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Abstract. The water cycle in Czechia has been observed to
be changing in recent years, with precipitation and evapo-
transpiration rates exhibiting a trend of acceleration. How-
ever, the spatial patterns of such changes remain poorly un-
derstood due to the heterogeneous network of ground ob-
servations. This study relied on multiple state-of-the-art re-
analyses and hydrological modeling. Herein, we propose a
novel method for benchmarking hydroclimatic data fusion
based on water cycle budget closure. We ranked water cy-
cle budget closure of 96 different combinations for precipita-
tion, evapotranspiration, and runoff using CRU TS v4.06, E-
OBS, ERA5-Land, mHM, NCEP/NCAR R1, PREC/L, and
TerraClimate. Then, we used the best-ranked data to de-
scribe changes in the water cycle in Czechia over the last
60 years. We determined that Czechia is undergoing water
cycle acceleration, evinced by increased atmospheric water
fluxes. However, the increase in annual total precipitation is
not as pronounced nor as consistent as evapotranspiration,
resulting in an overall decrease in the runoff. Furthermore,
non-parametric bootstrapping revealed that only evapotran-
spiration changes are statistically significant at the annual
scale. At higher frequencies, we identified significant spa-
tial heterogeneity when assessing the water cycle budget at
a seasonal scale. Interestingly, the most significant tempo-
ral changes in Czechia occur during spring, while the spatial

pattern of the change in median values stems from summer
changes in the water cycle, which are the seasons within the
months with statistically significant changes.

1 Introduction

During the last decades, there have been significant advances
in analyzing the water cycle and its response to global warm-
ing. While we expect alterations in the water cycle to respond
to climate change and global warming, the actual extent and
characteristics of this reaction are poorly understood (Za-
itchik et al., 2023). It was hypothesized that an increased ver-
tical gradient of atmospheric water vapor would offset atmo-
spheric wind convergence in the tropics, making wet regions
wetter and dry regions drier (Held and Soden, 2006). Nev-
ertheless, such claims lack conclusive support of observed
measurements and have lit the fire of controversy in the field
(Vecchi et al., 2006; Allan, 2012; Skliris et al., 2016).

Undoubtedly, the advances in remote sensing observations
and process-based modeling have shaped current research the
most. However, as the data sources increased, it soon became
apparent that large discrepancies between the data sets still
exist due to biases and uncertainties (Vargas Godoy et al.,
2021). Observational data are hampered by short and hetero-
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geneous ground-based records (Schneider et al., 2017) and
unquantified uncertainties on satellite-based products (e.g.,
the impact of cloud filtering; Povey and Grainger, 2015).
Therefore, reanalysis data providing global coverage through
models while assimilating observation-based data have at-
tained an essential role in assessing water cycle changes
(Lorenz and Kunstmann, 2012). Each data source has lim-
itations and uncertainties; when multiple sources are com-
bined, these can compound and result in conflicting or un-
clear results. Hence, in addition to uncertainty due to the
complex water cycle system, which involves multiple feed-
back mechanisms and interactions between different com-
ponents, we must account for data merge uncertainty. Ac-
cordingly, various methodologies for multi-source data in-
tegration have emerged. Among the most widely used ones
are Bayesian model averaging, constrained linear regression,
neural networks, optimal interpolation, and simple weighting
(Rodgers, 2000; Aires, 2014; Moazamnia et al., 2019; Pellet
et al., 2019; Xiao et al., 2020). Subsequently, once merged
data are generated, they are subject to post-processing for
water cycle budget closure via Monte Carlo applications and
Kalman filter variations (Pan and Wood, 2006).

Several studies have quantified the water cycle by imple-
menting data integration methods and budget closure con-
straints; e.g., Sahoo et al. (2011) integrated 16 data sets over
10 globally distributed river basins (eight for precipitation,
six for evapotranspiration, one for runoff, and one for total
water storage; Table S1 in the Supplement). Pan et al. (2012)
integrated eight data sets over 32 globally distributed river
basins (four for precipitation, two for evapotranspiration, one
for runoff, and one for total water storage; Table S2). Rodell
et al. (2015) integrated six data sets over continents and
ocean basins (one for precipitation, three for evapotranspi-
ration, one for runoff, and one for total water storage; Ta-
ble S3). Zhang et al. (2016) integrated 14 data sets glob-
ally (five for precipitation, six for evapotranspiration, one for
runoff, and two for total water storage; Table S4). Munier and
Aires (2018) integrated 12 data sets at the global scale (four
for precipitation, three for evapotranspiration, one for runoff,
and four for total water storage; Table S5).

The studies mentioned above focus on merging multiple
data sets to end up with a single data set per water cy-
cle component at different spatial scales. It is evident that
unconstrained uncertainty remains despite the plethora of
data products derived from satellites, ground-based mea-
surements, and climate models. This is true even for local-
ized studies at regional scales where “ground-truth” mea-
surements for one or more components of the water cycle
are available. One region of particular interest is Czechia, a
small country in central Europe with diverse landscapes and a
growing population (United Nations, 2022). The water cycle
over Czechia has been experiencing significant changes in
recent times, affecting various aspects of the water balance
in the region, including changes in river flow regimes and
water quality, loss of wetlands, and changes in the frequency

and severity of extreme events (Mozny et al., 2020). Besides,
changes in the rainfall–snowfall partition have given rise to a
decrease in snow cover and premature snowmelt (Nedelcev
and Jenicek, 2021). These changes in the water cycle are ex-
pected to continue in the near future (Kyselý and Beranová,
2009; Jenicek et al., 2021). Precipitation, in particular, is ex-
pected to increase its mean, mainly in winter and shown by
extreme rates throughout the year (Kyselý et al., 2011). In ad-
dition, increased human activities, such as urbanization and
agriculture, have led to changes in land use and land cover,
which in turn have contributed to the occurrence of floods
and droughts (Svoboda et al., 2016). Droughts have had dis-
astrous consequences for agriculture, forestry, water manage-
ment, and other human activities (Brázdil et al., 2009). Con-
sequently, the water cycle in Czechia and human activity find
themselves on a causal feedback loop.

In this study, we aim to estimate the water cycle changes
over Czechia between the 1961–1990 and 1991–2020 peri-
ods and determine the current trends and patterns in water
cycle components. Our analysis includes various data sets at
different spatiotemporal scales, allowing us to assess 96 data
combinations for budget closure. Rather than enforcing bud-
get closure on a multi-source integrated data set or assess-
ing different integration methods, we explored an empirical
method to rank how multiple data set combinations close the
water cycle budget while correlating them to referential data
estimates of individual water cycle components. In this man-
ner, we are not generating yet another new data set but are
identifying the best combination among the data sets avail-
able for our study domain. Only the data sets with the best
rankings as determined by our proposed benchmarking were
used in all subsequent computations. We found that hydro-
climatic models, as expected, have better water budget clo-
sure. However, ERA5-Land is not far off despite known non-
closure limitations associated with reanalyses. We identified
an overall acceleration of atmospheric water fluxes. Simulta-
neously, we report a heterogeneous distribution of freshwater
availability.

