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Abstract. The joint probability of precipitation and soil
moisture is here investigated over Europe with the goal to
extrapolate meaningful insights into the potential joint use
of these variables for the detection of agricultural droughts
within a multivariate probabilistic modeling framework. The
use of copulas is explored, being the framework often used
in hydrological studies for the analysis of bivariate distribu-
tions. The analysis is performed for the period 1996–2020
on the empirical frequencies derived from ERA5 precipita-
tion and LISFLOOD soil moisture datasets, both available
as part of the Copernicus European Drought Observatory.
The results show an overall good correlation between the two
standardized series (Kendall’s τ = 0.42± 0.1) but also clear
spatial patterns in the tail dependence derived with both non-
parametric and parametric approaches. About half of the do-
main shows symmetric tail dependence, well reproduced by
the Student’s t copula, whereas the rest of the domain is al-
most equally split between low- and high-tail dependences
(both modeled with the Gumbel family of copulas). These
spatial patterns are reasonably reproduced by a random for-
est classifier, suggesting that this outcome is not driven by
chance. This study stresses how a joint use of standardized
precipitation and soil moisture for agriculture drought char-
acterization may be beneficial in areas with strong low-tail
dependence and how this behavior should be carefully con-
sidered in multivariate drought studies.

1 Introduction

Agricultural drought, defined as a condition of unusually
high precipitation shortages and/or soil water deficits caus-
ing adverse effects on crop yields and production (Panu and
Sharma, 2002), is probably the most recognized of the four
main drought types or phases (Wilhite and Glantz, 1985).
This is mainly due to the more direct and easier to understand
impacts compared to the other types of droughts (Mishra and
Singh, 2010). The scientific literature on agricultural drought
provides a large variety of indices (WMO and GWP, 2016),
with the aim of reproducing the temporal dynamics of crop
water deficit through a combination of climatic observations,
hydrological modeling, and remote-sensing data (Zargar et
al., 2011).

The difficulty in capturing the multi-facet nature of agri-
cultural drought events across the world with a single ap-
proach (Sivakumar et al., 2011) is confirmed by the absence
of consensus in the scientific literature on the most reliable
agricultural drought index. Despite the large range of avail-
able indices, some common characteristics can be identified,
such as the focus on some proxy variables of plant water
availability – through soil moisture (Dutra et al., 2008), ac-
tual evapotranspiration (Anderson et al., 2011), or basic me-
teorological information (Vicente-Serrano et al., 2010) – and
the need to account for deviations from long-term conditions
(i.e., use of standardized anomalies).

Meteorological drought indicators computed on appropri-
ate aggregation timescales (McKee et al., 1993; Vicente-
Serrano et al., 2010) have demonstrated a good capability of
representing agricultural drought conditions in several case
studies (e.g., Bachmair et al., 2018; Mohammed et al., 2022;
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Tian et al., 2018). They have been successfully integrated
into a number of operational drought monitoring systems,
thanks to their minimal input data requirement and ease of
use. Among those indices, the Standardized Precipitation In-
dex (SPI; McKee et al., 1993) computed on short-to-medium
aggregation periods (i.e., SPI-3 and SPI-6) is often adopted
as a suitable proxy variable for agricultural droughts (WMO,
2012).

As highlighted by Sheffield and Wood (2007), simplified
indices for drought monitoring, such as the Palmer Drought
Severity index (PDSI; Palmer, 1965) or the previously men-
tioned meteorological indicators, have been slowly inte-
grated with indices directly based on modeled soil moisture
data. This transition is fostered by the increasing availabil-
ity worldwide of process-based hydrological models. Soil
moisture percentile, or similarly standardized quantities, are
often used in this context (Mo and Lettenmaier, 2013; Xia
et al., 2014). The ever-growing records of remote-sensing-
based estimates of soil moisture are becoming an additional
data source to support the development of dedicated soil-
moisture-based drought indices (Cammalleri et al., 2017;
Carrão et al., 2016).

In the context of agricultural drought, an overall good
agreement between SPI and soil moisture indices has been
demonstrated over a large range of agricultural practices,
crop types and climatic conditions. Halwatura et al. (2017)
showed how SPI-3 represents a good approximation of mod-
eled soil moisture over three different climatic regions in
eastern Australia. Sims et al. (2002) found a high correla-
tion between short-term precipitation deficit and soil mois-
ture variations in North Carolina, while Ji and Peters (2003)
highlighted the high correlation between SPI-3 and vegeta-
tion growth over croplands and grasslands in the US Great
Plains. Wang et al. (2015) observed a good matching between
soil moisture dynamics and SPI at the scale of 1–3 months
when testing various indices over China. In Europe, Man-
ning et al. (2018) highlighted how precipitation is the main
driver of soil moisture droughts for a set of both dry and wet
sites.

