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Abstract. Groundwater level (GWL) dynamics result from
a complex interplay between groundwater systems and the
Earth system. This study aims to identify common hydroge-
ological patterns and to gain a deeper understanding of the
underlying similarities and their link to physiographic, cli-
matic, and anthropogenic controls of groundwater in coastal
regions. The most striking aspects of GWL dynamics and
their controls were identified through a combination of statis-
tical metrics, calculated from about 8000 groundwater hydro-
graphs, pattern recognition using clustering algorithms, clas-
sification using random forest, and SHapley Additive exPla-
nations (SHAPs). Hydrogeological similarity was defined by
four clusters representing distinct patterns of GWL dynam-
ics. These clusters can be observed globally across different
continents and climate zones but simultaneously vary region-
ally and locally, suggesting a complicated interplay of con-
trolling factors. The main controls differentiating GWL dy-
namics were identified, but we also provide evidence for the
currently limited ability to explain GWL dynamics on large
spatial scales, which we attribute mainly to uncertainties in
the explanatory data. Finally, this study provides guidance
for systematic and holistic groundwater monitoring and mod-
eling and motivates a consideration of the different aspects
of GWL dynamics, for example, when predicting climate-
induced GWL changes, and the use of explainable machine
learning techniques to deal with GWL complexity – espe-
cially when information on potential controls is limited or
needs to be verified.

1 Introduction

When groundwater level (GWL) dynamics are tracked over
time using groundwater hydrographs, the quantitative sta-
tus of groundwater resources can be determined. Groundwa-
ter resources are exploited and measured locally, and GWL
dynamics are subject to processes in their immediate lo-
cal and regional environment (Bear, 2007), such as ground-
water recharge rates, groundwater flow and pumping, and
seawater intrusion (SWI) in coastal aquifers (Costall et al.,
2020; Parisi et al., 2023). Hence, they are strongly location
bound, and there is “a need for groundwater assessments
at the field level” (United Nations, 2022). To this end, it is
common practice in local studies to incorporate direct in-
formation from the groundwater system combined with ex-
pert knowledge of potential controls in numerical, statistical,
or machine learning models (e.g., in Knowling et al., 2015;
Güler et al., 2012; Lee et al., 2019). However, comprehen-
sive knowledge of aquifer processes at the local scale is often
lacking, posing even greater challenges for regional, conti-
nental, or global assessments of groundwater systems. Such
larger scales are important, for example, with regard to large
or transboundary aquifer systems, global virtual water trade,
and international frameworks such as the UN Sustainable
Development Goals (Donnelly et al., 2018; Nimmo et al.,
2021). A systemic understanding of aquifer properties is the
key to sustainable groundwater management and governance
(Guppy et al., 2018; Elshall et al., 2020). Generalized scien-
tific understanding of processes currently relies heavily on
aggregating and upscaling local knowledge of groundwater’s
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interactions with the Earth system; however, it is often lack-
ing in direct observation-based evidence.

While it is largely unclear how GWL dynamics compare
at large scales, the classification of GWL time series applied
on such scales holds the potential to provide valuable in-
sights into hydrogeological similarity (Barthel et al., 2021).
For instance, these insights can prove to be valuable in as-
sessing the coherence of large-scale process-based models by
focusing on similarities in patterns and spatial trends rather
than solely relying on the magnitude of aggregated errors,
effectively mitigating the commensurability problem (Glee-
son et al., 2021). In contrast, process understanding is lim-
ited when only the long-term mean or trend of GWL dynam-
ics is considered (Lischeid et al., 2021; Gleeson et al., 2021;
Baulon et al., 2022a).

The present study provides, for the first time, a classifi-
cation of GWL dynamics at the global scale and is moti-
vated by (a) a large number of GWL data that are avail-
able today – although not yet centralized and freely acces-
sible for many regions of the world (United Nations, 2022) –
and (b) the advancement of data-driven methods in Earth
system sciences which are not only capable of finding pat-
terns unseen by humans but also increasingly capable of ex-
plaining them (Reichstein et al., 2019; Shen et al., 2018).
Previous studies have successfully applied inductive classi-
fication approaches (Olden et al., 2012), synthesizing differ-
ent aspects of GWL dynamics at local to regional scales to
investigate physiographic, climatic, and anthropogenic con-
trols of GWL dynamics (Giese et al., 2020; Haaf et al., 2020;
Ascott et al., 2020; Wunsch et al., 2021; Sorensen et al.,
2021; Bosserelle et al., 2023); the function of groundwater
in ecosystems (Martens et al., 2013); and runoff processes
(Rinderer et al., 2019).

The primary focus of this study is to unveil GWL dynam-
ics on global, regional, and local scales by analyzing local
data that are distributed globally. The importance and vulner-
ability of coastal groundwater, which serves as a vital fresh-
water resource for ecosystems and large coastal communities
with increasing water demands from groundwater (Oude Es-
sink et al., 2010; Famiglietti, 2014; Ferguson and Gleeson,
2012; Moosdorf and Oehler, 2017), prompt this study to fo-
cus on disentangling GWL dynamics in coastal regions. We
seek to answer the following research questions:

1. How is hydrogeological similarity observed on a global
scale, and what are the implications of scaling for simi-
larity patterns?

2. What are the key controlling factors for GWL dynamic
patterns on a global scale, and how do they explain the
variations observed at smaller scales?

3. What are the current opportunities for and barriers to
deriving generalizations of dynamics–control relation-
ships in groundwater using data-driven approaches?

The basis for answering these research questions is a
newly compiled large and diverse dataset of about 8000
GWL time series of coastal aquifers from five continents.
Information from the compiled and pre-processed time se-
ries (Sect. 2.1) was analyzed holistically using a set of
previously defined statistical metrics from Heudorfer et al.
(2019) that were computed from individual groundwater hy-
drographs (Sect. 2.2), thereby reducing their dimensional-
ity (Wang et al., 2006). Section 3.1 derives GWL dynamic
patterns in coastal regions by using unsupervised clustering
techniques (Sect. 2.3) to group GWL time series based on
information derived from the aforementioned statistical met-
rics. To deepen our understanding and elucidate key control-
ling factors for GWL dynamics, independent data encom-
passing various potential controls of GWL dynamics and as-
sociated surface processes were obtained from global map
products (Sect. 2.4) and used to predict clusters in a random
forest (RF) classification task (Sect. 2.5), with the results
being presented in Sect. 3.2. The RF approach is a robust
choice for classifying groundwater dynamics and is widely
acknowledged in water science. With its capacity to cap-
ture non-linear dependencies and manage uncertainties such
as unknown feature importance, overfitting, and outliers, RF
provides a reliable tool for exploring complex interactions in
natural processes (Tyralis et al., 2019). SHapley Additive ex-
Planation (SHAP) values were calculated for the RF model
(Sect. 2.6). These are used to explain relationships between
predicted clusters and descriptive features in Sect. 3.3. Such
approaches of explainable machine learning are increasingly
and successfully being applied in hydrology (Worland et al.,
2019; Yang and Chui, 2021; Wunsch et al., 2022; Liu et al.,
2022; Haaf et al., 2023). We discuss hydrogeological similar-
ity results and the scaling effect (Sect. 4.1), evaluate derived
explanations for GWL dynamic patterns (Sect. 4.2), and con-
textualize our findings within the framework of a case study
region (Sect. 4.3). Section 5 provides concluding remarks.

2 Data and methods

The design of this study consists of the calculation of sta-
tistical metrics (hereafter referred to as indices) using com-
piled GWL time series and the clustering of GWL dynam-
ics by applying unsupervised algorithms to the calculated
indices. Subsequently, the clustering result that best differ-
entiates characteristic groups of GWL dynamics was fed
into an RF classifier together with local and regional natu-
ral and anthropogenic characteristics (hereafter referred to as
attributes) from global map products that are potentially re-
lated to GWL dynamics. SHAP values were derived to un-
derstand the salient controls of each group of GWL dynam-
ics. Unless stated otherwise, data pre-processing, modeling,
and visualizations were done using Python (Python Software
Foundation, 2021).
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2.1 GWL time series and pre-processing

The GWL time series dataset analyzed in this study was
compiled from the national and state governmental agen-
cies listed in Table A1 in the Appendix. The data collection
spanned from the years 2019 to 2022. Although attempts
were made to find data for all coastal regions in the world,
data collection focused on regions with a long coastline and
large quantities of digitally available data. The wells from the
compiled dataset are mainly located in northwestern Europe
(Belgium, Denmark, France, Germany, Ireland, Netherlands,
and Sweden) but also in Australia, South Africa, Brazil,
Canada, and the United States. The wells are part of the GWL
monitoring networks of the respective countries, but anthro-
pogenic impact on GWL dynamics cannot be ruled out for
all wells. In addition, wells may be affected by SWI and thus
have variable density (Post et al., 2007). However, density
gradients are not analyzed in this study because our focus
is on absolute variations of the GWL. The GWL time series
were selected based on the criteria outlined below.