2 Data and methods

2.1 Study area

Czechia is a landlocked (surrounded by Germany, Austria,
Slovakia, and Poland) European country that covers an area
of 78 864 km2. Czechia is an essential headwaters region of
the European continent. The country is home to several large
rivers, including the Vltava, the Elbe, the Morava, and the
Oder, all of which have their sources within it. Czechia is
situated at the intersection of three sea drainage basins, the
North Sea, the Baltic Sea, and the Black Sea, which, in re-
turn, divide Czechia into three main hydrological catchment
areas: the Elbe, Oder, and Danube basins (Fig. 1). All of these
major watercourses drain water into neighboring states. The
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Figure 1. The three drainage basins within Czechia’s administra-
tive boundaries (red line): Elbe (light-gray shade), Danube (black
stripes), and Oder (dark-gray points).

water sources of Czechia are thus almost exclusively depen-
dent on precipitation.

2.2 Data

To assess water cycle acceleration, we gathered data sets
with at least 60 years of record. This first filter reduced
the plethora of publicly available data sets to nine data
sets from multiple sources (observation-based, reanalysis,
and hydrological model products) and three evaluation ref-
erences (Table 1). The evaluation data sets for precipita-
tion and runoff are the Czech Hydrometeorological Insti-
tute (CHMI) and the Global Runoff Data Centre (GRDC),
respectively. Six precipitation data sets were included: the
Climatic Research Unit at the University of East Anglia
(CRU TS v4.06; Harris et al., 2020), the European Centre
for Medium-Range Weather Forecasts (ECMWF) Reanalysis
(ERA5-Land; Muñoz-Sabater et al., 2021), the E-OBS data
set from the Copernicus Climate Change Service (Cornes
et al., 2018), the National Centers for Environmental Predic-
tion and the National Center for Atmospheric Research Re-
analysis 1 (NCEP/NCAR R1; Kalnay et al., 1996), Precipita-
tion Reconstruction Over Land (PREC/L; Chen et al., 2002),
and TerraClimate (Abatzoglou et al., 2018). Note that E-OBS
(hereinafter mHM(E-OBS)) was used as meteorologic in-
put for the mesoscale Hydrologic Model (mHM; Samaniego
et al., 2010; Kumar et al., 2013). There were four evapotran-
spiration data sets: ERA5-Land, mHM, NCEP/NCAR R1,
and TerraClimate. There were four runoff data sets: ERA5-
Land, mHM, NCEP/NCAR R1, and TerraClimate. Using the
above listed data sets, we assessed a total of 96 different com-
binations.

2.2.1 Evaluation references

As evaluation references, we relied solely on ground station
data sets. A distinct advantage of station data over hydrolog-
ical models or reanalyses is their capability to capture de-
tailed and localized information. These in situ measurements

directly reflect the local climatic conditions, offering a more
accurate representation of the water cycle.

The Czech Hydrometeorological Institute (CHMI) pro-
vides station-derived precipitation data. The CHMI station
network consists of approximately 700 stations distributed
with a mean density of one station per 100 km2, adequately
representing the distinct geographical features of Czechia
(Kašpar et al., 2021). Although the data collection and re-
lated services for a specific station are generally managed
by the regional branches of CHMI, the entire territory sta-
tion data can be accessed from the Department of Climatol-
ogy of CHMI at once. All the data sets have undergone ro-
bust quality control checks by CHMI before being added to
the database. Herein, we gathered the country-level estimates
calculated by CHMI (one value per month) for a period of 60
years (1961–2020).

The Global Runoff Data Centre (GRDC) is a collection
of river discharge data from more than 8000 stations in 157
countries. The GRDC has operated under the World Meteo-
rological Organization (WMO) since 1988 to collect, man-
age, and distribute data related to river discharge and runoff
from around the world. The data collected at GRDC undergo
quality control to check for errors, inconsistencies, and out-
liers in the data before their dissemination. While data are
available at daily and monthly time steps, their record length
varies by location. We selected three stations from GRDC,
namely the Bohumin (Oder), Decin (Elbe), and Moravsky
Jan (Danube) stations, which are placed near the borders of
the country, and country-level estimates were calculated by
their weighted average based on the catchment area as regis-
tered by GRDC.

2.2.2 Observational-based products

CRU TS is a popularly used gridded data set generated by the
University of East Anglia’s Climate Research Unit (Harris
et al., 2020). It is known for its historical long-term coverage,
which is available from 1901 to the near present. The data
set comes with a 0.5◦ spatial resolution at the monthly scale.
It compiles station data from multiple sources such as the
Food and Agricultural Organisation (FAO), the World Mete-
orological Organisation (WMO), and the National Meteoro-
logical Agencies (NMA’s) (Sun et al., 2018). CRU TS v4, its
latest version, implemented angular-distance-based interpo-
lation to facilitate tracing back the stations upon which the
gridded data set has been constructed.

PREC/L, created by the US Climate Prediction Center
(CPC), is a gridded product entirely based on the station
data set (Chen et al., 2002) with global coverage and a
monthly time step. PREC/L draws data from over 17 000 sta-
tions from the Global Historical Climatology Network ver-
sion2 (GHCN v2; Peterson and Vose, 1997) and the Climate
Anomaly Monitoring System (CAMS; Janowiak and Xie,
1999). Subsequently, the data are interpolated to construct
the gridded product at three different resolutions (0.5, 1, and

https://doi.org/10.5194/hess-28-1-2024 Hydrol. Earth Syst. Sci., 28, 1–19, 2024



4 M. R. Vargas Godoy et al.: Water cycle changes in Czechia: a multi-source water budget perspective

Table 1. Data set description. P is precipitation, E is evapotranspiration, and Q is runoff.