In spite of the above-mentioned consistencies, the out-
come of any drought analysis is inevitably affected by the in-
dex selected to characterize drought conditions over a certain
study region, as also highlighted by Quiring and Papakryi-
akou (2003) in testing different indices over the Canadian
prairies. These authors suggest that a variety of drought in-
dices should always be tested to determine the most appro-
priate one for a given application. It follows that the synergy
between multiple indices can be exploited by the use of mul-
tivariate indicators (Hao and Singh, 2015), a family of ap-
proaches that encompasses a variety of merging strategies,
including combined cascading indices (Cammalleri et al.,
2021a; Rembold et al., 2019), composite and integrated ap-
proaches (Brown et al., 2008; Svoboda et al., 2002), and joint
probability functions (Bateni et al., 2018; Hao and AghaK-
ouchak, 2013; Kanthavel et al., 2022).

The latter category, in particular, aims at capturing the
complex statistical dependence among different drought-
related variables (Hao and Singh, 2015), and it has seen a
growing relevance in many hydrological applications thanks
to the introduction of copula functions and their ability to
model a wide range of dependence structures (Nelsen, 2006;
Salvadori et al., 2007; Joe, 2015). In the field of drought in-
dices, the approach proposed by Kao and Govindaraju (2010)
for the computation of the joint deficit index (JDI) has been
applied to a variety of drought-related quantities over differ-
ent regions, often including precipitation and soil moisture
(i.e., Dash et al., 2019; Kwon et al., 2019).

A key feature in using joint probability is the possibility
of characterizing the so-called tail dependence (TD), namely
the asymptotical dependence of the extremes (Frahm et al.,
2005). While TD has received large attention in the scientific
literature of hydrological extremes (e.g., Aghakouchak et al.,
2010; Poulin et al., 2007; Serinaldi, 2008), its use is largely
unexploited in studies focusing on combined drought indices.

Studies on the marginal distribution of either precipitation
or soil moisture usually adopt the gamma distribution for pre-
cipitation and the beta distribution for soil moisture. The use
of the gamma family for the implementation of the SPI at
different accumulation periods has become a standard prac-
tice in many applications (e.g., Mo and Lyon, 2015; Yuan
and Wood, 2013). While other distributions have also proven
to be reliable, such as the exponentiated Weibull (Pieper et
al., 2020) and the Pearson Type III (Ribeiro and Pires, 2016),
fitting the gamma distribution is still the most adopted ap-
proach. Over Europe, Stagge et al. (2015) demonstrated how
the gamma distribution outperformed the other tested distri-
butions across all accumulation periods and regions.

A more limited number of applications based on soil mois-
ture data are available in the scientific literature compared to
SPI. The use of the beta distribution for soil moisture data
was introduced as early as the late 1970s, with the pioneer
study of Ravelo and Decker (1979), following the consider-
ation that soil moisture is a double-bounded quantity, rang-
ing between residual and saturation. Sheffield et al. (2004)
successfully applied this standardization for drought analy-
ses over the US, while the same distribution was adopted by
Cammalleri et al. (2016) on modeled data over Europe. Most
recently, the beta distribution was also used to characterize
the frequency of global satellite soil moisture data (Sadri et
al., 2020).

Conversely, no standard approaches have been identified
for the application of copulas to model the bivariate joint dis-
tribution of precipitation and soil moisture, mainly due to the
large variety of probabilistic structures than may be observed
between these two quantities. Common fitting strategies rely
on the application of various copula families to identify the
optimal for each specific site (e.g., Hao and AghaKouchak,
2013) or are based on an a priori selection of a copula fam-
ily following empirical evidence (e.g., Dixit and Jayakumar,
2021). Independently from the selection strategy, the adopted
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copula implicitly assumes an underlying TD behavior, the
influence of which on extreme detection should be properly
accounted.

A comprehensive study on the joint probabilistic dynam-
ics of precipitation and soil moisture is currently lacking
in the scientific literature of multivariate drought modeling.
Hence, the main goal of this study is to fill this gap, by
investigating the mutual relationship between the empirical
frequencies of precipitation (cumulated over 3 months, as
for SPI-3) and soil moisture datasets as available over Eu-
rope as part of the European Drought Observatory of the
Copernicus Emergency Management Service (EDO, https:
//edo.jrc.ec.europa.eu, last access: 20 December 2023).

A large set of copulas is tested for this purpose across the
entire European domain, to identify an optimal modeling of
the dependence especially in proximity of the tails (given its
major role in extreme detection). The spatial distribution of
the results is analyzed to infer evidence of common patterns
and behavior, which may support future operational applica-
tions based on similar parametric approaches.

