the trait.

However, investigating the unique expression of each of
the 274 traits for each catchment cluster would disregard
the redundancy of information identified by the trait clus-
ters and neglect the eventual collective contribution of sev-
eral traits. Instead, a better analysis of trait expression can be
achieved by considering their z-score values within the con-
text of other traits in the dataset by leveraging the clusters
produced by the trait similarity network. So, instead of inves-
tigating the expression of each trait in isolation, we aggregate
the z scores of all the traits belonging to each cluster in the
network of traits. In this way, we characterize each catchment
cluster by the expression of a few easily interpretable groups
of traits (referred to as trait categories). The advantage of the
investigation of catchment clusters in the context of the net-
work of traits will become more evident when we discuss the
results in Sect. 3.

2.9 Identification of representative catchments

One advantage of modeling a system as a network is the abil-
ity to use a multitude of metrics from graph theory (Newman,
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2018; Borner et al., 2007). One of the most used ones is the
degree centrality (Borner et al., 2007), defined as the num-
ber of edges incident to a node. The nodes at the other end of
these edges are referred to as neighbors. The interpretation of
the degree varies according to the nature of the edges, but, in
general, nodes with a high degree play a more important role
in the network and are often referred to as hubs. In the case
of a similarity network, a node with a high degree central-
ity identifies an element that is very similar to many others,
while a low-degree node is similar to fewer nodes, and zero
degrees indicates that the node is disconnected from the rest
of the network. High-degree nodes in similarity networks are
the best candidates to be selected as representative nodes be-
cause they have the highest number of neighbors. By sorting
the nodes according to their degree centrality, we can select
a small number of nodes that are representative of the entire
network.

We apply this concept to the network of catchments to se-
lect a small set that is representative of the cluster the catch-
ments belong to (step 8 in Fig. 1). This is done by ranking
catchments within each cluster and selecting nodes based
on the degree centrality measure. However, we do not sim-
ply choose the nodes that have the highest degree central-
ity since that could potentially lead to selection of two or
more nodes that are topologically close to each other but that
both share a high number of neighbors, thus undermining
network coverage and resulting in redundant choices of rep-
resentative catchments. Thus, to promote network coverage
and minimize superfluous representation, our method first se-
lects the node with the highest degree centrality in a cluster
and then removes both the selected node and its neighbors
from the cluster. The new degree-based ranking for the re-
maining nodes is then updated due to the removal of nodes.
We continue this selection process until the size of the union
set of representative catchments and their neighbors is equal
to 95% of the size of the cluster they are extracted from.
Using this methodology, nodes with an initially high degree
centrality, which share many neighbors with a selected catch-
ment (i.e., they are topologically close from a network per-
spective), will have their degree reduced and are less likely
to be selected.

2.10 Analysis of streamflow indices

The unsupervised classification workflow developed in this
study finds groups of similar catchments using only traits and
does not use observations of hydrological variables such as
streamflows or temperature. Hence, we can use the classifi-
cation to examine the hydrologic behavior of the catchment
clusters and their associated trait expressions. Here, we focus
on streamflow regimes following the method in Olden and
Poff (2003). They recommend using 34 representative flow
indices, which are considered to minimize collinearity based
on a review of 171 indices calculated using long-term flow
records from 420 sites from across the CONUS. The list of
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these indices can be found in Table S1 in the data repository
associated with this paper (Ciulla and Varadharajan, 2023).

To compute the indices, we use the historical record of
river mean daily discharge values for the 9067 gaging sta-
tions, retrieved using the BASIN-3D software (Varadhara-
jan et al., 2022), which synthesizes, on demand, time series
data from different data sources, including the USGS Na-
tional Water Information System (NWIS) (USGS, 2022). We
only consider the discharge data from 1971 to 2000 to match
the time range of most of the traits in the GAGES-II dataset.
We eliminate stations with more than 50 % of missing values
in our time range, resulting in a down-selected set of 5251
stations. To compute the 34 hydrologic indices, we use the
EFlowCalc package provided by Thibault (2021) that dis-
cards missing values in the computation of aggregated mea-
sures such as averages or standard deviations.

We aggregate indices as average values for each catchment
cluster after further down-selecting to stations that are within
34 clusters containing at least 50 catchments. On average,
59 % of the catchments in each of these 34 clusters have
a corresponding long-term flow record for which we com-
puted the hydrological indices. Given this relatively high per-
centage, we use the averaged streamflow indices from these
catchments as proxies for the hydrological behavior of the
entire cluster.

For all the hydrological indices, we use the statistical
Kruskal-Wallis test (Kruskal and Wallis, 1952) to determine
if there is a statistically significant difference between the
distribution of the values between individual clusters and the
rest of the catchments. This test does not assume normality
in the data distribution and is the non-parametric alternative
to the ANOVA method, which are necessary considerations
because none of the streamflow index values were normally
distributed as per the Shapiro test (Shapiro and Wilk, 1965).
The result of the Kruskall-Wallis test indicates if the indices
grouped according to the clusters are drawn from the same
distribution as the entire set. If that is not the case, it means
that catchment clusters resulting from our trait-based classi-
fication have different streamflow characteristics.

We conducted two additional statistical tests to further ex-
amine whether the hydrological indices of catchment clus-
ters are significantly distinct. The first is a nonparametric
one-sample Kolmogorov—Smirnov (K-S) test that compares
a sample distribution to a reference one for each hydrolog-
ical index. This expands upon the Kruskall-Wallis test but
allows us to determine the number of clusters that are statis-
tically distinct from the entire catchment dataset. Here, each
sample is constituted by the indices of one cluster, and the
reference distribution is based on all the catchments within
the CONUS. The null hypothesis is that samples are drawn
from the reference distribution when using 0.05 as threshold
for the p value. The second is a two-sample K-S test com-
paring the distributions of indices for pairs of catchment clus-
ters, which allows us to determine how different the clusters
are from each other. Here, each sample pair is constituted by
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the distribution of indices for the clusters being compared.
Similarly to the one-sample test, the null hypothesis is that
samples are drawn from the same distribution when using
0.05 as the threshold for the p value.

2.11 Comparison with traditional clustering techniques

We compare the clusters obtained from our methodology,
which uses network theory and the cosine distance metric,
with the ones resulting from the traditional k-means and hi-
erarchical clustering approaches. Since these are all unsuper-
vised methods, we cannot use any target variable to compute
the accuracy of the classification to compare performance.
For this reason, we identified two metrics to evaluate the per-
formance of the different methods.

The first metric, which we refer to as cluster similarity, re-
flects the similarity between traits of the catchment clusters,
which are represented by the average trait z scores aggre-
gated across the catchments in each cluster, as described in
Sect. 2.8. Here, each catchment cluster is compared to the
others by calculating their pairwise cosine similarity. The
highest value of the cosine distance within each catchment
cluster is used as a conservative measure of inter-cluster sim-
ilarity to assess how far apart the catchment clusters are from
each other. The median value of the inter-cluster similarities
represents how distinct the clusters produced by each algo-
rithm are. We aim to minimize this metric since a good clas-
sification algorithm should produce more distinct clusters.

The second metric is the silhouette score (Rousseeuw,
1987), which is a measure of intra-cluster similarity. It repre-
sents how similar each element (i.e., a catchment) is to other
elements within its cluster relative to elements in other clus-
ters. The values of this metric range between —1 and 1, with
higher values denoting that an element is well placed in its
cluster compared to other clusters. The silhouette values are
averaged for all items in the dataset. A good clustering algo-
rithm would produce higher values in terms of the silhouette
score.

We use these two metrics to compare our clustering ap-
proach with the hierarchical clustering (in its common im-
plementation using the Ward criterion; Ward, 1963) and the
k-means clustering algorithm (MacQueen, 1967). Addition-
ally, to determine the effects of the distance metric, we com-
pare the results from our workflow, which uses the cosine dis-
tance, with a version where the pairwise similarity between
nodes is computed using the Euclidean distance. Finally, to
show the robustness of our approach, we examine various
choices for the two free parameters in our workflow, namely
the number of reduced dimensions after the PCA (k) and the
cluster granularity, which is governed by the disparity filter
parameter o used to tune the removal of network edges dur-
ing the backbone extraction step (Sect. 2.5). Three different
values of k are investigated: k = 6, corresponding to 50 %
of information retained after PCA; k = 20 (our choice in the
study), corresponding to 72 % of retained information; and
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k = 90, corresponding to 95 % of retained information. For
each value of k, we generate clusters with different o val-
ues, with the number of clusters covering 95 % of the dataset,
ranging between 20 and 120.

3 Results
3.1 The trait network

The trait network has 274 nodes representing individual traits
and 1422 edges connecting the nodes (Fig. 3). This net-
work encodes the similarity between catchment traits as edge
weights. We use the network edges in the clustering to gen-
erate groups of traits that are connected to each other and
hence contain similar information. This enables aggregation
of our analysis from individual, redundant traits to a smaller
number of interpretable, higher-level trait categories that rep-
resent similar properties of the catchments.