Name Variable(s) Spatial Temporal Record Data type Reference
resolution resolution length

CHMI P Point Daily 1961–2020 Stations http://portal.chmi.cz (last access: 26 August 2023)
CRU TS v4.06 P 1◦ Monthly 1901–2020 Gauge-based Harris et al. (2020)
E-OBS P 0.125◦ Daily 1950–2020 Gauge-based Cornes et al. (2018)
ERA5-Land P , E, Q 0.1◦ Monthly 1950–2020 Reanalysis Muñoz-Sabater et al. (2021)
GRDC Q Point Daily 1921–2017 Stations https://www.bafg.de/GRDC (last access: 26 August 2023)
mHM E, Q 0.125◦ Daily 1950–2020 Model Samaniego et al. (2010)
NCEP/NCAR R1 P , E, Q T62 Monthly 1948–2020 Reanalysis Kalnay et al. (1996)
PREC/L P 0.5◦ Monthly 1948–2020 Gauge-based Chen et al. (2002)
TerraClimate P , E, Q 4 km Monthly 1958–2020 Model Abatzoglou et al. (2018)

2.5◦). Herein, we used the 0.5◦ monthly precipitation, whose
record extends from 1948 to the present.

2.2.3 Hydrological models

The mesoscale Hydrologic Model (mHM; Samaniego et al.,
2010; Kumar et al., 2013) is a conceptual grid-based model
representing dominant hydrological fluxes and storage at the
Earth’s surface and subsurface through a system of ordinary
differential equations. mHM represents processes such as in-
terception, snow, soil moisture, evapotranspiration, and var-
ious runoff components like fast–slow interflow and base-
flow. The model was established, parameterized, and eval-
uated over the European continent (Rakovec et al., 2016b;
Samaniego et al., 2019; Rakovec et al., 2022). The meteoro-
logical inputs were based on daily E-OBS data (Cornes et al.,
2018) of precipitation in addition to minimum, maximum,
and average temperature. The potential evapotranspiration
was derived using the method of (Hargreaves and Samani,
1982). The spatial resolution of the model grid corresponds
to 0.125◦.

Terraclimate is a high-resolution gridded global climate
data set that provides the mean climate and mean water bal-
ance data covering a time span of 1958 to the present (Abat-
zoglou et al., 2018). The data set is commonly known for
its high spatial resolution (4 km). It uses various global grid-
ded climate data sets such as WorldClim v2 (Fick and Hi-
jmans, 2017) and v1.4 (Hijmans et al., 2005), CRU TS v4
(Harris et al., 2020), Japanese 55-year Reanalysis (JRA55)
(Kobayashi et al., 2015), and root zone storage capacity
(Wang-Erlandsson et al., 2016) in order to generate the high-
resolution monthly climate variables time series at the global
level. An additional advantage of the Terraclimate is that it
produces monthly surface water balance based on a water
balance model along with primary climatic variables such as
temperature, precipitation, and solar radiation.

2.2.4 Reanalyses

ERA5-Land is the latest fifth-generation global atmo-
spheric reanalysis product developed by the European Cen-
ter for Medium-Range Weather Forecast (ECMWF) (Muñoz-
Sabater et al., 2021). ERA5-Land, as the name implies,
builds upon the terrestrial component of ERA5 and down-
scales the model spatial grid resolution from 31 into 9 km.
As a result, ERA5-Land delivers either hourly or monthly
estimates with a spatial resolution of 0.1◦. Given its high spa-
tiotemporal resolution and long record, ERA5-Land provides
valuable data for comprehensive analysis and diverse hydro-
logical applications at the global scale.

The NCEP/NCAR Reanalysis 1 is produced by the col-
laboration between the National Centers for Environmental
Prediction (NCEP) and the National Center for Atmospheric
Research (NCAR) (Kalnay et al., 1996). It is the longest-
running reanalysis that uses rawinsonde data, at the expense
that the model and data assimilation scheme are antiquated
(Trenberth et al., 2011). The data set is distributed on a T62
Gaussian grid (approximately 1.875◦ at the Equator), and its
record start dates back to 1948.

2.3 Data evaluation

We validated the gathered data sets to capture the temporal
variability of water cycle components as described by the
three observational references via the coefficient of deter-
mination (R-squared or R2) and the root mean square error
(RMSE). All data sets were spatially weighted averaged over
Czechia and temporally aggregated to an annual scale over
the calendar year. Note that only precipitation data sets could
be evaluated over the entire 60-year period of 1961–2020. In
contrast, runoff was evaluated over 1961–2017. In order to
compare a 30-year mean among all water cycle components,
the common period of 1981–2010 was selected.
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2.4 Data set ranking

A success metric widely used among several studies is get-
ting the budget closure residual (ξ ) as close to zero as possi-
ble. Herein, we define the budget closure residual as follows:

ξn = Pn−En−Qn, (1)

where Pn is precipitation, En is evapotranspiration, and Qn

is runoff for a given year n. Thus, we have 60 annual values
for each of the 96 possible combinations. Note that the water
flux time series used to compute the residuals are the spatially
weighted average values. Under steady-state conditions the
mean of these residuals should tend to zero:

ξi =

∑N
n=1ξn

N
→ 0, (2)

where ξi is the mean of the N = 60 annual residuals for the
ith combination. The score to be used in the ranking of a
given data set combination was determined via

score

=
|ξi |σξi

(cor(Pi −Ei ,Qi)cor(Pi ,Po)cor(Ei ,Eo)cor(Qi ,Qo))
2 , (3)

where |ξi | is the absolute value of the mean of the 60 an-
nual residuals for the ith combination, σξi is the standard
deviation of the 60 annual residuals for the ith combina-
tion, cor(Pi −Ei,Qi) is the correlation between P −E and
Q for the ith combination, cor(Pi,Po) is the correlation be-
tween P of the ith combination and the precipitation eval-
uation reference, cor(Ei,Eo) is the correlation between E
of the ith combination and the evapotranspiration evaluation
reference, and cor(Qi,Qo) is the correlation between Q of
the ith combination and the runoff evaluation reference. The
ranking method proposed herein can easily be applied to any
other referential data set for evaluation. In data-limited ar-
eas or those with a poor observational network, the ranking
method may still be applied using external data as an evalua-
tion reference, or the corresponding term in the equation can
be simply left out. For example, if evapotranspiration data for
evaluation are not available, Eq. (3) becomes

score=
|ξi |σξi

(cor(Pi −Ei,Qi)cor(Pi,Po)cor(Qi,Qo))
2 .

In the case of Czechia, we used this modified version due
to the absence of access to observational evapotranspiration
data.

