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Abstract. All the major river systems in the contiguous
United States (CONUS) (and many in the world) are im-
pacted by dams, yet reservoir operations remain difficult to
quantify and model due to a lack of data. Reservoir operation
data are often inaccessible or distributed across many local
operating agencies, making the acquisition and processing of
data records quite time-consuming. As a result, large-scale
models often rely on simple parameterizations for assumed
reservoir operations and have a very limited ability to eval-
uate how well these approaches match actual historical op-
erations. Here, we use the first national dataset of historical
reservoir operations in the CONUS domain, ResOpsUS, to
analyze reservoir storage trends and operations in more than
600 major reservoirs across the US. Our results show clear
regional differences in reservoir operations. In the eastern
US, which is dominated by flood control storage, we see stor-
age peaks in the winter months with sharper decreases in the
operational range (i.e., the difference between monthly max-
imum and minimum storage) in the summer. In the more arid
western US where storage is predominantly for irrigation, we
find that storage peaks during the spring and summer with in-
creases in the operational range during the summer months.
The Lower Colorado region is an outlier because its seasonal
storage dynamics more closely mirrored those of flood con-
trol basins, yet the region is classified as arid, and most reser-
voirs have irrigation uses. Consistent with previous studies,
we show that average annual reservoir storage has decreased
over the past 40 years, although our analyses show a much
smaller decrease than previous work. The reservoir opera-
tion characterizations presented here can be used directly for

development or evaluation of reservoir operations and their
derived parameters in large-scale models. We also evaluate
how well historical operations match common assumptions
that are often applied in large-scale reservoir parameteriza-
tions. For example, we find that 100 dams have maximum
storage values greater than the reported reservoir capacity
from the Global Reservoirs and Dams database (GRanD). Fi-
nally, we show that operational ranges have been increasing
over time in more arid regions and decreasing in more humid
regions, pointing to the need for operating policies which are
not solely based on static values.

1 Introduction

The contiguous United States (CONUS) contains tens of
thousands of dams that have greatly impacted all the major
river systems (Grill et al., 2019; Patterson and Doyle, 2019).
The impact of reservoir operations on streamflow regimes is
complex and varies both regionally and temporally, with dif-
ferent operating patterns based on climate and reservoir pur-
poses. Reservoir conditions (i.e., storage, releases and oper-
ating policies) and human demand have both evolved over
decades. In many cases this has resulted in long-term stor-
age depletion and threatened reservoir resilience to droughts
(Chen and Olden, 2017; Collier et al., 1997; D6l et al., 2012;
Nilsson and Berggren, 2000; Johnson et al., 2008; Naz et
al., 2018; Ho et al., 2017; Grill et al., 2019; Lehner et al.,
2011). For example, reservoir storage across the US has de-
clined by at least 10 % over the past 30 years (Adusumilli
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et al., 2019; Zhao and Gao, 2019; Hou et al., 2022; Ran-
dle et al., 2021). Trends are not spatially uniform though,
and there are large regional differences in both storage trends
and their driving causes (Hou et al., 2022). Declines in stor-
age can be caused by sedimentation (Wisser et al., 2013;
Randle et al., 2021), increases in streamflow variability (Naz
et al., 2018), decreases in precipitation (Barnett and Pierce,
2008; Prein et al., 2016; Zhao and Gao, 2019) and increased
evaporative losses (Zhao and Gao, 2019; Zou et al., 2019).
Arid regions such as the southwestern United States have
historically seen the largest storage declines (Zhao and Gao,
2019). Most recently the mega-drought in the western US
and increased aridification (Overpeck and Udall, 2020) have
caused unprecedented streamflow declines (Williams et al.,
2022) and left reservoir levels at historic lows (Cayan et al.,
2010; Williams et al., 2022). Declines have also been noted
in the more humid southeastern United States (Hou et al.,
2022), yet other studies have noted increasing storage trends
in the southeastern and Great Plains regions of the United
States storage, which further confounds our understanding
of future predictions (Zou et al., 2018).

There is a great need to better understand and simulate the
large-scale (i.e., regional to global) impact of reservoirs on
streamflow regimes and water availability in both the past
and the future. Decision support systems and detailed oper-
ational models are routinely employed to manage reservoir
systems locally. However, the US, as well as many other
countries around the world, lacks a centralized repository of
reservoir operations. As a result, direct observations of reser-
voir levels and releases are not generally used in large-scale
approaches (Wada et al., 2017). Rather, most continental- to
global-scale studies either (1) use hydrologic models to sim-
ulate operations based on static reservoir properties and pa-
rameterized operating policies (Voisin et al., 2013; Hanasaki
et al., 2006; Dol et al., 2003; Lehner et al., 2011; Biemans
et al., 2011; Haddeland et al., 2006; Giuliani and Herman,
2018; Turner et al., 2020, 2021; Ehsani et al., 2017; Yassin
et al., 2019) or (2) use remote sensing observations of water
levels and reservoir area to calculate changes in storage vol-
ume (Zhao and Gao, 2019; Adusumilli et al., 2019; Hou et
al., 2022).

Many large-scale models employ rule-curve-based reser-
voir operations where releases follow set rates based on de-
mand and reservoir storage. In this approach, reservoir re-
leases are based on demand and reservoir storage. In the sim-
plest example, a dead pool threshold and a maximum storage
threshold are set by operators. Below the dead pool threshold,
no water is released, above the maximum storage threshold
all inflow is released, and between these thresholds it releases
equal demand. In practice, a rule curve can be much more
complicated with additional storage thresholds (i.e., denoting
flood or other operational targets), more complicated demand
calculations as well as seasonal variability. The release rates
for these rule curves are generally derived from reservoir ca-
pacity values and other static watershed properties that are
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readily available on the regional and global scales (Voisin et
al., 2013; Haddeland et al., 2006; Dol et al., 2003; Ehsani et
al., 2017; Hanasaki et al., 2006; Yassin et al., 2019). In many
cases, simulated operations are kept as general as possible so
that they can fit a variety of reservoir purposes and climatic
conditions, and in most cases they do not contain dynamic
zoning (operational zones change based on season). This ap-
proach is easily generalizable and can work for multiple re-
gions and dam types even when data are sparse. However,
it relies on many simplifying assumptions such as lumping
reservoirs into categories based on the main use or assuming
that the dead storage is equal to 10 % of the total storage ca-
pacity. Furthermore, given the lack of data, model calibration
is often only done on a few reservoirs or regions where data
are accessible. This leaves large uncertainty in local perfor-
mance and skews results towards specific data-rich regions.