1. There must be an availability of secondary information
(in convertible units for homogenization), namely,

– latitude and longitude of the well location (with
variable accuracy),

– reference vertical point or datum to measure the
GWL depth,

– date of observation.

2. Selection was based on well location and situation.

– Selection of wells located within 100 km from the
shoreline. This follows the definitions of Martínez
et al. (2007) and Mangor et al. (2017), which focus
on the ecological, economic, and social importance
of coastal water resource planning. Thus, we did
not aim to select aquifers directly related to marine
processes, such as SWI.

– Selection of shallow aquifers with mean GWLs less
than 100 m below ground surface. It is important
to note that this criterion is used as a directional
guideline rather than an exact marker as there is
uncertainty of up to a few meters in the absolute
groundwater depth of observations referenced to
sea level that were converted to ground surface ref-
erence with elevation data from the Shuttle Radar
Topography Mission (SRTM) (Kulp and Strauss,
2018; Rodriguez et al., 2006; source-specific infor-
mation in the Supplement).

3. Selection was based on temporal data availability crite-
ria.

– Data must be available for at least 4 complete cal-
endar years within the years 1979 to 2019.

– Time series must not have more than 10 % missing
observations with data gap lengths of no larger than
2 weeks after aggregation to weekly time steps.

To obtain a homogeneous dataset, further source-specific
pre-processing steps were necessary due to the very diverse
data presentation, for example, regarding format, labels, and
units. The reader is referred to the Supplement for notes
on groundwater data collection and pre-processing. Potential
anomalies or change points of the individual time series that
indicate human activities, measurement, or reporting errors
were removed using density-based spatial clustering of appli-
cations with noise (DBSCAN; Ester et al., 1996) combined –
due to the large number of time series – with visual inspec-
tion of suspicious time series because we set the parameters
rather conservatively; i.e., with the parameters set, DBSCAN
detected outliers in more time series than we would have
identified visually (Fig. A1). The systematic and additional
visual inspection of groundwater time series was found to
be beneficial, in line with recent publications (Barthel et al.,
2022; Berendrecht et al., 2022; Lehr and Lischeid, 2020;
Retike et al., 2022). Subsequently, temporal-availability cri-
teria were checked once again, with remaining data gaps be-
ing linearly interpolated, and time series were transformed to
the 0–1 scale for calculating indices.

2.2 Indices

We calculated a total of 45 indices for all GWL time series
using an unpublished R package (R Core Team, 2021) that
was developed with the study conducted by Heudorfer et al.
(2019). These indices statistically aggregate and describe
various aspects of groundwater hydrographs: their structure
(e.g., interannual fluctuation heights and changes), distribu-
tion (e.g., alignment of the GWL with upper or lower fluc-
tuation limits), and shape (e.g., steepness of hydrograph in-
creases and decreases). For more detailed descriptions of the
used indices (Table B1), we refer to Heudorfer et al. (2019).
In addition, there are other promising signature-based time
series characterizations for hydroclimatic time series, as se-
lected and explored in Papacharalampous and Tyralis (2022),
Papacharalampous et al. (2023), and Wunsch et al. (2021).

For our approach, the indices were computed from weekly
aggregated time series with a length of at least 4 years
(Sect. 2.1), which is at the lower end of the time period of 4 to
8 years recommended in Heudorfer et al. (2019). We decided
to use short periods to enable a larger pool of time series to
be taken into account for the global similarity analysis. The
calculated set of indices transforms groundwater information
into 45 static metrics. The resulting index value ranges were
compared to those of Heudorfer et al. (2019) for quality con-
trolling (Fig. B1). As a second outlier treatment (besides ap-
plying DBSCAN) of the original time series (see Sect. 2.1),
time series with index values in the outermost 0.001 % of the
index value distribution (4× σ ) were discarded.
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2.3 Cluster analysis

Clustering of the indices was performed to find a general-
ized but robust representation of differing GWL dynamics
in coastal regions. No specific indices were selected a pri-
ori to capture GWL dynamics holistically. This decision was
made because indices differ in their ability to describe GWL
dynamics depending on the flow system and the groundwater
regime (Heudorfer et al., 2019; Giese et al., 2020; Haaf et al.,
2020). For a similar reason, Papacharalampous et al. (2023)
recommended using a large variety of time series character-
istics for similarity analysis in hydrology.

A principal component analysis (PCA) was applied to
index values after standardization to avoid redundancies
among the 45 indices (Heudorfer et al., 2019; Fig. B2) and
to reduce the number of features for clustering. The num-
ber of principal components (PCs) to be retained was set
based on the scree plot and variance explained, yielding a
dimensionality-reduced dataset, where indices are mapped as
score values on the significant PCs. This was followed by
a systematic search for the best aggregation of the scores
using three different unsupervised clustering algorithms –
agglomerative hierarchical clustering using the Ward crite-
rion, k-means clustering, and Gaussian mixture. Unsuper-
vised methods aim to learn more about the internal de-
pendencies among the explanatory variables (Bergen et al.,
2019), meaning that no expectations regarding the number
or patterns of clusters were pre-set. Instead, evaluation met-
rics (Rousseeuw, 1987; Caliński and Harabasz, 1974; Davies
and Bouldin, 1979) were used to find the best arrangement
of data points into clusters via optimizing within-cluster and
between-cluster similarity and dissimilarity.

2.4 Attribute data

Understanding GWL dynamics requires integrated informa-
tion from its manifold controls. These are typically repre-
sented by attribute data from hydrogeology, climate, land use
and land cover, soil and lithology, surface waters, topogra-
phy, and anthropogenic activity (Moeck et al., 2020; Rajaee
et al., 2019; Díaz-Alcaide and Martínez-Santos, 2019). For
river catchments, such datasets have already been collected
for the regional scale (Addor et al., 2017; Klingler et al.,
2021) and the global scale, most notably in the HydroATLAS
(Linke et al., 2019). However, to date, there are no global
datasets available that encompass the above-mentioned at-
tributes specifically for groundwater studies (Haaf et al.,
2020). Therefore, attributes mainly describing natural and
anthropogenic characteristics and processes at the surface
were collected from a variety of recent highest-resolution
datasets available at the global scale (Table 1). These were
used as proxies for global groundwater-specific datasets in
this study.

While river catchments are typically well-defined by to-
pography, subsurface catchments are often complex and vary

on small scales (Vahdat-Aboueshagh et al., 2021). Despite
recent efforts to develop a similar approach for calculat-
ing watersheds with a better representation for groundwater
(Nölscher et al., 2022; Huggins et al., 2023), at the moment,
there is no best-accepted method for groundwater-relevant
delineation of various surface attributes on large scales. One
approach to defining the contributing area of a groundwa-
ter well is to rely on the immediate vicinity and place a
circular buffer around the monitoring site (Johnson and Be-
litz, 2009; Knoll et al., 2019). Using this approach, we ex-
tracted attributes as averages from buffers of 500 m radius
placed around the well sites. The prepared attributes are of
numerical and categorical type and contain information from
multiple periods that have been unified where possible. The
spatial resolution of the underlying source data is less than
30 arcsec, which is about 1000 m, except for hydrological
data, which are derived from grids with a spatial resolution
of only 1800 arcsec (approximately 55 km). Single- or multi-
dimensional raster data and spatial vector data were down-
loaded and processed for the well locations as follows (ap-
plied to each dataset as indicated in the “Data processing”
column in Table 1):

1. Average (median or majority) raster values were ex-
tracted for buffer geometries using the zonal statistics
tool in ArcGIS Pro (Esri, 2022) with a cell size of
250 m.

2. Earth Engine Python API was accessed to directly cal-
culate median raster values for buffer geometries and
data download.

3. Average (median or majority) values from geospatial
vector data were extracted for buffer geometries using
the spatial join tool in ArcGIS Pro.

4. Distance was calculated between well points and poly-
lines using the near tool in ArcGIS Pro.

5. Multidimensional rasters were aggregated to a single
raster layer that presents the median or majority of su-
perimposed raster cells of the period from 1981 to the
latest available temporal dimension (make multidimen-
sional raster tool and raster aggregation tool in ArcGIS
Pro). Thereafter, we calculated the median of multiple
raster files using the cell statistics tool in ArcGIS Pro.

6. For the distance of the well location to the closest river,
we selected rivers that have a catchment area of at least
10 km2 or an average river flow of at least 0.1 m3 sec−1

or both.

2.5 Random forest model

The classification task was to assign the correct cluster out
of n identified clusters (Sect. 2.3) using a set of attributes
(Sect. 2.4). Well locations were considered for the RF clas-
sification (Breiman, 2001) only when data for all attributes
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Table 1. List (alphabetically by attribute category) of numeric (num) and categorical (cat) attributes used to relate GWL dynamics to controls
and processes in this study.

