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Abstract. Land surface models (LSMs) are an important tool
for advancing our knowledge of the Earth system. LSMs
are constantly improved to represent the various terrestrial
processes in more detail. High-quality data, freely available
from various observation networks, are being used to im-
prove the prediction of terrestrial states and fluxes of wa-
ter and energy. To optimize LSMs with observations, data
assimilation methods and tools have been developed in the
past decades. We apply the coupled Community Land Model
version 5 (CLM5) and Parallel Data Assimilation Frame-
work (PDAF) system (CLM5-PDAF) for 13 forest field sites
throughout Europe covering different climate zones. The
goal of this study is to assimilate in situ soil moisture mea-
surements into CLM5 to improve the modeled evapotran-
spiration fluxes. The modeled fluxes will be evaluated us-
ing the predicted evapotranspiration fluxes with eddy covari-
ance (EC) systems. Most of the sites use point-scale mea-
surements from sensors placed in the ground; however, for
three of the forest sites we use soil water content data from
cosmic-ray neutron sensors, which have a measurement scale
closer to the typical land surface model grid scale and EC
footprint. Our results show that while data assimilation re-
duced the root-mean-square error for soil water content on
average by 56 % to 64 %, the root-mean-square error for
the evapotranspiration estimation is increased by 4 %. This
finding indicates that only improving the soil water content
(SWC) estimation of state-of-the-art LSMs such as CLM5 is

not sufficient to improve evapotranspiration estimates for for-
est sites. To improve evapotranspiration estimates, it is also
necessary to consider the representation of leaf area index
(LAI) in magnitude and timing, as well as uncertainties in
water uptake by roots and vegetation parameters.

1 Introduction

Land surface models (LSMs) are important tools to improve
our understanding of the Earth system. LSMs cover a broad
range of land surface processes like the partitioning of in-
coming energy at the land surface, mass exchange between
the land and atmosphere, and hydrological and ecological
processes. They use sophisticated parameterizations and are
constantly improved to achieve a more accurate representa-
tion of land surface processes, e.g., Arora et al. (2020) and
references therein. However, there are still many sources of
uncertainty, introducing systematic biases in the LSM (e.g.,
initial conditions, atmospheric forcings, parameters, and pa-
rameterization). One approach to improve model predictions
is to assimilate observational data. Improved estimates of
evapotranspiration (ET) by LSMs are of main interest as ET
is a major driver of climate and weather, an important com-
ponent of the water and energy cycles, closely coupled to the
carbon cycle through the photosynthesis process (Jung et al.,
2011). Fine-spatial-scale ET estimations are important to es-
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timate water use and plant stress (Wurster et al., 2020). The
flux of ET is, however, influenced by multiple factors, includ-
ing soil water content (SWC), soil properties, ecophysiolog-
ical processes, and vegetation characteristics (Wilson et al.,
2004), so it is more common to assimilate these prognostic
variables rather than ET itself.

Many studies assimilate soil moisture products into LSMs
(e.g., Hung et al., 2022; Mahmood et al., 2019; Naz et al.,
2019; Liu and Mishra, 2017; Han et al., 2015a) and report
on the impact on hydrological variables like root-zone mois-
ture and runoff. Some studies use assimilation of soil wa-
ter content or related variables to evaluate ET estimation of
LSMs. For example, Girotto et al. (2017) assimilated ter-
restrial water storage from the Gravity Recovery and Cli-
mate Experiment (GRACE) into a land surface model and
evaluated results over India. They found that the assimila-
tion decreased the accuracy of ET estimation compared to
observations due to model limitations in representing irri-
gation. Peters-Lidard et al. (2011) assimilated two different
remotely sensed soil water content products into the Noah
land surface model over North America and found mixed re-
sults regarding the improvement of latent heat flux estimates.
The domain-averaged root-mean-square error of the latent
heat flux reduced from 27.6 to 25.6 W m−2 or increased to
29.4 W m−2 depending on the assimilated soil water content
product. Additionally, they show that the improvements and
degradation vary spatially across their study domain, with
land cover type, and as a function of the season, and they
note that the most significant improvements occur for crop-
land and grassland. Liu and Mishra (2017) assimilated sur-
face soil water content data from the Advanced Microwave
Scanning Radiometer-Earth Observing System in the global
Community Land Model version 4.5 and found ET bias re-
ductions of up to 2.5 mm d−1 compared to the Global Land
Data Assimilation System (GLDAS) data product.

For our study, we chose the latest version (version 5) of
the widely used Community Land Model (CLM5) (Lawrence
et al., 2019) as various land surface process representations
have been improved in CLM5 compared to earlier versions.
For instance, Kennedy et al. (2019) added a plant hydraulic
stress parameterization to improve the accuracy of simulated
transpiration and soil water content. Lawrence et al. (2019)
demonstrated the improvements of CLM5 over its precur-
sor CLM4 in terms of ET using two study sites as examples
and highlighted the better representation of the effects of soil
depth on ET prediction in CLM5. On the other hand, Cheng
et al. (2021) found that CLM5 predicts lower ET compared
to older CLM versions and various observational data, likely
due to low photosynthetic rate and leaf area index (LAI),
which is consistent with their finding of low gross primary
production (GPP) compared to reference data in the same
simulations. In addition to these regional to global valida-
tion studies, CLM was used in several single-point setups,
i.e., simulations for a single grid cell, to evaluate the perfor-
mance of various LSM components. For example, Hudiburg