Remote sensing cannot directly observe reservoir volumes
but can be used to observe water body extent and eleva-
tion. Reservoir storage must then be back-calculated from an
elevation—storage relationship on a dam-by-dam basis using
bathymetry or other approaches based on elevation datasets
(Hou et al., 2022; Zhao and Gao, 2019; Crétaux et al., 2011;
Busker et al., 2019). Remote sensing products have great
promise for large-scale evaluation of current system states
and historical behaviors. For example, Hou et al. (2022) re-
cently created a global analysis of reservoir storage from
1984 to 2015 based on remote sensing data. Still, it should
be noted that these approaches have several significant limi-
tations: (1) they do not directly observe storage, so the qual-
ity of the results depends on the accuracy of the area—storage
relationships that can be developed (Zhao and Gao, 2019;
Crétaux et al., 2011); (2) their precision is limited by the
spatial resolution of the remote sensing products, and there-
fore large reservoirs are most commonly studied; (3) spatial
resolution and temporal frequency are often very limited be-
fore the early 2000s, which makes it difficult to study trends;
and (4) data gaps in daily data exist due to weather and the
frequency of satellite coverage. As with the modeling ap-
proaches, the lack of direct observations of reservoir opera-
tions makes it challenging to quantify biases and to evaluate
the local performance of approaches.

The recently published ResOpsUS (Steyaert et al., 2022)
dataset can help address the observation gap inherent in both
the modeling and remote sensing approaches. ResOpsUS
contains historical reservoir operations (storage, elevation,
inflows and outflows) for more than 600 large dams in the
US gathered directly from reservoir operators (Steyaert et
al., 2022). The dataset covers operations from roughly 1930
to 2020, although periods vary by reservoir depending on
the construction date. ResOpsUS has already been used by
Turner et al. (2021) to derive a set of national rule curves for
simulation in the Model for Scale Adaptive River Transport
(MOSART) model. To do this, Turner et al. (2021) used the
ResOpsUS dataset to derive data-driven rule curve parame-
ters and then extrapolated these derived operations to data-
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scarce reservoirs in the northeastern and Great Lakes regions
with similar characteristics.

Here we expand on previous work done by Steyaert et
al. (2022) to provide a national characterization of histori-
cal reservoir operations. Our results provide the first national
characterization of historical reservoir behaviors based ex-
clusively on direct observations of reservoir storage levels
and releases provided by reservoir operators. Thus, this is
the most direct look at how reservoirs have actually behaved
across the US over time. This characterization is interest-
ing in itself, but our larger purpose is to provide quantitative
characterization at a spatial scale that can be useful for the
parameterization and evaluation of national to global mod-
eling and remote sensing approaches. Our analysis can be
used by planners and decision makers as a tool to better un-
derstand how reservoir storage has changed over time and
how the system we are managing today may behave differ-
ently from the system of the past. This is especially impor-
tant because long-term storage declines may impact our re-
siliency to future floods and droughts even though the phys-
ical infrastructure has not changed. Specifically, we present
regional differences in seasonality (Sect. 3.1) and historical
reservoir trends over the past 40 years nationally and region-
ally (Sect. 3.2 and 3.3) together with an analysis of com-
mon assumptions in existing large-scale reservoir modeling
approaches (Sect. 4.2).

2 Methods

The bulk of our analysis of historical reservoir operations
uses data provided by reservoir operators in the ResOpsUS
dataset (Steyaert et al., 2022). First, we aggregated the data
in ResOpsUS by hydrologic regions in the CONUS domain.
The data from ResOpsUS are combined with other existing
datasets of static reservoir characteristics and hydroclimatic
variables. Data processing and storage calculations used for
trend analysis are summarized in Sect. 2.2 and 2.3, respec-
tively. All the scripts for analysis are located on GitHub and
are linked in Sect. 6: Data availability.

2.1 Data

Historical reservoir storage, the main component of our
analysis, was pulled from ResOpsUS (Steyaert et al.,
2022). We also used static reservoir properties from the
Global Reservoirs and Dams Dataset (GRanD) (Lehner et
al., 2011) and watershed boundaries from the Watershed
Boundary Dataset (WBD) from the National Hydrography
Dataset (NHD) (Moore et al., 2019). In addition to the reser-
voir storage time series, we also used the standardized pre-
cipitation index (SPI) (Keyantash, 2021) to qualitatively an-
alyze the impact of dry periods on historical reservoir time
series (Figs. 5 and 6). The SPI is a normalized value that
compares a current month’s precipitation value against the
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long-term mean for that month to determine whether the cur-
rent month is drier or wetter than normal. The SPI can be
calculated monthly, every 3 months or at other temporal res-
olutions. For our analysis, we used the 3-month SPI values
calculated from Keyantash (2021) and calculated the average
across all the pixels within the 14 two-digit USGS Hydrolog-
ical Units (HUC2) regions in our analysis.

The ResOpsUS dataset is the most comprehensive dataset
of historical reservoir operations in the US. It contains daily
historical time-series data for 678 large reservoirs (reservoirs
with a storage capacity greater than 10 km?) including stor-
age, inflow, releases, elevation and evapotranspiration. Pe-
riods of coverage vary by dam (partially due to reporting
and partially due to variability in dam construction dates),
as do the variables provided. Overall, reservoir storage and
release time series are the most comprehensive, especially in
the period from 1980 to 2019. We focus primarily on stor-
age data for this analysis as they are the most consistently
reported in this dataset. ResOpsUS has daily storage records
for over 600 dams and covers 99 % of all the reservoirs in the
database.

The reservoir data in ResOpsUS were obtained directly
from the reservoir operators. Steyaert et al. (2022) noted that
there were some point errors, but no direct modifications to
the data were made. Therefore, we preformed minor data
processing to ensure consistency in our analysis. First, we
processed the reservoir storage time series to check for out-
liers. To do this, we linked ResOpsUS to GRanD. GRanD
contains static reservoir data such as storage capacity, con-
struction date and reservoir main use for 6862 dams through-
out the world and 2000 in the CONUS domain. After we
linked the two datasets, we identified outliers where the re-
ported ResOpsUS storage exceeded the maximum storage
capacity of the dam reported in GRanD. We found that a total
of 114 dams (or 15 %) had multiple outliers greater than their
maximum capacity. In the cases where these storage outliers
were isolated occurrences (potentially due to recording errors
or flood conditions), we adjusted these outliers to be equal
to the maximum value of that from GRanD (this was the
case for 14 dams). For the remaining 100 dams where out-
liers were a more common occurrence, we instead adjusted
the maximum storage capacity for the reservoir to match the
maximum observed storage value from ResOpsUs. This de-
cision was further supported by the GRanD documentation:
Lehner et al. (2011) noted that, in cases where the maximum
storage capacity was not available, the normal storage capac-
ity or minimum storage capacity was used instead.

Secondly, we filled in missing storage values using linear
interpolation starting from the first date of observation. This
means that, if a storage time series started in 1990, we did
not back-fill values prior to that period. Over the 629 dams
in our analysis and the period of record from 1980 to 2019,
we interpolated around 9.8 % of all the data. The total per-
centage per dam varied as some dams required more interpo-
lation (close to 30 %), while others required none. We also
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checked the period of record for every dam as start dates var-
ied across the dataset. In the rare instance where the build
date in GRanD was later than the data start date in ResOp-
sUS, we amended the start date in GRanD to align with the
data from ResOpsUS.