2 Materials and methods

2.1 Precipitation and soil moisture datasets

The study focuses on Europe and makes use of the
dataset of indicators available over the region as part
of EDO. Precipitation data accumulated over consecu-
tive 3-month periods are used here, as the quantity at
the base of the SPI-3 index. Hourly total precipitation
maps from the ECMWF ERA5 global atmospheric re-
analysis model (https://www.ecmwf.int/en/forecasts/dataset/
ecmwf-reanalysis-v5, last access: 20 December 2023) are
collected through the Copernicus Climate Change Service
(C3S, https://climate.copernicus.eu/, last access: 20 Decem-
ber 2023) and cumulated at monthly updates (no missing val-
ues are present in the reanalysis dataset). This dataset has
proven to be quite reliable over Europe for drought analyses
(e.g., Cammalleri et al., 2021b; van der Wiel et al., 2022),
as it is currently employed in near-real time as part of the
operational tools of EDO. Empirical frequencies of 3-month
precipitation are derived from the rainfall records, in order
to obtain a non-parametric calculation of the standardized
anomaly, SPI-3, without the possible artifact introduced by
the fitting of a theoretical distribution (i.e., gamma distribu-
tion) (see Sol’áková et al., 2014). From here on, we will refer
to this dataset as standardized precipitation.

Soil moisture records over the entire European domain
are derived from the simulations of the LISFLOOD dis-
tributed hydrological rainfall–runoff model (de Roo et al.,
2000). LISFLOOD runs in near-real time as part of the Eu-
ropean Flood Awareness System (Thielen et al., 2009), and
it provides daily soil moisture maps for the root zone at a
spatial resolution of 5 km. Daily modeled data are averaged

at monthly scale and converted into a soil moisture index
(SMI) as in Seneviratne et al. (2010). The model is cali-
brated and validated over an extensive network of river dis-
charge stations following the procedure described in Arnal
et al. (2019), and it has been successfully tested for drought
analyses over Europe as part of EDO for the computation
of the soil moisture anomaly (SMA) index (Cammalleri et
al., 2015). Similar to precipitation, empirical frequencies
are computed from the monthly soil moisture data in order
to obtain a non-parametric calculation of the standardized
anomaly, SMA, which is thus independent from a theoreti-
cal fitting (i.e., beta distribution). We will refer to this dataset
as standardized soil moisture from hereafter.

In this study, data collected for the most recent 25 years
(1996–2020) are used as a common period. This period is
chosen to minimize the effects of non-stationarity in pre-
cipitation records and to avoid the inclusion of early LIS-
FLOOD records that are affected by a lower number of
ground meteorological stations in the forcing (Thieming et
al., 2022). The time series of both standardized precipitation
and soil moisture at grid cell scale are preliminarily tested
for auto-correlation using the partial auto-correlation func-
tion (PACF; Box and Jenkins, 1976). This analysis returned
positive and statistically significant (95 % confidence inter-
val) values only at lag= 1, suggesting a substantial absence
of auto-correlation beyond what is expected for time series
with smooth temporal dynamics such as 3-month cumulative
precipitation and soil moisture.

The 300 maps (12 months× 25 years) for the two stan-
dardized datasets are then spatially interpolated on a common
Lambert azimuthal equal-area (LAEA) projection on a regu-
lar grid of 5 km using the nearest-neighbor algorithm. This is
done to preserve the high-resolution information of the soil
moisture and by considering the smooth spatial dynamics of
precipitation accumulated over 3 months.

2.2 Copula families

The introduction of copulas in multivariate probability mod-
eling has provided to hydrologists a flexible tool to reproduce
the joint probability of multiple dependent variables charac-
terized by a variety of marginal distributions (De Michele
and Salvadori, 2003; Salvadori and De Michele, 2004).

Limiting the focus on bivariate variables, the joint proba-
bility distribution, F , of two random variables (X1 and X2)
can be expressed, thanks to the Sklar’s theorem, as

F (x1,x2)= C (F1 (x1) ,F2 (x2)) , (1)

where F1 and F2 are the marginal distribution of X1 and X2,
respectively, and C is the copula function (Salvadori et al.,
2007).

A large variety of parametric formulations has been intro-
duced in the literature to explicitly link the marginal distri-
butions to the joint probability, with some of the most com-
mon copula families used in hydrology belonging to the el-
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Table 1. Main copulas analyzed in this study and their upper and
lower-tail-dependence coefficients (λL and λU, respectively).