et al. (2013) used CLM 4.0 to estimate net primary produc-
tion (NPP) and GPP of a forested site and compared it with
eddy covariance (EC) measurements. Another study (Zhang
et al., 2019) reduced an overestimation of growing-season
LAI and annual GPP of a grassland site for a CLM 4.5 single-
point setup. More recently, CLM5 was extended to consider
both cover crop management with improvements to ET esti-
mation of up to 57 % (Boas et al., 2021) and fruit tree cultiva-
tion using extensive field measurements with a high correla-
tion between observed and modeled ET (Dombrowski et al.,
2022). Other studies have used manual tuning of parameters
to improve CLM simulations for forests. For instance, Duarte
et al. (2017) calibrated CLM4.5 for an old-growth conif-
erous forest and found good agreement between the simu-
lated and observed response of canopy conductance to atmo-
spheric vapor pressure deficit and soil water content. Raczka
et al. (2016) used CLM4.5 and implemented a seasonally
varying calibration of vegetation parameters and accurately
simulated net carbon exchange, latent heat exchange, and
biomass.

In this study, we investigate if assimilating high-quality, in
situ soil water content measurements can improve the evap-
otranspiration estimates of LSM. We focus on one specific
land cover type, namely forests. In a previous study (Strebel
et al., 2022), we investigated the potential for data assimila-
tion of in situ SWC measurements to improve model estima-
tion for a single forest site. This study expands this method
to more forest sites and investigates the effect of improved
SWC estimation on ET. Investigating the method for a large
number of sites is the important contribution of this study
and necessary to show that the conclusions from Strebel et
al. (2022) are not just a characteristic of the one study site but
apply more broadly to forest sites simulated with CLM5. To
investigate this, we use point- and plot-scale in situ soil water
content measurements. For most sites we use point measure-
ments provided by FLUXNET (Baldocchi et al., 2020) and
eLTER Europe. The FLUXNET data have been used in vari-
ous studies to verify or compare model results. For example,
Dirmeyer et al. (2018) used FLUXNET data to compare four
model systems, including CLM4.5, in three configurations
and found for annual averaged ET that correlations range
from 0.28 to 0.43 and for sensible heat from 0.14 to 0.54.
The point-scale measurements use invasive equipment, and
the specific measurement volume, exact depth of the sensors,
number of sensors, and number of stations vary from site
to site. For a few sites we use soil water content measure-
ments from cosmic-ray neutron sensors (CRNSs) from the
COSMOS-Europe dataset (Bogena et al., 2022). The CRNSs
provide continuous and non-invasive soil water content mea-
surements over a spatial footprint of hundreds of meters and
integrates from the surface to a depth of 10–70 cm verti-
cally in the soil (Zreda et al., 2008; Köhli et al., 2015). The
CRNSs use neutrons as a proxy for SWC, and the vertical
measurement depth varies with the soil moisture conditions.
Additionally, the uncertainty of CRNS-derived soil moisture
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varies not only with the different neutron detectors but also
with the number of counts in a time period, and therefore re-
sults under lower soil moisture conditions are more accurate
(Bogena et al., 2022). The spatial footprint area is similar to
the footprint of the EC flux tower. We use the final processed
data on soil water content and vertical penetration (measure-
ment) depth provided by the COSMOS-Europe dataset (Bo-
gena and Ney, 2021). In this study, we use the ensemble
Kalman filter to assimilate in situ soil water content measure-
ments into CLM5 simulations, and the effect on the modeling
results are quantified by comparing the modeled ET against
the observed ET obtained from EC flux towers. We also an-
alyze the effects on other land–atmosphere exchange fluxes,
i.e., net ecosystem exchange (NEE) and gross primary pro-
duction (GPP). The paper is structured as follows: first, we
introduce the model and data assimilation framework used.
The sites selected for this study and the observational data
used for data assimilation and model–observation compar-
ison are then described. Subsequently, the results for each
variable of interest are shown and analyzed. Finally, we end
with a discussion of the obtained results and conclusions.

2 Methods and materials

2.1 Study sites

In our study, we are interested in the characterization of wa-
ter, energy and carbon exchange between (European) forest
ecosystems and the atmosphere, and whether soil water con-
tent assimilation can improve the characterization of these
processes. Therefore, we selected European sites with dif-
ferent forest types (see Table 1) covering different climate
zones in Europe. Another important constraint was the avail-
ability of soil water content data and evapotranspiration mea-
surements for the period from 2009 to 2018. The selected
sites are mostly part of FLUXNET (Baldocchi et al., 2020)
or the European Long-Term Ecological Research network
(eLTER-Europe) (Parr et al., 2002). In addition to the sites
from these observation networks, we included three sites
from the COSMOS-Europe network (Bogena et al., 2022)
where CRNSs are installed to estimate the soil water content
of the forested sites. Table 1 gives an overview of all selected
sites for this study, and Fig. 1 shows the distribution on the
map.

In this study, daily average soil water content data are as-
similated (see Sect. 2.4.1 for more details), and the model
is verified using daily average evapotranspiration and sensi-
ble heat flux data. Since the observational data were already
quality controlled by the providers, we did not filter out any
data. We only assimilated (daily mean averaged) soil water
content observations when measurements were available for
a given day. The daily mean averages were calculated in-
dependent from the observation frequency for the different
sites. Similarly, simulated evapotranspiration was only com- Ta
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1004 L. Strebel et al.: Evapotranspiration prediction for European forest sites

Figure 1. Map showing the location of the selected study sites of the
FLUXNET (F), eLTER (L), and COSMOS-Europe (C) networks.

pared with observations when data were available, on the ba-
sis of daily mean averages.