2.2 Regional storage calculations

The reservoir storage and storage capacity time series were
aggregated by the HUC2s and used to calculate the fraction
of storage filled in each region (Moore et al., 2019). We opted
to use the HUC2 boundaries to ensure that our sample size
per region was consistent with at least 10 dams. There are
an average of 110 dams per region. Although there is great
variability from region to region, some regions have 15 dams
(i.e., the Lower Colorado), while others have 200 (i.e., the
Missouri region).

In addition to evaluating total storage, we also calculate
the regional fraction filled (FF) to normalize the storage val-
ues and more directly compare across regions. The FF time
series uses the total average storage for a given day in each
region in ResOpsUS and divides that storage by the total stor-
age capacity of all the dams in that region on that same day.
Fraction filled time series were calculated using Eq. (1) for
daily time steps across the entire period of record that exists
within the original ResOpsUS time-series data.

n
Y storage; 4
=
FFrq= =
> capacity;

i=1

ey

FF is the fraction filled for region R on day d, storage; 4 is
the reservoir storage for a given dam (i) on day (d) and
capacity; is the reservoir storage capacity for dam (i). Re-
sults are summed regionally for all active dams () in a re-
gion on a given day where “active” dams are those dams for
which a storage value is available in ResOpsUS. Daily frac-
tion filled time series were averaged monthly and over the
water year periods from 1980 to 2019. Note also that we are
dividing here by the reservoir storage capacity of dams that
are actively reporting storage for ResOpsUS on a given day.
Therefore, the fraction filled metric also normalizes for dif-
ferences in the timing of dam construction and storage re-
porting.

Fraction filled analysis is only performed for those regions
where the ResOpsUS dataset has sufficient coverage to be
representative of regional storage dynamics. To be included
for analysis, we must have storage data covering at least 40 %
of the total storage capacity reported in GRanD for a given
region. The storage covered was calculated by summing the
reservoir storage capacity for all the dams in a region con-
tained in ResOpsUS and dividing this value by the total stor-
age capacity of all the dams in the same region in GRanD. Of
the 18 regions in the United States, 14 had enough data to be
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kept in our analysis (Fig. 1). As we did this analysis region-
ally, we only analyzed dams which did not have large gaps in
their storage. Of the 625 dams in ResOpsUS that were still in
our regions of interest, we removed 25 dams that had more
than 50 % of their daily records missing across the 40-year
period. Of the remaining dams, 170 had between 10 % and
50 % of their records missing, and the remaining 429 had
less than 10 % of their records missing. Therefore, we were
able to include 600 dams. For the individual analysis, the cri-
teria stayed the same, yet for dams with limited data we did
not calculate trends, and therefore we were able to keep all
600 dams when calculating the month of the highest fraction
filled yet removed 78 for the storage trends (keeping 551).

Seasonal aggregation was done by grouping monthly frac-
tion filled values and then taking the maximum, minimum
and median across the different periods. Regional trends
were calculated via Sen slopes using the fraction filled time
series from 1980 to 2019. Sen slopes are the average of the
slopes calculated between every set of points in a test dataset.
This approach is more robust and less sensitive to outliers and
end points compared to normal linear trends. All Sen slopes
in this paper were calculated with a 95 % confidence interval,
and a p value of 10 % (0.1) was used as significant. Trends
in the monthly range were calculated by taking the range
of each month and year (i.e., January 1980, February 1980,
etc.) and then plotting all the monthly ranges across time.
Sen slopes were calculated for these fits using the same 95 %
confidence interval and a p value of 0.1.

2.3 Fraction filled anomaly and recovery ratio

The fraction filled anomaly is used to normalize storage
by month (Eq. 2) so that we can compare drought impacts
across regions. To start, we calculated the monthly (m) me-
dian FF value across the full period from 1980 to 2019 for
each region (R), denoted as FFr n, in Eq. (2). Then, every
daily FF value was matched to the correct month so that we
could calculate the difference between the daily value and the
monthly median. Daily fraction filled time series were then
further aggregated to monthly for the drought sensitivity and
recovery analysis (Sect. 3.4).

AnomalyR’d =FFr 4 —FFr m 2)

We then quantified several metrics for each drought. First,
we calculated the drought recovery time as the date on which
the SSI or FF anomaly values were equal to or greater than
the respective value at the start of the drought period. We
then define the recovery ratio (RR) as the time it took the
fraction filled anomaly to recover divided by the time it takes
the SSI values to recover. Recovery ratio values less than 1
denote that the drought metric took longer to recover, and RR
values greater than 1 show that the fraction filled anomaly
took longer to recover.
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Figure 1. Maps depicting the percentage of the storage capacity used for irrigation (a) and flood control (b), point locations of all dams in
ResOpsUS colored by the main use (c¢) and the aridity of all the regions with the 12 main regions in this study outlined (d). Panels (a) and
(b) are calculated by summing up the total storage capacity of dams with irrigation (a) or flood control (b) as their main use and dividing
that number by the storage capacity in each region. Grey shading in both denotes regions that do not have any irrigation or flood control
dams. Dams that did not have a main use are not mapped in panel (c). Panel (d) depicts the mode of the Koppen—Geiger climate index pixels
to classify the regional climates for each HUC2. Panel (d) also contains the abbreviations of the basin names pulled from the USGS HUC2

watershed boundary dataset as denoted in Table 1.

3 Results

In this section, we present reservoir operating patterns sea-
sonally (Sect. 3.1), over time (Sect. 3.2) and in response to
drought (Sect. 3.3). In all the cases, we study the 14 bold re-
gions in Fig. 1d that have sufficient data in ResOpsUS. In our
discussion section, we summarize these behaviors, explore
relationships between climate, operational uses and observed
behaviors and compare them to common assumptions made
by reservoir modeling studies.

Figure 1 maps reported reservoir usages nationally along
with aridity to provide additional context for discussion. As
shown in Fig. 1c, reservoirs in the CONUS domain have a
variety of primary uses ranging from flood control, irriga-
tion, recreation, water supply, navigation, fisheries and oth-
ers. There are some clear regional trends. The western US
is dominated more by irrigation uses, while flood control is
the dominate usage along and east of the Mississippi River
(Fig. 1a and b). In ResOpsUS, the flood control and irrigation
main uses are the most numerous. However, there are also
many navigation, hydroelectricity, water supply and recre-
ation reservoirs across the CONUS domain (Fig. 1c). The
irrigation and water supply main uses are typically west of
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Table 1. USGS HUC2 names and corresponding abbreviations used
in all the figures. Basins are labeled from the western to eastern
coasts.