Category Attribute name Short
description

Unit
(converted)

Data
type

Period
(averaged)

Source
temporal
resolution

Source
spatial
resolution

Reference Data
processing∗

Anthropogenic population_density population density persons per
km−2

num 2000 annual 30 arcsec
(≈ 1 km)

CIESIN (2018) 1

irrigation irrigated area serviced by
groundwater

% num 2000 multi-
annual

5 arcmin
(≈ 10 km)

(AQUASTAT, 2021) 1

groundwater_
abstraction

actual net abstraction from
groundwater

kgm−2 a−1 num 1981–2016 monthly 1800 arcsec
(≈ 55 km)

Müller Schmied et al.
(2020)

5,1

Climate temperature_mean mean annual daily mean air
temperatures

°C num 1981–2010 period
average

30 arcsec
(≈ 1 km)

Karger et al. (2017) 1

temperature_max highest temperature of any
monthly daily mean maximum
temperature

°C num 1981–2010 period
average

30 arcsec
(≈ 1 km)

Karger et al. (2017) 1

temperature_min lowest temperature of any
monthly daily mean minimum
temperature

°C num 1981–2010 period
average

30 arcsec
(≈ 1 km)

Karger et al. (2017) 1

precipitation accumulated precipitation
amount

kgm−2 a−1 num 1981–2010 period
average

30 arcsec
(≈ 1 km)

Karger et al. (2017) 1

PET evapotranspiration of reference
crop (ET0)

mmd−1 num 1970–2000 period
average

30 arcsec
(≈ 1 km)

Trabucco and Zomer
(2019)

1

aridity aridity index (high for more
humid conditions, and low for
more arid conditions)

– num 1970–2000 period
average

30 arcsec
(≈ 1 km)

Trabucco and Zomer
(2019)

1

Land use and
land cover

land use major land use class – cat 1981-2019 annual 30 arcsec
(≈ 1 km)

Winkler et al. (2020) 5,1

ecosystem major terrestrial ecosystem
class

– cat – – 7.5 arcsec
(≈ 250 m)

Sayre et al. (2020) 1

Soil and
lithology

soc soil organic carbon 0–5 cm
mean

dg kg−1 num – – 7.5 arcsec
(≈ 250 m)

Poggio et al. (2020) 2,3

bdod bulk density 0–5 cm mean dgcm−3 num – – 7.5 arcsec
(≈ 250 m)

Poggio et al. (2020) 2,3

clay clay content 0–5 cm mean g kg−1 num – – 7.5 arcsec
(≈ 250 m)

Poggio et al. (2020) 2,3

sand sand content 0–5 cm mean gkg−1 num – – 7.5 arcsec
(≈ 250 m)

Poggio et al. (2020) 2,3

silt silt content 0–5 cm mean gkg−1 num – – 7.5 arcsec
(≈ 250 m)

Poggio et al. (2020) 2,3

lithology major lithological class – cat – – polygons Hartmann and Moosdorf
(2012)

3

unconsol_sediment unconsolidated sediments
major class

– cat – – polygons Börker et al. (2018) 3

permeability surface permeability log(k)m2 num – polygons Huscroft et al. (2018) 3

Surface waters streamflow mean annual river discharge m3 s−1 num 1981–2015 annual 30 arcsec
(≈ 1 km)

Barbarossa et al. (2018) 5,1

distance_coast distance of well location to the
coastline

km num – polyline Lehner and Grill (2013) 4

distance_stream distance of well location to the
closest river

km num – polyline Lehner and Grill (2013) 4,6

runoff runoff from land (sum of runoff
components)

kgm−2 a−1 num 1981–2016 monthly 1800 arcsec
(≈ 55 km)

Müller Schmied et al.
(2020)

5,1

TWS total water storage (sum of all
water storage compartments)

kgm−2 num 1981–2016 monthly 1800 arcsec
(≈ 55 km)

Müller Schmied et al.
(2020)

5,1

Topography
and sub-surface
depths

bedrock_depth absolute depth to bedrock cm num – – 7.5 arcsec
(≈ 250 m)

Shangguan et al. (2017) 1

wtd water table depth m num – – 30 arcsec
(≈ 1 km)

Fan et al. (2013) 1

elevation elevation m num 1994 – 1 arcsec
(≈ 30 m)

Farr et al. (2007) 2,3

slope steepness of elevation surface ° num 1994 – 1 arcsec
(≈ 30 m)

Farr et al. (2007) 2,3

∗ Individual data processing is explained in Sect. 2.4.
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were available. Furthermore, to avoid multiple clusters for a
single combination of attributes, the cluster with the high-
est frequency was selected. The instance was retained if the
identified cluster constituted more than 50 % of all clusters
associated with that specific combination of attributes. The
categorical attributes of land use, ecosystem, unconsolidated
sediment, and lithology were pre-processed for their use in
the RF model using one-hot encoding.

The RF model was optimized and evaluated with a strati-
fied split of the dataset into a group for training and optimiza-
tion (80 % of the data) and a group for testing (20 % of the
data), taking into account an imbalanced dataset, where not
all clusters have equal numbers of wells assigned and where
regions are not represented equally by the dataset. For model
optimization, hyperparameters were tuned within a 5-fold
cross-validation framework. RF is a tree-based method that
contains structures for feature selection (Breiman, 2001). No
explicit feature selection was applied during pre-processing
or model optimization, driven by the objective of exploring
the relative importance and effects of all potential controls,
as well as their collective impacts on GWL dynamics. Eval-
uation during model optimization and with the testing data
of the optimized model was carried out using the model ac-
curacy, calculated as the total number of correctly assigned
classes divided by the sample number. In addition, the opti-
mized model, i.e., the success of the classifier, was evaluated
with metrics for the individual clusters: precision, recall, and
F1 score. Here, precision is the number of correctly identified
wells per cluster divided by all the times the model predicts
that cluster. Recall is the number of correctly identified wells
per cluster divided by the total number of wells in that cluster.
The F1 score is 2 times the multiplication of precision and re-
call (2× precision× recall) divided by the sum of precision
and recall. RF, in general, works reasonably well when using
the default values of hyperparameters in common algorithms
(Probst et al., 2019). However, performance improvements
can still be achieved by tuning, in particular, the number of
trees that should be set high enough for robust results and the
number of features considered for each time the tree is split.
Up to 2000 trees were tested in combination with either all
features or their square root being considered when looking
for the best split using two different splitting criteria (Gini
impurity and entropy: Breiman, 2001).

2.6 SHAP analysis

SHapley Additive exPlanation (SHAP) values (Lundberg
et al., 2020) were used to investigate the feature attributions
(feature importance and feature effects) to explain the RF
classification. The three-dimensional space of SHAP values
for the multiclass problem of this study is given by the num-
ber of clusters; the number of samples; and the number of
features, i.e., attributes. Larger SHAP values for a specific
cluster correspond to a higher probability of the cluster la-
bel. SHAP values of the samples that are part of the test

dataset were analyzed collectively to explain how attributes
impact the classification of the model. This corresponds to a
global explanation of the model. For some analyses, SHAP
values were combined for the attribute categories listed in
Table 1. The SHAP values of individual instances, i.e., well
sites, were combined with regional information to discuss
the extent to which the generalized GWL dynamics derived
through the index approach of this study can be explained
in a case study region. When explaining controls of GWL
dynamics from SHAP values, it is important to consider the
interrelationships between the features. From the point of re-
dundant features, the model is mainly trained on the feature
with the most significant information in combination with
other selected features. Hence, variables that combine infor-
mation included in other features are generally ranked higher
and reduce the ranking of the other redundant features.

3 Results

3.1 Identification of groundwater level dynamic
patterns

Application of the time series selection criteria from Sect. 2.1
resulted in a set of 8574 GWL time series for which 45 in-
dices were calculated. After removing time series with ex-
treme index values (Sect. 2.2), a dataset with indices for 7888
time series remained. The value ranges for each of the differ-
ent indices are comparable to those found by Heudorfer et al.
(2019) (Fig. B1). Several indices showed a strong linear cor-
relation (Fig. B2). From the PCA, five PCs represented 70 %
of the variability of the linearly combined indices, while the
first three PCs already described more than half of the vari-
ability (Fig. C1). The top five PCs served as input for the
three clustering algorithms. These algorithms yielded simi-
lar results, where the highest cluster separation was achieved
with three or four clusters (CL). The k-means clustering
yielded the best cluster separation compared to hierarchical
clustering and Gaussian mixture for all three evaluation cri-
teria for cluster separation (Fig. C2). Comparing the cluster
membership of wells, cluster composition based on k-means
clustering is found to be quite similar to hierarchical cluster-
ing for most well sites (Fig. C3). The various characteristics
of GWL dynamics can be assumed to exhibit complex and
non-linear interlinkages in the multidimensional space.