2.5 Water cycle changes

We assessed the empirical distribution of spatially weighted
average values (accounting for the area of each grid cell in

proportion to the total area being averaged) of annual water
cycle fluxes between 1961–1990 and 1991–2020 for three
of the best data set combinations. To account for the influ-
ence of extreme value in the latter period due to the 100-year
drought of 2003 (Brázdil et al., 2013), we compared the me-
dian values rather than their means (see Fig. 5). To deepen
our assessment of changes in the distribution of water cycle
fluxes, we compared their monthly values between 1961–
1990 and 1991–2020. To determine the statistical signifi-
cance of the above-mentioned changes, we employed non-
parametric bootstrapping of 10 000 iterations. Subsequently,
we performed an analogous analysis in space. We computed
the change in the median values between 1961–1990 and
1991–2020 over each grid cell. Note that each data set was
assessed at its native resolution for this part of the analy-
sis. Finally, we examined the change patterns of water cy-
cles through the seasons. Herein, we considered winter to be
December, January, and February; spring to be March, April,
and May; summer to be June, July, and August; and autumn
to be September, October, and November.

3 Results

3.1 Benchmarking water cycle components

Our analysis describes the most recent spatiotemporal
changes on the water cycle in Czechia. For starters, we exam-
ined precipitation, evapotranspiration, and runoff estimates
from the gathered data sets. Further, precipitation and runoff
were compared to CHMI (Fig. 2a) and GRDC (Fig. 2c) as
the respective evaluation references. The variability of esti-
mates from precipitation and runoff data sets (Fig. 2a and c)
visibly has a broader spread than of those from evapotranspi-
ration (Fig. 2b). While one may suspect the spread in precip-
itation is due to the higher number of data sets available, they
correlate better to their evaluation reference than runoff. The
data set with the highest correlation values for precipitation
is mHM(E-OBS) with R2 of approximately 0.99 (Fig. 2a).
mHM has the highest correlation for runoff, with R2 circa
0.93 (Fig. 2c). In contrast, NCEP/NCAR R1 consistently
reports the lowest correlation values regardless of the wa-
ter flux of interest. Additionally it has substantially higher
RMSE values than the rest of the data sets for precipitation.
To some degree, ERA5-Land is the “in-between” data set be-
cause it has high correlation values and simultaneously has
high RMSE for precipitation, yet for runoff, ERA5-Land ex-
hibits moderate correlation and small RMSE.

The water cycle budget is meant to close over hydrological
units. Accordingly, we examined the water fluxes of the data
sets with the best evaluation over the subbasins enclosed by
the Czech administrative borders (Fig. 3). For simplicity, we
will refer to them by their river names inside Czechia, i.e.,
Morava for the Danube basin, Labe for the Elbe basin, and
the Odra for the Oder basin. It can be seen that within each
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Figure 2. Benchmarking spatially weighted average annual water fluxes over Czechia between 1961 and 2020. For consistency and compa-
rability between different water fluxes, annual anomalies were computed using the 1981–2010 average as a reference, the common period
among all data sets. The 1981–2010 average and standard deviation are listed at the bottom left of each panel. Linear correlation summary
statistics are displayed at the bottom right of each panel. The spread of the estimates being evaluated is shown in gray, and their mean is in
white. (a) Precipitation evaluation. CHMI data are shown in blue. (b) Evapotranspiration evaluation. (c) Runoff evaluation. GRDC data are
shown in purple.

data set, no extremely deviant behavior is exhibited between
basins or at the country level. In other words, the precipi-
tation time series depicted by TerraClimate for Czechia is
similar to the one depicted for the Morava, Labe, and Odra
rivers. Comparing data sets, however, it is evident that ERA5-
Land is different. At first glance, we evince higher magni-
tudes for ERA5-Land precipitation and evapotranspiration,
yet the residuals do not appear to be that far off from those of
mHM or TerraClimate. It is not until we look at the cumula-
tive sum of the residuals that we can distinguish ERA5-Land
water budget residuals are nonstationary with a decreasing
trend.

It would be sensible to use the best data set for each water
flux to proceed with further analysis. However, we first ver-

ified if the best data sets individually would depict the best
water cycle budget in conjunction. Conventional metrics like
R2 and RMSE cannot be directly applied to a combination
of data sets. We defined an empirical scoring metric, as de-
scribed by Eq. (3), where the smallest the value, the better
the data set combination. While our ranking approach is em-
pirical and simple, Eq. (3) correctly identifies narrow distri-
bution centered at mean zero with higher ranked positions
compared to wider distributions centered around positive or
negative values (Fig. 4). Upon ranking all 96 possible com-
binations (Table 2), we observe that even though mHM out-
performed TerraClimate for individual water flux estimates,
the TerraClimate exclusive combination offers the best water
budget closure. We expected combinations with hydrological

Hydrol. Earth Syst. Sci., 28, 1–19, 2024 https://doi.org/10.5194/hess-28-1-2024
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Figure 3. Spatially weighted average annual water fluxes over Czechia (first row), Labe River (Elbe basin inside Czechia; second row),
Morava River (Danube basin inside Czechia; third row), and Odra River (Oder basin inside Czechia; fourth row), where P is precipitation
in blue, E is evapotranspiration in green, Q is runoff in purple, ξ is the residual (P −E−Q) in black, and c(ξ ) is the cumulative sum of
the residual in orange. Left column: TerraClimate (P ), TerraClimate (E), and TerraClimate (Q). Middle column: mHM(E-OBS) (P ), mHM
(E), and mHM (Q). Right column: ERA5-Land (P ), ERA5-Land (E), and ERA5-Land (Q).

model data to be highly ranked and reanalyses to be poorly
ranked due to the above-reported considerable biases of the
latter. Notwithstanding, we were surprised to see the ERA5-
Land exclusive combination (i.e., all flux estimates from the
same data set) among the top six ranks despite non-steady
water budget residuals (Fig. 3) as well as biases 1.7–3.3 and
3.8–4.2 times larger than those of models for runoff (Fig. 2c)
and precipitation (Fig. 2a), respectively. The first combina-
tion that includes at least one estimate from NCEP/NCAR
R1 is at the 38th rank, and the NCEP/NCAR R1 exclusive
combination is at the 87th rank.