USGS HUC?2 region name  Abbreviation in the figures
CA California

PNW Pacific Northwest

GB Great Basin

LC Lower Colorado

uUsS Upper Colorado

TG Texas Gulf

AWR Arkansas White River
MO Missouri

SRR Souris Red Rainy
UM Upper Mississippi
LM Lower Mississippi
SA South Atlantic

TE Tennessee

OH Ohio

Hydrol. Earth Syst. Sci., 28, 1071-1088, 2024
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the Mississippi, while flood control main use reservoirs ex-
ist throughout the entirety of the CONUS domain. California
has the largest percentage of irrigation reservoirs, with the
Great Basin and Rio Grande following close behind (Fig. 1a).
There are no irrigation reservoirs in the dataset east of the
Mississippi, where the climate is more humid (Fig. 1d). Com-
paratively, flood control reservoirs have the highest concen-
tration along the Mississippi Basin. All the regions apart
from the Lower Colorado have at least one flood control
reservoir (Fig. 1b). Navigation reservoirs are concentrated in
the southeastern portions of the CONUS domain, especially
in the Ohio, South Atlantic, Lower Mississippi and Texas
Gulf regions. Hydroelectricity reservoirs are most common
in the Tennessee Basin and the South Atlantic.

Spatial patterns in reservoir purpose correlate with na-
tional climate patterns. Figure 1d shows the aridity indices
according to the Koppen—Geiger index (Kottek et al., 2006).
The Koppen—Geiger index uses annual precipitation and
temperatures to classify climates into four main groupings:
tropical, dry, continental and polar. Of these, the continen-
tal United States contains all except polar. For each HUC2
region, we used zonal statistics to calculate the number of
pixels in each Koppen—Geiger climate index to quantify the
regional climates. The northeastern United States is humid
continental, meaning that seasonal precipitation variability is
small and temperatures are relatively cool (less than 22 °C)
all year. The southeastern United States is primarily hu-
mid subtropical, which has warm and moist conditions in
the summer months and makes summer the wettest season
and winter the driest in comparison. The midwestern United
States is semi-arid with warm summers, snowy winters and
large diurnal temperature swings. These regions also observe
more precipitation in the winter months, while the summer
months are marked by drier spells. Finally, the West Coast is
dry summer temperate, which is characterized by moderate
temperatures and changeable, rainy weather in the winter as
well as hot and dry summers.

Outside of the Pacific Northwest and California regions,
it gets more humid as you move from west to east across
the United States. The most arid regions exist in the south-
western United States, and the coasts are much more hu-
mid. While not all regions have sufficient operation data for
analysis, the 12 regions that are included do span dry sum-
mer temperate regions (California), semi-arid regions (Upper
Colorado, Missouri, Great Basin, Lower Colorado), humid
continental regions (Souris Red Rainy) and humid subtropi-
cal regions (Texas Gulf, Arkansas White Red, Lower Missis-
sippi, Ohio, South Atlantic, Tennessee).

3.1 Spatial patterns in reservoir operations
In this section, we quantify spatial patterns in regional reser-
voir operations using four main metrics: (1) the monthly me-

dian fraction filled, (2) interannual variability in the monthly
fraction filled (referred to as the monthly storage range),
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(3) monthly operating ranges (i.e., the difference between the
maximum and minimum storage within a given month) and
(4) the month of the highest median fraction filled and the
highest fraction filled range for over 400 dams in these 14 re-
gions.

Based on the great variability in aridity and reservoir pur-
pose across the US, we expect to see regional differences
in both reservoir levels and seasonal operating patterns. Fig-
ure 2 shows the median fraction filled values across the 40-
year study period from 1980 to 2019. Overall, we see that
more arid regions and irrigation-dominated regions tend to
have larger median fraction filled values (greater than 0.6),
yet all median fraction filled values do not exceed 0.8. This
suggests a potential flood control storage of around 20 %.
Conversely, the more humid regions with greater flood con-
trol percentages in the southeast have median fraction filled
values that sit between 0.2 and 0.5. These results align well
with the historical analysis of Graf (1999), who investigated
how storage capacity and population density changed in the
CONUS domain, specifically looking at reservoir use (al-
though this analysis was based on static reservoir values as
opposed to operational data).

The monthly maximum and minimum fraction filled val-
ues illustrate regional differences in seasonal operating pat-
terns. Five of the regions have median storage peaking in
June. Irrigation-dominated regions (Missouri, Upper Col-
orado, Lower Colorado, Great Basin, Souris Red Rainy, Pa-
cific Northwest, Fig. 2f and i—n) have maximum storage
peaks later than June (typically in July and August). This
could correspond to water being held in storage later in
the year to support summer irrigation in periods where pre-
cipitation is more limited. Conversely, regions with more
flood control reservoirs (Ohio, Tennessee, Lower Missis-
sippi, Texas Gulf, Arkansas White River, South Atlantic,
Fig. 2a—g) generally have median fraction filled peaks in
May. The Upper Mississippi (Fig. 2c) is an outlier here as
the median fraction filled values peak in June instead of early
May, which could suggest the influence of other reservoir
types. We also see that more humid regions tend to have less
month-to-month variation in the median fraction filled, while
more arid regions like the Upper Colorado and the Great
Basin have stronger seasonal trends.

The interannual variability in the monthly fraction filled
(referred to as the monthly storage range) for the 40-year pe-
riod is shown by the shaded areas in Fig. 2. Monthly stor-
age ranges generally follow the same overall trends seen in
the median values (i.e., the monthly range peaks in the same
month as the median fraction filled values peak). However,
the monthly range peaks in the spring in the more humid
basins (Fig. 2a—d). Souris Red Rainy and Upper Mississippi
both have a drop in May right before the median fraction
filled peak in June. Comparatively, the maximum range for
Lower Colorado is in July and the lower bound of the median
fraction filled values stays the same from season to season.
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from the most humid to most arid regions.

In general, the biggest monthly ranges are seen in arid basins
except for seasonal peaks in Ohio.

Next, we consider the operational storage range. This is
the range of storage with each month (i.e., the maximum mi-
nus minimum storage in a single month). Note that this is
different from the monthly storage range, which is the maxi-
mum and minimum storage seen in a given month across our
40-year study period. Figure 3 plots the median monthly op-
erating range for all the years as well as the maximum and
minimum by basin. Small values here indicate little variabil-
ity within the storage values for a given month, while large
values can indicate significant filling or draining. Except for
the South Atlantic region (Fig. 3d), the variability in the op-
erating ranges goes down as aridity increases (moving from
top left to bottom right in Fig. 3). While the minimum operat-
ing range stays constant across all the seasons, the maximum
operating range typically occurs in the spring months, with
peaks for humid and flood-control-dominated regions. Irri-
gation regions have peak operating range values in the sum-
mer (July and August). Notably, Lower Colorado has a slight
peak in April, yet the seasonal line is flat.

