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Abstract. SWAT (Soil and Water Assessment Tool) is a
continuous-time, semi-distributed, river basin model widely
used to evaluate the effects of alternative management de-
cisions on water resources. This study examines the ap-
plication of the SWAT model for streamflow simulation in
an experimental basin with mixed-land-use characteristics
(i.e., urban/peri-urban) using daily and hourly rainfall ob-
servations. The main objective of the present study was
to investigate the influence of rainfall resolution on model
performance to analyze the mechanisms governing surface
runoff at the catchment scale. The model was calibrated for
2018 and validated for 2019 using the Sequential Uncer-
tainty Fitting (SUFI-2) algorithm in the SWAT-CUP pro-
gram. Daily surface runoff was estimated using the Curve
Number method, and hourly surface runoff was estimated
using the Green–Ampt and Mein–Larson method. A sensitiv-
ity analysis conducted in this study showed that the parame-
ters related to groundwater flow were more sensitive for daily
time intervals, and channel-routing parameters were more in-
fluential for hourly time intervals. Model performance statis-
tics and graphical techniques indicated that the daily model
performed better than the subdaily model (daily model,
with NSE = 0.86, R2

= 0.87, and PBIAS= 4.2 %; subdaily
model with NSE= 0.6, R2

= 0.63, and PBIAS= 11.7 %).
The Curve Number method produced higher discharge peaks
than the Green–Ampt and Mein–Larson method and better
estimated the observed values. Overall, the general agree-
ment between observations and simulations in both models

suggests that the SWAT model appears to be a reliable tool to
predict discharge in a mixed-land-use basin with high com-
plexity and spatial distribution of input data.

1 Introduction

Water resource problems, including the effects of urban de-
velopment, alternative management decisions, and future cli-
mate oscillation on streamflow and water quality, require a
deep understanding and accurate modeling of Earth surface
processes at the catchment scale to be addressed (Gassman
et al., 2014). In order to understand catchment processes,
it is necessary to obtain detailed weather data and catch-
ment observations related to runoff, water stage, erosion,
soil moisture, and water quality. Experimental catchments
are properly designed and well-monitored catchments that
aim to provide databases of long-term historical hydrologi-
cal data, which help analyze the mechanisms governing sur-
face runoff (Goodrich et al., 2020). In addition, experimental
catchments contribute to the development and validation of
numerous watershed models and can be used as validation
sites for satellite sensors (Tauro et al., 2018). Furthermore,
experimental catchments monitor groundwater and river wa-
ter quality with the use of tracer experiments which can esti-
mate the residence and travel times of water in different com-
ponents of the hydrological cycle (Hrachowitz et al., 2016;
Stockinger et al., 2016). Bogena et al. (2018) presented an
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extensive overview of hydrological observatories presently
operated worldwide under various environmental conditions.
Among those, the U.S. Department of Agriculture Agricul-
tural Research Service’s (USDA-ARS) Experimental Water-
shed Network has operated over 600 watersheds in its history
and currently operates more than 120 experimental hydrolog-
ical watersheds (Goodrich et al., 2020).

Hydrological and water quality models have been widely
used to assess water resource problems and to investigate
hydrological processes, land use and climate change im-
pacts, and best management practices (Daggupati et al.,
2015). In recent decades, various watershed-scale models
(i.e., SWAT, APEX, HSPF, WAM, KINEROS, and MIKE-
SHE) have been developed to operate with different levels
of input data and model structure complexity (Arnold et al.,
2015; Moriasi et al., 2007). Among the above watershed-
scale models, the SWAT program (Soil and Water Assess-
ment Tool; Arnold et al., 2012) was selected for this study.
SWAT is a physically based, semi-distributed, continuous-
time river basin model and has five main official versions,
namely SWAT2000, SWAT2005, SWAT2009, SWAT2012,
and SWAT+. It was selected because it is an open-source
code, has a wide range of online documentation and a litera-
ture database, and has been applied to catchments of various
sizes and several temporal scales (e.g., monthly, daily, and
subdaily time steps; Gassman et al., 2007, 2014; Tan et al.,
2020). Furthermore, it can be linked to QGIS, also a free and
open-source platform, and has the ability to visualize the re-
sults, which can be helpful for the interpretation of the many
SWAT outputs (Dile et al., 2016).