The size of the clusters range from 35 nodes to 1 node (Ta-
ble 1), where the 20 largest clusters contain 95 % of all nodes
in the network. All the clusters are labeled with a unique nu-
merical identifier and are assigned a name that is represen-
tative of the trait category. For instance, we refer to cluster
number 2 as the “temperature” trait category since it includes
nodes like average annual air temperature for the watershed
(T_AVG_BASIN) and other related quantities such as the
mean day of the year of first freeze (FST32SITE). Analo-
gously, cluster number 0 includes nodes like the percentages
of watershed land covered by development areas at high (DE-
VHINLCDO06), low (DEVLOWNLCDO06), and medium in-
tensity (DEVMEDNLCDO06). Thus, we identify cluster 0 as
“developed areas” to indicate the presence of these and other
traits that represent the extent of human development in the
catchment. A full list of traits contained in each cluster of
the network is provided in Table F1 in the Appendix. A more
comprehensive table of trait categories, which includes de-
scriptions of each trait, as well as the trait network topology,
is provided in the dataset associated with this paper (Ciulla
and Varadharajan, 2023).

3.2 The catchment network

In the catchment network, each of the 9067 catchments is a
node, and the 559207 edges connect pairs of catchments with
similar traits. The network provides information about catch-
ment similarity, and nodes belonging to a cluster are more
similar to each other than they are to the rest of the network.
The clusters range from 953 nodes to 1 node in size. The top
71 clusters contain 95 % of the nodes in the network, while
the 34 clusters with sizes greater than 50 nodes cover 84 %
of all nodes. We provide the data for the catchment network
topology and partitioning into clusters in Ciulla and Varad-
harajan (2023).

Figure 4 shows the spatial distribution of catchment clus-
ters using the coordinates of their corresponding gaging sta-
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Table 1. The list of trait categories identified by our methodology
as clusters generated by the network connectivity patterns using the
GAGES-II trait dataset. The IDs match the numbers in Fig. 3, while
cluster names are humanly assigned to represent the majority of the
traits in the cluster. Cluster size refers to the number of nodes in the
cluster, and the “anthropogenic” column indicates whether the traits
within the cluster are associated with human activities.

ID Cluster name  Cluster  Anthro-

size pogenic
0 Developed areas 35 yes
1 Precipitation and runoff 31 no
2 Temperature 22 no
3 Croplands 22 yes
4 Croplands and canals 16 yes
5 Croplands and dams 15 yes
6 Barren soil and deciduous forests 12 no
7 Elevation 12 no
8 Evergreen forests 12 no
9 Woody wetlands and croplands 11 yes
10 Lakes, ponds, and reservoirs 10 yes
11 Pastures and grasslands 10 yes
12 Fine soils 10 no
13 Major dams 9 yes
14 Summer precipitation 7 no
15 Herbaceous wetlands 7 no
16 Mixed forests 6 no
17 Coarse soil 6 no
18 Perennial ice and snow 5 no
19 Shrublands 5 no
20 Lower-order streams 5 no
21 Higher-order streams 4 no
22 Non-croplands 1 yes
23 Overland flow 1 no
24 Bulk density 1 no

tions. We find that catchments within a cluster tend to be
located in the same region, even though no geographical
coordinates were used as traits in our network methodol-
ogy. For example, large portions of the Midwestern US are
predominantly cluster 2 (green circles) and the coastal ar-
eas of the southeastern US are cluster 4 (purple circles).
However, cluster 1 (orange circles) is distributed across the
CONUS and comprises agglomerates of dense nodes sepa-
rated by long distances. The global homogeneity measure of
the catchments is 0.71, which means that the nearest neigh-
bors for 71 % of the catchments belong to the same cluster.
This is significantly higher than the homogeneity measure of
0.04 when clusters are randomly distributed throughout the
CONUS. In Sect. 3.3, we show how the predominant traits
of the catchment clusters can be used to interpret this result.
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Figure 3. The network of traits, where the nodes are traits, and edges represent their pairwise similarity. The nodes are colored according to
the different clusters, and matching color numbers are in descending size order, as shown in Table 1.

3.3 Characterization of catchment clusters with trait Leveraging the trait clusters, we condense the informa-
categories tion of the unique expression of the 274 traits into 25 in-
terpretable categories by computing the cluster-wide average

We infer traits that are over- or under-expressed in each of the trait z scores (see examples in Fig. 6c, d). Cluster

catchment cluster using the z scores from the trait network. 0 (blue circles) shows over-expression of the categories of
We use two clusters as examples (Fig. 5) to highlight how elevation (z score = 1.49) and evergreen forests (z score =
the network methodology allows for an interpretation of the 1.04) and under-expression of the temperature category (z
characteristics of each catchment cluster. The catchments score = —1.28). Based on the expression of these and other
within cluster O (blue circles) are spread across the western trait categories, we infer that the blue cluster generally rep-
US only, while cluster 1 (orange circles) is distributed across resents mountainous forested areas. Cluster 1 (orange cir-
the CONUS. The z scores of every trait for the two clusters cles) is dominated by the trait category of developed areas (z
are shown in Fig. 6a and b, where each node in the network is score = 2.29), indicating that the catchments represented by
sized according to the absolute values of their z score, while the orange nodes are located in close proximity to developed
the color reflects the sign (of over- or under-expression). For areas such as cities. The fact that this cluster is dominated by
both catchment clusters, the respective trait network contains an anthropogenic category is consistent with the heteroge-

entire groups of over- and under-expressed nodes.
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Figure 4. Geographical representation of the catchment clusters, where each symbol represents a catchment and is located at its corresponding
gaging station. The catchment network representation with nodes and edges is shown in the figure inset. The numerical identifiers correspond
to the IDs in Table 2. The colors depict different clusters and are consistent between the map and the network diagram. Note that, due to the
lack of a palette with enough distinguishable colors, some of the clusters are indicated using different symbols when colors overlap.

Figure 5. Spatial distribution of two of the catchment clusters from
Fig. 4, shown separately for easier visualization. Maps showing the
spatial distributions individually for the 34 clusters of sizes greater
than 50 are included in the file S2 of the dataset associated with this
paper (Ciulla and Varadharajan, 2023).

neous nature of its spatial pattern. In contrast, the rather ho-
mogeneous distribution of catchment cluster O is likely due
to the prominence of climatic trait categories that are more
correlated with the geographical location.

The list of trait categories and their relative z-score val-
ues associated with all the catchment clusters identified us-
ing our methodology is provided in the dataset (Ciulla and
Varadharajan, 2023). A brief summary for clusters with sizes
greater than 50 is shown in Table 2, along with their corre-
sponding spatial homogeneity measures.

Hydrol. Earth Syst. Sci., 28, 1617-1651, 2024

3.4 The representative catchments

Here, we provide an example of how our methodology can
be used to identify representative catchments using the two
clusters highlighted in Sect. 3.3. A total of 10 catchments
are considered to be representative of cluster 0, and 14 are
considered to be representative of cluster 1 (Fig. 7). In both
cases, the selected catchments represent at least 95 % of the
nodes in each cluster. The selected representative nodes are
geographically distributed within the spatial domain of the
cluster they belong to. This behavior is the result of the com-
bined effect of (1) the intrinsic multiscale connection patterns
in the network, where heterogeneity at different scales pro-
duces groups of more densely connected nodes within the
clusters, and (2) the strategy of node selection, which pro-
motes the spread of representative nodes across each cluster.
These representative catchments can be used to prioritize lo-
cations for observations or modeling purposes.

3.5 Hydrological indices and trait categories

The results of the statistical tests are summarized in Ap-
pendix in Table G1 for all 34 streamflow indices. When av-
eraged for all the indices, 83 % of the clusters for the one-
sample K-S test and 79 % for the two-sample K-S test re-
ject the null hypothesis, meaning that the distribution of their
streamflow indices is mostly distinct from the overall distri-
bution at the continental scale. These results show that the
trait-based clustering approach results in distinct signature
classifications. See Sect. 4.5 for further discussion about the
distinct hydrological behaviors across the catchment clusters.
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Figure 6. Network of traits for (a) cluster O (blue circles) and (b) cluster 1 (orange circles) shown in Fig. 5. Nodes are colored according to
the z-score values computed for the two catchment clusters. Node size is proportional to the absolute values of the z score. Traits that are
over-expressed are shown in red, and those that are under-expressed are shown in blue. In this way, nodes depicting over- and under-expressed
traits have bigger nodes and are more visible. The cluster-aggregated z scores are shown as bar charts for (c) cluster O (blue circles) and (d)

cluster 1 (orange circles) from Fig. 5.