2.2 Model description

For our study, we used the Community Land Model ver-
sion 5.0 (CLM5) that can be applied in various configu-
rations (Lawrence et al., 2019). We use CLM5-BGC, i.e.,
CLM5 with the biogeochemistry module active, as opposed
to CLM5 with fixed phenology. The biogeochemistry module
enables a fully prognostic treatment for carbon and nitrogen
in the land surface model and has a significant impact on the
modeled water and energy budgets.

CLM5 uses a sub-grid hierarchy of various plant func-
tional types (PFTs) to characterize the land use and vegeta-
tion type within every grid cell, e.g., evergreen needle leaf or
deciduous broad leaf forests. CLM5 contains a spatially vari-
able soil depth with an underlying, impermeable bedrock in-
stead of the unconfined aquifer parameterization used in the
former CLM4 versions. To estimate the soil water content,
CLM5 solves Richard’s equation using the Brooks–Corey
parameters derived from pedotransfer functions from Clapp
and Hornberger (1978) with a finite-difference approxima-
tion to represent the vertical discretization and temporal evo-
lution of soil water content.

The sensible and latent heat flux estimation in CLM5 is
derived from the Monin–Obukhov similarity theory and dif-
ferentiated for vegetated and non-vegetated surfaces. CLM5
simulates sensible and latent heat flux for both vegetated and
ground fluxes. For the vegetation part, the contributions from
the leaf boundary layer and the sunlit and shaded stomatal re-

sistances affect the total resistance to the modeled water va-
por transfer. The water vapor transfer includes transpiration
from dry leaf surfaces, and the transpiration removes water
from the soil based on root fraction for a given soil layer. In-
terception, throughfall, and canopy drip are explicitly mod-
eled in CLM5, and canopy evaporation is represented as from
the sum of stem and leaf surface evaporation as a function
of temperature. The ground fluxes, e.g., from bare soils or
soil beneath a canopy, are dependent on the ground surface
temperature. The ground latent heat flux is reduced if not
enough soil moisture is available, and the excess energy is
redistributed to the sensible heat flux. The detailed procedure
and equations are documented in Lawrence et al. (2018).

2.3 Data assimilation

2.3.1 Ensemble Kalman filter

In this work, assimilation of soil water content measure-
ments is performed with the ensemble Kalman filter (EnKF)
(Evensen, 1994; Burgers et al., 1998). The EnKF uses an en-
semble modeling approach, with various simultaneous model
runs, to approximate the model uncertainty. The ensemble
members have different input model parameters and atmo-
spheric forcings (see Sect. 2.4 for details). We define a state
vector x and an observation vector y, e.g.,

xi =



θ i1,1
θ i1,2
. . .

θ i1,m
. . .

θ in,m

 , (1)

where n is the number of layers,m is the number of grid cells,
θ ij,l is the soil water content for layer j and grid cell l of the
model, and the superscript i refers to ensemble member i. In
this study we use an ensemble of 96 members to sample the
model uncertainty.

y = o+ e, (2)

where o is a vector of the observational data and e repre-
sents a perturbation vector with mean zero and covariance
according to the observational error covariance matrix. This
perturbation vector is used to correct the error statistics as
described in Burgers et al. (1998).

The update step of the ensemble Kalman filter is

xia = xif +K
[
y−Hxif

]
, (3)

where the superscript i refers to ensemble member i, xia is
the updated state vector after the analysis, xif is the fore-
casted model state vector, K is the Kalman gain, and H is the
measurement operator that transforms between model and
observational states. In this study, the measurement opera-
tor H consists of a simple mapping of the observations to
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the corresponding model layers in the state vector for simu-
lations with point measurements. For FLUXNET sites, mea-
sured soil water content is provided for up to three depths
described as superficial, medium, and deep. Since data as-
similation in CLM5-PDAF requires a specific vertical layer,
we assigned 5, 20, and 50 cm to the respective FLUXNET
SWC layers. For the CRNS sites, the measurement depth for
each individual measurement is calculated following Schrön
et al. (2017) and is included in the dataset from Bogena et
al. (2022). For simulations assimilating the CRNS, H assigns
the mean observed SWC to all the layers down to the mea-
surement depth. This is a simplified approach and will be
improved in further studies to take the weighting function
from Schrön et al. (2017) into account. The Kalman gain is
calculated accordingly:

K= PHT
(

R+HPHT
)−1

, (4)

where the superscript T is used for transposed matrices; R is
the observational error covariance matrix; and P is the model
error covariance matrix, which is approximated through en-
semble statistics, specifically as follows:

P=
1

(N − 1)

∑N

i=1

(
xif − xf

)(
xif − xf

)T
, (5)

where N is the number of ensemble members, and x is the
ensemble mean.

In this study, the state vector depends on the simulation
scenario (explained in more detail in Sect. 2.3.2), and R is
based on the measurement errors which are assumed to be
constant and independent with a root-mean-square error of
0.02 cm3 cm−3.

To enable data assimilation with CLM5, we use the Par-
allel Data Assimilation Framework (PDAF) (Nerger et al.,
2005), which was recently coupled to CLM5 (Strebel et al.,
2022). This coupling (CLM5-PDAF) also supports the as-
similation of soil water content measurements.