SWAT has two methods for the estimation of surface
runoff, namely the SCS Curve Number (CN) method (Soil
Conservation Service, 1972) for daily rainfall and the Green–
Ampt and Mein–Larson infiltration (GAML) method (Mein
and Larson, 1973) for subdaily rainfall. The CN method has
been used more often than the GAML method in SWAT
model applications, mainly due to the absence of high
temporal-resolution data needed for the subdaily module
(Bauwe et al., 2016; Brighenti et al., 2019; Gassman et al.,
2014). The few available studies suggest that the calibrated
streamflow results are more accurate when using the CN
approach compared to the GAML approach (Bauwe et al.,
2016; Cheng et al., 2016; Ficklin and Zhang, 2013; Kannan
et al., 2007). In particular, in the study in which CN improved
the results, Kannan et al. (2007) identified a suitable combi-
nation of evapotranspiration and runoff-generation methods
and reported that the CN method performed better than the
GAML method. In contrast, three studies reported that the
GAML method simulated the peak flows during the flood
season better than the CN method (Li and DeLiberty, 2020;
Maharjan et al., 2013; Yang et al., 2016). Some studies have
pointed out that both approaches have limitations and that the
improvement depends on the part of the hydrograph that is
analyzed (e.g., high, medium, or low flows) in addition to the
timescale (e.g., daily, monthly, or annually; Han et al., 2012;

King et al., 1999). Furthermore, several subdaily applications
have been conducted, such as land use and management im-
pacts on flood events (Golmohammadi et al., 2017; Camp-
bell et al., 2018), the use of high temporal-resolution data for
the improvement of the model (Bauwe et al., 2017; Boithias
et al., 2017), and modeling of rainfall–runoff events (Jeong
et al., 2010; Yu et al., 2018). The authors generally found that
finer temporal-resolution time steps do not always improve
model performance but depend on the basin scale and the
characteristics of the watershed. A detailed description of the
model history and applications can be obtained in Gassman
et al. (2007), Douglas-Mankin et al. (2010), Brighenti et al.
(2019), and Tan et al. (2020).

The selected study area has been severely urbanized from
1990 until today, at the expense of forests and agricultural
areas. During this period, the artificial surfaces increased by
69.93 %, and the agricultural areas and the forests decreased
by 54.14 % and 14.34 %, respectively (CORINE Land Cover,
CLC 1990–2018). The area is portrayed as an urban/peri-
urban system with about 51 % of artificial surfaces, 13 %
of agricultural areas, and 36 % of forests and semi-natural
areas. The interaction between different land uses (e.g., ur-
ban and rural characteristics) contributes to the formation of
a complex environment characterized by high variability in
management practices, rapid response, and diverse hydrolog-
ical processes, which may increase problems in model un-
certainties (Boithias et al., 2017). Land use maps and soil
maps may not capture this complex environment precisely,
enhancing the SWAT model’s difficulty in representing and
simulating the actual conditions of the basin, which can af-
fect water discharge. In addition, the study area is a typ-
ical Mediterranean catchment that is vulnerable to natural
hazards (i.e., flash floods and forest fires). In order to inter-
pret the behavior of such a complex environment, the SWAT
2012 hydrological model (rev. 681) was used for its realis-
tic representation. The available studies that used the sub-
daily option of the SWAT model refer mainly to agricul-
tural (Bauwe et al., 2016; Boithias et al., 2017; Cheng et al.,
2016; Ficklin and Zhang, 2013; Golmohammadi et al., 2017;
Maharjan et al., 2013; Yang et al., 2016; Yu et al., 2018)
or small urban catchments (Campbell et al., 2018; Jeong
et al., 2010; Li and DeLiberty, 2020) and rarely to peri-
urban catchments. Thus, the suitability of the subdaily op-
tion of the SWAT model to simulate discharge in a peri-urban
catchment has not been extensively tested. The main objec-
tives were (i) to investigate which parameters are more sen-
sitive under different time steps in a mixed-land-use basin
(i.e., blended combinations of land use, management prac-
tices, and hydrological processes), (ii) to compare the re-
sults of the hourly time step simulation (Green–Ampt and
Mein–Larson method) to those obtained from daily time step
simulation (Curve Number method), and (iii) to evaluate the
subdaily option of the SWAT model for discharge simula-
tion by examining peak discharges and time of the peak of
selected rainfall events. The calibration methodology devel-
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oped in this catchment can be applied to areas with sim-
ilar hydrological–meteorological and geomorphological at-
tributes (i.e., Mediterranean peri-urban areas). This study
provides essential hydrological knowledge and contributes to
understanding the critical processes of an urban/peri-urban
system to analyze the mechanisms governing surface runoff
at the catchment scale. The outcomes will establish a ba-
sis for further modeling applications, which will be helpful
for local planners to use in future regional urban develop-
ment strategies. The study area information, methodology,
and data input are presented in Sect. 2, results and discus-
sions are detailed in Sect. 3, and the conclusion is provided
in Sect. 4.