3.6 Comparison with traditional clustering techniques

The two metrics, cluster similarity and silhouette score, indi-
cate that our workflow performs better than traditional unsu-
pervised methods of classification (Fig. 8). We also find that
the network-based clustering (red and green points) is con-
siderably superior in relation to both k-means (yellow points)
and hierarchical clustering (blue points) across the different
values of k and cluster granularity (Fig. HI in Appendix).
This is evident from the consistently low values in terms of
the median cluster similarity and the higher values in terms
of silhouette scores for our methodology. Also, the network
generated using the cosine distance as a similarity metric (red
points) performs better than its counterpart that uses the Eu-
clidean distance (green points). This confirms that the cosine
similarity should be preferred as a distance metric in high di-
mensions, and the directionality of the data can contain valu-
able information.

https://doi.org/10.5194/hess-28-1617-2024

4 Discussion

4.1 Advantages of our network-based workflow as a
tool for classification

In this study, we present a novel methodology to classify
river catchments in an unsupervised manner using network
science. We chose to use the GAGES-II dataset as the source
of information for catchment characterization because of its
comprehensive set of over 300 natural and anthropogenic
traits across more than 9000 catchments in the CONUS. In
our methodology, we use the combination of the PCA al-
gorithm, networks, and the cosine similarity metric to mit-
igate the issues of information redundancy and high dimen-
sionality in the data. In particular, the distance metrics per-
form worse (referred to as degradation) as the number of di-
mensions grows (Aggarwal et al., 2001). One of the conse-
quences of this phenomenon is that the ratio of the distances
of the nearest and farthest neighbors to a given point in high

Hydrol. Earth Syst. Sci., 28, 1617-1651, 2024
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Table 2. Table of dominant trait categories and spatial homogeneity measures of the 34 catchment clusters with at least 50 nodes. The clusters
are sorted by decreasing size (i.e., number of nodes in the cluster). Values shown are the cluster unique ID, cluster size, a brief descriptor
based on the dominant over- and under-expressed traits categories, and cluster geographical homogeneity measure.

ID Size Brief descriptor of dominant trait categories Homogeneity
0 953  Low temperature, high elevation, evergreen forests 0.53
1 729  Developed areas 0.12
2 673  Croplands, fine soils 0.57
3 450 High elevation, low summer precipitation, shrublands 0.28
4 419  High temperature, low elevation, wetlands 0.79
5 395 Low temperature, high summer precipitation, mixed forests 0.49
6 341 High precipitation and runoff, high elevation, low summer precipitation, evergreen forests 0.33
7 337  High precipitation and runoff, evergreen forests 0.80
8 292  Low overall precipitation and runoff, high temperature, shrublands 0.28
9 240  Pastures and grasslands 0.69
10 214 High temperature, low elevation, woody wetlands and croplands 0.55
11 210  Low temperature, lakes and reservoirs, wetlands 0.63
12 202 Low summer precipitation, mixed forest, shrublands 0.70
13 195 High summer precipitation, high temperature, croplands 0.17
14 186 Low temperature, herbaceous wetlands, croplands 0.53
15 177 Low precipitation, pastures and grasslands 0.19
16 170 High temperature, shrublands 0.67
17 138 High precipitation and runoft, barren soil and deciduous forests 0.82
18 132  High temperature, major dams 0.07
19 124 High temperature, pastures and grasslands 0.71
20 112 Low temperature, high summer precipitation, croplands, mixed forests 0.36
21 108  High elevation, barren soils and deciduous forests 0.10
22 100 High summer precipitation, lakes and reservoirs 0.11
23 98  High summer precipitation, barren soils and deciduous forests 0.54
24 95  Croplands, fine soils 0.63
25 76  High temperature, low elevation, high summer precipitation 0.30
26 69  Wetlands and croplands 0.59
27 64  High summer precipitation, barren soils and deciduous forests 0.76
28 63  Low temperature, high elevation, low summer precipitation, lakes and reservoirs 0.07
29 61 High summer precipitation, croplands 0.62
30 61  High temperature, major dams, woody wetlands and croplands 0.17
31 54  High temperature, high summer precipitation, mixed forests 0.29
32 53  High temperature, low summer precipitation, developed areas 0.19
33 51 High temperature, low elevation 0.12

dimensions approaches 1, meaning that the points become
uniformly distant from each other (Beyer et al., 1999). The
PCA partly resolves these issues by projecting the original
highly dimensional vector data into a smaller set of orthog-
onal directions called principal components. However, there
are limitations to how small the resulting vectors can be be-
cause data compression inevitably results in some loss of in-
formation. It is not uncommon to retain a high number of
dimensions after PCA (20 in our case), which still results in
degradation of the distance metric and has some redundant
information. Thus, applying k-means or hierarchical cluster-
ing algorithms after PCA to large dimensional datasets is not
a solution to the issues of multicollinearity and high data di-
mensionality, given the dependence of these methods on the
Euclidean distance.

Hydrol. Earth Syst. Sci., 28, 1617-1651, 2024

Hence, we use networks to model the relationships
amongst elements of the system represented by the highly
dimensional vectors. The elements are the nodes of a net-
work connected by edges that represent their pairwise dis-
tance metrics, which are not bound to be points in a vectorial
space. Instead, we use their vectorial representation to com-
pute any appropriate distance metric, and that information is
reflected in the connection between nodes as edge weights.
Thus, the task of finding clusters in the Euclidean space is
shifted to the identification of connectivity patterns in a net-
work. In this respect, the network constitutes a generalized
tool for system analysis where edges can represent different
types of distance metrics or other pairwise relational quan-
tities. In our study, we chose to use the cosine distance to
describe the relationships amongst the reduced vectors of
both traits and catchments since it is more appropriate for
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Figure 7. Geographical representation of clusters 0 and 1, highlighting locations of their representative nodes. The catchment names, as
specified in the GAGES-II dataset, are shown in the figure legend with the same color as the circles in the map.
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Figure 8. Median cluster similarity values (a) and silhouette scores (b) for different clustering methods and similarity measures used in
the network analysis. The number of reduced dimensions after PCA is equal to 20, corresponding to 72 % of retained information. The
vertical dashed black line refers to the cluster granularity used in the paper. The dashed colored lines are shown for visualization of trends.
Lower values in terms of the median cluster similarity metric (a) correspond to better clustering performance. Higher values in terms of the

silhouette scores (b) correspond to better clustering performance.

use in high dimensions and preserves the directionality of
the data. The rationale for the choice of this similarity met-
ric over the Euclidean distance is discussed in Appendix C.
The use of the network enables us to move to this alternate
distance metric, surmounting issues encountered by common
methods like the k-means and Ward’s hierarchical cluster-
ing that rely on the Euclidean distance to generate the di-
vision into classes. Once we set up our investigation as a
network analysis, the problem of classification is translated
into finding clusters in the networks. Many clustering algo-

https://doi.org/10.5194/hess-28-1617-2024

rithms are available for network science (Fortunato, 2010),
and our method implements the widely used Infomap algo-
rithm (Rosvall and Bergstrom, 2008).

We have demonstrated that our network-based workflow
outperforms the k-means or the Ward’s hierarchical algo-
rithms for two different metrics (see Sect. 3.6), particularly
with the parameters we chose for dimensionality reduction
and the disparity filter (dashed black lines in Fig. 8, corre-
sponding to k = 20 dimensions retained). We conclude that
our method produces more distinct clusters and is hence
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a better choice than traditionally used classification ap-
proaches.

In addition to addressing the challenges of information
redundancy and data dimensionality, our analysis using the
catchment-trait networks is also interpretable as it can quan-
titatively determine trait categories that are over- or under-
expressed in catchment clusters (Sect. 4.2). Additionally, we
are able to use a variety of network-specific metrics that high-
light the role of the elements of the system at different scales
of the network. For example, we use the degree centrality
computed using the nearest neighbors of a node as a local
measure to identify catchments that have a high number of
connections to others. In a similarity network, a node with a
high degree measure means it is similar to many other nodes,
and, hence, we use the degree centrality to generate sets of
representative catchments. At an intermediate scale, the clus-
tering coefficient reveals how many neighbors of a node are
connected to each other, revealing heterogeneous, non-trivial
connectivity patterns that indicate the presence of clusters.
At a global scale across the network, we leverage the flow of
information traveling through the nodes in the Infomap al-
gorithm (Rosvall et al., 2009) to generate the clusters. Addi-
tionally, statistical methods can be applied to select the infor-
mation contained in the edges of the network (see Sect. 4.4.2
for an example). Although we demonstrate the use of this
workflow for catchment classification, the methodology can
easily be extended to analyze other types of environmental
trait datasets, such as of microbial or plant traits.