‘We observe two main types of behavior for the median op-
erating range: basins with clear seasonal variability and those
without. The Tennessee, Lower Mississippi, Ohio, South At-
lantic, Arkansas White Red, Texas Gulf, Missouri and Lower
Colorado (Fig. 3a—d, f-h and 1) basins all have very little
monthly variability in their operating ranges. Most of these
regions are humid, and the dominant storage purpose is flood
control. The Lower Colorado is an outlier as it is arid and
irrigation-dominated. However, this dynamic is to be ex-
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pected as the flows in the Lower Colorado are heavily regu-
lated and controlled by the Colorado River Compact. Califor-
nia, Upper Colorado, Great Basin, Pacific Northwest, Upper
Mississippi and Souris Red Rainy (Fig. 3e and i—k) all have
a clear seasonal cycle in the operating ranges. All these re-
gions exhibit a peak in the median operating range during the
spring or summer months and, except for Souris Red Rainy,
Upper Mississippi and Pacific Northwest, are predominately
semi-arid. Peaks in the spring would be consistent with reser-
voir filling in snowmelt-dominated basins (Souris Red Rainy,
Pacific Northwest and Upper Colorado), while summer peaks
may reflect drawdown for irrigation in the summer (Califor-
nia, Upper Mississippi and Great Basin). Finally, the opera-
tional range variability (purple shading) peaks based on the
main use with non-irrigation uses (mainly in the eastern US)
peaking in winter and irrigation uses (the western US) in late
spring and summer.

To complement the regional analyses and disentangle the
effect of storage capacity on the regional analyses, we plotted
the month of the greatest median fraction filled (Fig. 4a) and
the month of the largest fraction filled range (Fig. 4b). Over-
all, most individual dams have peaks in the median fraction
filled in the spring. The largest fraction filled median occurs
mostly in April for reservoirs east of the Mississippi and June
for reservoirs west of the Mississippi. These regional differ-
ences align with the priority of either flood control (east-
ern reservoirs) or irrigation (those in the western US) as
well as seasonal differences between snowmelt-dominated
and rainfall-dominated basins. The large median FF in the
western US late into summer most likely supports summer
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As in Fig. 2, regions are organized from the most humid to most arid regions (a—i).

irrigation. Another large subset of reservoirs has median FF
peaks in winter (November—February). These reservoirs are
all located in the southeastern US and mid-Atlantic regions.
The peak in the median fraction filled during this period most
likely aligns with flood control after the fall storm season.

The monthly fraction filled range map (Fig. 4b) shows
similar trends: large ranges in the winter months for the east-
ern and southeastern US and large ranges in the summer
for the western US. These two main periods align with the
necessary operations for flood control (primarily during the
winter months) and irrigation (primarily during the summer
and early fall months). That said, there is a large subset of
reservoirs across the western US (primarily in California, the
Lower Colorado and the Pacific Northwest) that have frac-
tion filled range peaks in the winter months due to increased
storage for water use in the spring.

Hydrol. Earth Syst. Sci., 28, 1071-1088, 2024

3.2 National storage trends

Over the past 100 years, reservoir storage capacity has
steadily increased across the US (Fig. 5a). In the 1950s,
the total storage capacity rapidly increased with a construc-
tion boom (Benson, 2017; Ho et al., 2017; Di Baldassarre et
al., 2018). Starting in 1975, dam construction began to slow
down as environmental regulations increased and prime loca-
tions for large dams were increasingly taken. By the 1980s,
the total storage capacity in the CONUS domain levelled off
and the era of large dam building came to an end.

As previously noted, the ResOpsUS dataset that we are us-
ing for our analysis includes data for 678 dams, roughly 85 %
of the dams with a storage capacity greater than 1000 MCM
and 77 % of the total storage in the CONUS domain (Fig. 5a,
dashed line). While all the storage is not included in this
dataset, Fig. 5a shows that there is a similar temporal trend
in the reservoir storage covered in ResOpsUS and the total
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Figure 4. Maps of individual dams colored by the month of the highest fraction filled median (a) and the largest fraction filled range (b).
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national storage (i.e., rising most rapidly up to 1980 and then
levelling off). It should also be noted that reservoir storage
capacity decreases in ResOpsUS after 2020 are due to miss-
ing data in recent years for the ResOpsUS dataset and are
not an indication of dam removal (recall that the ResOpsUS
storage capacity is reporting only the capacity of those dams
that have data each year).

While reservoir storage capacity has remained steady over
the past 40 years (1980-2019), the fraction filled has steadily
decreased over this period (denoted by the lavender trend line
in Fig. 5b). There can be many reasons for storage declines
(i.e., sedimentation, increased demand, evaporative losses
or decreased precipitation). However, broadly speaking, de-
creases in the fraction filled are correlated with climatic shifts
as illustrated by drops after extreme drought periods (col-
ored in maroon). Conversely, during non-drought periods and
less severe droughts (pale pink), we see that reservoirs can
recover, although not fully (as indicated by the declining
trend). Overall, reservoir storage peaks at 60 % fraction filled
in 1989 and drops all the way to 43 % in 2007. In more re-
cent years, there is some recovery of the fraction with a final
value of 53 %. We also plot the reservoir fraction filled vari-
ance over time (Fig. 5b; note that this is the annual variance
of daily fraction filled values, referred to as annual storage
variance). Annual storage variance peaked in 1995 and does
not demonstrate the same clear trend, as was shown with stor-
age. Variance generally increases during drought periods and
is lower during non-drought periods. This means that vari-
ance is peaking during the same periods and that storage is
dropping, suggesting an inverse relationship between vari-
ance and storage levels.

3.3 Regional storage trends

Next, we evaluated regional storage trends for the 14 regions
that had 40 % or more storage covered. We calculate a lin-
ear trend using values from 1980 to 2019 for the first month
of the water year (October) (Fig. 6a-1) to evaluate carryover
storage. From this, we identified three behavior types: (1) low
interannual variability (Fig. 6a-h), (2) more interannual vari-
ability but no significant linear trend (Fig. 6i—k) and (3) high
variability and trends (Fig. 61-n). Tennessee, Lower Missis-
sippi, Ohio, South Atlantic, Arkansas White Red and Texas
Gulf display slightly linear interannual fraction filled trends
and have very small changes in interannual storage. These
regions are dominated by flood control, navigation and hy-
droelectricity, main uses that require stable heads to gener-
ate use. Additionally, these regions are all humid (Fig. a—d)
and semi-arid (Fig. 6f and g). This is consistent with the re-
sults of Sect. 3.1, which showed that the more humid and
flood-control-dominated parts of the country tend to have
lower storage values overall and less variability in storage. Of
these, the Upper Mississippi, Lower Mississippi, Tennessee
and Ohio regions have statistically significant linear trends
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(p < 0.05) and are all positive, suggesting that there has been
an increase in storage over time.

The second set of regions (Souris Red Rainy, Missouri,
California, Pacific Northwest and Great Basin, Fig. 6g and i—
k) all have large interannual variability but very slight lin-
ear trends that are not statistically significant. These regions
have larger carryover storage, are mainly water-supply- and
irrigation-dominated and are all more arid (i.e., semi-arid and
dry summer temperate in the case of California and the Pa-
cific Northwest). Conversely, Upper Colorado (Fig. 61) has
both high interannual variability and a statistically significant
negative storage trend. In all these regions, reservoir storage
appears to be strongly influenced by dry periods as shown by
the shading in Fig. 6.