2 Materials and methods

2.1 Study area

The study area includes the upper part (NW subbasin) of
the Kifisos river basin, located in Athens, Greece (Fig. 1a).
The Kifisos river basin occupies an area of 380 km2. The Ki-
fisos river route is approximately 22 km, of which at least
14 km is within an urban area. The elevation ranges from 94
to 1399 m, with plains in the south and hills in the northern
part of the basin. The mean annual temperature is 16.4 ◦C,
and the mean annual rainfall across the basin is 577.2 mm.

The study area is characterized as an urban/peri-urban
area, with residential areas, shrubland, and agriculture ac-
counting for 34.1 %, 15.9 %, and 12.4 % of its land use cover-
age, respectively (Fig. 1b). It includes mainly four soil types,
i.e., Cambisols, Regosols, Leptosols, and Luvisols (Fig. 1c).
The dominant soil formations are characterized by good soil
permeability and high contents of clay and sand.

2.2 Experimental catchment of Athens metropolitan
area

The study area includes four water-level monitoring stations
that provide continuous recordings of the river stage at pres-
elected time intervals (15 min time step; Fig. 1). The stations
were installed at the end of 2017 under the supervision of
the School of Mining at the National Technical University
of Athens (NTUA). The network was developed under the
European Union Horizon 2020 Research and Innovation Ac-
tion (RIA) program of SCENT (Smart Toolbox for Engaging
Citizens in a People-Centric Observation Web). The station
located at the outlet of the study area was selected as the
most suitable for further analysis in this study because the
three upstream stations experienced some mechanical prob-
lems that affected the calibration and validation process. The
monitoring stations are part of the Open Hydrosystem Infor-
mation Network (https://OpenHi.net, last access: 20 Decem-
ber 2020), which is a national integrated information infras-
tructure for the collection, management, and free dissemi-

nation of hydrological data (https://OpenHi.net, last access:
20 December 2020) in Greece.

2.3 Data sources

The input data for the construction of the SWAT model in-
clude a digital elevation model (DEM), a land use map, a
soil map, and meteorological data (i.e., rainfall, temperature,
wind speed, relative humidity, and solar radiation). Table 1
summarizes the input data and their sources used in this
study.

The digital elevation model (DEM) at 30 m spatial reso-
lution was downloaded from the website of the U.S. Geo-
logical Survey (USGS). The land use map was derived from
the 100 m 2018 CORINE Land Cover map (CLC, 2018) and
was modified according to SWAT land use categories (Ta-
ble 2). The soil map was created from data from the Food
and Agriculture Organization (FAO) Digital Soil Map of the
World (FAO et al., 2012). In addition, rainfall data, rela-
tive humidity, wind speed, and the minimum and maximum
air temperature were obtained from the National Observa-
tory of Athens (NOA). Solar radiation data were simulated
by WGEN, a weather generator developed by SWAT to fill
the missing meteorological data using monthly statistics. A
rain gauge network consisting of five gauges is distributed
throughout the study area, as illustrated in Fig. 1. Daily and
hourly (1t = 1 h) rainfall data were retrieved from 2017 to
2019, with coverage during the entire year. The daily and
subdaily observed streamflow data at the basin outlet (Fig. 1)
from 2017 to 2019 were acquired from the Open Hydrosys-
tem Information Network (https://OpenHi.net, last access:
20 December 2020).