4.2 Interpretability and redundancy analysis

Machine learning techniques are capable of proficiently
learning patterns in the data (Bishop and Nasrabadi, 2006)
but are often black-box methods that are difficult to inter-
pret. In the case of supervised approaches, the accuracy of
a method can be evaluated using a test set, which is not an
option for unsupervised algorithms because of the lack of
labeled data. Hence, we simultaneously analyze the informa-
tion from the networks of traits and catchments to interpret
the results for a deeper understanding of the specific set of
traits that result in the classification of a catchment cluster.
Specifically, we characterize the clusters of catchments
by investigating the traits that are over- or under-expressed,
which are grouped into a small, interpretable set of trait cate-
gories. The generation of the higher-level trait categories re-
duces the number of redundant traits by aggregating them
into clusters, which allows for easier human interpretation.
For example, a set of traits related to air temperatures, when
clustered together, are no longer isolated measures and are
easier to interpret when presented as an aggregated temper-
ature category. To illustrate how our approach helps with re-
ducing trait redundancy, we computed the Spearman corre-
lation coefficients (p) between streamflow indices and catch-
ment traits, which account for non-linearities in the data. We
find that traits belonging to the same trait categories have
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similar correlations to the streamflow indices (Fig. I1 in the
Appendix). We find that the Spearman correlation coeffi-
cients between the streamflow indices and individual catch-
ment traits can be effectively represented as an aggregated
median value for the trait categories generated in our method
(Fig. 10), which indicates that our reduced set of trait cate-
gories is sufficient to determine the general relationships be-
tween traits and hydrological signatures. Thus, interpretabil-
ity is enabled with the generation of a small number of trait
categories whose composition can be easily visualized and
statistically analyzed.

Topological proximity at the cluster level is also meaning-
ful. Clusters that share a connection and that are close to each
other are also more related to each other. For example, clus-
ter 3 in the trait network, which includes agricultural traits,
and cluster 5, which has traits related to croplands, as well
as to dams, are topologically close, with many shared edges,
and also appear intuitively to be related to each other.

Finally, the identification of dominant traits is not only
useful to characterize individual catchment clusters (Fig. 6)
but can also be used to compare across different clusters. For
example, in Fig. 9, we show the differences between the traits
categories of two catchment clusters located in the western
US. Since the cluster locations overlap geographically, we
use the differences in the z-score values of the trait categories
to understand how the groups were split by identifying which
categories are relatively over-expressed in the two clusters.
We can deduce that cluster O refers to catchments with higher
precipitation and runoff, higher elevation, and the presence of
evergreen forests, while the cluster 3 has higher temperatures
and shrublands. Note that these are relative quantities, and,
in fact, cluster 0 has lower precipitation and runoff overall in
comparison to the rest of the network, as shown in Fig. 6.
In the rest of the Discussion subsections, we leverage the
trait categories associated with catchment clusters to reveal
insights relevant to their hydrological behavior.

4.3 Spatial homogeneity of catchment clusters with
natural and anthropogenic traits

The results in Sect. 3.5 show that, in general, the catchment
clusters tend to be geographically co-located throughout the
CONUS, with a few exceptions. This means that the trait-
based classification results in clusters that have some geo-
graphical homogeneity, which would not occur with a ran-
dom distribution of clusters. However, at the cluster level,
we see a high variability in terms of spatial homogeneity,
as shown in Table 2. This reveals that the geographical do-
main generated by each cluster (i.e., its convex hull) contains
catchments from other clusters, and the extent of the relative
abundance changes across clusters.

We leverage the information from the trait categories to in-
vestigate this variability. We find that most of the trait clusters
are composed of mostly anthropogenic or natural traits only.
This result not only provides additional validation of the trait
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classification, but it can be used to identify the effects of constituted by clusters where the human impact is interlaced
human influence on the hydrological behavior of catchment with natural factors, such as in croplands. We first sorted the
clusters. Thus, we divide the catchment clusters into three catchment clusters from the lowest to the highest value of
groups of increasing (low, middle, high) human influence. cluster homogeneity (Fig. 11a). The six clusters with strong
Our hypothesis is that clusters dominated by natural factors, anthropogenic influence are amongst the last ten with respect
with little human disturbance, should exhibit more spatial ho- to their spatial homogeneity, confirming that the human ac-
mogeneity as a consequence of the environmental forcing. tivities are associated with a more heterogeneous spatial dis-
Conversely, clusters with strong anthropogenic influences, tribution of catchment clusters. However, none of the clusters
like urban areas or dams, are less coupled to natural factors have a homogeneity measure lower than the one assuming a
and should display lower homogeneity. A middle ground is random cluster distribution. Note that the spatial homogene-

https://doi.org/10.5194/hess-28-1617-2024 Hydrol. Earth Syst. Sci., 28, 1617-1651, 2024



1634 F. Ciulla and C. Varadharajan: A network approach for multiscale catchment classification using traits

ity is computed using geographical coordinates and does not
account for the elevation of the catchments. This could ex-
plain lower homogeneity values in some of the catchment
clusters dominated by natural factors.

4.4 Trait relevance at different spatial scales

So far, our study has only focused on the classification of the
catchments at the continental scale. However, our proposed
method can be applied at multiple spatial scales as long as
relevant trait information is available. Here, we show two
different approaches that can be used for catchment classi-
fication at different scales.

4.4.1 Multiscale analysis at regional and continental
scales

First, we apply the workflow previously used for the CONUS
scale at the regional scales to obtain the trait and catchment
networks. We demonstrate this approach for the Upper Col-
orado River Basin (UCRB; USGS HUC 14). There are 368
catchments within this area, which is about 25 times smaller
than the total number across the CONUS. Similarly to the
results from the CONUS scale, we find a well-defined ge-
ographical coherence among the nodes of each catchment
cluster (Fig. 12).

Not surprisingly, the trait network connectivity and clus-
ter composition changes to reflect the characteristics of this
subset of catchments. The characteristic z scores calculated
for this subset can provide an interpretation of the trait ex-
pression in this region. New trait clusters emerge that are
more relevant to the UCRB, like the one representing areas at
high elevations covered with sandy soils. Some trait clusters,
like the one consisting of temperature-related traits or the
cluster associated with shrubland-dominated environments,
are present at both the CONUS scale and this particular re-
gional scale. The complete list of trait network clusters for
the UCRB is available in Ciulla and Varadharajan (2023).

4.4.2 Edge weight filter tuning

Another way to capture insights at different spatial scales is
to tune the edge filtering parameter, as discussed in Sect. 2.5.
By changing the significance level of the disparity filter, we
tune the connectivity of the network of catchments to gener-
ate larger or smaller clusters. There is no prescribed granu-
larity at which the system should be investigated, and we can
make adjustments to fit the goals of the analysis. Here, we
provide an example where a smaller value of the significance
level acts as a higher threshold for the edge weights, reduc-
ing the number of edges in the network of catchments and
producing smaller clusters. Here, cluster 4, generated using
the original filter threshold that was spread across most of
the South Atlantic US (purple circles in Fig. 4), is split into
the two new clusters as shown in Fig. 13. We again use the
difference between the z scores of the trait categories in the
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two newly generated clusters to interpret the partitioning. We
find that the difference is primarily due to the separation of
catchments that have predominant traits such as herbaceous
wetlands, croplands and canals, and moderately higher tem-
peratures and summer precipitation, which tend to be con-
centrated in the Florida Peninsula, in contrast to those with
evergreen forests and lower-order streams, which were more
prevalent in the rest of the original cluster (Fig. 13b).

4.5 Distinct hydrological behavior of catchment
clusters

In this study, we have so far analyzed the characteristics of
river catchments at regional to CONUS scales, along with
their physical traits. Here, we extend our analysis to exam-
ine possible connections between the catchment clusters and
their hydrological behaviors. In Sect. 3.5, we show that the
distributions of hydrological indices calculated using stream-
flows are statistically different when aggregated by catch-
ment cluster, indicating that the partitioning with the traits
generates clusters that have distinct hydrological behaviors.

We can leverage the interpretability provided by the trait
categories to hypothesize about predominant factors that in-
fluence the distinct hydrological behavior in the catchment
clusters. To illustrate this, we first examine the distributions
of two indices from Olden and Poff (2003), mean annual
runoff (ma41) and the average yearly number of moderate
flood events in a watershed (fh6) (see Fig. 14). In fh6, a
flood is considered to be moderate when the streamflow ex-
ceeds 3 times the value of the median flow. Cluster 7 (gray
box in Fig. 14) displays the highest median and the high-
est upper whisker for ma41, which is the 75th percentile
plus 1.5 times the interquartile range. The catchments in this
cluster are predominantly located in the Pacific Northwest
(Fig. 4). From the analysis of the over-expressed trait cate-
gories, we find that this cluster is characterized by high pre-
cipitation. Not surprisingly, we find that catchments in the
Pacific Northwest with higher precipitation also have greater
average flows. Cluster 1 (orange box in Fig. 14b) displays
the highest median and the highest upper whisker for th6 and
contains catchments in close proximity to developed areas
(Fig. 6d). Hence, we can hypothesize that predominantly de-
veloped catchments are more vulnerable to moderate flood-
ing, which is consistent with a previous finding from Om-
badi and Varadharajan (2022) showing that catchments with
a higher percentage of impervious cover in the GAGES-II
dataset generally have increased runoff ratios in both temper-
ate and arid climates. The boxplots of the full set of hydro-
logical indices included in this study are presented in Ciulla
and Varadharajan (2023).