Given the nature of the dataset, the success of the differ-
ent clustering approaches for disentangling GWL dynamics
can be mainly attributed to the following two aspects. First, it
is plausible that the data distribution may not strictly follow
Gaussian distributions because, already, individual indices
show non-linear behavior (Fig. B1; Haaf et al., 2020), lim-
iting the effectiveness of Gaussian mixture models. In such
cases, the characteristics of the dataset can favor clustering
algorithms, such as k-means and hierarchical clustering, that
are more flexible with regard to the range of cluster shapes
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Figure 1. Assignment of clusters to well locations globally (center) and in coastal regions in North America, Europe (enlarged map of France
and northwestern Europe), Australia, South Africa, and Brazil. Due to the large scale, overlapping dots are not jittered, but well points are
shuffled to prevent the same clusters from being constantly drawn over others.

and sizes. Second, multidimensional datasets with complex
and non-linear interlinkages may often lack clearly defined
and compact clusters (Campello et al., 2020). This becomes
evident when analyzing the scatter plot of the first three PCs
(Fig. C3), making clustering with k-means and hierarchi-
cal clustering challenging. However, despite this limitation,
these algorithms still exhibit advantages in terms of capturing
the distribution requirements of the GWL dynamic dataset,
and k-means clustering disentangles best the main patterns
within GWL dynamics. Therefore, k-means clustering was
chosen to cluster the indices.

The predominant cluster differs between the coastal re-
gions represented in this study. In regions with a high den-
sity of wells, usually all clusters are present (Fig. 1). There-
fore, similar patterns of GWL dynamics are found in coastal
aquifers across the globe. Regional spatial patterns, i.e., geo-
graphically concentrated clusters, are visible for South Africa
and Australia, where most wells belong to cluster CL3, and
within Europe, where most of the wells in the dataset are
located. For example, in Germany, wells assigned to CL3
are mostly located around the Baltic Sea and further inland,
while the other clusters are pronounced along the exposed
west coast. In the Netherlands and Belgium, most wells be-

long to CL1 and CL2. Most wells in northeastern France are
assigned to CL3, whereas most wells in northwestern France
are assigned to CL2. Each cluster represents a distinct pattern
of GWL dynamics, regardless of shifted or opposing seasons
in different regions, as shown in Fig. 2. For example, the dou-
ble hump in the average annual hydrograph of North Amer-
ica, with time series from wells being located mainly in the
upper latitudes, could be attributed to snowmelt and is found
in all clusters. Patterns are the most precise (smallest confi-
dence intervals) for the European dataset.

GWLs in three out of four clusters can be located either
mostly at their upper (CL1) or lower (CL4) boundary during
the year, with high GWLs in winter and spring to low GWLs
in summer, or the GWL fluctuates around its annual median
during the year, with high interannual amplitude (CL2). In
contrast, GWLs of CL3 are characterized by maximum water
levels being reached later in the year.

The clusters can be distinguished with respect to multi-
ple features of the hydrograph, expressed by indices. Thus,
the salient pattern of each cluster is defined by several in-
dices and not by an individual one. However, some individ-
ual indices allow us to separate clusters or groups of clus-
ters better than the others. Figure 3 shows how different as-
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Figure 2. Annual hydrographs (median and 95 % confidence inter-
val) from averaged groundwater depths of scaled GWL time series
for each month per cluster, calculated and plotted for the coastal
regions in North America (NA), Europe (EU), South Africa (ZA),
and Australia (AU) when at least 10 time series associated with the
respective cluster were available.

pects of GWL dynamics, each described by multiple indices
(Table B1), contribute to disentangling patterns of GWL dy-
namics. Many indices of multiple components clearly sepa-
rate clusters concerning the hydrograph structure, including
the regularity of the seasonal amplitude (parde.seasonality)
that is small for CL1 and CL3 and largest for CL2, the size
of the global amplitude of the unscaled GWL that is com-
paratively small for CL4, the manifestation of interannual
variation (e.g., from base flow stability (BFS) that implies
that interannual variation is rather stable in CL3 and unstable
in CL4), and different orders of flashiness (e.g., from base
flow index (BFI), where the base flow component is large
for CL3 and small for CL4). From the time series distri-
bution aspect, GWL dynamics from CL1 can be character-
ized as upper bounded, while GWL dynamics from CL4 are
slightly lower bounded (e.g., from median). Dispersion over
the range of GWLs (e.g., from the range of duration curve
(fdc.range) between different percentiles) is smallest in CL1
and largest in CL2. The shape of GWL time series in terms of
both scale (hydrograph magnitude (sqr.avg)) and slope (e.g.,
from rise.avg) distinguish the clusters quite well from each
other. For example, CL3 is particularly noticeable for com-
bining GWL time series with a small slope, while CL4 com-
bines such with a large slope.

3.2 Classification of groundwater level dynamic
patterns

In the classification task using RF, controls of GWL dynam-
ics were investigated using more than 5000 unique cluster–

attribute relationships. Stable classification accuracy dur-
ing hyperparameter tuning was achieved with more than
100 trees. Both splitting criteria that were tested performed
equally well in terms of classification accuracy, whereas the
consideration of different features for the splits led to a sig-
nificantly higher accuracy (Fig. D1). The final model of this
study was set up using the Gini criterion, randomly varied
subsets (square root) of features for each split, and 700 trees.

With the final model, approximately 62 % of the clus-
ters, on average, were classified correctly; i.e., they were
assigned to the correct cluster out of four. Comparing the
model’s result accuracy to a scenario where descriptors were
shuffled shows an improvement in accuracy of about 60 %.
By shuffling the attributes, the relationships between the de-
scriptors and the target variable (clusters) are disrupted, and
any observed accuracy in the shuffled model is purely due
to chance. These results suggest the presence of moderately
strong linkages between the attributes and clusters describing
distinct GWL dynamic patterns within the RF model. Fig-
ure 4 shows that the classification performance is distributed
partly unequally across the different clusters. From the con-
fusion matrix, it can be seen that CL3 is most often (78 %)
predicted correctly and, if not, is either confused with CL1
or CL2 but almost never with CL4. The other clusters are
predicted correctly similarly often, with accuracies ranging
from 55 % to 60 %. Recall and precision of the clusters are
quite similar. Considering the slightly different support of
each cluster, the classification performs, on average, simi-
larly well in terms of false-positive cluster assignments (e.g.,
a well site is classified as CL1 when it actually belongs to an-
other cluster) and false-negative assignments (e.g., a well site
that belongs to CL1 is not classified as CL1 but as another
cluster). Overall, there are only minor differences in classifi-
cation performance among the various coastal regions.

3.3 Model explanations from SHAP values

SHAP values that were calculated for the classification
model are used in the discussion to explain the importance
and effects of different controls on GWL dynamics, while
general results for the RF model are presented here.

By analyzing the correlation of SHAP values, we can
detect where feature importance may be affected by infor-
mation redundancy (Fig. E1). In this study, the redundancy
among features tends to be small or moderate, and patterns
are not very consistent across the clusters. Specifically, the
redundancy between feature groups (in correspondence with
categories of attributes in Table 1) is minimal for cluster CL3
in the model, whereas it is more evident for cluster CL4.
CL2 exhibits redundant contributions from anthropogenic
features and features derived from surface waters, with cli-
mate features being additionally redundant in the prediction
of cluster CL1.

Three groups of features are ranked higher in terms of
overall feature importance in the global model compared to
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Figure 3. Example groundwater time series from the European continent illustrate typical scaled GWL time series where one aspect from
each component of the Heudorfer et al. (2019) typology of GWL dynamics (Table B1) is weak (left column) and one is strong (right column),
with an example index from that component that is displayed showing within-cluster variability (see Fig. C4 for within-cluster variability for
all indices).

the remaining three groups (Fig. E2). These are topography
and subsurface depths, followed by soil and lithology and
climate, with only minor differences in the importance of
the features between the clusters. The largest difference is
that the feature group of topography and subsurface depths
is about twice as important in the model for predicting CL3
compared to the other three clusters. For these clusters, the

feature groups of soil and lithology and climate are similar in
importance compared to topography and subsurface depths.
Therefore, features of the group of topography and subsur-
face depths primarily play a role in distinguishing CL3 from
the other clusters.

More in-depth insights into how the model can distinguish
the clusters – and, in particular, CL1, CL2, and CL4 – from
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Figure 4. Performance of the classification task using random forest (Breiman, 2001). (a) Evaluation metrics of classification (precision,
recall, and F1 score) given per cluster and for the weighted average (performance metrics weighted according to the support of each cluster).
(b) Normalized confusion matrix. Rows represent the actual cluster, while columns represent the predicted cluster. Thus, the percentages
of correctly predicted classes are represented by the diagonal elements, and the confusion (i.e., misclassification) is represented by the
off-diagonal elements.

Table 2. Qualitative description of the more important and, in their effects, more differentiable features, starting with the feature group with
the greatest importance for the model (Fig. E2) and for the prediction of the individual clusters in comparison based on Fig. E3; < and
>mark smaller and larger feature values for one or more clusters compared to one or more other clusters, while there is no clear information
for –. ∗ Aridity index: see Table 1.