2.4 Soil Water Assessment Tool (SWAT)

The SWAT (Soil and Water Assessment Tool) program is
a semi-distributed, continuous-time, process-based model
(Arnold et al., 1998, 2012). The model operates on a daily
time step, and it has been recently updated to subdaily time
step computations (Jeong et al., 2010). SWAT has been de-
veloped to evaluate the impact of management practices on
water, sediment, and agricultural chemical yields in large
river basins over long time periods. The main components
of SWAT are hydrology, weather, soil properties, land use,
crop growth, sediments, nutrients, pesticides, bacteria, and
pathogens.

In SWAT, a watershed is divided into multiple subbasins,
which are then subdivided into hydrologic response units
(HRUs) based on unique soil, slope, and land use attributes.
HRUs enable the model to represent differences in evapotran-
spiration for various vegetation and soil types. Simulation of
the hydrology of a watershed can be separated into the land
phase, which determines the loadings of water, sediment, nu-
trients, and pesticides to the main channel, and the routing
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Figure 1. Geographical location of the study area (a) and spatial distribution of land use (b) and soil (c).

Table 1. SWAT model input data and sources.

Data type Resolution Source Description

DEM 30 m× 30 m Shuttle Radar Topography Mission
(https://earthexplorer.usgs.gov/,
last access: 5 December 2020)

Digital elevation model

Land use 100 m× 100 m CORINE Land Cover
(https://land.copernicus.eu/,
last access: 15 December 2020)

Land use map

Soil 30 arcsec
(1 : 5000000)

Food and Agriculture Organization
(http://www.fao.org/,
last access: 10 December 2020)

Soil map

Weather data Five gauges National Observatory of Athens
(https://www.meteo.gr/,
last access: 10 December 2020)

Daily data for 2017–2019, subdaily data for 2017–
2019, and minimum and maximum air tempera-
tures, relative humidity, wind speed

Observed
streamflow

One gauge Open Hydrosystem Information Network
(https://openhi.net/en/
last access: 20 December 2020)

Daily data for 2017–2019; subdaily data for 2017–
2019
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Table 2. Land use classification of the Kifisos basin and the corresponding SWAT land use category.

CLC code CORINE description SWAT code SWAT description Watershed (%)

121 Industrial or commercial units UCOM Commercial 11.43
112 Discontinuous urban fabric URLD Residential – low density 34.11
122 Road and rail networks and associated land UTRN Transportation 4.07
111 Continuous urban fabric URHD Residential – high density 1.54
231 Pastures PAST Pasture 0.31
243 Land principally occupied by agriculture, with

significant areas of natural vegetation
AGRL Agricultural Land – generic 12.39

311 Broadleaved forest FRSD Forest – deciduous 3.11
312 Coniferous forest FRSE Forest – evergreen 9.59
313 Mixed forest FRST Forest – mixed 7.51
323 Sclerophyllous vegetation RNGB Range – brush 15.94

phase, which is the movement of the loadings through the
streams of the subbasins to the outlets (Neitsch et al., 2011).

Hydrological processes are simulated separately for each
HRU, including canopy storage, surface runoff, partitioning
of the precipitation, infiltration, redistribution of water within
the soil profile, evapotranspiration, lateral subsurface flow
from the soil profile, and return flow from shallow aquifers
(Gassman et al., 2007). SWAT uses a single plant growth
model to simulate all types of vegetation and can differen-
tiate between annual and perennial plants. The plant growth
model estimates the amount of water and nutrients removed
from the root zone, transpiration, and biomass/yield produc-
tion.