Additionally, we utilize the ability to determine correla-
tions between streamflow indices and a reduced set of inter-
pretable trait categories (Sect. 4.2). We find that, across the
9067 catchments, mean annual runoff (ma41) is positively
correlated not only with traits related to precipitation but also
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significance level of the disparity filter. The union of the nodes of these two clusters corresponds to cluster 4 in the South Atlantic US in the
original catchment network, shown as purple circles in Fig. 4. (b) Bar chart of the difference between the z scores of the two clusters. The
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with the presence of mixed forests (p = 0.45) and, to a lesser
degree, evergreen forests (o = 0.25). The ma41 index is also
negatively correlated with the pastures and grasslands trait
category (p = —.40). This highlights the role of vegetation
in mediating flows and is somewhat counterintuitive given
that, in the absence of management, forested catchments with
higher evapotranspiration would be expected to have lower
flows compared to grasslands. Similarly, the fh6 index is
positively correlated not only with precipitation traits but
also with traits related to developed areas (p = 0.40), crop-
lands (p = 0.32), and temperature (p = 0.43). It is also in-

versely correlated with elevation (p = —0.45), the presence
of shrublands (p = —0.38), evergreen forests (p = —0.28),
and coarse soils and groundwater (p = —0.35). These rela-

tionships are consistent across other flood indices. For exam-
ple, the th7 index showing the propensity for heavy floods
(above 7 times median flows) similarly has a moderate pos-
itive correlation with temperature (o = 0.44) and overland
flow (p = 0.38) and a moderate negative correlation with el-
evation (p = —0.39) and coarse soils and groundwater (p =
—0.43). This indicates how flooding is affected by the com-
plex relationships between land use, vegetation, soil infiltra-
tion capacity, and base flows.

These examples highlight the use of our methodology to
demonstrate how specific hydrological behaviors can be con-
nected to catchment traits such as their climatic conditions,
topography, land use, or anthropogenic influence. The abil-
ity to link catchment traits to specific hydrological behavior
enables further analysis of the factors that influence different
streamflow characteristics (e.g., high versus low flows). In
particular, the distinction between anthropogenically influ-
enced trait categories and natural traits (see Table 1) enables
further analysis of the impact of human activities on hydro-
logic behavior.

4.6 Examining diversity of hydrologic behavior within
catchment clusters

We can also use our methodology to gain insights into the
traits that may result in diversity of hydrologic behavior
within similar catchments. For this purpose, we selected
catchment subsets that are considered to be outliers — i.e.,
where the index is either above the 90th percentile or be-
low the 10th percentile of all indices in the cluster for each
streamflow index and for each cluster of catchments. We
compare the z scores (Z) of the traits associated with the
catchment subsets relative to the entire catchment cluster to
evaluate whether there are differences in traits that would
explain the anomalous hydrological behavior. As an exam-
ple, we look at catchments within a cluster that have distinct
baseflow regimes based on a baseflow index (ml17) in Olden
and Poff (2003) that represents the 7d minimum flows di-
vided by mean annual daily flows. The results for anomalous
catchments that have higher-than-normal (>90th percentile)
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baseflow are shown in Fig. 15, where the size and color of
the bubbles are the relative z scores of the trait categories.

We focus on a crop-dominated catchment cluster such as
the one generally encompassing the Ohio Valley region (clus-
ter 2), displayed in the third row of the bubble plot. This clus-
ter is characterized by relatively low elevation and the pres-
ence of croplands and fine soil, as indicated by the higher
z scores of these trait categories relative to the rest of the
CONUS catchments (Fig. 16a). Using our approach, we can
identify the over- and under-expressed traits of the catch-
ments with anomalously high baseflows in cluster 2, which
generally has low-elevation croplands. In Fig. 15, we find
that there is a positive association of high baseflows with
coarse soils (Z =0.98) and a negative one with fine soils
(Z = —0.51), which is not surprising. In addition, there is an
association of high baseflows with the non-cropland trait cat-
egory (third-last column with green label, Z = 0.85), which
aggregates all non-agricultural land use such as urban ar-
eas and forests. This indicates that, within the context of a
cropland-dominated cluster, the catchments that have rela-
tively lower areas of croplands have higher baseflows. Inter-
estingly, there is also a strong positive association of high
baseflows with shrubland (Z = 1.12) and a moderate neg-
ative association with temperature (Z = —0.65). One possi-
ble explanation for these results is that pumping groundwater
for agriculture decreases the groundwater input into streams,
resulting in lower baseflows. This depletion of groundwater
discharge into streams does not occur in shrublands or other
areas without croplands.

Another catchment cluster with a strong agricultural pres-
ence is cluster 14, generally located in North and South
Dakota, which are characterized by low temperatures, herba-
ceous wetlands, and croplands (Fig. 16b). Similarly to clus-
ter 2, there is a positive association of anomalously high
baseflows with coarse soils (Z =0.76) and non-croplands
(Z =1.10) and a negative association with fine soils (Z =
—0.84). However, in comparison to cluster 2, several other
factors have a positive association with high baseflows, in-
cluding precipitation and summer precipitation (Z = 0.90
and Z = 1.04, respectively); the presence of lakes, ponds,
and reservoirs (Z = 1.19); herbaceous wetland areas (Z =
0.76); evergreen, mixed, and/or deciduous forests (Z = 0.58,
Z =0.74, and Z = 0.88, respectively); and developed areas
(Z =0.66). There is also a negative association with over-
land flows (Z = —0.82). This reveals that, in catchment clus-
ter 14, anomalously high baseflows are more likely in the
presence of surface waterbodies, such as lakes and wetlands,
that have the potential for increased surface—groundwater ex-
change. High baseflows also occur in forested areas of these
agricultural catchments, potentially indicating that the parti-
tioning of precipitation is weighted towards infiltration and
recharge over evapotranspiration in these catchments.

Overall, averaged z scores for all catchments in the
CONUS (shown in the last row of Fig. 15) indicate that
there is a moderate positive association of anomalously high
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Figure 16. (a) Bar chart of trait z scores for catchment cluster 2, characterized by croplands and fine soils. The catchments in this cluster
are generally located in the Ohio Valley region. (b) Bar chart of trait z scores for catchment cluster 14, characterized by low temperatures,
croplands, and wetlands. The catchments in this cluster are generally located in North and South Dakota.
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base flows with the presence of lakes, ponds, and reser-
voirs (11th column in light blue, Z = 0.29) and with coarse
soils and groundwater trait categories (18th column in gray,
Z =0.40). Conversely, there is a negative link to fine soils
(13th column in green, Z = —0.25). This indicates the po-
tential for surface—groundwater exchange in regions where
waterbodies are present and, not surprisingly, the importance
of soil texture in mediating baseflow through infiltration and
recharge.

4.7 Application for regionalization studies

Our methodology can be used as the initial steps of typi-
cal workflows used for predictions for unmonitored basins.
These steps constitute (1) classifying catchments into groups
for regionalization and (2) selecting a subset of traits from
a large predictor space, a common challenge in many large
sample studies. For the former, we choose to classify catch-
ments using traits since geospatial datasets are now available
with a lot of trait information that allows us to do catchment
classification at large spatial scales, including for unmoni-
tored catchments. For the latter, we find that we can con-
dense a very large dataset containing hundreds of traits into
25 trait categories with the network approach due to the re-
dundancy in the traits. Thus, our paired catchment—trait net-
work approach not only classifies catchments into clusters
but enables the reduction of a large dataset of traits into an
interpretable set of trait categories by eliminating their redun-
dancy. This provides the ability to identify distinct trait cate-
gories that are over- or under-expressed in catchment clusters
in relation to streamflow behaviors. The parallel analysis of
cluster and trait data as networks is an important characteris-
tic that distinguishes our method from other typical unsuper-
vised clustering workflows.

5 Conclusions

In this study, we demonstrate a new network-based method
for unsupervised classification of river catchments using their
environmental and anthropogenic traits. This approach builds
two parallel networks — the first identifies similar catchments,
and the second reduces the large set of redundant traits into
a small, interpretable set of trait categories. The method out-
performs traditional unsupervised approaches for classifica-
tion and enables simultaneous analysis of the catchment clus-
ters and co-expression of the trait categories. This makes
it possible to identify the predominant traits that result in
the partitioning of catchments into different groups, as well
as their distinct hydrologic behaviors. This trait-based ap-
proach can be used beyond hydrological applications to clas-
sify highly dimensional datasets that have correlated infor-
mation.