Finally, the Lower Colorado (Fig. 6n) does not fit into any
of these groupings. This basin has a strong linear trend and
little interannual variability (note that the fraction filled does
not return to a value each year but rather plummets). This
semi-arid basin mainly consists of irrigation, water supply
and hydroelectricity main uses, yet we only see the interan-
nual variability similar to non-irrigation reservoirs. This is
likely because storage in the Lower Colorado is dominated
by storage in Lake Mead as the Hoover Dam holds a large
fraction of the total storage in the basin. Additionally, the
Colorado River Compact dictates the releases and therefore
the storage in Lake Mead, which has seen historic lows due
to the mega-drought (Williams et al., 2022) and increased
aridification trends (Overpeck and Udall, 2020) in the south-
western United States. That said, the strong negative trend in
the Lower Colorado is a cause for concern and has been a
topic of much discussion as the western US is currently ex-
periencing a mega-drought (Fig. 6m) (Williams et al., 2022).

We also calculated the Sen slopes for the individual dams
included in our regional analysis and mapped them in Fig. 6p.
Across the CONUS domain, all the basins have both positive
and negative storage trends. Basins with predominately pos-
itive trends in Fig. 60 such as Ohio and Tennessee also have
numerous dams with negative fraction filled trends. Addi-
tionally, basins such as the Lower and Upper Colorado have
positive slopes. Therefore, the bulk of the storage trends seen
in Fig. 60 are dominated by the dams with the largest stor-
age capacity. Figure 6p also depicts regions where the over-
all trend in Fig. 60 is slightly skewed from what is observed
regionally. In fact, regions with more flood control and nav-
igational uses (the eastern and southeastern US) have more
positive fraction filled trends, while regions with more irri-
gation and water supply uses (the western US) have more
negative trends. The Texas Gulf region stands out in this re-
gard as the region is dominated by both water supply and
flood control uses, and therefore there are both positive and
negative storage trends.

We also observe the degree of storage drawdown that hap-
pens over drought periods regionally (i.e., the grey-shaded
periods in Fig. 6). In all the basins, storage decreases dur-
ing the dry periods. However, in humid regions and regions
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where flood control is the dominant reservoir purpose, these
declines appear to be much smaller. This is consistent with
previous results showing that these locations maintain less
storage overall and have smaller operational ranges. Semi-
arid basins with higher levels of irrigation and water supply
uses have sharper drawdown patterns during drought. Again,
this is consistent with previous results showing a larger op-
erational range and carryover storage in these areas. In most
cases, reservoir storage goes down during drought. There are,
however, notable periods in all the regions where storage in-
creases. Examples include Souris Red Rainy and Texas Gulf
during the drought periods in the early 1980s and the drought
in the early to mid 1990s for the Upper and Lower Colorado.
A more detailed regional analysis is required to understand
the causes of these increases.

In addition to overall storage trends, we evaluate whether
there have been historical trends in the operational range (i.e.,
the difference between maximum and minimum storage in
a given month) for each year. For every region, we calcu-
late a time series of monthly operational ranges and fit lin-
ear Sen slopes to each month to evaluate whether the op-
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erational range is increasing or decreasing for that month
over time. Figure 7 depicts these trends as bar plots colored
by positive (blue) or negative (pink) and shaded by statis-
tically significant (dark) or non-significant (light) p values
at a significance of 5 %. Positive trends mean that the inter-
annual operational range is increasing over time, and neg-
ative trends mean that this interannual operational range is
decreasing over time. Firstly, we will look at distinctions be-
tween positive and negative trends without accounting for
the significance. Regions such as Souris Red Rainy, Califor-
nia, Lower Mississippi, Upper Mississippi and Great Basin
have more positive months than negative months, indicating
that, overall, their interannual operational range is increasing
over time. Conversely, basins such as Tennessee, Ohio, South
Atlantic, Arkansas White Red, Texas Gulf, Upper Colorado
and Missouri have interannual operational ranges that are de-
creasing over the past 40 years. Lower Colorado has an even
split between positive and negative trends, suggesting a sea-
sonality in the increase (April) and decrease (July, August
and October) of the operational range trends. Missouri and
Lower Mississippi are unique examples of these two trends
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as the majority of their interannual operational range slopes
are quite small except for 2 months: December for Lower
Mississippi and May for Missouri. It is possible that changes
in the operating range could be solely attributed to shifts in
demand and inflow (which could still be captured with static
rule curves), or it could be the case that the operating policies
are also shifting over time.

To account for the statistical significance, we group the be-
haviors into four categories. First, the Tennessee, South At-
lantic, Ohio, Pacific Northwest and Lower Colorado regions
(Fig. 7a, d, e, k and n) have three or more negative monthly
trends that are statistically significant. All these regions apart
from the Pacific Northwest have statistically significant neg-
ative trends in July and August, with Tennessee, Ohio and
the South Atlantic having statistically significant trends in
the summer months (June—August). The Pacific Northwest
has decreasing trends in the fall and winter, with increasing
trends in July and August potentially to open storage for irri-
gation. Apart for the Lower Colorado and the Pacific North-
west, these regions are primarily humid with low carryover
storage. The second set contains regions that have predomi-
nately positive trends and are greater than or equal to three
statistically significant trends (Souris Red Rainy and Califor-
nia, Fig. 7f and j). Of these regions, Souris Red Rainy has
statistically significant positive trends in the spring and fall,
while California only has statistically significant trends in the
fall. The positive and statistically significant values indicate
that these regions have seen increases in the interannual op-
erational range during these seasons compared to their coun-
terparts with negative trends. The last group contains regions
without statistically significant trends (Lower Mississippi,
Upper Mississippi, Texas Gulf, Great Basin, Arkansas White
Red, Upper Colorado and Missouri (Fig. 7b, ¢, g—i, 1 and m).
While these basins may have 1 month of statistically signif-
icantly trends (December and May), the lack of statistically
significant values does not allow us to definitely align them
with operations.

4 Discussion

In this section we synthesize the detailed results pre-
sented above to characterize regional differences in operating
regimes (Sect. 4.1) and evaluate where our results agree and
disagree with common assumptions that are made in large-
scale reservoir modeling approaches (Sect. 4.2). The intent
here is to provide a summary of the behaviors we should ex-
pect to see from large-scale models (which can be useful for
both model evaluation and model parameterization) and to
highlight where current approaches may be the most system-
atically biased.

Hydrol. Earth Syst. Sci., 28, 1071-1088, 2024

4.1 Characterizing regional patterns in reservoir
operating regimes

Our results highlight strong regional differences in reservoir
operations. More humid regions generally have a lower to-
tal storage capacity and a lower median fraction filled, while
more arid regions have a higher median fraction filled. This
difference is consistent with findings by Ho et al. (2017) and
Graf (1999) and is due to regional differences in streamflow
regimes and reservoir purposes. Irrigation and water supply
are often the main reservoir purposes in the western, more
arid United States, while the eastern, more humid United
States contains more flood control and hydropower uses. Ad-
ditionally, the more humid regions also have lower monthly
storage ranges without strong seasonal cycles. This is due in
part to the lower storage capacity dams without strong intra-
annual storage changes (Patterson and Doyle, 2018; Ben-
son, 2017). This is complemented by seasonal increases in
fraction filled variance in the winter and spring for humid
and flood-control-dominated regions to support flood control
and navigation operations and ensure stable reservoir stor-
age. Conversely, more arid regions with higher concentra-
tions of irrigation reservoirs have spring and summer peaks
to support runoff in snowmelt-dominated basins (Upper Col-
orado, Pacific Northwest and California) and irrigation uses.
This direct relationship between variance and storage seen in
Fig. 5 could be caused by two things: (1) increased seasonal
demand which is leading to releases that are fluctuating more
to meet demand and greater drawdown (as seen in the Lower
Colorado region) or (2) environmental releases which have
shifted operating policies away from a constant release strat-
egy.

