

Supplement of

Water cycle changes in Czechia: a multi-source water budget perspective

Mijael Rodrigo Vargas Godoy et al.

Correspondence to: Mijael Rodrigo Vargas Godoy (vargas_godoy@fzp.czu.cz)

The copyright of individual parts of the supplement might differ from the article licence.

Name	Variable	Spatial	Temporal	Record Length Data Type		Reference(s)
		Resolution	Resolution			
GPCP	P	1°	Daily	1997-2006	Satellite-based	Adler et al. (2003)
TMPA 3B42RT	P	0.25°	3h	1997-2019	Satellite-based	Huffman et al. (2007)
CMORPH	P	8km	30min	2003-2006	Satellite-based	Joyce et al. (2004)
PERSIANN	P	0.25°	3h	2000-2006	Satellite-based	Hong et al. (2004)
CPC PRECŁ	P	2.5°	Monthly	1950-Present	Gauge-based	Chen et al. (2002)
CRU TS3.0	P	0.5°	Monthly	1901-2006	Gauge-based	Mitchell and Jones (2005)
WM v2.01	P	0.5°	Monthly	1900-2008	Gauge-based	Willmott and Matsuura (2001)
GPCC	P	0.5°	Monthly	1900-2007	Gauge-based	Schneider et al. (2011)
PM (ISCCP)	E	2.5°	3h	1984-2005	Satellite-based	Sheffield et al. (2010)
PM (EOS)	E	5km	Daily	2003-2006	Satellite-based	Vinukollu et al. (2011)
PT (EOS)	E	5km	Daily	2003-2006	Satellite-based	Vinukollu et al. (2011)
SEBS (EOS)	E	5km	Daily	2003-2006	Satellite-based	Vinukollu et al. (2011)
VIC	E	1.0°	3h	1948-2006	Model	Sheffield and Wood (2007)
ERA-interim	E	T255	12h	1989-2006	Reanalysis	Simmons (2006)
GRACE	Δ TWS	Basin	\sim Monthly	2002-2006	Satellite-based	Swenson and Wahr (2006)
GRDC	Q	Basin	Monthly	1900-2006	Station	www.bafg.de/GRDC

Table S1. Compiled from Sahoo et al. (2011). P is precipitation, E is evapotranspiration, Q is runoff, and Δ TWS is changes in total water storage.

Table S2. Compiled from Pan et al. (2012). P is precipitation, E is evapotranspiration, Q is runoff, and Δ TWS is changes in total water storage.

Name	Variable	Spatial	Temporal	Record Length	Data Type	Reference(s)
		Resolution	Resolution			
GPCP v2.2	P	2.5°	Monthly	1950-Present	Gauge-based	Adler et al. (2003)
CRU TS3.0	P	0.5°	Monthly	1901-2006	Gauge-based	Mitchell and Jones (2005)
WM v2.01	P	0.5°	Monthly	1900-2008	Gauge-based	Willmott and Matsuura (2001)
GPCC	P	0.5°	Monthly	1900-2007	Gauge-based	Schneider et al. (2011)
MPI	E	0.5°	Monthly	1982-2008	Flux tower-based	Jung et al. (2010)
SEBS (EOS)	E	5km	Daily	2003-2006	Satellite-based	Vinukollu et al. (2011)
GRACE	Δ TWS	Basin	\sim Monthly	2002-2006	Satellite-based	Swenson and Wahr (2006)
GRDC	Q	Basin	Monthly	1900-2006	Station	www.bafg.de/GRDC