Using this method, we classified 9067 catchments in
the continental United States based on 274 traits from the
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GAGES-II dataset. The resulting clusters tend to be geo-
graphically coherent, even though no coordinates were used
as inputs, revealing spatial patterns for catchments with pre-
dominantly natural or anthropogenic traits. The method can
be implemented at multiple spatial scales for which trait data
are available. As expected, the catchment clusters and associ-
ated trait expressions vary according to the spatial scale used
for the analysis. We also find that the catchment clusters dis-
play distinct streamflow characteristics, as quantified by hy-
drological indices, indicating the potential for using the trait-
based classification to understand and predict hydrological
behavior.

We can also leverage network-specific metrics, like the de-
gree centrality, using this workflow. We demonstrate their
utility by identifying a small set of watersheds that are repre-
sentative of a group of catchments with specific traits. These
representative sites can be used to determine locations to con-
duct observations or modeling activities that are transferable
to other catchments.

Catchments are complex systems, and their hydrological
behavior is determined by the combined effect of multiple
co-dependent traits. Thus, networks are an extremely use-
ful tool for investigating catchment properties and behavior
since they enable a holistic approach to studying the system.
The collective analysis of traits creates the opportunity to av-
erage out the unique characteristics of individual catchments
and to characterize emergent hydrological behaviors across
spatial scales.
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Appendix A: Data preprocessing
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Figure Al. A pictorial representation of the trait mapping per-
formed on (a) the original variable denoting distance from a point
of interest and (b) the resulting mapped values.

The traits in GAGES-II with the prefix “RAW_" describe
the straight-line distance (in km) of water stations from
points of interest such as dams, canals, etc. If no such point
of interest is present in the basin, the trait is assigned a miss-
ing value of —999. This choice of missing value makes the
traits non-monotonic because they have small positive val-
ues for stations in close proximity to a point of interest, large
values for stations far from it, and a large negative value
when the point is not present in the catchment. We transform
these traits by computing the inverse of the variable for val-
ues greater than O (Fig. Al). The arbitrary —999 values are
mapped into zeros. When gaging stations geographically co-
incide with the point of interest, the original zero distances
are replaced with the maximum of the newly transformed
values. In this way, the newly transformed trait values are
monotonic and are a continuous and differentiable function
of the distance.

Appendix B: Cao’s method

The only free parameter of the PCA method is the number £,
which is the final dimension of the reduced space. We de-
termine k using the false nearest-neighbor (FNN) method
from (Krakovska et al., 2015), which is based on the as-
sumption that two points that are near each other in a suf-
ficiently lowly dimensional space should remain close as the
dimensions increase. In particular, we use Cao’s version of
FNN (Cao, 1997), where the average distances E(k + 1) of
the closest neighbors of all the elements in the space of di-
mension k + 1 are divided by the same quantity computed
in the k-dimensional space. For sufficiently high values of
k, the ratio R(k) = E(k+ 1)/E (k) approaches the value of
1, indicating that the average distances are not changing in
two consecutive dimensions. We chose an arbitrary value of
1.05 to define the threshold below which the value R (k) is as-
sumed to be constant. The value k for which R(lz) < 1.05 de-
termines the number of principal components to be retained
in the PCA method. For our dataset, the value of k is 20.
By choosing k = 20 dimensions in the reduced space, we ac-
count for 71.6 % of the total variance of the original data.
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Figure B1. Ratio R(k) as a function of the number of dimensions
of the PCA. The horizontal dashed line in red indicates the arbitrary
value R = 1.05.

Appendix C: Cosine similarity

We present a comparison of the cosine similarity, our choice
for the similarity measure, against the widely used Euclidean
distance and highlight why the latter is not the best choice to
capture relationships within highly dimensional vectors.

The first reason is that vectors associated with two random
points in an n-dimensional space have a high probability of
being almost orthogonal when the number of dimensions n
diverges (Aggarwal et al., 2001). Thus,

x-y——>0 x,yeR" (CD)
n— o0

The Euclidean distance Dg between two vectors x and y is

De = | Y =32 = JIxP+IyI2 2%y, (C2)
i

where || - || represents the Euclidean norm.

In the case of highly dimensional vectors, applying
Eqg. (C1) in Eq. (C2) causes the Euclidean distance to become
a function of solely the vector norms:

Dg(x,y) —— +/IIx[I> + [lylI*. (C3)

n—-oo

This is not desirable because we lose the information about
the relationship between the vectors, which is of interest
when computing a distance metric. Although there is no
definitive size threshold above which the effect of the high
dimensionality will be prevalent, we expect that the effect
would not be negligible even in the 20-dimensional space
obtained after our dimensionality reduction step through the
PCA.

Another consideration when choosing a distance measure
is the type of information it provides. In the case of the Eu-
clidean distance, the directionality of the vectors associated
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with the data point does not influence the metric. Figure C1
illustrates an example in two dimensions where the direction-
ality of the data is not captured by the Euclidean distance.
In particular, the points A and B have swapped coordinates
(xo = yp and ya = xp) with xpo = yp < ya = xg. Instead, C
has the same y coordinate as B (yg = yc), while the x coor-
dinates are in such a way that the Euclidean distances be-
tween A and B dg (A, B) and between B and C dg(B, C) are
the same. So the Euclidean distance would indicate that the
relationship is equal between two points with swapped co-
ordinates, which should depict two very different elements,
and between one of the two and a third one that shares ex-
actly one coordinate, while the second coordinate is simply
greater.

Conversely, the cosine distance captures the difference be-
tween A—B and B—C because it considers the directionality.
Specifically, the angle aap between A and B is much greater
than the one apc between B and C, leading to a bigger co-
sine distance. The cosine similarity captures the information
contained in the different coordinates of the data points. In
our methodology, the coordinates are the components given
by the principal components as computed by the PCA, which
represent a mixture of traits. We contend that, in a trait-based
approach, the directionality is important both before and af-
ter the dimensionality reduction and needs to be captured.

y A

d(A.B)

a B d(BC) ¢
—\Vc >0

GBC

»
-
X

Figure C1. A pictorial representation of the qualitative difference
between Euclidean distance and cosine similarity. The point B is
equidistant to A and C as per the Euclidean distance metric even
though its coordinate values are swapped with respect to A.

Hence, to mitigate the effects of dimensionality and to in-
clude information on directionality, we use the cosine simi-
larity instead of the Euclidean distance to compute the rela-
tionship between vectors. Computationally, the cosine simi-
larity is computed as the dot product of a matrix with normal-
ized row vectors and its transpose. In Eq. (1), the dot product
between the two vectors is the numerator of a ratio with the
vector norms. Since it is a multiplicative factor, the dot prod-
uct is retained regardless of how small its value is. For the
Euclidean metric, a negligible value of the dot product will
be outweighed by the norms of the vectors.

Finally, it is worth noting that the Euclidean distance and
the cosine similarity are related to each other and are equiv-
alent when applied to normalized vectors. Specifically, when
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the vectors are normalized, then Eq. C2 becomes

Dg =/2(1-S¢) = /2Dc. (C4)

where Dc =1 — Sc is defined as the cosine distance.

Appendix D: Brief introduction to networks

A network G is a mathematical object constituted by two
sets {N, E}, where N is the set containing the nodes of the
network, and E is the set of pairs of nodes called edges:
E ={e=(a,b)s.t.a,be N}. A network is a great tool to
model relationships and interactions among the elements of a
system (Borner et al., 2007). The elements of the system are
represented as nodes, while the relationships are described by
the edges. If the relationship between a pair of nodes is com-
mutative, then the network is called undirected, meaning that
there is no directionality in the edge: (a,b) = (b, a). Edges
with the same node as endpoints are self-loops and may or
may not be present according to what the edges represent.
An edge can simply be present or not (for which unweighted
networks are appropriate), or it can carry a weight represent-
ing the strength of the edge whose interpretation depends on
the system under analysis. The maximum number of edges
present in an undirected network with no self-loops is the
number of possible combinations of pairs of elements in N

without considering the order ('g") = |N|(|N|—1)/2. Here,

|N| is the number of nodes and also represents the size of the
network. A network that has all possible edges is called com-
plete, and its edge number is O (|N|?). This rarely occurs for
real-world phenomena; hence, typically, the number of edges
in real-world networks is much smaller than O (|N |2) (New-
man, 2005). This is a crucial point because it is the arrange-
ment of edges and their eventual heterogeneous distribution,
namely the network topology, that give rise to connectivity
patterns that reveal insights about the system. We refer to net-
works as being complex when they display non-trivial topo-
logical features, with patterns of connection between their
elements that are neither regular nor purely random. All this
information is condensed in an adjacency matrix, where both
rows and columns are nodes, and each element of the matrix
is the weight of the edge between the two nodes identifying
the matrix element and zero otherwise. If the network is undi-
rected, such a matrix is symmetric. For a complete review of
network properties, refer to Newman (2018).