Flood control reservoirs are generally characterized by
lower fraction filled values and less clear seasonal variability.
Median fraction filled values generally peak in May for flood
control reservoirs (which could be due to reservoir opera-
tors maintaining low storage in the spring to prevent down-
stream flooding). Additionally, there are decreased monthly
variations in flood control reservoirs as operators are attempt-
ing to keep their storage levels consistent with the maximum
storage range peaking in the spring. Flood control and hy-
dropower reservoirs have the most stable seasonal median
fraction filled with small peaks in the spring and winter as op-
erators bring storage back to normal operating values. When
observing the month of the highest median fraction filled
and the month of the highest fraction filled range (Fig. 4a
and b, respectively), these two trends appear to be constant
over time, as we see that most reservoirs have a median frac-
tion filled peak in April or May for eastern reservoirs with
operational range peaks in January.

Conversely, irrigation and water supply reservoirs have
a much stronger seasonal cycle and different peak storage
timing. While flood control reservoirs have median fraction
filled peaks in May, irrigation reservoirs generally have frac-
tion filled peaks in June (and, in some cases, even late sum-
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mer). [rrigation reservoirs are also dominated by strong fill-
ing cycles with strong seasonal trends in their monthly stor-
age ranges. Irrigation and water supply uses have monthly
storage range peaks in the summer to support water supply
for humans and plants during periods where precipitation and
runoff are limited. This strong seasonality shows up in the
operating range spread, which is quite large in irrigation-
dominated basins with a wider spread during late spring
and early summer (the main irrigation period in the United
States). The median fraction filled peak month (Fig. 4a)
demonstrates that, for most of the western US, this relation-
ship holds. When looking at the month of the highest opera-
tional range, we see that the range is highest in late summer
and early fall for all western basins apart from California and
the Pacific Northwest, where flood control operations have
a higher priority. Regions have delayed peaks in their op-
erations due in part to irrigation being separate from filling
as operators strive to hold water later in the summer when
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supply is not as consistent. Irrigation and water supply dom-
inated regions also have a larger interannual variability when
looking between water years (Fig. 3).

Across the CONUS domain, we find a strong negative
trend in reservoir storage which is consistent with previous
studies (Adusumilli et al., 2019; Zhao and Gao, 2019; Hou
et al., 2022; Randle et al., 2021). Only the Tennessee and
Upper Mississippi basins have had a statistically significant
positive trend in storage over the past 40 years. This is due in
part to the abundance of flood control and navigation reser-
voirs and increases in streamflow which potentially combine
to increase the total storage held in this region (Naz et al.,
2018). When looking at the individual dams in Fig. 6p, we
see that more flood-control-dominated regions (Tennessee,
Ohio, South Atlantic and California) have a large proportion
of dams with a positive trend over the past 40 years. De-
clining storage trends are concerning in regions such as the
Lower Colorado and Upper Colorado, where the impact of a
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mega-drought is threatening water supplies (Williams et al.,
2022) and the region is expected to continue aridifying under
future projections (Overpeck and Udall, 2020). Similarly, in
the Lower Mississippi, low storage levels can threaten the
operation of navigation reservoirs that support the transport
of goods longitudinally in the United States.

Throughout our study we find the Lower Colorado to be
unique in many regards. The Lower Colorado has very low
seasonal variations in median fraction filled values and oper-
ating ranges, with seasonal peaks during the summer (consis-
tent with irrigation uses) and operational range peaks in April
(consistent with flood control uses). Additionally, the spread
of the operational range is quite similar to flood control reser-
voirs, as it is kept quite steady with few to no monthly varia-
tions. Finally, the fraction filled variance peaks in the winter
and early spring with no monthly changes. These dynamics
are most likely a result of the fact that most of the water sup-
ply comes from reservoir releases from the Upper Colorado
basin. The negative storage trend is concerning as this basin
is water-limited and extractions routinely outpace the inputs
from the Upper Colorado. Combined with the current mega-
drought (Williams et al., 2022) facing the western United
States and the aridification trends of the southwestern US
(Overpeck and Udall, 2020), there is an large increase in vul-
nerability to drought in this region that can be expected to
continue.

4.2 Comparison to common reservoir assumptions

Historically, global hydrologic models employ a range of
simplifications to represent reservoir operations. This is done
out of necessity given the lack of consistent datasets on reser-
voir operations. Here, we used the unique analysis that is
made possible by the ResOpsUS dataset to discuss the po-
tential limitations of simplifying assumptions. The intent is
to highlight where more complicated approaches in reservoir
operations may make a significant difference in estimated
storage and water supply.

Two widely cited approaches by Hanasaki et al. (2006) and
Haddeland et al. (2006) rely on static reservoir characteris-
tics such as the maximum storage capacity, main reservoir
purpose and average annual inflow to parameterize reser-
voir operations. These two models rely on similar simplify-
ing assumptions: (1) assume that dead storage (the amount
of water that cannot be pulled from the reservoir) is 10 %
of the maximum storage, (2) releases are based on storage
at the start of the operational year, (3) downstream demand
is weighted by the maximum storage capacity in the basin,
and (4) monthly water demand per sector is used to deter-
mine releases. Hanasaki et al. (2006) further assume that the
modeled storage capacity is 85 % of the observed maximum
storage capacity and that reservoir operations are determined
by a single primary purpose. Haddeland et al. (2006) take a
slightly more complex approach allowing for multiple reser-
voir operations (i.e., water supply, hydropower, irrigation or
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flood control) and employing retrospective rule curves where
the year-end releases are used to determine reservoir releases
at the current time step. The assumptions employed by both
of these approaches are a significant limitation for the com-
plexity they can represent. However, they are also well suited
for data-sparse regions and global models.

We found that water supply reservoirs do have more carry-
over storage than hydropower or navigation reservoirs. How-
ever, the resulting impact of this carryover storage varies
greatly with respect to climate. When combined with irri-
gation dams, the impact of this carryover storage in water
supply reservoirs in the western US is more pronounced than
in the more humid basins such as the Texas Gulf or Ten-
nessee basins. This suggests that climate is the key driver in
the carryover storage (more carryover storage in arid regions
compared to humid regions) as well as the other regional
reservoirs. On an individual basis, we do see that selected
water supply reservoirs in more humid basins appear to have
similar characteristics to those in more arid basins (Fig. 4),
yet overall there is a distinct difference between humid and
arid basins. This difference on the basin scale is more likely
due to reservoir operations in series, which causes water sup-
ply reservoirs to be operated more like the reservoirs around
them (flood control and navigation in the east and irrigation
in the west). That said, we do note that classification of op-
erational policies by main purpose should be taken with a
degree of uncertainty as this is the main purpose and many
reservoirs are multipurpose (i.e., an irrigation dam that con-
tains flood storage).