2.3.2 Parameter updating

In addition to the use of data assimilation for state updat-
ing, we also perform parameter updating based on the state
augmentation approach (Friedland, 1969; Fertig et al., 2009).
Here, model parameters are attached to the state vector
and updated based on the Kalman gain calculations without
observations of the model parameters. By default, CLM5-
PDAF updates soil hydraulic parameters through changes to
fractions of sand, clay, and organic matter and the pedotrans-
fer function of Clapp and Hornberger (1978). In this indirect
approach the state vector for the EnKF is defined as follows:

xi =


θ i

%sandi

%clayi

%organici

 , (6)

where the superscript i refers to ensemble member i. The
components θ , %sand, %clay, and %organic each represent a
vector containing the respective variable for each soil layer of
each grid cell of the model. A damping factor of 0.1 is used
on the parameter updates to avoid filter inbreeding and keep
the ensemble spread larger so that the model error covariance
matrix is a good approximation for model uncertainty.

In previous studies, parameters were updated indirectly
(Naz et al., 2019; Han et al., 2014; Baatz et al., 2017).
We tested directly updating saturated hydraulic conductivity,
porosity, hydraulic conductivity exponent, and saturated soil
matric potential, but this resulted in more unstable estimates
than indirectly updating soil hydraulic parameters. The pe-
dotransfer function which is used for the indirect updating
results in reasonably correlated soil hydraulic parameters.
In testing a direct approach to updating saturated hydraulic
conductivity, porosity, hydraulic conductivity exponent B,
and saturated soil matric potential, we found that updating
the parameters indirectly provided more stable simulations.
The pedotransfer function keeps the soil hydraulic parame-
ters reasonably correlated to each other. In this study, the pa-
rameters are chosen to optimize the SWC estimation and not
ET estimation to study the effects of SWC improvements on
ET. To more directly improve the ET estimation, parameters
that are critical to the ET process should be added, e.g., veg-
etation hydraulic parameters that are related to the transfer of
water from the root to leaf or parameters related to stomatal
conductance.

2.4 Model setup

2.4.1 Domain setup

Since we only use local field measurements, we represent
each study site as a single grid cell in CLM5. This approach
is also consistent from the viewpoint of larger regional-scale
models, where each of these sites would only be part of a
grid cell. The CLM5 grid cells are vertically divided into 25
layers from the surface down to 50 m depth of which the first
20 layers (until 8.6 m depth) may be hydrologically and bio-
geochemically active depending on the variable soil depth
for each site (Lawrence et al., 2018). For the more than 70
different surface parameters of CLM5, we used the default
values generated by the tools provided with CLM5 (e.g., soil
depth to bedrock, sand, clay, and organic matter fractions,
PFTs). These default values are generated from remapping
various global files (Lawrence et al., 2019). Only the PFTs
were manually assigned for each site. For the ensemble cre-
ation, the fractions of sand, clay, and organic matter are mod-
ified for each ensemble member. The perturbations are nor-
mally distributed with mean zero and a standard deviation of
10 %.
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2.4.2 Atmospheric forcings

Meteorological observations were also available at the se-
lected study sites and were used to force CLM5. The ex-
isting gaps in the observation time series were gap-filled
with data from the COSMO-REA6 reanalysis data product
(Bollmeyer et al., 2015). For the ensemble generation pre-
cipitation (PR), shortwave radiation (SW), longwave radia-
tion (LW), and air temperature (TA ) were perturbed tak-
ing into account cross-correlations between variables accord-
ing Reichle et al. (2007). The perturbations are multiplica-
tive PR ∼ logN (1, 0.5), multiplicative SW ∼ logN (1, 0.3),
additive LW ∼N (0, 20) (W m−2), and additive TA ∼N (0,
1) (K). The following cross-correlation coefficients between
variables were used: PR–SW, −0.8; PR–LW, 0.5; PR–TA, 0;
SW–LW, −0.5; SW–TA, 0.4; and LW–TA, 0.4.

2.4.3 Data assimilation experimental setups

Three different simulation scenarios were considered:
(1) open-loop (OL) simulations without data assimilation,
(2) data assimilation with updating of soil water content
(DAS), and (3) data assimilation with soil water content up-
dating and parameter updating (DASP). For all scenarios,
data assimilation is performed at a daily frequency and with
daily averages from the observations. The observation error
is assumed to be constant and set to a root mean square of
2 %.

2.5 Statistical metrics

For the comparison of simulation results with observations,
we use four statistical metrics: the squared correlation co-
efficient (R2), the mean bias error (MBE), the root-mean-
square error (RMSE), and the unbiased root-mean-square er-
ror (ubRMSE):

R2
= 1−

∑Nt
t=1
(
ot −mt

)2∑N
t=1
(
ot − ot

)2 (7)

MBE=

∑Nt
t=1

(
mt − ot

)
Nt

(8)

RMSE=

√∑Nt
t=1
(
mt − ot

)2
Nt

(9)

ubRMSE=

√∑Nt
t=1
[(
mt −mt

)
−
(
ot − ot

)]2
Nt

, (10)

where o stands for observations, m represents the ensemble
average of the simulated values, t is the time step, Nt is the
total number of time steps, and the overbar represents the
average over all time steps.

Figure 2. Scatter plots of observed soil water content at 20 cm depth
at nine study sites versus OL- and DAS-simulated soil water con-
tent. The points represent daily averages for the days on which ob-
servation data are available. Green points are OL, and blue points
are DAS results.