Ranking	P Data	E Data	Q Data
1st	TerraClimate	TerraClimate	TerraClimate
2nd 3rd	CRU TS v4.06	TerraClimate	TerraClimate
4th	TerraClimate	TerraClimate	mHM
5th	CRU TS v4.06	TerraClimate	mHM
6th 7th	ERA5–Land	ERA5–Land	ERA5-Land
8th	PREC/L	mHM	mHM
9th	mHM	TerraClimate	mHM
10th	PREC/L	TerraClimate	TerraClimate
11th	mHM	TerraClimate	TerraClimate
12th	TerraClimate	mHM	mHM
14th	PREC/L	mHM	TerraClimate
15th	PREC/L	TerraClimate	mHM
16th	CRU TS v4.06	mHM	TerraClimate
17th 18th	ERA5-Land	ERA5-Land	mHM
19th	CRU TS v4.06	ERA5-Land	TerraClimate
20th	TerraClimate	ERA5-Land	TerraClimate
21st	mHM	ERA5-Land	mHM
22nd 23rd	CRU TS v4.06	ERA5-Land ERA5-Land	mHM
24th	ERA5-Land	TerraClimate	mHM
25th	ERA5-Land	TerraClimate	ERA5-Land
26th	mHM	ERA5-Land	TerraClimate
27th 28th	ERA5-Land	EKA5-Land	EPA5_L and
29th	CRU TS v4.06	mHM	ERA5-Land
30th	PREC/L	ERA5-Land	mHM
31st	PREC/L	ERA5-Land	TerraClimate
32nd	ERA5-Land	TerraClimate	TerraClimate ERA5_L and
34th	mHM	mHM	ERA5-Land
35th	CRU TS v4.06	TerraClimate	ERA5-Land
36th	ERA5-Land	mHM	mHM
37th 38th	mHM ERA5_Land	TerraClimate	ERA5–Land
39th	ERA5-Land	mHM	ERA5-Land
40th	mHM	ERA5-Land	ERA5-Land
41st	TerraClimate	ERA5-Land	ERA5-Land
42nd	CRU TS v4.06	ERA5-Land	ERA5-Land
43rd 44th	ERA5-Land ERA5-Land	mHM	TerraClimate
45th	mHM	NCEP/NCAR R1	mHM
46th	CRU TS v4.06	NCEP/NCAR R1	TerraClimate
47th	TerraClimate	NCEP/NCAR R1	TerraClimate
48th 49th	mHM	MHM NCEP/NCAR R1	ERA5-Land TerraClimate
50th	TerraClimate	NCEP/NCAR R1	mHM
51st	CRU TS v4.06	NCEP/NCAR R1	mHM
52nd	PREC/L	ERA5-Land	ERA5-Land
53rd 54th	PREC/L	NCEP/NCAP P1	EKA5-Land TerraClimate
55th	PREC/L	NCEP/NCAR R1	mHM
56th	ERA5-Land	NCEP/NCAR R1	ERA5-Land
57th	ERA5-Land	TerraClimate	NCEP/NCAR R1
58th	NCEP/NCAR R1	ERA5-Land	ERA5-Land
60th	ERA5-Land	mHM	NCEP/NCAR R1
61st	TerraClimate	NCEP/NCAR R1	ERA5-Land
62nd	CRU TS v4.06	NCEP/NCAR R1	ERA5-Land
63rd	ERA5-Land	ERA5-Land	NCEP/NCAR R1
65th	NCEP/NCAR R1	TerraClimate	NCEP/NCAR R1
66th	CRU TS v4.06	TerraClimate	NCEP/NCAR R1
67th	TerraClimate	TerraClimate	NCEP/NCAR R1
68th	mHM	TerraClimate	NCEP/NCAR R1
o9th 70th	GRU 15 V4.06 mHM	ERA5-Land ERA5-Land	NCEP/NGAR R1
71st	CRU TS v4.06	mHM	NCEP/NCAR R1
72nd	mHM	mHM	NCEP/NCAR R1
73rd	TerraClimate	ERA5-Land	NCEP/NCAR R1
74th 75th	TerraClimate NCEP/NCAR P1	mHM mHM	NCEP/NCAR R1
76th	PREC/L	TerraClimate	NCEP/NCAR R1
77th	PREC/L	ERA5-Land	NCEP/NCAR R1
78th	NCEP/NCAR R1	TerraClimate	ERA5-Land
79th 80th	PREC/L NCEP/NCAP P4	mHM	NGEP/NCAR R1 ER45_Land
81st	NCEP/NCAR R1	ERA5-Land	mHM
82nd	NCEP/NCAR R1	ERA5-Land	NCEP/NCAR R1
83rd	NCEP/NCAR R1	NCEP/NCAR R1	ERA5-Land
84th	NCEP/NCAR R1	NCEP/NCAR R1	mHM
aoth 86th	NCEP/NCAR R1	ERAS-Land mHM	mHM
87th	NCEP/NCAR R1	NCEP/NCAR R1	NCEP/NCAR R1
88th	NCEP/NCAR R1	NCEP/NCAR R1	TerraClimate
89th	NCEP/NCAR R1	TerraClimate	mHM
90th	NCEP/NCAR R1	mHM	TerraClimate
92nd	PREC/L	NCEP/NCAR R1	NCEP/NCAR R1
93rd	ERA5-Land	NCEP/NCAR R1	NCEP/NCAR R1
94th	mHM	NCEP/NCAR R1	NCEP/NCAR R1
95th 96th	TerraClimate CRU TS v4.06	NCEP/NCAR R1 NCEP/NCAR R1	NCEP/NCAR R1