Category Attribute or feature (name) CL1 CL2 CL3 CL4

Topography and subsurface depths elevation < < > <

wtd < < > <

slope – < > <

Soil and lithology grain size (clay, silt, sand) < > > <

eolian deposits (unconsol_sediment_Ae) – < < >

glaciofluvial deposits (unconsol_sediment_Gf) – < > –

Climate temperature (_min; _mean) – > < –

precipitation > – < –

aridity∗ > > < >

Anthropogenic irrigation > – < >

population_density – < < >

Surface waters distance_coast < – – >

Land use and land cover cold, temperate, moist grassland on plains > – < >

each other through the various features can be derived when
using SHAP values to link the feature impacts to their effects
(Table 2, Fig. E3). From the individual features, elevation,
slope, and water table depth (wtd) are most important within
the feature group of topography and subsurface depths; soil
fractions and the (non)occurrence of specific unconsolidated
sediments are most important within the feature group of soil

and lithology; temperature is most important within the fea-
ture group of climate; irrigation is most important within the
feature group of anthropogenic; distance to the coast is most
important within the feature group of surface waters; and the
(non)occurrence of a specific terrestrial ecosystem type is
most important within the feature group of land use and land
cover. The most significant effects that features have on pre-
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dicting clusters in the RF model are those that best separate
clusters from each other (Table 2). CL3 is best distinguished
from the other clusters by a comparatively large elevation,
large wtd, and large slope. In addition, some effects specif-
ically separate (a) CL3 from CL4, (b) CL4 from CL1 and
CL2, and (c) CL1 from CL2, although the latter is the least
successful in the model (largest confusion values of CL1 and
CL2 in Fig. 4). In comparison with CL2, CL3 combines well
locations with lower minimum and average temperatures and
sediments typical for glaciofluvial deposits. In comparison
with CL1, CL3 combines well locations with less precipita-
tion, more coarse-grained soils, and less anthropogenic activ-
ity. Feature effects between CL3 and CL4 are most often con-
trary, although they are less pronounced for climate. Where
CL2 is predicted, there are also comparatively more coarse-
grained soils and rarely sediments typical for eolian deposits,
and anthropogenic activity is low. These characteristics from
soil and lithology, as well as anthropogenic activity, also sep-
arate CL4 from CL2. Less differentiates CL4 from CL1. It is
noticeable that the distance of the well to the coast is gen-
erally higher in CL4 compared to CL1. The typical well lo-
cations in CL1 and CL2 differ in their soil fractions (finer-
grained soils in CL1) and anthropogenic activity (larger in
CL1).

Finally, SHAP values for individual wells that are all lo-
cated in the same region in northern Germany (Fig. 5) can
be used to understand how the results of the feature impor-
tance and effects derived from the global dataset apply re-
gionally. We analyzed the SHAP values of four well sites
from the case study region that have the highest probability
of being predicted by the model for each cluster in the test
dataset (Figs. E4–E7). The wells that are most likely to be
predicted as CL1 and CL3 are also included in these clus-
ters, whereas the wells that are most likely to be predicted as
CL2 and CL4 are part of CL3. Thus, although CL3 is over-
all the best-identified cluster by the model (Fig. 4), in the
case study region, where most of the wells belong to CL3, it
is confused with CL2 and CL4 for the example wells. The
correct prediction of CL1 is due to the low elevation and
wtd at the well location, as well as the presence of grassland
(Fig. E4). Due to these characteristics, the well is also not
predicted to be CL3, while the region’s mean temperatures
around 10 °C also favor CL3 at this well site. The statisti-
cally averaged temperatures, which should be very constant
for the region, can sometimes favor and sometimes disfavor
all clusters. According to local feature importance in this re-
gion, temperature is the most important attribute following
elevation and wtd for the prediction of GWL dynamic types
at specific wells. However, when analyzing SHAP values for
a model trained on a global dataset, we are primarily exam-
ining the global context for a local feature, not the local con-
text. Besides confirming temperature, CL3 is correctly pre-
dicted where its prediction probability is largest because of
comparably large elevation in the study region and because
there is no irrigation (Fig. E6). In contrast, a CL3 well is

incorrectly predicted as CL2 with low elevation and a popu-
lation density that is below average for the region (Fig. E5).
Another CL3 well is incorrectly predicted as CL4 with low
elevation and one of the highest clay contents for the region
(Fig. E7). The described relationships are in line with or not
contradictory compared to the global correlations of Table 2.

4 Discussion

4.1 Hydrogeological similarity and scaling effect

Four predominant types of GWL dynamics were identified
for coastal wells distributed across five continents. Our re-
sults show that shallow aquifers exhibit more diverse GWL
dynamics than deeper aquifers. This suggests that abso-
lute GWL depth is less determinant in differentiating global
GWL dynamics than might be assumed based on the clus-
tering of direct time series from a single particular region,
as in Rinderer et al. (2019), where, in particular, mean water
level and amplitude of variation determine clusters of GWL
dynamics.

Based on the spatial distribution of clusters, wells exhibit
distinct regional structures that strongly imply the presence
of underlying spatial controls; e.g., CL3-type GWL dynam-
ics in northern Germany tend to coincide with Geest land,
while CL1-type GWL dynamics are more often found in the
marshlands (Fig. 5a). Another example is that the topograph-
ically elevated Veluwe region in the center of the Netherlands
is the only region at the North Sea where many wells are
assigned to CL3 (Fig. 1). However, GWL dynamics of dif-
ferent types are also frequently found in wells within a very
short distance from each other or even on top of each other
(in the case of multiple groundwater storeys). This means
that the diversity of GWL dynamics can be larger locally
than between two wells in different climate zones on dif-
ferent continents, likely due to the significant influence of
heterogeneous hydrological conditions. Therefore, in addi-
tion to the findings by Wunsch et al. (2021), it is shown that
nearby wells do not necessarily have a higher degree of sim-
ilarity in terms of GWL dynamics compared to more distant
wells – even when these wells are located on different conti-
nents. Regionally similar but locally diverse GWL dynamics
highlight the complexity of generalizing GWL dynamics on
different spatial scales. Yet, the fact that our results include
spatial patterns at local, regional, and global scales (consider-
ing the globally distributed clusters of GWL dynamic types)
points to the usefulness of our approach in finding general-
izations beyond specific geographic contexts. We therefore
conclude that our approach is robust with respect to scale
dependency. Previously, studies on GWL dynamics have re-
sulted in systemic understanding at local and regional scales
(Wunsch et al., 2021; Giese et al., 2020; Haaf et al., 2020).
While this may be more straightforward for applied ground-
water management and monitoring at these scales, this study
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Figure 5. GWL dynamic patterns in the German federal state Schleswig-Holstein. (a) Cluster assignment to well locations and hydrogeology
map of the German federal state Schleswig-Holstein (LfU-SH, 2003). Overlapping well markers are jittered at a minimum spacing of 500 m
and thus no longer represent the original well locations. The cluster number in parentheses marks the true cluster from k-means clustering.
(b) Exemplary time series of each cluster from the encircled well sites in (a). (c) Within-cluster variability of the example indices that each
represent a component of the Heudorfer et al. (2019) typology from Fig. 3, plotted with index values (dots) of the encircled well sites in (a),
where the dots between CL2 and CL3 and between CL4 and CL3 mark the wells that have the highest probability for CL2 and CL4 in the RF
model but belong to CL3 according to the clustering (see Fig. C5 for within-cluster variability for all indices that are plotted together with
index values of the selected well sites).

is the first to provide insights into generalizations of GWL
dynamics using a global dataset.

We found that using indices for analyzing GWL dynam-
ics is efficient and offers comparability and interpretability.
In these terms, this approach might be superior compared to
directly analyzing GWL time series or only focusing on the
long-term mean or trends. Heterogeneous time series with
different seasons, time series lengths, and periods can be
combined in this approach with robust results, as previous
studies have shown (Heudorfer et al., 2019; Wunsch et al.,
2021), thereby reducing the dimension of the time series

and potentially better establishing cause-and-effect relation-
ships. From the clustering results, we can see that indices
successfully separate between climatic forcing (as present in
seasonality) and physiographic forcing, while in practice, it
remains challenging to identify what drives GWL dynam-
ics at various scales and settings (Blumstock et al., 2016;
Moeck et al., 2020) and to distinguish between the impacts of
climatic and other natural factors versus anthropogenic im-
pacts on GWL dynamics and trends (Wriedt, 2017; Lischeid
et al., 2021). Although indices are affected by the length of
the GWL time series (Heudorfer et al., 2019), they can help
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to identify time series with “high-amplitude, low-frequency
variability”, such as in Normandy (Paris Basin, France; com-
pare Baulon et al., 2022b). Groundwater well sites with dom-
inant interannual variations from multi-annual to decadal
scales identified by Baulon et al. (2022b) in this area match
well sites with CL3-type GWL dynamics found in this study
(Fig. C6). At these well sites, the likelihood of approach-
ing short-term groundwater drought is higher if the prevail-
ing low-frequency variability is associated with a downward
phase, while the annual GWL status and the previous win-
ter’s groundwater recharge have less influence on short-term
drought (Baulon et al., 2022b). Overall, we can therefore as-
sume that longer residence times are typical characteristics
for CL3-type aquifers.