Appendix E: Clustering coefficient

The clustering coefficient is a network measure that quanti-
fies the connections among the neighbors of a certain node
(Wasserman and Faust, 1994; Scott and Carrington, 2023).
This measure ranges from O (corresponding to the situation
where no neighbors of a node are connected to each other)
to 1 (where all the neighbors of a node are connected to each
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Figure E1. Probability distribution function of clustering coeffi-
cients for the network of catchments, in blue, and the network of
traits, in orange.

other). We compute the clustering coefficient for all the nodes
in both the catchments and trait networks and show the re-
sults as a probability density function in El. In both cases,
the clustering coefficient spans the entire possible range of 0
to 1. In the network of catchments, the average clustering co-
efficient, computed by averaging the clustering coefficient of
all nodes, is 0.61, while in the network of traits, it is equal
to 0.75. This means that, in both cases, on average, more
than half of the possible connections among neighbors are
present. This fact indicates the presence of a group of nodes
that are well connected with each other and is the first indi-
cation of the presence of complex connectivity patterns that
can lead to the formation of clusters in both networks.

In the trait network, the value with the highest probability
is 1, meaning that there are parts of the network that form
complete cliques, namely subsets of nodes that have all the
possible edges allowed among them. This fact confirms the
intuitive understanding that some of the attributes provide
redundant information because their similarity, in terms of
co-expression as learned by the PCA, generates such tightly
connected areas.

Hydrol. Earth Syst. Sci., 28, 1617-1651, 2024
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Appendix F: Trait network cluster composition

1643

Table F1. List of traits aggregated by the trait network clusters. For each cluster, we provide a header including a unique ID, a representative
name, the size of the cluster in terms of nodes, an indication of whether the cluster includes anthropogenic factors, and the list of traits in the

cluster.

Cluster ID 1: cluster name — developed areas, cluster size — 35, anthropogenic — yes

PDEN_2000_BLOCK, PDEN_NIGHT_LANDSCAN_2007, IMPNLCDO06, PDEN_DAY_LANDSCAN_2007, DEVNLCDO06,
MAINS800_DEYV, RIP100_DEYV, RIP100_22, RIPSO0_DEV, DEVLOWNLCD06, MAINS800_22, RIP800_22, ROADS_KM_SQ_KM,
MAINS100_22, MAINS100_DEV, RD_STR_INTERS, MAINS100_21, MAINS800_21, RIP100_21, DEVOPENNLCDO6,
RIP800_21, DEVMEDNLCDO06, FRESHW_WITHDRAWAL, NLCDO01_06_DEV, DEVHINLCDO06, MAINS100_23, MAINS100_24,
MAINS800_23, MAINS800_24, RIP100_23, RIP100_24, RIP800_23, RIP800_24, HGAC, DDENS_2009

Cluster ID 2: cluster name — precipitation and runoff, cluster size — 30, anthropogenic — no

RUNAVE7100, WB5100_ANN_MM, NOV_PPT7100_CM, PPTAVG_BASIN, OCT_PPT7100_CM, WB5100_NOV_MM,
DEC_PPT7100_CM, WD_SITE, WDMAX_BASIN, WB5100_MAY_MM, PPTAVG_SITE, WB5100_APR_MM, WB5100_JUN_MM,
WD_BASIN, WDMAX_SITE, APR_PPT7100_CM, WBS5100_OCT_MM, WBS5100_DEC_MM, JAN_PPT7100_CM,
FEB_PPT7100_CM, MAR_PPT7100_CM, WB5100_JAN_MM, WB5100_FEB_MM, WB5100_MAR_MM, WB5100_SEP_MM,
WB5100_JUL_MM, WB5100_AUG_MM, RH_BASIN, RH_SITE, PRECIP_SEAS_IND

Cluster ID 3: cluster name — temperature, cluster size — 22, anthropogenic — no

T_AVG_BASIN, T_AVG_SITE, T_MAX_BASIN, T_MAX_SITE, T_MIN_BASIN, T_MIN_SITE, PET, FEB_TMP7100_DEGC,
MAR_TMP7100_DEGC, APR_TMP7100_DEGC, MAY_TMP7100_DEGC, SEP_TMP7100_DEGC, OCT_TMP7100_DEGC,
NOV_TMP7100_DEGC, DEC_TMP7100_DEGC, FST32F BASIN, AUG_TMP7100_DEGC, RFACT, JAN_TMP7100_DEGC,
JUN_TMP7100_DEGC, JUL_TMP7100_DEGC, FST32SITE

Cluster ID 4: cluster name — croplands, cluster size — 22, anthropogenic — yes

MAINS800_PLANT, PLANTNLCDO06, MAINS100_PLANT, RIP100_PLANT, RIP800_PLANT, NITR_APP_KG_SQKM,
PHOS_APP_KG_SQKM, MAINS100_82, CROPSNLCDO06, MAINS800_82, RIP100_82, RIP800_82, CDL_CORN,
CDL_SOYBEANS, FRAGUN_BASIN, PASTURENLCDO06, MAINS100_81, MAINS800_81, RIP100_81, RIP800_81,
CDL_OTHER_HAYS, HIRES_LENTIC_DENS

Cluster ID 5: cluster name — croplands and canals, cluster size — 16, anthropogenic — yes

RAW_DIS_NEAREST CANAL, CANALS_PCT, CANALS_MAINSTEM_PCT, PCT_IRRIG_AG, CDL_RICE,
PCT_NO_ORDER, NPDES_MAJ_DENS, PESTAPP_KG_SQKM, CDL_ORANGES, HYDRO_DISTURB_INDX,
STREAMS_KM_SQ_KM, HGBD, RAW_DIS_NEAREST_MAJ_NPDES, ASPECT_NORTHNESS, RAW_AVG_DIS_ALLCANALS,
RAW_AVG_DIS_ALL_MAJ_NPDES

Cluster ID 6: cluster name — croplands and dams, cluster size — 15, anthropogenic — yes

CDL_OTHER_CROPS, RAW_DIS_NEAREST DAM, RAW_AVG_DIS_ALLDAMS, CDL_BARLEY, CDL_DURUM_WHEAT,
CDL_DRY_BEANS, CDL_POTATOES, RAW_DIS_NEAREST_MAJ_DAM, RAW_AVG_DIS_ALL_MAJ_DAMS,
MAIJ_DDENS_2009, CDL_SPRING_WHEAT, CDL_OATS, HGBC, CDL_SUNFLOWERS, CDL_ALFALFA

Cluster ID 7: cluster name — barren soil and deciduous forests, cluster size — 12, anthropogenic — no

MINING92_PCT, PADCAT1_PCT_BASIN, BARRENNLCD06, DECIDNLCDO06, MAINS100_31, MAINS800_31, RIP100_31,
RIP800_31, RIP800_41, MAINS100_41, MAINS800_41, RIP100_41

Cluster ID 8: cluster name — elevation, cluster size — 12, anthropogenic — no

ELEV_MAX M_BASIN, ELEV_MEDIAN_M_BASIN, SNOW_PCT_PRECIP, ELEV_MEAN_M_BASIN, T_MINSTD_BASIN,
LST32F_BASIN, ELEV_MIN_M_BASIN, ELEV_SITE .M, T_MAXSTD_BASIN, ELEV_STD_M_BASIN, LST32SITE,
SLOPE_PCT

Cluster ID 9: cluster name — evergreen forests, cluster size — 12, anthropogenic — no

PADCAT3_PCT_BASIN, MAINS100_42, MAINS100_FOREST, MAINS800_42, RIP100_FOREST, RIP100_42,
MAINS800_FOREST, FORESTNLCD06, EVERGRNLCDO06, RIP800_42, PADCAT2_PCT_BASIN, RIPS800_FOREST
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Table F1. Continued.

Cluster ID 10: cluster name — woody wetlands and croplands, cluster size — 11, anthropogenic — yes

MAINS100_90, TOPWET, RIP800_90, CDL_PEANUTS, ROCKDEPAVE, MAINS800_90, RIP100_90, WOODYWETNLCDO06, PER-
DUN, CDL_WWHT_SOY_DBL_CROP, CDL_COTTON

Cluster ID 11: cluster name — lakes, ponds, and reservoirs, cluster size — 10, anthropogenic — yes

ARTIFPATH_PCT, MAINS800_11, RIP100_11, STOR_NID_2009, STOR_NOR_2009, HIRES_LENTIC_PCT,
HIRES_LENTIC_MEANSIZ, WATERNLCDO6, RIP800_11, MAINS100_11

Cluster ID 12: cluster name — pastures and grasslands, cluster size — 10, anthropogenic — yes

CDL_FALLOW_IDLE, GRASSNLCD06, MAINS100_71, MAINS800_71, RIP100_71, RIP800_71, CDL_SORGHUM,
CDL_WINTER_WHEAT, CDL_PASTURE_GRASS, ASPECT_EASTNESS

Cluster ID 13: cluster name — fine soils, cluster size — 10, anthropogenic: — no

AWCAVE, CONTACT, NO200AVE, SILTAVE, NO10AVE, KFACT_UP, NO4AVE, CLAYAVE, HGC, HGD

Cluster ID 14: cluster name — major dams, cluster size — 9, anthropogenic — yes

ARTIFPATH_MAINSTEM_PCT, PCT_6TH_ORDER_OR_MORE, DRAIN_SQKM, NDAMS_2009, POWER_NUM_PTS,
MAJ_NDAMS_2009, POWER_SUM_MW, HIRES_LENTIC_NUM, STRAHLER_MAX