Figure S1. Data set ranking as determined by Equation 3, where P is precipitation, E is evapotranspiration, and Q is runoff.

Name	Variable	Spatial	Temporal	Record Length	Data Type	Reference(s)
		Resolution	Resolution			
GPCP v2.2	P	1°	Daily	1997-2006	Satellite-based	Adler et al. (2003)
						Huffman et al. (2009)
Princeton ET	E	5km	Daily	2003-2006	Satellite-based	Vinukollu et al. (2011)
MERRA and MERRA-Land	E	$0.5^{\circ} x 0.667^{\circ}$	Hourly	1980-2016	Reanalysis	Rienecker et al. (2011)
						Bosilovich et al. (2011)
						Reichle (2012)
GLDAS	E	0.25°	3h	1948-2014	Model	Roderick et al. (2014)
University of Washington runoff	Q	2°	Monthly	1998-2008	Model	Jung et al. (2010)
GRACE	Δ TWS	Basin	\sim Monthly	2002-2006	Satellite-based	Swenson and Wahr (2006)

Table S3. Compiled from Rodell et al. (2015). P is precipitation, E is evapotranspiration, Q is runoff, and Δ TWS is changes in total water storage.

Table S4. Compiled from Zhang et al. (2016). P is precipitation, E is evapotranspiration, Q is runoff, and Δ TWS is changes in total water storage.

Name	Variable	Spatial	Temporal	Record Length Data Type		Reference(s)
		Resolution	Resolution			
CSU	P	0.25°	3h	1998-2010	Satellite-based	Bytheway and Kummerow (2013)
PGF	P	0.25°	3h	1948-2010	Satellite-based	Sheffield et al. (2006)
CHIRPS	P	0.5°	Monthly	1981-present	Satellite-based	Funk et al. (2014)
GPCC(v6)	P	0.5°	Monthly	1901-2010	Gauge-based	Schneider et al. (2014)
TMPA-RT	P	0.25°	Monthly	2001-2019	Satellite-based	Huffman et al. (2007, 2010)
SRB-PGF-PM	E	0.5°	3h	1984-2007	Satellite-based	Vinukollu et al. (2011)
VIC	E	0.25°	3h	1948-2010	Model	Sheffield and Wood (2007)
ERA-interim	E	T255	12h	1989-2006	Reanalysis	Simmons (2006)
MERRA	E	$0.5^{\circ} x 0.667^{\circ}$	Hourly	1980-2016	Reanalysis	Rienecker et al. (2011)
GLEAM	E	0.5°	3h	1984-2017	Satellite-based	Gonzalez Miralles et al. (2011)
SRB-CFSR-SEBS	E	0.5°	Daily	1984-2007	Satellite-based	Vinukollu et al. (2011)
SRB-CFSR-PM	E	0.5°	Daily	1984-2007	Satellite-based	Vinukollu et al. (2011)
SRB-CFSR-PT	E	0.5°	Daily	1984-2007	Satellite-based	Vinukollu et al. (2011)
VIC	Q	0.25°	3h	1948-2010	Model	Sheffield and Wood (2007)
VIC	Δ TWS	0.25°	3h	1948-2010	Model	Sheffield and Wood (2007)
GRACE	Δ TWS	1°	Monthly	2002-present	Satellite-based	Landerer and Swenson (2012)