Copula λL λU

Gaussian 0 0

Student’s t 2tν+1

(
−
√
ν+ 1

√
1−ρ
1+ρ

)
2tν+1

(
−
√
ν+ 1

√
1−ρ
1+ρ

)
Gumbel 0 2− 2

1
θ

Clayton 2−
1
θ 0

Joe 0 2− 2
1
δ

BB7 2−
1
δ 2− 2

1
θ

liptical and Archimedean copulas (Chen and Guo, 2019).
Two measures of dependence play a major role in paramet-
ric copula inference. The Kendall rank correlation coefficient
(τ ) is commonly used as a non-parametric measure of over-
all ordinal association, while the so-called tail-dependence
(TD) coefficients (Salvadori et al., 2007) are used to esti-
mate the asymptotical degree of dependence in the upper and
lower extremes (upper-tail dependence, λU, and lower-tail
dependence, λL, respectively). The estimation of TD non-
parametrically is not an easy task, as highlighted by Seri-
naldi et al. (2015), as it aims at assessing an asymptotic be-
havior from a finite sample. Several formulations are pro-
posed in the scientific literature (see Frahm et al., 2005), and
the method proposed by Schmidt and Stadtmueller (2006) is
here used to obtain non-parametric estimates of both TD co-
efficients.

In this study, the parametric bivariate probability of stan-
dardized precipitation and soil moisture is assessed by us-
ing the R package “VineCopula” (Aas et al., 2009; Dißman
et al., 2013). The Akaike information criterion (AIC; Sto-
ica and Selen, 2004) is used to select, for each spatial grid
cell, the best-fitting copula among the wide range of families
available in the package. The main properties of some rele-
vant copulas are reported in Table 1, as they will be useful to
interpret the successive results.

In particular, from the data in Table 1 it is important to
highlight how the BB7 copula is a combination of Joe and
Clayton copulas, from which it inherits the tail dependences,
and how the TD behavior of a copula can be inverted (i.e., the
upper-tail dependence can become the lower and vice versa)
by simply considering the reciprocal marginals (commonly
known as rotated forms, identified by the suffix 180). Infor-
mation from both non-parametric and parametric approaches
is here jointly used to discriminate between different TD be-
haviors.

Even if a copula is selected as the optimal based on the
AIC, this does not necessarily exclude the possibility that
other copulas may perform similarly. For this reason, we in-
troduced a further test based on the relative likelihood crite-
rion (Burnham and Anderson, 2002), exp

(
AICmin−AICi

2

)
, to

establish the likelihood that an AIC value of a given cop-

Figure 1. Spatial distribution of the Kendall’s τ between monthly
standardized 3-month precipitation and soil moisture. Roughly, val-
ues lower than 0.1 are not statistically significant at p = 0.05 (two-
tails).

ula (AICi) is significantly different than the minimum value
(AICmin) obtained for the optimal solution.

2.3 Random forest classification of selected copulas

The interpretation of the selected copula functions may help
highlighting the transferability of the observed results over
different contexts. For this reason, the observed spatial distri-
bution of the selected copulas is analyzed through a random
forest classifier (Breiman, 2001), in order to find evidence of
reproducible patterns beyond simple chance.

As input features we consider a set of commonly available
variables, such as ground elevation, annual average tempera-
ture, annual total precipitation, precipitation seasonality (ra-
tio between total precipitation in warm and cold months), an-
nual average normalized difference vegetation index (NDVI),
annual average soil moisture, and soil type. As hyperparam-
eters for the random forest, we tuned the number of trees
(ntree) and the number of features randomly sampled at each
split (mtry) using the “randomForest” R package (Breiman,
2001).

3 Results

A preliminary analysis of the degree of correlation between
the monthly standardized 3-month precipitation and soil
moisture (analogous to non-parametric SPI-3 and SMA) is
tested on the full time series of each grid cell using the
Kendall’s τ , as depicted in Fig. 1 for the entire European
domain.
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Figure 2. Analysis of the frequency of the empirical tail-
dependence coefficients. The plot shows the cumulative frequency
distribution of the differences between the empirical λL and λU val-
ues computed according to Schmidt and Stadtmueller (2006). The
domain with a roughly symmetric behavior (|λL−λU|<0.1) is high-
lighted by the gray box area.

The results reported in Fig. 1 confirm the expected direct
relation between the two variables, with a relatively homoge-
neous distribution of medium/high (between 0.3 and 0.5) τ
values (τ = 0.42±0.1). Limited regions with low (and some-
times even slightly negative) τ values are sporadically ob-
served, mostly over the Alps, Iceland, and the coldest re-
gions of the Scandinavia peninsula. Low correlations over
these regions are likely related to the presence of snow cov-
erage during extended periods of the year. Overall, the ob-
served τ values cannot be considered statistically significant
(at p = 0.05) for less than 2 % of the domain.