3.2 Temporal changes in the water cycle

Moving forward, we computed the change in water fluxes’
annual distribution via shifts on their 30-year median
(Fig. 5). Also, we assessed the statistical significance of the
observed change in the medians by non-parametric boot-
strapping (10 000 iterations). Hereupon, we will report re-
sults only for the first- (TerraClimate exclusive), second-
(mHM exclusive), and sixth-ranked (ERA5-Land exclusive)
data combinations. Because the third- (CRU TS v4.06, Ter-
raClimate, Terraclimate), fourth- (TerraClimate, TerraCli-

mate, mHM), and fifth-ranked (CRU TS v4.06, TerraCli-
mate, mHM) data combinations have a single data set dif-
ferent from the first- and second-ranked ones, as such,
we would be showing the same plots and statistics multi-
ple times. TerraClimate and mHM show similar increases
in precipitation and evapotranspiration of circa 20 mm,
but only evapotranspiration manifests a statistically signifi-
cant change (p < 0.01). Evapotranspiration changes under-
whelming those of precipitation stand further accentuated in
ERA5-Land, whose magnitude of the change in evapotran-
spiration is almost 60 mm and in precipitation is less than
−1 mm. Another peculiarity of ERA5-Land is that runoff
has a change of −56 mm at p = 0.01 statistical significance.
Regarding the estimates for precipitation minus evapotran-
spiration, we observe three different behaviors: TerraClimate
has a change in P −E in the opposite direction of runoff
(1 mm vs. −5 mm); mHM has a change in P −E of smaller
magnitude than runoff (−2 mm vs.−9 mm); and ERA5-Land
has similar changes for both P −E and runoff (−55 mm vs.
−56 mm) but with values 1 order of magnitude higher than
those of TerraClimate and mHM.

The above results, seemingly disagreeing with the ex-
pected increases reported in the previous literature (Kyselý
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Table 2. Data set ranking as determined by Eq. (3). P is precipitation, E is evapotranspiration, Q is runoff, ξ̄ is the mean residual over 60
years, σξ is the standard deviation of the residual over 60 years, cor(P −E,Q) is the correlation between P −E and Q for the ith ranked
combination, cor(P,Po) is the correlation between P of the ith ranked combination and CHMI, and cor(Q,Qo) is the correlation between
Q of the ith ranked combination and GRDC.

Ranking P E Q ξ̄ σξ cor(P −E,Q) cor(P,Po) cor(Q,Qo)

1st TerraClimate TerraClimate TerraClimate − 0.346 30.204 0.846 0.941 0.836
2nd mHM(E-OBS) mHM mHM − 0.912 51.231 0.816 0.994 0.967
3rd CRU TS v4.06 TerraClimate TerraClimate − 1.749 29.944 0.843 0.938 0.836
4th TerraClimate TerraClimate mHM − 8.861 39.847 0.730 0.941 0.967
5th CRU TS v4.06 TerraClimate mHM − 10.265 40.613 0.711 0.938 0.967
6th ERA5-Land ERA5-Land ERA5-Land − 5.554 66.606 0.701 0.951 0.882
...

...
...

...
...

...
...

...
...

14th PRECL/L mHM TerraClimate 17.013 60.281 0.658 0.891 0.836
...

...
...

...
...

...
...

...
...

24th ERA5-Land TerraClimate mHM 114.628 44.721 0.763 0.951 0.967
...

...
...

...
...

...
...

...
...

38th ERA5-Land NCEP/NCAR R1 mHM − 166.746 60.420 0.714 0.951 0.967
...

...
...

...
...

...
...

...
...

48th PREC/L mHM ERA5-Land − 52.549 82.751 0.382 0.891 0.882
...

...
...

...
...

...
...

...
...

72nd mHM(E-OBS) mHM NCEP/NCAR R1 − 134.044 87.923 0.237 0.994 0.405
...

...
...

...
...

...
...

...
...

87th NCEP/NCAR R1 NCEP/NCAR R1 NCEP/NCAR R1 − 292.024 137.297 0.675 0.181 0.405
...

...
...

...
...

...
...

...
...

96th CRU TS v4.06 NCEP/NCAR R1 NCEP/NCAR R1 − 424.772 93.962 − 0.019 0.938 0.405

Figure 4. Empirical distribution of the data set combinations listed
on Table 2 colored based on their ranking as determined by Eq. (3).
The color gradient goes from higher ranked combinations colored
in shades of green to lower ranked combinations colored in shades
of brown.

and Beranová, 2009; Svoboda et al., 2016; Kašpárek and
Kožín, 2022), indicate that there have not been any statisti-
cally significant changes in median annual precipitation over
Czechia between the last two 30-year periods. Thereafter,
we proceeded to look into changes between 1961–1990 and
1991–2020 monthly water fluxes (Fig. 6). Note that here-
inafter we mention only months with statistically significant
changes (p < 0.01). Regarding precipitation, we observe a

consistent increase of around 14 mm during October and
circa 11 mm during July present in TerraClimate, mHM(E-
OBS), and ERA5-Land. Besides, mHM(E-OBS) and ERA5-
Land had decreasing changes in April of −6 and −9 mm, re-
spectively. We also found a −5 mm decrease during Novem-
ber, present only in mHM(E-OBS). In terms of evapotranspi-
ration, as expected from the statistically significant changes
described for annual values, we report increases between 1–
10 mm depending on the month. TerraClimate has the short-
est period of continuous changes with gradually increasing
magnitude from January (1 mm) to March(9 mm). mHM on
top of said evapotranspiration behavior from January (1 mm)
to April (4 mm) also shows subsequent oscillating behavior:
May (2 mm), June (2 mm), July(4 mm), and August (3 mm).
ERA5-Land changes in evapotranspiration have a behavior
similar to mHM but with overall higher magnitudes and last-
ing 2 months longer, i.e., a consecutive increase from De-
cember (1 mm) to April (8 mm) and subsequent swings back
and forth: May (7 mm), June (7 mm), July (10 mm), August
(8 mm), and September (3 mm). Concerning runoff, there is a
striking unique visual for TerraClimate, whose range of val-
ues from February to April is considerably larger than those
of mHM or ERA5-Land. A runoff decrease is present in all
data sets for April and May, with an added magnitude of
−18, −8, and −12 mm for TerraClimate, mHM, and ERA5-
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Figure 5. Box plots of spatially weighted average annual water fluxes over Czechia, where P is precipitation, E is evapotranspiration, Q is
runoff, and P −E is precipitation minus evapotranspiration. Data are divided into two 30-year periods: 1961–1990 (blue) and 1991–2020
(yellow). Note that outliers are present only in the latter period (i.e., 1991–2020) as expected from the recorded severe drought of 2003.

Land, respectively. Interestingly, these runoff decreases are
translated only into mHM and ERA5-Land through precip-
itation minus evapotranspiration decrease in April (−6 and
−15 mm).