3 Results

3.1 Soil water content and related parameters

Figures 2 and 3 show the results of the soil water content sim-
ulations at 20 cm depth of the OL, DAS, and DASP simula-
tions compared to the soil water content observed at the nine
sites. Figure 2 compares the OL and DAS results, and Fig. 3
compares the OL and DASP results. The corresponding scat-
ter diagrams for the depths 5, 20, and 50 cm can be found in
the Appendix (Figs. A1–A7). Overall, the results show ex-
pected improvements by data assimilation of observed soil
water content. For the OL simulations, Fig. 2 shows par-
ticularly large RMSE values for CZ-BK, DE-Obe, FI-Sod,
and NL-Loo. Figure 2 also illustrates the improved perfor-
mance achieved by DASP, with a RMSE reduction from
29.3 to 6.25 cm3 cm−3 and a MBE reduction from 28.06 to
−2.94 cm3 cm−3 for FI-Sod. Parameter updating, as shown
in Fig. 3, further improves the simulation results, but the im-
provement from DAS to DASP is significantly less than from
OL to DAS.

The results of the three COSMOS-Europe sites are shown
in Fig. 4, in which the observed SWC values are compared
with the weighted SWC mean of the model layers corre-
sponding to the measurement depth of the CRNS. This com-
parison again shows the large improvement from OL to DAS
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Figure 3. Scatter plots of observed soil water content at 20 cm depth
at nine study sites versus OL- and DASP-simulated soil water con-
tent results at 20 cm depth. The points represent daily averages for
the days on which observation data are available. Green points are
OL, and purple points are DASP results.

and a smaller improvement or even a small deterioration
from DAS to DASP.

Figure 5 shows the depth profile for the root fraction and
the SWC average of the OL and DASP simulations for the
first 1.2 m (10 layers) for each site. The SWC is updated
for all layers, including the layers with the largest root frac-
tion, but depending on the site the magnitude of the update
varies with depth. For most sites the data assimilation shifts
the SWC values while keeping the profile similar to the OL
results. FI-Hyy and FI-Sod are the exception and show a de-
crease in SWC in the first 25 to 50 cm and an increase in
SWC in the deeper layers for DASP.

Figure 6 shows time series of the estimated saturated soil
hydraulic conductivity for each of the sites and the three ob-
servation layer depths. The DASP scenario results in parame-
ter changes when the first observations are available but con-
verge over the time of the simulation to a new value. The
corresponding time series for the other soil hydraulic param-
eters can be found in the Appendix (Figs. A8, A9, and A10).

Figures 7, 8, and 9 show the initial (prior) and the updated
(posterior) vertical profiles for the sand, clay, and organic
matter fractions for the upper 1.2 m (10 soil layers). The up-
dated parameters often keep the profile distribution but have
reduced or increased values throughout the layers compared
to the prior.

Figure 4. Scatter plots of observed soil water content at three CRNS
study sites (DE-HoH left column, DE-Wue middle column, DK-
Glu right column) versus simulation results (OL results in the top
row, DAS results in the middle row, and DASP results in the bottom
row). The points represent daily averages for the days on which
observation data are available.

3.2 Evapotranspiration

The impact of the data assimilation on the ET flux is shown in
Figs. 10 and 11. Notably, the difference between the OL and
the DASP results is smaller for ET than for SWC. While the
data assimilation improves the model results for SWC for all
sites, both improvement and deterioration occur for modeled
ET. Figure 12 shows the comparison of the improvements
by data assimilation for SWC and the positive and negative
effect on ET estimation. The average RMSE reduction for
the DASP SWC prediction is between 56 % and 64 % com-
pared to OL. Comparing the OL and DASP results for ET
shows an average reduction of the MBE of 0.06 mm d−1 but
an increase in RMSE for the DASP ET predictions of 4 % on
average, with 8 of the 13 sites showing a relative change in
ET of only ±1 %. Two outliers (FI-Sod and NL-Loo sites)
reduce the average model improvement. These sites show
both a large overestimation in SWC in the OL (see Fig. 2)
and a large underestimation of ET in the DASP simulation
(see Fig. 11). This could be caused by the mismatch of sim-
ulated and actual LAI for these sites. To investigate this, we
repeated the simulations using CLM5 with satellite-derived
phenology (CLM5-SP), and the results are shown in Fig. 13.
Because the focus of this study is on CLM5-BGC, these
CLM5-SP simulations use the default datasets from CLM5
since in situ LAI measurements for these sites were not avail-
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Figure 5. Profile plots for the first 10 layers, showing the root fraction and the time-averaged SWC per depth for each site. In the SWC
profiles, the red and green lines represent the SWC from the open-loop simulations (OL) and DASP simulations, respectively.

able. The CLM5-SP OL and DASP simulations do not use
any information from the CLM5-BGC simulations which im-
plies that for the CLM-SP DASP simulations parameters are
estimated independently from the CLM5-BGC simulations.
For CLM5-SP we observe an average improvement in the
RMSE of SWC between 57.6 % and 64.3 % and an average
reduction of 5.8 % for the ET estimation. These CLM5-SP
simulations use the default datasets from CLM5 and with-
out site specific calibration of the timing or magnitude of the
seasonal phenology of LAI. Therefore, even for the CLM5-
SP simulations, there is a mismatch between simulated and
actual LAI. However, also for this case there are sites with a
large improvement in SWC estimation that show deteriora-
tion for ET estimation.

Another possible explanation for the improvement in SWC
estimation but no improvement in ET estimation is the un-
derestimation of root water uptake from deeper soil layers
for forest sites, as also suggested by Shrestha et al. (2018).
Figure 12 shows that the quality of the model results is not

dependent on the forest type; i.e., the evergreen needle leaf
forest (ENF) sites show both strong and average relative
changes in SWC RMSE and ET RMSE. This suggests that
the strong deviations in the model results of the FI-Sod and
NL-Loo sites are due to other local conditions, e.g., soil prop-
erties.