The analysis of the non-parametric tail-dependence val-
ues is summarized in the plot depicted in Fig. 2, where the
cumulative frequency of the difference between the empiri-
cal λL and λU values is reported. The range of TD values in
Fig. 2 for which it is possible to exclude significant asymme-
try in the tail-dependence coefficients is identified by setting
a maximum value for |λL−λU|. To define this threshold, the
non-parametric TD coefficients were re-computed on shuf-
fled time series (to artificially reconstruct conditions of null
dependence), and the |λL−λU| value corresponding to a cu-
mulative frequency of 90 % of the grid cells after the shuf-
fling was detected as threshold, corresponding to a value of
0.1. This value can be seen as a lower limit to identify sym-
metric dependence.

The plot in Fig. 2 highlights how the majority (about 50 %)
of the grid cells can be considered characterized by a sym-
metric behavior in the tail-dependence coefficients according
to the abovementioned criterion (|λL− λU|<0.1), whereas
the rest of the grid cells are almost equally split between
a predominance of the upper-tail dependence (UTD, cor-

Figure 3. Spatial distribution of the three categories derived from
the differences in the empirical tail-dependence coefficients.

responding to negative differences) or a predominance of
lower-tail dependence (LTD, positive differences).

The results reported in Fig. 2 were used to divide the en-
tire domain in three categories (symmetric, LTD, and UTD)
as depicted in Fig. 3. This map shows evidence of some co-
herent spatial patterns, such as the predominance of LTD
in southern France, southern Italy, northern Germany and
Denmark, and western Ukraine (among others), and a clus-
tering of UTD in Poland, Czechia, southern Scandinavia,
and Greece. The symmetric condition seems overall more
spread across the entire domain, also thanks to the higher fre-
quency, with a slightly predominance over northern Europe
(i.e., northern Scandinavian peninsula and Iceland).

Given the results of the tail-dependence assessment, it is
useful to focus the copula parametric analysis on the capabil-
ity of reproducing such patterns instead of finding the single
copula that can perform reasonably well over the entire do-
main. Indeed, the search for the optimal copula based on the
minimum AIC returns the BB7 as the optimal one in about
80 % of the domain (not shown). This result is a consequence
of the BB7 flexibility (being derived from a combination of
two purely asymmetric functions), which allows reproduc-
ing both symmetric and asymmetric tail-dependence coeffi-
cients according to the values assumed by the two param-
eters. However, the fact that a single flexible copula works
well over a large range of conditions may hide the key spa-
tial patterns observed in the TD analysis. These patterns may
be better reproduced by adopting a limited number of more
specialized copulas.

By limiting the search to a subset of copula functions,
comprising only purely symmetric or purely asymmetric tail
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behaviors, more interesting results are obtained, as summa-
rized by the frequency plot in Fig. 4. The grid cells where
symmetric tail behavior copulas are selected as optimal are
about 55 % of the domain (see Fig. 4b), with a predominance
of Student’s t copula but also with a non-negligible fraction
of cells (23 %) where the Gaussian (symmetric and without
tail dependence) is chosen (see Fig. 4a). The remaining grid
cells are almost equally split between upper and lower-tail
dependence, with Gumbel (and its rotated counterpart, Gum-
bel 180) as the most selected among the asymmetric options.

The spatial distribution of these optimal copulas (Fig. 5)
mostly agrees with the patterns observed in Fig. 3, support-
ing the findings on the spatial distribution of TD coefficients.
In addition, this result further confirms that a rather limited
range of simple copula functions is able to capture the over-
all dynamics of dependence between precipitation and soil
moisture over the entire European domain. Despite the ob-
served spatial clusters in the obtained optimal copulas, the
overall patterns in Fig. 5 are still rather noisy and may be
difficult to interpret. This erratic behavior can be partially ex-
plained by the fact that different copulas may perform quite
similarly over some grid cells; hence the AIC of the optimal
copula (AICmin) may not differ significantly from the AIC of
other functions.

To further investigate this hypothesis, we evaluated the
possibility of replacing the optimal copulas with either a Stu-
dent’s t or a Gumbel (direct and rotated) over the entire do-
main. The Gaussian copula was excluded from this analysis
under the assumption that the no tail dependence of the Gaus-
sian can be adequately reproduced by the Student’s t with a
small enough tail dependence. The plots in Fig. 6 report the
relative likelihood for the Student’s t (panel a) and Gumbel
families (panel b) compared to the locally selected optimal
copulas. Low values of this metric correspond to conditions
where the optimal copula cannot be replaced by the alterna-
tive function (being either the Student’s t or the Gumbel).