Name	Variable	Spatial	Temporal	Record Length	Data Type	Reference(s)
		Resolution	Resolution			
TMPA	P	0.25°	Monthly	1998-2019	Satellite-based	Huffman et al. (2007)
CMORPH	P	0.25°	Daily	1998-present	Satellite-based	Sheffield et al. (2006)
NRL	P	0.25°	12h	2003-2010	Satellite-based	Turk et al. (2010)
GPCP	P	2.5°	Monthly	1979-present	Satellite-based	Schneider et al. (2014)
GLEAM	E	0.25°	3h	1980-2011	Satellite-based	Gonzalez Miralles et al. (2011)
MOD16	E	1km	8-day	2000-2012	Satellite-based	Mu et al. (2007)
NTSG	E	8km	Daily	1983-2006	Satellite-based	Zhang et al. (2010)
CSR	Δ TWS	Basin	Monthly	2002-present	Satellite-based	http://grace.jpl.nasa.gov/data/
GFZ	Δ TWS	Basin	Monthly	2002-present	Satellite-based	http://grace.jpl.nasa.gov/data/
JPL	Δ TWS	Basin	Monthly	2002-present	Satellite-based	http://grace.jpl.nasa.gov/data/
GRGS	Δ TWS	Basin	Monthly	2002-present	Satellite-based	http://grgs.obs-mip.fr/grace/
GRDC	Q	Basin	Monthly	1900-present	Station	http://www.grdc.sr.unh.edu/

Table S5. Compiled from Munier and Aires (2018). P is precipitation, E is evapotranspiration, Q is runoff, and Δ TWS is changes in total water storage.

Figure S2. Empirical distribution of all possible 96 data set combinations colored based on their ranking as determined by Equation 3. The color gradient goes from higher ranked combinations colored in shades green to lower ranked combinations colored in shades of brown.

Figure S3. mHM spatial pattern of changes in seasonal median water fluxes over Czechia between two 30-year periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal to the seasonal median value of 1991-2020 minus the seasonal median value of 1961-1990. P is precipitation, E is evapotranspiration, and Q is runoff. The seasons are defined as follows: winter as December, January, and February; spring as March, April, and May; summer as June, July, and August; autumn as September, October, and November.

Figure S4. ERA5-Land spatial pattern of changes in seasonal median water fluxes over Czechia between two 30-year periods: 1961-1990 and 1991-2020. I.e., the value of each grid cell is equal to the seasonal median value of 1991-2020 minus the seasonal median value of 1961-1990. P is precipitation, E is evapotranspiration, and Q is runoff. The seasons are defined as follows: winter as December, January, and February; spring as March, April, and May; summer as June, July, and August; autumn as September, October, and November.

References

- Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., and Bolvin, D.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), Journal of hydrometeorology, 4, 1147–1167, 2003.
- 5 Bosilovich, M. G., Robertson, F. R., and Chen, J.: Global energy and water budgets in MERRA, Journal of Climate, 24, 5721–5739, 2011. Bytheway, J. L. and Kummerow, C. D.: Inferring the uncertainty of satellite precipitation estimates in data-sparse regions over land, Journal of Geophysical Research: Atmospheres, 118, 9524–9533, publisher: Wiley Online Library, 2013.
 - Chen, M., Xie, P., Janowiak, J. E., and Arkin, P. A.: Global land precipitation: A 50-yr monthly analysis based on gauge observations, Journal of Hydrometeorology, 3, 249–266, 2002.
- 10 Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., and Verdin, A. P.: A quasi-global precipitation time series for drought monitoring, US Geological Survey Data Series, 832, 1–12, 2014. Gonzalez Miralles, D., Holmes, T., De Jeu, R., Gash, J., Meesters, A., and Dolman, A.: Global land-surface evaporation estimated from satellite-based observations, Hydrology and Earth System Sciences, pp. 453–469, 2011.
- Hong, Y., Hsu, K.-L., Sorooshian, S., and Gao, X.: Precipitation estimation from remotely sensed imagery using an artificial neural network
 cloud classification system, Journal of Applied Meteorology, 43, 1834–1853, 2004.
- Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, Journal of hydrometeorology, 8, 38–55, 2007.
- Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation record: GPCP version 2.1, Geophysical Research
 Letters, 36, 2009.
- Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: The TRMM multi-satellite precipitation analysis (TMPA), in: Satellite rainfall applications for surface hydrology, pp. 3–22, Springer, 2010.
 - Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, Journal of hydrometeorology, 5, 487–503, 2004.
- 25 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467, 951–954, https://doi.org/10.1038/nature09396, number: 7318 Publisher: Nature Publishing Group, 2010.
- 30 Landerer, F. W. and Swenson, S.: Accuracy of scaled GRACE terrestrial water storage estimates, Water resources research, 48, publisher: Wiley Online Library, 2012.
 - Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated highresolution grids, International Journal of Climatology: A Journal of the Royal Meteorological Society, 25, 693–712, publisher: Wiley Online Library, 2005.
- 35 Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote sensing of Environment, 111, 519–536, publisher: Elsevier, 2007.