3.3 Spatial patterns of water cycle changes

The results shown so far provide insight into the tempo-
ral changes water cycle components have undergone in the
past 60 years, considering spatially weighted averaged val-
ues across Czechia. To expand our analysis from the tempo-
ral into the spatial domain and provide insight into the spa-
tiotemporal features of the selected data sets, we mapped the
difference between the 1991–2020 and the 1961–1990 me-
dians for P , E, Q, and P −E (Fig. 7). Note that maps for
each product were generated at their native resolutions, i.e.,
TerraClimate at 4 km, mHM at 0.125◦, and ERA5-Land at
0.1◦. At first glance, we observe overall agreement in spatial
patterns between data sets for evapotranspiration and runoff,
with slight discrepancies around the Sudetic (northeast), Šu-
mava (southwest), and Ore (northwest) Mountains. In par-
ticular, ERA5-Land exhibits changes of higher magnitude in
evapotranspiration (increase) and runoff (decrease) than Ter-
raClimate and mHM.

Contrary to the above-described agreement, there is no
consensus on spatial precipitation patterns among data sets.
We discern three different patterns: TerraClimate shows a
homogeneous increase across the country, with a particular
contour of higher increase that starts at the Šumava Moun-
tains and diminishes toward the Ore Mountains and a slight
decrease around the Sudetes; ERA5-Land portrays a some-
what zonal pattern with increasing bands north of 50.5◦ N
and south of 49.5◦ N of the country and a decreasing band in

the middle; and the mHM pattern is in between the patterns
of TerraClimate and ERA5-Land, with the band of precipi-
tation decrease being smaller than that of ERA5-Land con-
fined west of 15◦ E. While some of these heterogeneities are
echoed in P −E spatial patterns, there is a general decrease
across data sets over Czechia. Therefore, evapotranspiration
changes appear to dominate the spatial distribution of water
availability.

Based on the results observed in Fig. 6, we have previ-
ously identified that monthly patterns of increase or decrease
in water fluxes are, to some extent, aligned with their sea-
sonal variability. Thus, this time around, we aggregated the
data seasonally rather than looking at the monthly spatial dis-
tribution of changes in the median between the two 30-year
periods. While individual characteristics for each data set are
further emphasized by looking into seasonal spatial patterns,
we identify some common traits. A dominant pattern of pre-
cipitation decrease is localized to the westernmost part of
Czechia during winter and expands to the rest of the coun-
try during spring. Evapotranspiration increases of the highest
magnitude take place during spring and summer. As a result
of this opposing direction, during spring, we see the most
substantial decrease in runoff and P −E therein. Further-
more, it is safe to state that if evapotranspiration generally
increases despite decreasing patches of precipitation (present
to a greater or lesser extent across all seasons), the water cy-
cle in Czechia is dominated by changes in energy rather than
water availability.

TerraClimate, with a resolution of 4 km, offers far more
detail on spatial patterns than other data sets (Fig. 8). It has
a seasonal split for precipitation, with a decreasing pattern
dominating winter and spring and an increasing pattern dom-
inating summer and autumn. Evapotranspiration decreases
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Figure 6. Box plot of spatially weighted average monthly water fluxes over Czechia, where P is precipitation, E is evapotranspiration, Q is
runoff, and P −E is precipitation minus evapotranspiration. Data are divided into two 30-year periods: 1961–1990 (blue) and 1991–2020
(yellow). Left column: TerraClimate (P ), TerraClimate (E), and TerraClimate (Q). Middle column: mHM(E-OBS) (P ), mHM (E), and
mHM (Q). Right column: ERA5-Land (P ), ERA5-Land (E), and ERA5-Land (Q).

during spring and summer but does not cover nearly as much
area of Czechia as precipitation when decreasing. Runoff
changes circumscribe winter (increase) and spring (decrease)
and are relatively mute during summer and autumn. Regard-
ing water availability, the patterns of P −E reflect those of
precipitation. However, the increases in summer and autumn
are not as notable. Autumn is a season of spatial homogene-
ity in TerraClimate because precipitation, evapotranspiration,
runoff, and P −E all depict countrywide increases, albeit of
smaller magnitude than in other seasons. On the other hand, a
distinctive contrast takes place in winter, in which we have a
decrease in runoff in spite of an increase in water availability.

Seasonal spatial patterns of mHM have the least substan-
tial changes, with magnitudes mainly in the −25 to 25 mm
range compared to the −40 to 40 mm range of TerraCli-
mate and ERA5-Land (Fig. S3). Precipitation patterns mimic

those of TerraClimate except for autumn, where mHM(E-
OBS) holds more heterogeneity. Contemporaneously, we ob-
serve slightly decreased evapotranspiration. For the rest of
the seasons, evapotranspiration presents a widespread pattern
of positive changes, with the highest magnitudes in summer.
There is a dominant decreasing pattern for runoff across all
seasons. In winter, there are pinpoint increases around the
Czech borders near the Sudetic, Šumava, and Ore Mountains.
P −E has the highest magnitude for decreasing change in
spring. There is a mixed pattern of increase and decrease for
P −E in winter and summer, yet the extent of decreasing
changes is more prominent. Once again, analogous to Terra-
Climate, we find a season of contrasting runoff (decreasing)
and P −E (increasing) changes, but for mHM, it takes place
in autumn.
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Figure 7. Spatial pattern of changes in median water fluxes over Czechia between two 30-year periods, 1961–1990 and 1991–2020; i.e.,
the value of each grid cell is equal to the median value of 1991–2020 minus the median value of 1961–1990. P is precipitation, E is
evapotranspiration,Q is runoff, P−E is precipitation minus evapotranspiration, and ξ is the residual (P−E−Q). Left column: TerraClimate
(P ), TerraClimate (E), and TerraClimate (Q). Middle column: mHM(E-OBS) (P ), mHM (E), and mHM (Q). Right column: ERA5-Land
(P ), ERA5-Land (E), and ERA5-Land (Q).

The ERA5-Land spatial pattern of changes in seasonal me-
dian water fluxes closely resembles that of mHM (Fig. S4).
The previously observed zonal pattern for precipitation
change between the two 30-year medians seems to be driven
by summer changes. Evapotranspiration changes, unlike Ter-
raClimate or mHM, are increasing across all seasons, with
specifically large evapotranspiration increases in summer fol-
lowed by spring. Conversely, runoff has decreased regard-

less of the season. The sporadic patches of increased runoff
observed in mHM near the Czech borders are nonexistent
in ERA5-Land. Similarly, the mixed patterns for P −E for
mHM present in winter and summer are missing in ERA5-
Land, which only reports decreasing changes. Lastly, we
evince contrast in the direction of change between runoff
(predominantly decreasing) and P −E (predominantly in-
creasing) in autumn, parallel to that of mHM. While this con-
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Figure 8. TerraClimate spatial pattern of changes in seasonal median water fluxes over Czechia between two 30-year periods, 1961–1990 and
1991–2020; i.e., the value of each grid cell is equal to the seasonal median value of 1991–2020 minus the seasonal median value of 1961–
1990. P is precipitation, E is evapotranspiration, and Q is runoff. The seasons are defined as follows: winter to be December, January, and
February; spring to be March, April, and May; summer to be June, July, and August; and autumn to be September, October, and November.

trast is present in all data sets, the season differs for mHM
and ERA5-Land (autumn) vs. TerraClimate (winter). More-
over, it is also inversed; i.e., TerraClimate has increasing
runoff and decreasing P−E, but mHM and ERA5-Land have
decreasing runoff and increasing P −E.