The main difference between the daily and subdaily sim-
ulations in SWAT occurs in the surface runoff estimation.
The SCS Curve Number (CN) method (Soil Conservation
Service, 1972) is used for daily simulations, and the Green–
Ampt and Mein–Larson infiltration (GAML) method (Mein
and Larson, 1973) is used for subdaily simulations. The CN
method is an empirical, widely used model and requires
land use, soil, elevation, and daily rainfall data as input. The
GAML method is a physically based model, uses the same
spatial coverages as the CN method, and requires more de-
tailed soil information and subdaily rainfall records as input.
More details on the model theory, equations, and processes
can be found in Arnold et al. (1998), Gassman et al. (2007),
and in Neitsch et al. (2011).

2.5 Model setup

The latest version of the SWAT 2012 hydrological model was
used in this study. The QSWAT plugin (Dile et al., 2016) em-
bedded in the QGIS platform was used for the setup and the
parameterization of the model. The watershed delineation,
stream parameterization, and overlay of soil, land use, and
slope were automatically completed within the interface. A
drainage area of 3.6 km2 was chosen to discretize the study
area. The area was delineated into 25 subbasins, which were
then divided into 175 HRUs.

The SWAT models for the Kifisos basin include daily and
subdaily (hourly) rainfall observations. Potential evapotran-
spiration was calculated by the Penman–Monteith method,
surface runoff was estimated using the CN method for the
daily model and the GAML method for the hourly model,
and the variable storage coefficient method was used to cal-
culate the channel routing. The simulation period was from
2017 to 2019, and the first year was used as a warmup pe-
riod to mitigate the unknown initial conditions. The model
was calibrated from 1 January to 31 December 2018 and val-
idated from 1 January to 31 December 2019 for discharge
using the Sequential Uncertainty Fitting (SUFI-2) program
in SWAT-CUP software (Abbaspour et al., 2004, 2007).

2.6 Sensitivity analysis and model calibration and
validation

Watershed models are characterized by significant uncertain-
ties related to conceptual design, input data, and parameters
(Abbaspour et al., 2015). The model calibration, validation,
and uncertainty analysis were achieved with the use of the
SUFI-2 algorithm in the SWAT-CUP software (Abbaspour
et al., 2004, 2007). In SUFI-2, uncertainties in parameters
(e.g., uncertainty in input data, conceptual model, parame-
ters, and measured data) are expressed as ranges or uniform
distributions. The concept behind this algorithm is to col-
lect most of the observed data within a narrow uncertainty
band. The initial ranges of the calibrating parameters are set
based on the literature and sensitivity analyses. Then, param-
eter sets are generated using Latin hypercube sampling, and
the objective function is estimated for each parameter set.
The uncertainties are calculated at the 2.5 % and 97.5 % lev-
els of the cumulative distribution of all output variables, and
it is referred to as the 95 % prediction uncertainty (95 PPU).
The goodness of model performance and output uncertainty
is assessed using the P factor and the R factor (Abbaspour
et al., 2004). The P factor is the percentage of measured data
bracketed by the 95 PPU band, and it ranges from 0 to 1,
where 1 means all of the measured data are within the model
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prediction uncertainty. The R factor is the ratio of the aver-
age width of the 95 PPU band and the standard deviation of
the measured data. The values of the R factor range from 0 to
infinity, where a value near 0 reflects an ideal situation. The
spatial scale of the project and the accuracy of the observed
data affect the values of the P factor and the R factor (Ab-
baspour et al., 2015). In this study, the Nash–Sutcliffe (NS)
efficiency model was used as an objective function for both
daily and subdaily calibration and validation. The sensitiv-
ities of the parameters were estimated using the following
equation (Eq. 1; Abbaspour et al., 2015):

g = a+
∑m

i=1
βibi, (1)

where g is the goal function, and b’s are the parameters se-
lected for calibration. The sensitivities are calculated as the
average changes in the objective function which result from
changes in each parameter, while all other parameters are
changing. A t test is then conducted to evaluate the signif-
icance of each parameter bi . Parameters with a large t test
value and small P value were characterized as sensitive pa-
rameters.