The methodological approach underlying the GWL dy-
namic analysis offers much potential but also has limita-
tions and uncertainties with respect to the validity of the
generalizations generated. Despite the fact that general ro-
bustness of indices was found starting at time series with a
minimum length of 4 years (Heudorfer et al., 2019), uncer-
tainties remain regarding the representativeness of the gen-
eralizations for individual wells with this time series period
length but less so for the generalizations themselves. Fur-
thermore, Heudorfer et al. (2019) originally defined some of
the indices for time series with daily resolution, and decadal
GWL dynamics are only indirectly represented by indices in
our study (e.g., seasonality in the annual hydrograph). There-
fore, further investigation of the effects of different tempo-
ral resolutions and time series lengths, as performed in Pa-
pacharalampous et al. (2023) for hydroclimatic time series,
would be of interest. With respect to the groundwater systems
and processes represented by the GWL dynamic patterns, it
should be emphasized that there may be a bias in favor of
the typical GWL dynamics in northwestern Europe because
most of the wells in the dataset are located there.

Classification of specific groundwater processes requires
input data specifically related to and known to be influen-
tial in relation to these processes. However, there are major
limitations with available GWL data, particularly in terms
of time series length and data resolution. GWL time series
are rarely sufficiently long to recognize the dimension of
climate change, making it difficult to establish an effective
monitoring and management strategy. High-resolution time
series are, for example, required for analyzing the interac-
tion of groundwater with the sea (Haehnel et al., 2023). Ac-
counting for SWI in GWL dynamic pattern analysis is best
supported by pattern recognition or correction together with
groundwater chemistry data (Narvaez-Montoya et al., 2023;
Parisi et al., 2023). However, the expansion of studies on this
topic is currently hampered by the lack of GWL time series
with high temporal resolution, as well as the lack of availabil-
ity of qualitative groundwater data together with GWL data,
among other challenges in groundwater monitoring practice
(Rau et al., 2020). Several studies have shown the degrada-
tion of groundwater in qualitative and quantitative terms due

to its overexploitation (Alfarrah and Walraevens, 2018; Pe-
ters et al., 2022; Xanke and Liesch, 2022), but it was beyond
the scope of this study to focus on changes in groundwater
systems. Furthermore, more in-depth analyses of the individ-
ual indices could help to find out to what extent and in which
indices specific processes such as SWI or anthropogenic in-
fluence are manifested and thus contribute to a classification.

The index-clustering analysis conducted in this study was
instrumental in capturing the major patterns of GWL dynam-
ics of coastal regions worldwide. The utilization of the k-
means algorithm has enabled us to represent these patterns
at a high level, providing valuable generalizations. However,
if in other research questions the necessary level of pattern
recognition is smaller, clustering algorithms that do not re-
quire both clearly distributed data and clearly defined clusters
have the potential to identify additional clusters and uncover
more nuanced dynamics within the dataset.

4.2 Cause-and-effect relationships

We further analyzed whether the identified types of GWL
dynamics are meaningful, i.e., consistent with expected pat-
terns (Yang and Chui, 2021), although machine learning can
also reveal undetected and previously unexplained patterns.
We generally expect patterns as a result of the multitude of
natural and anthropogenic factors influencing GWL dynam-
ics. Meaningful GWL dynamics have the potential to derive
cause-and-effect relationships between GWL dynamics and
their driving forces, a topic for which observation-based ev-
idence is comparatively scarce. Thus, in this study, driving
forces were linked to GWL dynamic patterns in an RF clas-
sification task. Here, many different environmental attributes
describing surface and – to a smaller extent – subsurface pro-
cesses potentially associated with groundwater recharge and
discharge were used to explain (dis)similarities within and
between the identified patterns.

While comparing individual aspects of the hydrograph
with potential controlling factors can only explain specific
aspects of GWL dynamics (e.g., Haaf et al. (2020) related
flashiness (BFI) to focused recharge as a consequence of de-
pressions or connectivity to streams), the holistic analysis
of various GWL dynamic aspects against controls enables
the estimation of the influence of multiple controls over pro-
cesses defining groundwater quantity over time.

Since GWL dynamics in coastal regions can be similar
in different regions globally, similar GWL dynamics are not
necessarily the result of the same cause-and-effect relation-
ships. Rather, it can be expected that there are complex in-
terlinkages of multiple controls that favor hydrogeological
similarity in different manifestations of the individual at-
tributes. We, therefore, confirm our initial expectation that
similar GWL dynamics derived from indices are associated
with multiple processes and, vice versa, that the important
controls and processes can be identified and distinguished by
a combination of indices. This is in line with previous find-
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ings with hydro-climatic time series (McMillan, 2020; Beck
et al., 2016).

The results show that relationships between GWL dy-
namic patterns and controls can be generalized to the global
scale to some extent. Notably, the importance of different at-
tribute categories (Table 1, Fig. E2) for shaping GWL dy-
namics is related to hierarchical relationships where climate,
topography, and soil conditions have a greater influence over
the occurrence and characteristics of surface waters, as well
as of land use and land cover, than the other way around.
This implies that the direct influencing factors offer more
explanatory power. Then again, direct influencing factors in
the attribute dataset are more often based on actual obser-
vations and often have a higher resolution (e.g., the minor
explanatory power of attributes from surface waters might
also be related to a coarse spatial resolution of about 55 km).
From the importance of elevation and water table depth, es-
pecially for the determination of CL3-type dynamics and dif-
ferentiation from other dynamics that are more often found in
near-surface aquifers, it can be concluded that these attributes
mainly describe the increasing damping effect of groundwa-
ter recharge with increasingly long soil passages. The gener-
ally high importance of climatic attributes for GWL dynam-
ics – either only in the long term or also in short periods – is
scientific consensus, making climate change a usual part of
assessments of changes in groundwater systems (Riedel and
Weber, 2020). Also, within the group of climatic attributes,
the importance of direct attributes such as temperature out-
weighs derived attributes such as the aridity index. Accord-
ing to Table 2, certain types of unconsolidated sediments and
a terrestrial ecosystem can distinctly indicate or exclude spe-
cific GWL dynamic types. These manifestations of categor-
ical attributes are likely to serve as proxies for the general
importance of their class. Due to the multitude of manifesta-
tions, only the most common ones are likely to appear in the
importance ranking in Fig. E3 (e.g., eolian deposits mainly
exist in the Netherlands, which also provides the most wells
in the dataset).

Anthropogenic activities such as irrigation and ground-
water pumping typically have a localized effect. They have
the potential to overprint different types of GWL dynamics
even when the hydrogeological setting is the same (Sorensen
et al., 2021). Together with small-scale lithological and hy-
drogeological peculiarities, they likely contribute the most
to the variability of GWL dynamic patterns locally and re-
gionally. Section 4.1 emphasizes the importance of the data
basis, including its current limitations, for assessing certain
processes. From the comparably minor importance of anthro-
pogenic attributes for GWL dynamics, it could be assumed
that global groundwater quantity is less influenced by anthro-
pogenic than by natural controls. On the one hand, this was
also the expectation with using data derived from monitor-
ing networks and after quality control. On the other hand, it
is unclear how much of the explanatory content of the an-
thropogenic attributes is based on anthropogenic activities

and how much is due to correlations with natural controls
(Fig. E1). Such interactions could be that irrigation is higher
in dry climates and that there are more sealed surfaces where
population density is high. Therefore, anthropogenic impact
is also difficult to disentangle from natural controls in this
study.

Moderate accuracy of the RF model means that parts of
the GWL dynamics derived from indices are not well pre-
dicted based on the used attributes. Hence, machine learning
tools that are trained to find cause-and-effect relationships
face the same challenge of process-based groundwater mod-
els: limited availability and quality of explanatory data, espe-
cially subsurface information. Even if there is great progress
in the availability and quality of geoscientific data, surface at-
tributes derived for the global scale are still biased by uncer-
tainty in the data itself (Peng et al., 2017), by coarse spatial
resolution, and by the period they cover. In the presented ap-
proach, no dynamic attributes were used because they are not
available for all attribute categories at the global scale. For
instance, land use has a large influence on the water balance
with land use conversion (Mishra et al., 2014). The fact that
explanatory information is missing in the RF model for dif-
ferentiating GWL dynamics at the local to regional scale can
be observed, for example, in the case study region in north-
ern Germany (Fig. 5). Furthermore, as explained in Sect. 2.4,
studies of global scope, such as this one, face limitations in
accurately defining subsurface catchments.

4.3 Case study

Finally, the question also arises as to what extent it is possi-
ble to explain the generalized GWL dynamics derived with
the index-clustering approach of this study regionally if at-
tributes were only good enough. The inclusion of regional
context using the case study from northern Germany (Fig. 5)
serves a dual purpose in our study. First, in Sect. 4.1, we as-
sessed the robustness and validity of our proposed approach
for identifying GWL dynamics at different scales. In this sec-
tion, the case study serves as a critical test bed for under-
standing the chances and limitations of extrapolating expla-
nations for patterns of GWL dynamics from the global to the
regional scale. This case study was selected because a hy-
drogeological map and related hydrogeological information
exist (LfU-SH, 2003), the GWL time series source dataset in-
cludes information on the aquifer storey of the wells, the well
density is high, and the accuracy of the RF model is about the
same in this region as it is globally. These conditions allow
the study of spatial patterns and the ground-truthing of the
GWL dynamic patterns using expert knowledge.