The three CRNS sites show an average relative change
of ET RMSE of −2.6 %, −0.2 %, and −0.9 % for DE-HoH,
DE-Wue, and DK-Glu, respectively. Therefore, although the
CNRS measurements are more consistent with the large mea-
surement area of the flux towers, no significant improvement
in ET for these three sites can be achieved with the current
implementation of the CNRS-SWC assimilation. We antici-
pate that the implementation of a more accurate observation
operator would improve the modeled SWC. The current ob-
servation operator does not use vertical weighting to take the
decreasing CRNS sensitivity with depth into account.
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Figure 6. Time series of the saturated soil hydraulic conductivity
for each site in the DASP simulation. The grey line is the value at
5 cm depth, the blue line at 20 cm depth, and the green line at 50 cm
depth.

3.3 Evaluation of other land–atmosphere exchange
fluxes

Comparing measured and modeled sensible heat fluxes (SH)
(Figs. 14 and 15), similar R2 values are obtained for the OL
and the DASP approach. The R2 values range from 0.23 to
0.51, with an average of 0.36. This is similar to the ET re-
sults, where the R2 values of measured and modeled (OL
and DASP) ET range from 0.01 to 0.58, with an average of
0.37. Comparing Figs. 14 and 15 shows the impact of data
assimilation of SWC on SH to be small. On average DASP
improves the MBE by 4.66 W m−2 compared to OL. How-
ever, for five of the eight sites the improvement of the MBE is
smaller than 1 W m−2. But, compared to the ET results, data
assimilation of SWC reduces the MBE of SH for all sites.

The impact of updating SWC with data assimilation on
modeled NEE, GPP, and LAI is shown in Fig. 16. The NEE
is negative (land acts as carbon sink) for eight, seven, and
six of the field sites for OL, DAS, and DASP, respectively.
For DASP the GPP and LAI show an increase for two of the

Figure 7. Profile plot showing the sand fractions for the first 10
layers of all 13 sites.

sites and a decrease for three of the sites, and they remain
similar for eight of the sites. Figure 17 shows how average
SWC in 5 and 50 cm depth, ET, NEE, GPP, and SH (average
over all sites and all years) are affected by data assimilation.
Although DASP adjusts SWC at 5 cm towards the observa-
tions, the correction for SWC at 50 cm depth is smaller be-
cause not all sites provide data at this depth. However, for
all sites the data assimilation provides some improvement
for SWC estimation, even in layers below the observation
depth. In spite of improved SWC characterization, ET devi-
ates slightly more from the observations after DASP, while
sensible heat flux is very slightly closer to the observations.
GPP is lower after DASP, and NEE is less negative. While the
overall change for some of these variables is small, different
variations throughout the year can be observed. This averag-
ing hides the variations between sites and annual variability
but highlights the overall model behavior. Notably, the data
assimilation improves SWC estimation at 5 cm throughout
the year, while at 50 cm depth the improvement can mainly
be observed in late summer and autumn. Similarly, for SH
a model structural bias is apparent with large negative sim-

https://doi.org/10.5194/hess-28-1001-2024 Hydrol. Earth Syst. Sci., 28, 1001–1026, 2024



1010 L. Strebel et al.: Evapotranspiration prediction for European forest sites

Figure 8. Profile plot showing the clay fractions for the first 10
layers of all 13 sites.

ulated SH values in late autumn, winter, and early spring,
while the observations only show a few days with negative
average values over all sites and all years.

Figure 18 shows the LAI for each site averaged over all the
simulated years and the difference between the prescribed
LAI used in CLM5-SP and the simulated LAI by CLM5-
BGC. Sites with the same PFT show clear differences in the
yearly LAI cycle.

4 Discussion

4.1 Soil water content improvements

Our results confirm that assimilation of high-quality in situ
SWC data improves the prediction of SWC by CLM5, as has
been demonstrated in several other studies (Hung et al., 2022;
Mahmood et al., 2019; Naz et al., 2019; Liu and Mishra,
2017; Han et al., 2015a). In our study, we were able to show
that this also applies to forest sites with different climates,
tree species, and soil properties.

Figure 9. Profile plot showing the organic matter fractions for the
first 10 layers of all 13 sites.

Additionally, CRNS observations represent SWC for a
larger area in better correspondence to the EC tower foot-
print. So far, only few studies have used CRNS informa-
tion in a data assimilation framework (Rosolem et al., 2014;
Han et al., 2015b; Baatz et al., 2017; Patil et al., 2021). In
line with our study, these studies show the high potential of
CRNSs for improved soil moisture prediction with land sur-
face models, in terms of both SWC prediction and improve-
ment of soil hydraulic parameters. Currently, CRNS stations
are operated with increasing numbers worldwide (Andreasen
et al., 2017), in hydrological observatories (e.g., Bogena et
al., 2018; Liu et al., 2018) or as national networks (Zreda et
al., 2012; Evans et al., 2016), or even increasing at continen-
tal scales (e.g., Hawdon et al., 2014; Bogena et al., 2022),
which opens up new opportunities for assimilation of CRNS
data in land surface models at various scales.