The results in Fig. 6 show that, if we assume a relative
likelihood of 0.1 as a threshold to detect a statistically sig-
nificant difference, the Student’s t cannot reasonably replace
the local optimal copula in about 18 % of the entire domain
(Fig. 6a), whereas this fraction is about 17 % for the Gum-
bel family (Fig. 6b). It emerges that the Gumbel family is the
optimal one in almost the totality (about 99 %) of the grid
cells where the Student’s t is not a suitable replacement of
the local optimal, whereas almost only symmetric copulas
(63 % Student’s t and 34 % Gaussian) are the optimal func-
tions where the Gumbel family is not a suitable replacement.
Overall, these results suggest that the selection of the opti-
mal copula is “univocal” (i.e., cannot be reasonably replaced
by another function) in about 35 % (18+ 17) of the domain,
whereas either the Student’s t or the Gumbel families can be
adopted in the remaining fraction of the domain with similar
performances in terms of AIC (and no clear TD behavior).
This analysis also confirms the assumption that all the areas
where the Gaussian was chosen as an optimal copula can be

Table 2. Summary of the confusion matrix analysis applied to the
trained random forest on the testing subset.

Accuracy (ACC) 0.86

No-information rate (NIR) 0.50
p value (ACC>NIR) < 2.2× 10−16

McNemar’s test p value 3.44× 10−5

Cohen’s kappa statistic (K) 0.78

satisfactorily modeled by using the Student’s t (i.e., without
a statistically significant increase in AIC).

The univocal areas derived from the previous analysis are
mapped in Fig. 7, highlighting some of the more consistent
spatial clusters already observed in both Figs. 3 and 5, as well
as a large fraction of cells in northern Europe where a univo-
cal optimal copula cannot be selected. These grid cells with
univocal copula are used as a starting point for the random
forest classification, given the robustness in their signal and
the agreement in the outcome of both parametric and non-
parametric TD behaviors.

A sample corresponding to 25 % of the univocal grid cells
(about 8 % of the entire domain) was used to train the random
forest, adopting a number of trees (ntree) of 80 and a single
feature randomly sampled at each split (mtry= 1). The train-
ing size and the minimum values of hyperparameters were
chosen to reduce the problem of overfitting. Among the pos-
sible features, three variables were selected by analyzing the
variable importance plots as well as the ease of access: an-
nual average temperature, annual total precipitation, and pre-
cipitation seasonality. The trained classifier was then applied
to the testing subset (the remaining 75 % of the univocal grid
cells), and the outcomes were analyzed by means of a con-
fusion matrix, the results of which are summarized in Ta-
ble 2. Overall, the obtained classification has a very satisfac-
tory matching with the test subset, with a general high accu-
racy (ACC= 0.86) and with all the metrics pointing toward
a significant improvement in the performance compared to
the reference no-information rate (NIR) (i.e., small p values)
and a high probability of having the correct modeled values
compared to simple chance (i.e., high Cohen’s K).

Finally, the trained classifier was applied to the entire
dataset to obtain a classification of the European domain in
terms of the expected optimal copula and the corresponding
TD behavior. This map, reported in Fig. 8, shows a strong
resemblance to both the empirically derived map in Fig. 3
and the optimal AIC fitting in Fig. 5. Beside this overall
agreement, some notable discrepancies can be observed over
northern Scandinavia and Iceland, two regions where low
Kendall’s τ and a small fraction of univocal selected copu-
las were already identified.
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Figure 4. Frequency of the optimal copulas based on the minimum AIC. The bar plot in panel (a) shows the frequency of each copula, while
the box in panel (b) reports a compact description of the subdivision of the entire domain among the four most frequent copulas.

Figure 5. Spatial distribution of the optimal copulas obtained by
minimizing the AIC. The symmetric tail behavior class includes
both Gaussian and Student’s t copulas.

4 Discussion

The overarching goal of the study is to investigate the joint
probability of two standardized variables aiming at capturing
agricultural drought conditions; hence the overall agreement
between these two quantities is a fundamental prerequisite. A
direct relationship between standardized 3-month cumulated
precipitation and soil moisture is expected, since both SPI-
3 and SMA are similarly used agricultural drought indices,
and this can support the identification of the most suitable
set of copula families (Salvadori et al., 2007; Genest et al.,
2007). This direct relationship is overall confirmed by the
positive Kendall’s τ values estimated over most of the do-
main (τ = 0.42±0.1). Moderately high correlation values of

standardized precipitation and soil moisture were estimated
also in other studies. Kwon et al. (2019) reported Pearson’s r
values between 0.4 and 0.6 for 55 stations in South Korea, al-
beit with seasonal patterns; Gaona et al. (2022) found similar
values over the Ebro basin with both modeled land surface
and satellite soil moisture, and Sepulcre-Cantó et al. (2012)
obtained an average value of r of about 0.6 over nine stations
across Europe.

Sehler et al. (2019) studied the correlation between
remote-sensing-based precipitation and soil moisture, find-
ing a moderate correlation over southern Europe and a weak
(often not significant) correlation in central Europe. How-
ever, central Europe is close to the upper limit of the ana-
lyzed remote-sensing products, which can explain such low
performance. Limited correlation even among different soil
moisture products has been observed in northern Europe in
other studies (Almenda-Martín et al., 2022), confirming the
difficulty of modeling soil moisture dynamics over this re-
gion.