4 Discussion

Overall long-term changes in the annual water cycle in
Czechia are primarily evident in evapotranspiration. Inter-

estingly, the general agreement among different data sets at
low-frequency timescales dissolves as we deepen into sea-
sonal and monthly scales. Higher-frequency temporal anal-
ysis revealed that while its seasonality modulates changes
in precipitation, these changes are overwhelmed by a con-
sistent evapotranspiration increase. This compound behavior
results in depleted water availability, as reflected by decreas-
ing runoff and P −E. Furthermore, different data combina-
tions estimate different spatiotemporal patterns of water cy-
cle changes. The observed redistribution of water availability
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can seriously impact water resources in the region, including
the quality and quantity of drinking water, the accessibility of
water for irrigation and energy generation, and the health of
aquatic ecosystems. Our results herein provide an updated
overview of the water cycle in Czechia and map changes
in the past 60 years and are essential to assess and ensure
the sustainable use and management of water resources in
Czechia. Additionally, we have defined and demonstrated the
ability of a purely empirical ranking method to benchmark
hydroclimatic data fusion and determine the best combina-
tion to represent water cycle budget closure that can be ap-
plied to any other regional study.

We determined that the best data sets for long-term assess-
ment of water cycle individual components in Czechia based
on the selected references are mHM(E-OBS), ERA5-Land,
and TerraClimate for precipitation; ERA5-Land, mHM, and
TerraClimate for evapotranspiration; and mHM, TerraCli-
mate, and ERA5-Land for runoff. Similar standings for pre-
cipitation data were reported by Fallah et al. (2020) and
Bandhauer et al. (2022). Fallah et al. (2020) used runoff
simulation vs. streamflow observations using different data
sets to benchmark precipitation data and found that E-OBS
yields a robust agreement, while ERA5, Global Precipita-
tion Climatology Centre (GPCC V.2018; Schneider et al.,
2011), and Multi-Source Weighted-Ensemble Precipitation
(MSWEP V2; Beck et al., 2019) show good performances.
Bandhauer et al. (2022) report that while E-OBS and ERA5
agree qualitatively, ERA5 considerably overestimates mean
precipitation over Europe due to too many wet days. This
prevalent wet bias in ERA5 has been reported along di-
verse assessments (e.g., Bešťáková et al., 2022; Lavers et al.,
2022). NCEP/NCAR R1 had the worst precipitation perfor-
mance. It was previously reported that, at least regarding ex-
treme precipitation, NCEP/NCAR R1 performed far better
than ERA5’s predecessors, i.e., ERA40 (Uppala et al., 2005)
and ERA-Interim (Dee et al., 2011; Sun et al., 2018). This
disagreement could be attributed to the improvements imple-
mented in ERA5 over its predecessors in model parameter-
izations, spatial resolution, and input data assimilation. Ad-
ditionally, the poor performance of NCEP/NCAR R1 might
be rooted in its coarse spatial resolution (two grid cells cover
Czechia).

Regarding evapotranspiration estimates, ERA5-Land has
been reported as an adequate data source to overcome the
unavailability of observed agrometeorological data in Europe
(Vanella et al., 2022), and its robustness supports its use for
drought monitoring (Vicente-Serrano et al., 2022). mHM has
undergone extensive evaluation over Europe at multiple spa-
tial scales and has repeatedly shown its ability to capture the
observed dynamics of actual evapotranspiration (Hanel et al.,
2018; Rakovec et al., 2016a) and its application to determine
dominant drought types and their evolution (Markonis et al.,
2021). While, to our knowledge, there have not been studies
focusing on the quality or applications of TerraClimate evap-
otranspiration to date, it has been calibrated and validated

using FLUXNET data (Abatzoglou et al., 2018), a conglom-
erate of networks gathering and standardizing quality control
protocols for station-based evapotranspiration measurements
(Pastorello et al., 2020). Most of the abovementioned refer-
enced studies also testify to the quality of runoff data from
mHM, TerraClimate, and ERA5-Land because the studies
use runoff and streamflow data derived, among other vari-
ables, from their evapotranspiration estimates and show that
they can capture the streamflow dynamics adequately across
a wide range of climate and physiographical characteristics.

Our evaluation of individual water cycle components is co-
hesive with the previous literature. Although the data prod-
ucts assessed herein have been previously analyzed at multi-
ple spatial scales, this is done under a univariate perspective
that does not consider the ability of the data sets to repro-
duce the water cycle and its changes as a whole in a struc-
turally plausible manner. This is easily denoted by the fact
that even though mHM’s performance was the best for all
water cycle components evaluated using high-quality obser-
vational references, the best data set combination ranking is
actually TerraClimate exclusive (i.e., all flux estimates from
the same data set). Note that the score metric and ranking
framework proposed herein serve as a method that can eas-
ily and quickly filter out the data set combinations providing
implausible results. It should be remarked that this ranking
framework acts as an initial assessment to be complemented
with additional analyses because the score metric does not
account for any biases in the products, expressly because the
aim of our work is not to benchmark the different data sets
analyzed herein but to demonstrate how different can become
the water cycles depicted by each of them.

It is clear that the story to be told in terms of water cy-
cle changes is not only dependent on the data set of choice
but also on the timescale. This kind of difference tends to
be overlooked when annual averages are being compared,
but when it comes to annual totals, the small discrepancies
add up. By further digging into this, we unveiled some sub-
stantial inconsistency in the ERA5-Land data. It appears that
the cumulative sum of the water budget residual in ERA5-
Land declines monotonically in time, implying some system-
atic bias in the water budget closure. Notwithstanding, to our
surprise, we found that throughout our analysis, mHM and
ERA5-Land (a hydrological model and reanalysis) presented
more compatible spatiotemporal patterns than the two hydro-
logical models (mHM and TerraClimate). Regarding hydro-
logical models, their evapotranspiration response is strongly
linked to how they represent soil moisture and radiative en-
ergy at the surface (Boé and Terray, 2008; Zhao et al., 2013),
leading to the visible discrepancies among mHM and Terra-
Climate. In terms of water cycle fluxes’ magnitude, we report
significant ERA5-Land overestimation of precipitation and
evapotranspiration, in line with previously reported overesti-
mations of summer precipitation over central Europe (Has-
sler and Lauer, 2021; Rivoire et al., 2022). These biases in
conjunction with the monotonic declining trend we found in
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the cumulative sum of water budget residual raise further
questions about the applicability of ERA5-Land in hydro-
logical studies. Therefore extra caution should be exercised
when the widely used reanalysis data product is employed.