In our data assimilation approach, we assumed that the
CRNS signal shows a constant sensitivity to SWC down
to the penetration depth of the CRNS. However, Schrön et
al. (2017) have shown that the integrated neutron signal over
a vertical soil column exhibits a strong decrease in sensi-
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Figure 10. Scatter plots of observed evapotranspiration at 13 study
sites versus OL simulation results. The points represent daily aver-
ages for the days on which observation data are available.

tivity with depth and suggested that this physical behavior
of neutrons should be taken into account in model applica-
tions. For example, Shuttleworth et al. (2013) developed a
simple, physically based analytical model to translate model-
predicted soil moisture profiles into aboveground fast neu-
tron counts within a data assimilation framework. A simpler
method was proposed by Schrön et al. (2017) using vertical
weighting functions that depend on SWC, atmospheric pres-
sure, horizontal distance, and vegetation height. Therefore, in
a follow-up study, we will test whether observation operators
that account for the vertical weights of the different model
soil layers according to the decreasing sensitivity of CRNSs
with depth will improve our SWC prediction results.

Figure 11. Scatter plots of observed evapotranspiration at 13 study
sites versus DASP simulation results. The points represent daily av-
erages for the days on which observation data are available.

4.2 Evapotranspiration estimation without
improvements from SWC DA

Several studies have demonstrated the potential of improved
ET prediction using data assimilation of SWC measurements
(Liu and Mishra, 2017; Girotto et al., 2017; Peters-Lidard et
al., 2011). These studies focused on regional or global scale
and show heterogeneous spatial patterns of improvement to
ET estimation. Baatz et al. (2017) showed that assimilation
of CRNS observations altered the ET estimation in CLM4.5
in parts of their study area by up to 80 mm yr−1 compared to
the OL approach.

However, in our study with the land surface model CLM5,
we found that data assimilation of SWC does not improve the
ET prediction for European forest sites. We also found that
the impact on ET from assimilating CRNS observations is
similarly limited, as in the assimilation of other in situ SWC
data. Since our study sites cover a variety of climates and soil
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Figure 12. Comparison of the SWC and ET characterization for
the OL and DASP simulations. Each point represents the overall
average RMSE change for one site. The color of the points indicates
the classification code for the different forest types (MF – mixed
forest, ENF – evergreen needle leaf forest, DBF – deciduous broad
leaf forest, EBF – evergreen broad leaf forest, AVG – average over
all forest types).

Figure 13. Comparison of the SWC and ET characterization for
the OL and DASP simulations using CLM5-SP. Each point repre-
sents the overall average RMSE change for one site. The color of
the points indicate the forest type (MF – mixed forest, ENF – ever-
green needle leaf forest, DBF – deciduous broad leaf forest, EBF –
evergreen broad leaf forest, AVG – average over all forest types).

Figure 14. Scatter plots of observed sensible heat flux at eight study
sites versus OL simulation results. The points represent daily aver-
ages for the days on which observation data are available.

Figure 15. Scatter plots of observed sensible heat flux at eight study
sites versus DASP simulation results. The points represent daily av-
erages for the days on which observation data are available.
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Figure 16. Open-loop (OL) and assimilation scenario (DAS and
DASP) yearly averages of (a) net ecosystem exchange (NEE),
(b) gross primary production (GPP), and (c) leaf area index (LAI)
for all selected sites.

Figure 17. Seasonality of observed (OBS) and simulated (OL and
DASP) states and fluxes based on daily averages from all years
(2009 to 2018) and all sites: (a) soil water content (SWC) at
5 cm depth, (b) SWC at 50 cm depth, (c) evapotranspiration (ET),
(d) sensible heat flux (SH), (e) net ecosystem exchange (NEE), and
(f) gross primary production (GPP).

types, we assume that this result also applies to other forest
sites worldwide with similar tree species.

The lack of improvement in ET prediction in the case of
data assimilation of in situ soil moisture information is con-
sistent with findings from other studies. Girotto et al. (2017)
found a decrease in ET accuracy after assimilating GRACE
data over India and attributed the results to the representa-
tion of irrigation in the model. Similarly, Peters-Lidard et
al. (2011) showed mixed results after assimilating multiple
satellite soil water content products over North America with
spatial variation of improvements and deterioration of ET es-
timation. Overall, for 9 of the 13 forested study sites our OL
simulations show positive mean bias error, indicating that
CLM5 underestimates the ET compared to the FLUXNET
observations. These underestimations agree with the results
shown in the study by Cheng et al. (2021), showing that
CLM5 underestimates ET observations. Additionally, Near-
ing et al. (2018) investigated the contribution of model struc-

Figure 18. Seasonality of simulated LAI for each of the sites. The
red line represents predicted LAI from the CLM5-BGC-DASP sim-
ulations, and the blue line represents LAI inputs used in the CLM5-
SP-DASP simulations.

tural errors and model inputs for four different LSM and con-
cluded that SWC uncertainty was dominated by soil parame-
ter uncertainty, while ET uncertainty was dominated by forc-
ing uncertainty. Without a similar in-depth benchmark study
for CLM5, but from our results and the results of the previ-
ously mentioned CLM5 studies, a similar conclusion can be
drawn for CLM5.

A different aspect is that we assume that the EC data are
correct to validate our simulation results. However, the EC-
data might be affected by energy balance closure issues (Fo-
ken, 2008; Hendricks Franssen et al., 2010).