The obtained values for the Kendall’s τ fall in a somewhat
optimal range for the analysis of the joint probability, since
they are statistically significant almost everywhere (i.e., the
two indices are to a certain degree consistent) but not too
high to make meaningless any joint use of the two datasets
(i.e., the two indices are too similar and provide the same
information).

The outcome of the tail-dependence analysis is even more
interesting, given the role that such a metric plays in the de-
tection of extreme events (and in particular the low tail for
droughts). The TD investigation is sometimes overlooked in
the development of multivariate drought indices, where pre-
vious studies often focused on optimizing the copula to the
local data without analyzing the implicit assumption on the
TD, the consistency with the non-parametric TD, and the im-
plications of the associated dependence. Previous studies on
the joint probability of precipitation and soil moisture are
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Figure 6. Frequency analysis of the relative likelihood computed between the optimal AIC (AICmin) and (a) Student’s t (AICt ) or (b) Gumbel
(AICg) families. The grid cells where either the Student’s t or the Gumbel was already the optimal solution were excluded from the respective
frequency analysis.

Figure 7. Spatial distribution of the grid cells where the selection of
the optimal copula is “univocal” according to the relative likelihood
criterion.

rather scarce, and TD is rarely the focus of such analyses
or, at least, limited to specific areas and/or conditions.

As an example, Manning et al. (2018) performed a very
detailed analysis over 11 FLUXNET sites in Europe on the
role of precipitation and evapotranspiration on soil moisture
drought, based on pairs of copula constructions, but the au-
thors did not provide any indication of which bivariate copula
was the optimal one for each site. Kwon et al. (2019) reported
that the Frank copula was the most frequent optimal choice
in their study over South Korea. However, some clear spatial
patterns observed in their outcomes were not discussed, with
Frank being the selected copula mostly in the central area of

Figure 8. Map of the optimal copula as modeled by the trained ran-
dom forest classifier.

the domain but with Gumbel and Student’s t performing the
best in the southern and eastern coasts, respectively.

Dash et al. (2019) found Frank (among the Archimedean
copulas) working the best for 3-month precipitation and
soil moisture over an Indian basin, while Hao and AghaK-
ouchak (2013) highlighted the good performance of Frank
and Gumbel in five regions of California, even if neither
Gaussian nor Student’s t were considered. In all these appli-
cations, no specific considerations on the TD behaviors were
reported, even if a common trend seems to be the good per-
formance of the Frank copula. This is in contrast with our
results, where the Frank copula was very rarely selected as
optimal (less than 1 % of the domain). A possible explana-
tion of these results may be our focus on empirical marginal
frequencies rather than theoretical ones, given the well-
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Figure 9. Frequency distribution of the pairwise binary correlation between standardized precipitation and soil moisture lower than −1,
computed separately for grid cells with UTD (dark gray lines) and LTD (light gray lines). Panel (a) reports the results for the grid cells with
low overall correlation (0.1<τ ≤ 0.4), while panel (b) reports the results for the grid cells with a high correlation (τ >0.4).

documented increasing uncertainty in parametric fitting in
the tails (Farahmand and AghaKouchak, 2015; Laimighofer
and Laaha, 2022). As a possible confirmation of this hypoth-
esis, a good performance of Gumbel and Gaussian has been
observed over Iran by Bateni et al. (2018), similarly to our
results, when a non-parametric form for SPI and SSI (Stan-
dardized Soil Moisture Index) was used.

The absence of a standard procedure to investigate tail de-
pendence may be another factor affecting the limited focus
on the topic in many studies on multivariate drought indices.
Non-parametric TD has the clear advantage of avoiding any
alteration of the data due to the fitting procedure, but the out-
comes in this study also show a high degree of spatial noise
likely due to the intrinsic nature of non-parametric analyses,
the large uncertainty in non-parametric methods (Serinaldi
et al., 2015), and the effects of the limited sample size (for
this last issue, see also the illustration 3.18 in Salvadori et
al., 2007). The threshold used here to define a symmetric be-
havior, based on a random shuffling of the data, seems to suc-
cessfully overcome the difficulty of defining a self-consistent
maximum difference in TD values, but it cannot be seen as a
reliable approach to easily identify TD symmetry without the
support of further evidence (e.g., by theoretical analyses).