To a large extent, the near-surface aquifer in this area is a
pore aquifer of silicate type formed during the Ice Age (LfU-
SH, 2003; Otto, 2001). The hydrogeological situation of the
shallow groundwater can broadly be divided from west to
east into three major landscapes: (a) low-lying marshlands
(Marschen); (b) slightly raised Geest landscapes (Altmorae-
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nengeest), the lower outwash plain (Sander der Vorgeest),
and intervening depression zones comprising the river val-
leys (Niederungen); and (c) morainic uplands with stronger
relief (Jungmoraenen Oestliches Huegelland).

GWL dynamics in the marshlands predominantly belong
to CL1 (59 %), especially in the upper two aquifer storeys
(68 %) and close to the sea, followed by CL3 (20 %), which
combines more GWL dynamics of the lower aquifer storeys
(60 %) and well sites at the border of the Geest. The Geest
and uplands are characterized by GWL dynamics that mainly
belong to CL3, with some exceptions, including the Geest
landscape in the north close to the Danish border (GWL dy-
namics are of mixed type), the area around the major depres-
sion in the north (GWL dynamics mainly belong to CL1),
and the eastern uplands at the southernmost bay (GWL dy-
namics mainly belong to CL1). In the lower Geest, GWL dy-
namics belong to CL2 (23 %) more often than in other land-
scapes. As in the marshlands, CL3-type GWL dynamics are
associated more often with lower aquifer storeys compared to
the other clusters in these areas (63 %–78 %), with the differ-
ence being that CL3 is also present to a similar degree in the
upper aquifer storeys in the Geest and uplands (45 %–67 %).
Figure 5b displays example time series of wells that the RF
model identifies as having the highest probability for each
cluster. The cluster in parentheses indicates the actual clus-
ter that is based, among others, on the index values shown in
Fig. 5c. In cases where CL3 was mistaken for CL2 and CL4,
the example wells mostly have indices within the CL3 distri-
bution (Fig. 5c). While there are minimal visual differences
in the time series between CL2 and CL3 at the well location
where CL2 is predicted, some distinctions can be observed
in Fig. 5b when CL3 is misidentified as CL4.

The inability of the RF model to correctly predict these
instances can therefore mainly be attributed to two factors.
First, the GWL dynamics at the predicted wells for CL2 and
CL4 reside closer to the border between different dynamic
types, making them more challenging to differentiate. This
is confirmed by some very similar index values compared
to CL3. Second, the limited explanatory potential provided
by the attributes can be assumed to also contribute to the
model’s failure: expert information suggests that small-scale
differences in GWL dynamics in the case study region can be
explained by lower aquifer storeys with good hydraulic con-
nections to upper storeys and surface waters. The presence of
both CL1 and CL3 dynamics in the higher Geest and upland
regions, regardless of groundwater storey, can be attributed
to differences in the soil covering, water table depth, and
the existence of both unconfined and confined upper aquifers
in these landscapes (LfU-SH, 2003). Comparing the ground-
truthing with the RF model, some global explanations apply
to this regional context as well. For instance, in the marsh-
lands and the northern depression zone, where impermeable
sediments of small to medium thickness overlay the aquifer
(LfU-SH, 2003), the prevalence of CL1 and CL4 type wells
is higher (Table 2).

5 Conclusions

In summary, this study provides new insights into the hy-
drogeological behavior and the hydrogeological similarity in
coastal regions. It utilizes an unprecedented dataset of GWL
time series and demonstrates the development of a global in-
formation archive on GWL dynamics for high-level general-
izations. These findings can aid in developing broader frame-
works for effective groundwater management – for exam-
ple, by identifying regions with common characteristics and
highlighting essential hydrograph features for global mod-
eling. Our results show that hydrogeological similarity is a
global phenomenon that, with respect to the aquifers near
the coastline, can be divided into four clusters representing
distinct patterns of GWL dynamics. Similar clusters are ob-
served globally across different continents and climate zones,
while GWL dynamics can be highly variable regionally and
locally, suggesting a complex interplay of controlling fac-
tors. Therefore, extrapolating GWL dynamics from a single
well to the surrounding area may sometimes be less appropri-
ate than inferring GWL dynamics from global relationships.
However, establishing global dynamics–control relationships
remains a challenge. We found that these are mainly domi-
nated by (a) topography and groundwater depth, mainly de-
termining the responsiveness of groundwater systems to im-
pacts on the water cycle that separates well a single cluster
from three others, and (b) climate and soil characteristics,
which differentiate these three clusters with high short-term
and interannual variability. However, groundwater manage-
ment typically requires a more precise explanation of GWL
dynamics by controlling factors beyond what is currently
achievable with the attribute data available at the global scale.
In particular, disentangling anthropogenic impacts from nat-
ural controls in GWL dynamics, e.g., to accurately predict
the effects of climate change on GWLs without incorrectly
accounting for water withdrawals, is of great importance for
sustainable groundwater management. While the overall im-
portance of anthropogenic activities to GWL dynamics was
found to be smaller compared to natural characteristics in
this study, more in-depth analyses were beyond the scope of
this study. When analyzing certain processes, including SWI,
it is important to pay attention to the data basis (selection
of groundwater data and indices). To address the explana-
tory limitations of data-driven analysis and the prediction of
GWL dynamics, we suggest using attributes closely related
to actual observations and the direct influencing factors in
combination with explainable machine learning techniques
and suggest relying more on groundwater hydrographs and
derived indices when attribute data are scarce or associ-
ated with large uncertainties. Overall, machine learning tech-
niques combined with hydrograph information show promise
for improving our understanding and predictive capabilities
in addressing GWL complexities, especially at large spatial
scales.

https://doi.org/10.5194/hess-28-1215-2024 Hydrol. Earth Syst. Sci., 28, 1215–1249, 2024



1230 A. Nolte et al.: Disentangling coastal groundwater level dynamics in a global dataset

Appendix A: Groundwater data

Table A1. List (country-wise, alphabetical) of governmental agencies or portals from which groundwater data were obtained.

Number Governmental agency or portal Country Access year

1 Australian Groundwater Explorer, Bureau of Meteorology
(http://www.bom.gov.au/water/groundwater/explorer)

Australia 2021

2 DOV, Datenbank Ondergrond Vlaanderen
(https://www.dov.vlaanderen.be)

Belgium 2020

3 RIMAS, Integrated Groundwater Monitoring Database, Servicio Geologico de
Brazil
(https://rimasweb.sgb.gov.br/layout/index.php)

Brazil 2022

4 Department of Environment and Climate Change, Nova Scotia
(https://beta.novascotia.ca)

Canada 2021

5 GIN, Groundwater Information Network, Canada
(http://gw-info.net)

Canada 2021

6 Ministry of Environment and Climate Change Strategy, British Columbia
(https://www2.gov.bc.ca/gov)

Canada 2021

7 GEUS, Geological Survey of Denmark and Greenland
(https://eng.geus.dk)

Denmark 2019

8 ADES, Portail national d’accès aux données sur les eaux souterraines, France
(https://ades.eaufrance.fr)

France 2020

9 LLUR, Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes
Schleswig-Holstein
(https://www.schleswig-holstein.de/DE/landesregierung/ministerien-behoerden/
LFU/LFU_node.html)

Germany 2020

10 NLWKN, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und
Naturschutz
(https://www.nlwkn.niedersachsen.de)

Germany 2021

11 Staatliches Amt für Landwirtschaft und Umwelt Mittleres Mecklenburg
(https://www.stalu-mv.de/mm)

Germany 2020

12 Staatliches Amt für Landwirtschaft und Umwelt Vorpommern
(https://www.stalu-mv.de/vp)

Germany 2021

13 Environmental Protection Agency, Ireland
(https://www.epa.ie)

Ireland 2020

14 Hydstra, Department of Water and Sanitation, South Africa South Africa 2021
15 Geological Survey of Sweden

(https://www.sgu.se)
Sweden 2021

16 DINOloket, Geological Survey of the Netherlands
(https://www.dinoloket.nl)

The Netherlands 2020

17 California Department of Water Resources
(https://wdl.water.ca.gov)

United States of America 2022

18 NWIS, National Water Information System, United States Geological Survey
(https://waterdata.usgs.gov/nwis/gw)

United States of America 2020

The last access date for all links is this table is 6 March 2024.
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Figure A1. Examples of time series outlier removal with DBSCAN (scikit-learn library in Python): raw (scaled) time series are shown in
blue, and the anomalies identified by DBSCAN (Ester et al., 1996) are shown in red. The use of DBSCAN is less successful or difficult
to verify in the bottom two examples (in panel e, the first abrupt change in direction of the GWL between 1996 and 2000 is not identified
as an outlier, although one would expect one based on the magnitude and position of the change; in panel f, from visual inspection, it is
unclear whether the identified outliers in both directions are due to measurement error or human activity or reflect natural behavior of the
groundwater system, e.g., extreme events). In summary, like other tested outlier detection methods, DBSCAN does not allow us to detect all
types of outliers and anomalies that we would expect should be removed to represent undisturbed GWL dynamics. With the parameters set,
we can successfully detect most density-dependent outliers, but many values were incorrectly identified as outliers. Therefore, we performed
a visual inspection of all time series where DBSCAN identified potential outliers.