4.3 Methods to improve ET estimation

There are various approaches to improve modeled ET esti-
mates. For example, Zhang et al. (2020) identified and op-
timized four hydraulic and three vegetation parameters in
CLM4.0 that improved ET estimation by 7.3 % for the op-
timization period and 5.3 % for the validation period for
China. Similarly, Post et al. (2018) calibrated eight param-
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eters to improve NEE estimation in CLM 4.5, and a simi-
lar approach to optimize vegetation parameters in CLM 5.0
for ET estimation could improve simulation results. Tang et
al. (2015) implemented a root hydraulic redistribution model
in CLM4.5 to improve ET estimation but found that their
method was only able to improve ET predictions north of
20° N. They identified the representation of deep roots, soil
hydraulic parameterization for certain soils, meteorological
forcings, and the parameterization of the water table dynam-
ics and drainage as the main limitations to improve ET by
their method.

Denager et al. (2023) used SWC measurements for an agri-
cultural site in Denmark for parameter calibration of soil tex-
ture, LAI, stomata conductance, and the root distribution in
CLM5 and obtained improved energy partitioning of ET and
SH. However, they also found it difficult to calibrate the pa-
rameters to get an improvement in SH estimation throughout
the year and suggested that the difference in energy balance
closure between LSMs and EC flux observations contributes
to the bias.

Fox et al. (2022) concluded that errors in LAI estima-
tions in LSMs lead to substantial flaws in the representation
of carbon, water, and energy fluxes. Furthermore, they con-
clude that data assimilation to remove bias in LAI improves
LSMs results significantly and is advisable until the prog-
nostically modeled LAI improves substantially. For exam-
ple, Zhang et al. (2016) assimilated remotely sensed LAI data
into the Biome-BGC model at two sites and improved both
ET and NEE estimates, evaluated with EC tower measure-
ments. Rahman et al. (2022) showed that the joint LAI and
topsoil SWC assimilation from satellite products improved
the ET estimation for the contiguous United States compared
with independent validation datasets, while data assimilation
of topsoil SWC alone only improved the SWC estimation.

As mentioned, LAI is identified as a key variable to im-
prove ET estimation and representation of land carbon pro-
cesses. Therefore, in future work we will investigate the ef-
fects of data assimilation of LAI and joint state–vegetation
parameter estimation on the simulation of carbon, water, and
energy fluxes with CLM5.

5 Conclusions

This paper analyzed the impact of the assimilation of in situ
soil water content (SWC) data on SWC characterization,
evapotranspiration (ET), sensible heat flux (SH), gross pri-
mary production (GPP), and net ecosystem exchange (NEE),
for 13 forested sites in Europe. Assimilation of SWC, from
both point-scale and plot-scale observations, with the en-
semble Kalman filter, using the Community Land Model
version 5 coupled to the Parallel Data Assimilation Frame-
work (CLM5-PDAF) improves SWC prediction (RMSE re-
ductions between 56 % and 64 % compared to the open-loop
run and depending on measurement depth). However, as-
similation of in situ SWC does not improve the ET pre-
diction for the investigated European forest sites. For most
of the sites, data assimilation showed almost no effect on
ET fluxes (RMSE changes between ±1 %), and some sites
showed strong negative effects of SWC assimilation on ET
predictions (−20 % to −30 % change in RMSE). The as-
similation of in situ SWC from cosmic-ray neutron sensors
(CRNSs), which determine SWC over a larger horizontal
footprint more in correspondence with the eddy covariance
footprint, for 3 of the 13 sites, also does not improve ET char-
acterization. These results suggest that improving the SWC
estimation of state-of-the-art LSM such as CLM5 is not suf-
ficient to improve ET estimation for forest sites. To improve
ET estimation, it is also necessary to consider the representa-
tion of LAI in magnitude and timing, as well as uncertainties
in water uptake by roots and vegetation parameters. In the fu-
ture, to improve modeled ET using data assimilation we will
further examine the potential of assimilating different state
variables, for example, leaf area index and updating related
vegetation parameters. In addition, we will apply a measure-
ment operator in the data assimilation framework that con-
siders the vertical sensitivity of the CRNS signal.
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Appendix A: Additional figures

Figure A1. Scatter plots of observed soil water content at 10 study sites versus OL simulation results at 5 cm depth. The points represent
daily averages for the days on which observation data are available.
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Figure A2. Scatter plots of observed soil water content at 10 study sites versus DASP simulation results at 5 cm depth. The points represent
daily averages for the days on which observation data are available.
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Figure A3. Scatter plots of observed soil water content at 10 study sites versus OL simulation results at 20 cm depth. The points represent
daily averages for the days on which observation data are available.

Figure A4. Scatter plots of observed soil water content at 10 study sites versus DAS simulation results at 20 cm depth. The points represent
daily averages for the days on which observation data are available.
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Figure A5. Scatter plots of observed soil water content at 10 study sites versus DASP simulation results at 20 cm depth. The points represent
daily averages for the days on which observation data are available.

Figure A6. Scatter plots of observed soil water content at eight study sites versus OL simulation results at 50 cm depth. The points represent
daily averages for the days on which observation data are available.
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Figure A7. Scatter plots of observed soil water content at eight study sites versus DASP simulation results at 50 cm depth. The points
represent daily averages for the days on which observation data are available.
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Figure A8. Time series for the Clapp–Hornberger shape parameter B (BSW) for each site in the DASP simulation. The grey line is the value
at 5 cm depth, the blue line at 20 cm depth, and the green line at 50 cm depth.
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Figure A9. Time series for the saturated soil matric potential for each site in the DASP simulation. The grey line is the value at 5 cm depth,
the blue line at 20 cm depth, and the green line at 50 cm depth.
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Figure A10. Time series for the porosity for each site in the DASP simulation. The grey line is the value at 5 cm depth, the blue line at 20 cm
depth, and the green line at 50 cm depth.
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