We also see quite distinct storage patterns between
irrigation-dominated reservoirs in the western US and non-
irrigation reservoirs in the eastern US. However, our results
show significant seasonal variability in operations which can-
not be explained by seasonal differences in inflow alone. Ap-
proaches that use constant operating policies throughout the
year are likely to miss seasonal patterns in both fraction filled
and operating ranges.

There have been recent efforts that take a more complex
approach and use historical reservoir time series to derive
reservoir operations (Turner et al., 2020, 2021; Yassin et al.,
2019). In these methods, operations are derived from ob-
served reservoir time series and the number of generalized
assumptions are limited. Yassin et al. (2019) employ a set of
five storage zones in which reservoir releases will shift based
on the storage zone and incoming streamflow. Like Turner
et al. (2021), these zones are set based on historical time se-
ries, yet unlike Turner et al. (2021), these zones are set via
an exceedance probability or optimization function instead
of harmonic regressions. Therefore, Yassin et al. (2019) as-
sume that the operational zones will stay static into the fu-
ture. Comparatively, Turner et al. (2020, 2021) (which are
both based on the same model) assume that releases are based
upon the week of the year, the incoming inflow that week
and the start-of-week storage. The harmonic regression is fit
to historical time series to determine the operational range.
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This method is also readily extrapolated to other reservoirs
with similar operational purposes and hydrologic seasonal-
ity.

Still, previous research has found that rule curves can
underestimate seasonal dynamics by smoothing out peaks
(Turner et al., 2021). Our results demonstrate large seasonal
fluctuations in the eastern reservoirs which could be under-
estimated when only looking at smoothed curves such as in
Turner et al. (2020). We also show that operational ranges
vary throughout the year, indicating the need for dynamic
zoning of reservoirs as seen in Yassin et al. (2019). This may
also be necessary for multipurpose reservoirs or those with
large interannual storage (primarily those in the western US
and California). The seasonalities in the operational ranges
(Fig. 2) show that eastern regions with more flood control
reservoirs (and those that rely heavily on forecasted inflows
and multipurpose reservoirs in irrigation-dominated basins)
would be prime candidates for the models similar to Yassin
et al. (2019) as they allow for storage targets for a variety of
uses. Unfortunately, this method will continue to be limited
by data gaps until reservoir time series are consolidated in
one centralized database.

Another common assumption in large-scale models is that
operating policies do not change over time. For example,
all the above reservoir operations, Hanasaki et al. (2006),
Haddeland et al. (2006), Yassin et al. (2019) and Turner et
al. (2021), are trained on historical data and assume that op-
erational range bounds stay consistent. Our results show that
not only are there long-term trends in total reservoir stor-
age but that there are also trends in the reservoir operating
ranges over time. In more arid basins such as the Upper
Colorado, Souris Red Rainy and California regions, the op-
erational range has been increasing. In more humid basins,
such as the Tennessee, Ohio and South Atlantic regions, op-
erational ranges have been decreasing, which is supported
by Patterson and Doyle (2018), who show that operational
ranges have shifted.

Many reservoir studies assume that reservoir storage stays
between 10 % and 85 % of that maximum storage capacity
(Yassin et al., 2019; Voisin et al., 2013). This assumption
is supported in all 14 of the regions that we looked at in
the CONUS domain. In fact, all the regions have a mini-
mum fraction filled by at least 20 % and in most cases 40 %.
This suggests that, in practice, reservoir storage stays well
above the 10 % threshold. Providing 10 % as the lowest stor-
age value may not be a problem if reservoirs are not hitting
that threshold but could also lead to simulations that over-
estimate the actual operational range. Specifically, our anal-
ysis demonstrates that most of the eastern basins (with pri-
mary uses of flood control, hydropower and navigation) have
long-term median storage ranges that stay well within this
assumed operating range. However, in the western regions,
we see fraction filled values quite close to 0.85 (Fig. la-1).

Finally, many reservoir studies use static datasets such
as GRanD for their maximum storage capacities. There are
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100 dams in our study, where observed storage values ex-
ceed the reported maximum storage values in GRanD. While
some of these could directly relate to periods when the reser-
voir was overtopped, it could also be that the maximum stor-
age capacity in GRanD is inaccurate due to data gaps. In the
GRanD documentation, Lehner et al. (2011) specifically state
that, if the maximum storage capacity was not reported, the
reported storage capacity or the minimum storage capacity is
used instead.

5 Conclusion

Here we use the first national dataset of direct reservoir ob-
servations (ResOpsUS) to develop a comprehensive sum-
mary of historical reservoir operations across the US and to
compare the relationships we get from direct observations to
common assumptions made in large-scale reservoir param-
eterizations. Our results show strong regional differences in
reservoir behaviors as well as trends over time. The median
storage peaks are in winter and spring for the eastern US
and in summer for the western US. Conversely, minimum
storage typically occurs in early summer in the eastern US
and in winter in the western US. Over our 40-year study pe-
riod (1980-2019), five of the regions we evaluated had sta-
tistically significant decreasing storage trends. Of these five,
the Lower Colorado is the most negative due to the ongoing
mega-drought in the past 20 years (Williams et al., 2022).
The Tennessee region is the only basin with a positive storage
trend, potentially due to increased streamflow across the east-
ern US and decreasing operational ranges (Naz et al., 2018).
Overall, operational ranges have been increasing over time in
more arid regions and decreasing in more humid regions.

Our operational range analysis can be useful both for de-
riving rule curves as well as a calibration tool to assess
whether the modeled operations align with historical shifts.
Similarly, the seasonal shifts in operational ranges shown
here are important for understanding when in the year reser-
voirs are most actively filling and draining. The spatial vari-
ability in our seasonal results highlights the need for complex
zoning or rule curves.

While many of our findings agree with the general as-
sumptions that are commonly made about different types of
reservoirs (e.g., storage and release timing differences for
flood control vs. irrigation reservoirs), the spatial and tem-
poral complexity of our results highlights the potential biases
that can be introduced with simplified operational representa-
tions. For example, our evaluation of seasonal trends, some-
thing that has not been explored previously with direct obser-
vations at this scale, highlights seasonal differences operat-
ing behaviors throughout the year which may not be captured
by models that assume constant operations. Similarly, long-
term trends in reservoir storage and operating ranges point
to operating policies that also shift over time. The results
presented here can be a benchmark for large-scale reservoir
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models to (1) understand the limitations of common assump-
tions and (2) quantify the potential biases in data-limited re-
gions where this type of comparison is not possible.
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