Appendix B: Indices

Table B1. List of GWL dynamic typology and indices used in this study. Differing names in brackets refer to deviating abbreviations in
Heudorfer et al. (2019).

Aspect Component Index names

Distribution boundness fdc.slope_0.8_1 (dc.slp.u); fdc.slope_0_0.1 (dc.slp.l); l1; l3; median (med); peakts.avg
Distribution density colwells.C (colwell.C); fdc.range_0.1_0.9 (dc.rng.01.09); fdc.range_0.2_0.8 (dc.rng.02.08);

fdc.range_0.25_0.75 (dc.rng.025.075); fdc.slope_0.3_0.7 (dc.slp.m); l2; l4; meanann.max
(avg.ann.max)

Distribution modality bimodality (bimod); dip; silverman (bandwd)
Shape scale peakbasetime.avg (peakbase.avg); pulse.dur.high (pulse.dur.h); pulse.dur.low (pulse.dur.l);

sqr.avg
Shape slope fall.avg; fall.cv; reces.const; recov.const; rise.avg; rise.cv
Structure amplitude amp.max
Structure flashiness baker2 (baker); BFI; Lyapunov; pathlength2; reversals.avg (rev.avg); reversals.cv (rev.cv)
Structure interannual variation autocorrelation (autocor); BFS; Hurst; intannfluc.y (iaf.y); pulse.count.high (pulse.count.h);

pulse.count.low (pulse.count.l)
Structure seasonality–magnitude cvmon.min; intannfluc.s (iaf.s); parde.seasonality (parde)
Structure seasonality–timing colwells.M; varjulday.max (newly introduced instead of varjuld.min: CV of date of annual max-

imum head)
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Figure B1. Comparison of the value distributions of the indices calculated in this study (Table B1) with the values published by Heudorfer
et al. (2019) (dataset: Haaf and Heudorfer, 2018). The magnitude and variability of values for many indices are similar. Shifted or significantly
different ranges of values are observed for some indices. Such differences exist for indices of different aspects of the hydrograph (structure,
distribution, and shape).
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Figure B2. Correlation matrix of the index values calculated in this study.
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Appendix C: Clustering

Figure C1. Principal component analysis with the index dataset. (a) Cumulative explained variance with an increasing number of principal
components (PCs). (b) Dataset value space of the first three PCs (which together explain more than 50 % of the variance of the dataset).

Figure C2. Evaluation metrics – Silhouette (Rousseeuw, 1987), Calinski–Harabasz (Caliński and Harabasz, 1974) and Davies–Bouldin
(Davies and Bouldin, 1979) – used to find the best cluster separation. The Silhouette score ranges from−1 to 1, where a higher value indicates
better-defined clusters. Better clustering results are also indicated by higher values for the Calinski–Harabasz score and by lower values for
the Davies-Bouldin score. (a) Metrics are shown for different proportions of explained variance represented by principal components (PCs)
(top to bottom row: 60 %, 70 %, and 80 %) and for different clustering algorithms (k-means clustering, red; Gaussian mixture, blue; and
hierarchical clustering, black). (b) Silhouette scores for various clusters using the k-means algorithm and PCs representing 70 % of explained
variance.
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Figure C3. Assignment of the time series to four different clusters by three algorithms (Gaussian mixture, k-means clustering, and hierar-
chical clustering). (a) Illustrative cluster assignment within the range of values of the first three principal components (PCs) of the dataset.
(b) Sankey plot allows comparison of the quantitative distribution of the samples among the clusters (left between Gaussian mixture and
k-means clustering and right between k-means clustering and hierarchical clustering).
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Figure C4. Within-cluster variability of all indices used for clustering.
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Figure C5. Within-cluster variability of all indices used for clustering (Fig. C4) plotted with index values (dots) of the four example wells
from the case study region in northern Germany (Fig. 5a). The points drawn between CL2 and CL3 and between CL4 and CL3 are wells
with the highest probability for CL2 and CL4 in the random forest model but that belong to CL3 according to the clustering.
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Figure C6. Assignment of clusters to well locations in Normandy, Paris Basin, displayed with the Seine River. Overlapping well markers
were jittered at a minimum spacing of 1000 m and thus no longer represent the original well locations. The window in the upper-left corner
shows the Normandy region in the north of France.

Appendix D: Random forest classification

Figure D1. Random forest hyperparameter tuning within a 5-fold cross-validation framework using the training data.
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Appendix E: SHAP

Figure E1. Absolute Spearman correlation of SHAP values for aggregated features (SHAP values added up for features from the same
attribute categories from Table 1).

Figure E2. Overall SHAP feature importance stacked for individual clusters for aggregated features (SHAP values added up for features
from the same attribute categories from Table 1).
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Figure E3. Violin plots show the distribution of SHAP feature importance and feature effect for the 20 highest-ranked features of each
cluster. SHAP values describe the impact of a given feature on the prediction of the model for a given cluster (the prediction of true for the
selected cluster). A red color corresponds to high feature values, and a blue color corresponds to low feature values (for one-hot-encoded
features, a value of 0 (blue) corresponds to the presence of the feature class, and a value of 1 (red) corresponds to the absence of the feature
class). Overlapping instances widen the violin shape in the direction of the y axis, and the violin at that position is colored according to the
average feature value.
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Figure E4. SHAP force plots explaining the correct prediction of the CL1 exemplary well site from the case study region in northern
Germany (Fig. 5a). At this well site, the probability that CL1 is predicted is the largest in the case study (test dataset). The average scores
of all classifications made by the random forest model for the training dataset are 0.28, 0.29, 0.26, and 0.17 (base values). The model’s
probability scores for predicting the clusters at the exemplary well site (bold-printed numbers) sum up to 100 %. Features that are important
for the respective predictions are displayed with their values. Their importance and effect can be assessed by the SHAP values visualized
by bar length and color (i.e., the larger the feature’s share of the bar, the more important; red represents rejecting effect, and blue represents
supporting effect).
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Figure E5. SHAP force plots explaining the prediction of the CL3 exemplary well site from the case study region in northern Germany
(Fig. 5a) that is confused with CL2. At this well site, the probability that CL2 is predicted is the largest in the case study (test dataset). The
average scores of all classifications made by the random forest model for the training dataset are 0.28, 0.29, 0.26, and 0.17 (base values).
The model’s probability scores for predicting the clusters at the exemplary well site (bold-printed numbers) sum up to 100 %. Features that
are important for the respective predictions are displayed with their values. Their importance and effect can be assessed by the SHAP values
visualized by bar length and color (i.e., the larger the feature’s share of the bar, the more important; red represents rejecting effect, and blue
represents supporting effect).
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Figure E6. SHAP force plots explaining the correct prediction of the CL3 exemplary well site from the case study region in northern
Germany (Fig. 5a). At this well site, the probability that CL3 is predicted is the largest in the case study (test dataset). The average scores
of all classifications made by the random forest model for the training dataset are 0.28, 0.29, 0.26, and 0.17 (base values). The model’s
probability scores for predicting the clusters at the exemplary well site (bold-printed numbers) sum up to 100 %. Features that are important
for the respective predictions are displayed with their values. Their importance and effects can be assessed by the SHAP values visualized
by bar length and color (i.e., the larger the feature’s share of the bar, the more important; red represents rejecting effect, and blue represents
supporting effect).
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Figure E7. SHAP force plots explaining the prediction of the CL3 exemplary well site from the case study region in northern Germany
(Fig. 5a) that is confused with CL4. At this well site, the probability that CL4 is predicted is the largest in the case study (test dataset). The
average scores of all classifications made by the random forest model for the training dataset are 0.28, 0.29, 0.26, and 0.17 (base values). The
model’s probability scores for predicting the clusters at the exemplary well site (bold-printed numbers) sum up to 100 %. Features that are
important for the respective predictions are displayed with their values. Their importance and effects can be assessed by the SHAP values
visualized by bar length and color (i.e., the larger the feature’s share of the bar, the more important; red represents rejecting effect, and blue
represents supporting effect).
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sults of this study (indices, attributes, clusters from k-means)
at Zenodo (https://doi.org/10.5281/zenodo.8173404, Nolte, 2023).
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inal GWL time series and well locations. However, the groundwater
data are available for free either via the web services or via request
from the governmental agencies listed in Table A1 (further infor-
mation provided in the Supplement). Map data with information
on attributes are available through the references listed in Table 1.
The R code for calculating index values is available upon request
from EH and BH. The Python code used for modeling and plot-
ting can be requested from AN. The Python packages used in this
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