Cluster ID 15: cluster name — summer precipitation, cluster size — 7, anthropogenic — no

SEP_PPT7100_CM, WDMIN_BASIN, WDMIN_SITE, MAY_PPT7100_CM, JUN_PPT7100_CM, JUL_PPT7100_CM,
AUG_PPT7100_CM

Cluster ID 16: cluster name — herbaceous wetlands, cluster size — 7, anthropogenic — no

HGAD, OMAVE, MAINS100_95, RIP100_95, RIP800_95, EMERGWETNLCDO06, MAINS800_95

Cluster ID 17: cluster name — mixed forests, cluster size — 6, anthropogenic — no

HGCD, MIXEDFORNLCD06, MAINS100_43, MAINS800_43, RIP100_43, RIP800_43

Cluster ID 18: cluster name — coarse soils, cluster size — 6, anthropogenic — no

BFI_AVE, HGA, PERMAVE, HGB, SANDAVE, WTDEPAVE

Cluster ID 19: cluster name — perennial ice and snow, cluster size — 5, anthropogenic — no

SNOWICENLCDO06, MAINS100_12, MAINS800_12, RIP100_12, RIP800_12

Cluster ID 20: cluster name — shrublands, cluster size — 5, anthropogenic — yes

SHRUBNLCDO06, MAINS100_52, MAINS800_52, RIP100_52, RIP800_52

Cluster ID 21: cluster name — lower-order streams, cluster size — 5, anthropogenic — no

PCT_1ST_ORDER, RRMEDIAN, BAS_COMPACTNESS, PCT_2ND_ORDER, RRMEAN

Cluster ID 22: cluster name: higher-order streams, cluster size — 4, anthropogenic — no

PCT_3RD_ORDER, MAINSTEM_SINUOUSITY, PCT_5TH_ORDER, PCT_4TH_ORDER

Cluster ID 23: cluster name — non-croplands, cluster size — 1, anthropogenic — yes

CDL_ALL_OTHER_LAND

Cluster ID 24: cluster name — overland flow, cluster size — 1, anthropogenic — no

PERHOR

Cluster ID 25: cluster name — bulk density, cluster size — 1, anthropogenic — no

BDAVE
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Appendix G: Hydrological index statistics

Table G1. Table showing the results from statistical tests comparing the distributions of streamflow indices of catchment clusters resulting
from our network-based methodology. The first two columns list the streamflow indices used in this study as alphanumeric codes with brief
descriptions as in Olden and Poff (2003). The last three columns show (1) the result of the Kruskall-Wallis (K-W) test indicating that not
all the samples have the same distribution and (2) one-sample and (3) two-sample Kolmogorov—Smirnov (K-S) tests. The indices are sorted
according to the two-sample Kolmogorov—Smirnov test in descending order.

Hydrological — Description K-W K-S test K-S test

index test one-sample  two-sample

ma41 Mean annual flow divided by catchment area (mm dfl) True 97.06 95.19

dh13 Mean annual of 30 d maximum divided by median flow True 94.12 90.55

mh14 Median of the highest annual daily flow divided by the median annual daily = True 97.06 90.37
flow

mas Skewness in daily flow True 91.18 90.20

mh16 Mean of the 10th percentile from the flow duration curve divided by median  True 91.18 88.95
daily flow across all years

ma3 Coefficient of variation in daily flows True 94.12 88.95

fh7 Mean number of high-flow events per year using an upper threshold of 7 times  True 94.12 87.88

the median flow over all years

rab Median of difference between natural logarithm of flows between two consecu-  True 88.24 86.27
tive days with increasing flow

fh6 Mean number of high-flow events per year using an upper threshold of 3 times  True 100.00 85.92
the median flow over all years

th3 Maximum proportion of the year (number of days/365) during which no floods  True 85.29 85.20
have ever occurred over the period of record

f3 Total number of low-flow spells (threshold equal to 5 % of mean daily flow) True 82.35 83.60

fh3 High flood pulse count (high flood: at least 3 times median of daily flows) True 85.29 83.07

ml21 Coefficient of variation in annual minimum flows averaged across all years True 85.29 81.46

mll7 The 7 d minimum flow divided by mean annual daily flows averaged across all ~ True 94.12 81.28
years

dhl6 Coefficient of variation of high flood pulse (high flood: at least 75th percentile  True 91.18 80.93
of daily flows)

di3 Annual mean of 30 d minimum divided by median flow True 79.41 80.39

fh2 Coefficient of variation of high flood pulse count (high flood: at least 75th per-  True 88.24 78.97

centile of daily flows)

ml18 Coefficient of variation of 7d minimum flow divided by mean annual daily  True 76.47 78.25
flows averaged across all years

2 Coefficient of variation of low flood pulse count True 94.12 77.36

tal Constancy True 79.41 77.36

ml4 Mean minimum monthly flow for the months of April m3sh True 79.41 77.36

dh20 Mean duration of high flood pulse (high flood: at least 25th percentile of median ~ True 85.29 77.18
flows) (days)

mh10 Mean maximum flows for the months of October (m3 s_l) True 94.12 76.47

t12 Variability in Julian date of annual minimum (days) True 82.35 76.11
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Table G1. Continued.

Hydrological — Description K-W K-S test K-S test

index test one-sample  two-sample

mh8 Mean maximum flows for the months of August (m3 sfl) True 85.29 75.94

mall Spread in 75th—25th percentile range for decimal-logarithm-transformed daily =~ True 76.47 75.58
flows

di7 Coefficient of variation of low flood pulse count True 79.41 75.22

dh15 Mean duration of high flood pulse (high flood: at least 75th percentile of daily =~ True 79.41 74.15
flows) (days)

ra8 Number of negative and positive changes in water conditions from one day to  True 70.59 73.98
the next

rad Ratio of days where the flow is higher than the previous day True 67.65 67.02

ra9 Coefficient of variation of the number of negative and positive changes in water ~ True 64.71 62.75

conditions from one day to the next

fll Low flood pulse count (low flood: below 25th percentile of daily flows) True 61.76 59.36
diig Number of zero-flow days (days) True 70.59 56.33
dl1e6 Mean duration of low flood pulse (days) True 47.06 50.98
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Appendix H: Comparison with traditional unsupervised

techniques

0.

=
s
Eo.
@
o
1]
2
@
ER
Cl
c
o
50
£ dé V4 -e~ hierarchical clustering

0.60 ,’, ~e- kmeans

/ -e- network (euclidean)
P -e- network (cosine)
0.55
20 40 60 80 100
num of clusters covering 95% of network
(C ) 0.85/ ~°~ hierarchical clustering
-~ kmeans
-e- network (euclidean)

%‘0.80 -~ network (cosine)
8
£
“0.75
o
1]
2
@
2
©0.70
c
o
S
@
£0.65

0.60

—~
D

~

°

@

3

o
9
G

median cluster similarity
° °
Y <
& S

hierarchical clustering

/.____‘\\./’/ kmeans
0.60 ,/ network (euclidean)
o -e- network (cosine)
20 40 100 120

60 80
num of clusters covering 95% of network

0.16

silhouette score

0.08

0.35

o o
N w
@ =)

silhouette score
o
N
S}

median cluster similarity
o
=
&

0.12

1647

hierarchical clustering
kmeans

network (euclidean)
network (cosine)

hierarchical clustering
kmeans

network (euclidean)
network (cosine)

hierarchical clustering
kmeans

network (euclidean)
network (cosine)

20

40

60 80
num of clusters covering 95% of network

120

Figure H1. Median cluster similarity values (a, ¢, e) and silhouette scores (b, d, f) for different clustering methods and similarity measures
used in the network analysis. The number of reduced dimensions after PCA is equal to (a, b) 6, (c, d) 20 (used in the study), and (e, f) 90,
corresponding to 50 %, 72 %, and 95 % of retained information, respectively. The vertical dashed black line refers to the cluster granularity
used in the paper. The dashed colored lines are shown for visualization of trends. Lower values of the median cluster similarity metric (a, ¢,
e) correspond to better clustering performance. Higher values of the silhouette scores (b, d, f) correspond to better clustering performance.
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Appendix I: Hydrological index correlation with traits
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Figure I1. Heat map showing Spearman correlation coefficients between streamflow indices and the traits used in the study. The intensity
of the colors show the degree of correlation or anticorrelation as indicated in the color bar. Traits on the horizontal axis are ordered and
colored according to the trait categories they belong to. Gray boxes indicate correlations that are above the significance level of p > 0.05.
The primary purpose of this plot is to provide a visual representation of the redundancy in the correlations between the traits within the same
category and streamflow indices.
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Code and data availability. The daily observations of stream-
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