Munier, S. and Aires, F.: A new global method of satellite dataset merging and quality characterization constrained by the terrestrial water budget, Remote Sensing of Environment, 205, 119–130, publisher: Elsevier, 2018.

- Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood, E. F.: Multisource estimation of long-term terrestrial water
 budget for major global river basins, Journal of Climate, 25, 3191–3206, 2012.
- Reichle, R.: The MERRA-land data product (version 1.2), GMAO Off. Note, 3, 2012.

- Rodell, M., Beaudoing, H. K., L'Ecuyer, T., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A.,
 Chambers, D., and others: The observed state of the water cycle in the early twenty-first century, Journal of Climate, 28, 8289–8318, 2015.
 - Roderick, M., Sun, F., Lim, W. H., and Farquhar, G.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrology and Earth System Sciences, 18, 1575–1589, publisher: Copernicus GmbH, 2014.
- Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood, E. F.: Reconciling the global terrestrial water budget using
 satellite remote sensing, Remote Sensing of Environment, 115, 1850–1865, publisher: Elsevier, 2011.
- Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC full data reanalysis version 6.0 at 0.5: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data, GPCC Data Rep., doi, 10, 2011.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., and Kim, G.-K.: MERRA: NASA's modern-era retrospective analysis for research and applications, Journal of climate, 24, 3624–3648, 2011.

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and Rudolf, B.: GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle, Theoretical and Applied Climatology, 115, 15–40, publisher: Springer, 2014.

- Sheffield, J. and Wood, E. F.: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle, Journal of Geophysical Research: Atmospheres, 112, publisher: Wiley Online Library, 2007.
 Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, Journal of climate, 19, 3088–3111, 2006.
- 60 Sheffield, J., Wood, E. F., and Munoz-Arriola, F.: Long-Term Regional Estimates of Evapotranspiration for Mexico Based on Downscaled ISCCP Data, Journal of Hydrometeorology, 11, 253–275, https://doi.org/10.1175/2009JHM1176.1, publisher: American Meteorological Society Section: Journal of Hydrometeorology, 2010.

Simmons, A.: ERA-Interim: New ECMWF reanalysis products from 1989 onwards, ECMWF newsletter, 110, 25–36, 2006.

Swenson, S. and Wahr, J.: Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements,
 Journal of Hydrometeorology, 7, 252–270, https://doi.org/10.1175/JHM478.1, publisher: American Meteorological Society Section: Jour-

nal of Hydrometeorology, 2006.

55

Turk, J. T., Mostovoy, G. V., and Anantharaj, V.: The NRL-blend high resolution precipitation product and its application to land surface hydrology, in: Satellite Rainfall Applications for Surface Hydrology, pp. 85–104, Springer, 2010.

- Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global estimates of evapotranspiration for climate studies using multi-sensor
 remote sensing data: Evaluation of three process-based approaches, Remote Sensing of Environment, 115, 801–823, 2011.
- Willmott, C. J. and Matsuura, K.: Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950 1999), University of Delaware, 2001.

Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006, Water Resources Research, 46, publisher: Wiley Online Library, 2010.

75 Zhang, Y., Pan, M., and Wood, E. F.: On creating global gridded terrestrial water budget estimates from satellite remote sensing, in: Remote Sensing and Water Resources, pp. 59–78, Springer, 2016.