There is agreement among the best-ranked data set com-
binations that most of the significant changes in Czech wa-
ter fluxes are localized in spring, particularly in April and
May. Notwithstanding, we observe that it is the summer sea-
son whose changes determine the spatiotemporal patterns
of change between the 1991–2020 and 1961–1990 medians.
Declining precipitation and increasing evapotranspiration in
spring support reported drying trends over Czechia (Brázdil
et al., 2015). In addition to these general patterns, we iden-
tified localized increases in winter runoff coupled with de-
creases and shifts in spring runoff around the Sudetic, Šu-
mava, and Ore Mountains. These changes in mountainous
runoff have been previously identified and attributed to de-
creasing snow cover and earlier snowmelt season (Nedelcev
and Jenicek, 2021), which in some Czech catchments also
derive in summer low flows (Jenicek and Ledvinka, 2020).
Similar seasonal developments of the snow effect on runoff
have been reported over multiple mountainous catchments
across the world (Berghuijs et al., 2014; Dierauer et al., 2018;
Muelchi et al., 2021). Hänsel et al. (2019) remark that sea-
sonal trends are sensitive to shifts in the season definition
by 1 month, which aligns with our monthly analysis be-
cause we identified significant changes in months like May
and November (peripheral months of spring and autumn as
defined herein). Additionally, it could be the reason behind
summer, the contiguous season, dominating the long-term
precipitation pattern.

The drying regime we report in Czechia, due to the grad-
ual increase in atmospheric evaporative demand over the last
60 years (1961–2020), extends in time and space over cen-
tral and eastern Europe (Bešťáková et al., 2022). Jaagus et al.
(2022) reported long-term drying trends for the 1949–2018
period in Slovakia; Hungary; Romania; Moldova; southern
Poland; and, particularly significantly, in Czechia. Trnka
et al. (2016) described a strong tendency towards increased
dryness in most of central Europe. Brázdil et al. (2009)
performed one of the longest-record analysis in the region
(1881–2006) and exposed an increasing tendency towards
more prolonged and more intensive dry episodes. Still, it re-
mains unclear how this long-term shift is linked to the post-
2000 seasonal (Potopová et al., 2015), annual (Hanel et al.,
2018), and multi-year droughts (Moravec et al., 2021) that
have occurred in central Europe and Czechia specifically. It
has been demonstrated, though, that these droughts manifest
more as soil moisture deficits than meteorological and hydro-
logical droughts, as they are related to high evaporative de-
mand during the warm season period (Markonis et al., 2021).
Our results’ agreement shows that the long-term aridifica-
tion could be the outcome of the same physical mechanism,
i.e., evaporation increase, as the one that dominates the short-
term extreme events.

Our study comes with certain limitations that pave the way
for future research. A certain limitation is that our analy-
ses do not attribute the observed changes to any potential
physical or anthropogenic drivers. It is likely that the evap-
otranspiration increase is linked to long-term changes in at-
mospheric circulation patterns that have caused a decline in
cloudiness (Lhotka et al., 2020). As it has been shown that
global warming is going to disrupt the terrestrial water cy-
cle mainly due to changes in precipitation (Roderick et al.,
2014), it is more plausible to attribute the observed intensifi-
cation to the fluctuations of atmospheric circulation. Yet, this
remains to be confirmed by future studies that will determine
the factors that contribute most to the hydroclimatic shifts, al-
though drought projections over Czechia (Dubrovsky et al.,
2009) and central Europe (Hari et al., 2020) indicate an in-
creased drought risk in the future prevalent under different
climate change scenarios. Additionally, our work does not in-
vestigate the role of water storage (snow and groundwater) or
land cover or vegetation changes. Lastly, while country-level
assessments are essential to improve water resources man-
agement and natural hazard policies, the water cycle budget
is closed over hydrological units, not administrative bound-
aries.

5 Conclusions

Herein, we have proposed and demonstrated the applicability
of a novel benchmarking method based on water cycle bud-
get closure for hydroclimatic data fusion. The method does
not enforce closure nor merge multiple data sets into a new
one but instead identifies the best combination of data sets in
terms of water cycle budget residual distribution and corre-
lation to referential data. Furthermore, the ranking method
presented could easily be applied to any other region and
use different referential data sets for evaluation. The ranking
method may still be employed using gridded data like GPCC
or CRU TS as an evaluation reference in data-scarce areas
or when ground-station data are not publicly available. Most
importantly, this metric is not constrained by data availabil-
ity, as any of the variables in the equation evaluation terms
can be omitted. This modularity makes it a flexible alterna-
tive to traditional approaches.

Using the best water budget data, we demonstrate that
Czechia is undergoing water cycle acceleration, evinced by
increased atmospheric water demand. Remarkably, the in-
crease in precipitation is not as pronounced as that one in
evapotranspiration. While changes in the 30-year median
of spatial weight average annual values show a minimum
change in water availability, the spatial patterns reveal a
prevalent decreasing pattern of runoff across the country. Be-
sides, we identified significant spatial heterogeneity when as-
sessing precipitation at a seasonal scale. Intriguingly, sum-
mer patterns are reflected in the spatial difference between
the 1991–2020 and the 1961–1990 medians despite most of
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the significant changes in water cycle components being lo-
calized in spring. What is more, the precipitation rain–snow
partition effect of less snow and earlier snowmelt around the
mountains is reflected in a seasonal shift of runoff (increase
in winter and subsequent decrease in spring). This might re-
flect how sub-seasonal shifts could affect the long-term hy-
drologic changes.

Based on our results and the previous literature, it is safe
to state that the depletion of water availability (runoff and
P −E) over Czechia could prompt a surge in drought fre-
quency. Considering that shifts in evapotranspiration over-
whelm those of precipitation, the water cycle in Czechia is
mainly driven by changes in energy rather than water avail-
ability. Further research is needed to better understand the
complex drivers of this drying trend and to develop targeted
interventions to address possible factors external to natural
variability, like land-use changes and other anthropogenic
factors. Although it remains unknown if this drying trend will
persist, it should be considered in the planning of effective
drought management strategies and water conservation mea-
sures to mitigate its adverse impacts for agriculture, energy
production, and natural ecosystems in Czechia.
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