In this regard, the fitting of parametric copula functions
returns spatial patterns in TD coefficients similar to the ones
obtained with the non-parametric approach. However, the ab-
sence of univocal fittings can be observed for large areas,
as well as some contrasting results compared to the non-
parametric TD especially over northern Europe (areas with a
low correlation). The grid cells where a given copula clearly
outperforms the alternative options is limited to roughly one-
third of the domain, further stressing the evidence that clear-
cut outcomes are difficult to infer from a single methodology.
Thus, it seems reasonable to state that only a critical con-
certed analysis of both parametric and non-parametric TDs
can return robust practical indications based on a converge
of evidence.

A clear outcome of our study is the predominance of re-
gions with symmetric tail-dependence coefficients, where the
Student’s t copula is suitable for reproducing the joint prob-
ability of standardized precipitation and soil moisture. An
even split of the remaining domain between areas with ei-
ther lower or upper-tail dependence is also observed, where
the Gumbel copula (in either its direct or 180 rotated forms)
is proven to be a suitable option. These results are crucial in
defining the role of standardized precipitation and soil mois-
ture datasets in detecting drought events and to which extent
they can work in synergy in a drought monitoring system.
While the correlation between the two datasets highlights the
extent of their overall agreement, which in this study was
somewhat uniform across most of the domain (τ ranging be-
tween 0.3 and 0.5), very different degrees of tail consistency
can be obtained for similar Kendall’s τ if the TDs differ sub-
stantially. Regions with higher LTD will have a higher agree-
ment in the detection of drought extremes compared to ar-
eas with a UTD predominance; hence a low number of false
alarms and a higher signal-to-noise ratio may be expected.

To further explore this behavior, the time series of stan-
dardized variables were converted in binary vectors based
on the commonly used standardized drought threshold of
−1 (corresponding to an empirical frequency of 0.16). On
these data, the pairwise binary correlation coefficient, ρ(−1),
was computed separately for the grid cells with LTD and
UTD. Results are shown in Fig. 9, for grid cells with low
(0.1<τ ≤ 0.4, panel a) and high (τ >0.4, panel b) overall
correlation. They show a net increase in the pairwise binary
correlation for the grid cells with LTD (of about 0.15 in both
cases) compared to the cases with UTD, even if the overall
correlation is comparable. This increase in ρ(−1) translates
into a stronger agreement in the detection of extremes when
a low-tail dependence is observed, resulting in a more robust
detection of the drought conditions thanks to the concurrency
of extreme conditions in both drought indices (i.e., conver-
gence of evidence).
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Regions such as southern France, the northern UK, north-
ern Germany, and Denmark (where a strong LTD is ob-
served; see Fig. 8) are appropriate candidates for a robust as-
sessment of agricultural drought conditions based on a joint
precipitation–soil moisture index, whereas some regions in
central Europe (i.e., Poland, Czechia, Switzerland) may not
equally benefit from the use of a joint index due to the lower
importance of LTD.

Overall, the parametric copula fittings confirm most of the
non-parametric TD patterns suggesting that a parametric ap-
proach is suitable for an operational implementation of a
precipitation–soil moisture joint drought index over most of
Europe. This implies that the proposed procedure, based on
the combination of parametric and non-parametric analyses,
can be considered a reliable tool to provide meaningful in-
sight into the potential application of joint probability as a
detector of extreme droughts.

At first glance, it may seem difficult to assign an expla-
nation for the observed spatial patterns in LTD and UTD.
However, the proven possibility of reasonably reconstructing
these spatial patterns with a random forest classifier, starting
from only a small sample of robust training data (less than
10 % of the domain) and with commonly available driving
features, suggests that the observed clusters are unlikely to
be caused only by chance and that hidden structures may be
present and may be further explored. This result is encourag-
ing for an extension of the derived approach to other regions
of the world.

5 Summary and conclusions

The use of combined indices based on a copula seems a
promising development in the field of drought detection and
monitoring. In this study, we analyzed the joint probability of
two variables commonly used in agricultural drought analy-
ses: the empirical frequencies of 3-month cumulated precip-
itation and soil moisture. We focus on the probabilistic char-
acteristics being key for agricultural drought studies.

The overall agreement in the marginal probability of the
two standardized variables suggests that they are indeed valid
candidates for the development of a joint drought index over
the European domain. However, an in-depth analysis of the
tail dependence, derived with both non-parametric and para-
metric approaches, shows some clear spatial patterns, which
have a direct repercussion for the capability of such data to
provide robust and coherent estimates of drought extremes.
In this regard, regions such as southern France, the north-
ern UK, northern Germany, and Denmark may benefit more
from the joint use of the two standardized variables thanks
to the observed strong low-tail dependence (i.e., increasing
agreement on the left tail extremes). The joint dependence
of standardized precipitation and soil moisture is well repro-
duced by using three common copulas (Student’s t , Gumbel,
and 180 rotated Gumbel), with spatial patterns that were suc-

cessfully reconstructed with a random forest classification,
suggesting the presence of a structure in the outcomes not
related to chance.
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