Model validation was achieved using the calibrated pa-
rameter ranges without any further changes, and the model
performance of the calibration period was compared to the
model performance of the validation period. The annual pre-
cipitation and daily discharge statistics were calculated for
each period to overcome biases in discharge patterns. Annual
precipitation for 2018 was 566 mm, and annual precipitation
for 2019 was 735 mm. The mean and standard deviation val-
ues of discharge for 2018 were 1.25 and 0.46 and for 2019
were 1.42 and 0.74, respectively. These statistics ensure that
the selected periods represent both wet and dry conditions.
In the calibration and validation process, 18 parameters (Ta-
ble 3) were used. About 600 simulations per iteration were
conducted, and with up to three iterations, until the results of
the P factor and R factor were satisfying.

Further evaluation of the model performance was achieved
using graphical and statistical techniques (Daggupati et al.,
2015b; Harmel et al., 2014; Moriasi et al., 2007, 2015). The
most commonly used statistical techniques are the Nash–
Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), coef-
ficient of determination (R2; Moriasi et al., 2007), and per-
cent bias (PBIAS; Gupta et al., 1999), as shown in Eqs. (2)–
(4). The most common graphical techniques are time series
charts, scatterplots, bar charts, maps, and percent exceedance
probability curves. The statistics were calculated for both
models, and then their performance was discussed according
to the guidelines (Moriasi et al., 2007, 2015).

R2
=

[∑n
i=1

(
Qobs(i)−Qobs

)(
Qsim(i)−Qsim

)]2∑n
i=1
(
Qobs(i)−Qobs

)2∑n
i=1
(
Qsim(i)−Qsim

)2 , (2)

NS= 1−

[∑n
i=1(Qobs(i)−Qsim(i))

2∑n
i=1
(
Qobs(i)−Qobs

)2
]
, (3)

PBIAS=
[∑n

i=1 (Qobs(i)−Qsim(i))× 100∑n
i=1Qobs(i)

]
, (4)

where Qobs is the observed discharge, Qsim is the simulated
discharge on day i, Qobs is the mean of observed discharge,
and Qsim is the mean of simulated discharge. R2 is a mea-
sure of how well the variance of measured data is replicated
by the model. R2 can range from 0 to 1, where 0 means no
correlation, and 1 indicates a perfect correlation and minor
error variance. NSE is a measure of how well the simulated
values match the observed values. NSE can range from −∞
to 1, where values ≤ 0 show that the observed data mean is
a more accurate predictor than the simulated values, and 1
is a perfect fit between simulated and observed values. Fi-
nally, PBIAS measures the average tendency of the simu-
lated values to be larger or smaller than the observed values.
The optimum value is 0; positive values show model under-
estimation, and negative values show model overestimation.
More information about the strengths, weaknesses, and us-
age of the commonly used measures is presented in Moriasi
et al. (2015). The SWAT-CUP software is designed mainly
for daily, monthly, or annual time steps. In order to calibrate
the subdaily model, the SUFI-2 files required minor modifi-
cations.

3 Results and discussion

3.1 Parameter’s sensitivity analysis and calibration

The most sensitive parameters obtained in daily and hourly
simulations are presented in Table 4. Sensitive parameters
are characterized by a large t test and small p value. The
parameters were characterized as being significantly sen-
sitive when the p value was less than 0.03. In the daily
model, the most sensitive parameters were the deep aquifer
percolation fraction (RCHRG_DP), groundwater delay time
(GW_DELAY), lateral flow travel time (LAT_TTIME), av-
erage slope steepness (HRU_SLP), and moist bulk density
(SOL_BD). These parameters were connected to groundwa-
ter flow, runoff generation, and channel routing. In the sub-
daily model, the significantly sensitive parameters were aver-
age slope steepness (HRU_SLP), Manning’s n value for the
main channel (CH_N2), effective hydraulic conductivity in
the main channel alluvium (CH_K2), and lateral flow travel
time (LAT_TTIME). These were all related to channel rout-
ing.

The differences in the sensitivity of the calibrated param-
eters of the two models reflect the impact of the operational
time step on model performance (Boithias et al., 2017; Jeong
et al., 2010). In particular, the hourly model is character-
ized by larger GWQMN and GW_REVAP values than the
daily model. GWQMN is the threshold depth of water in
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Table 3. Daily and subdaily SWAT-calibrated parameters. The method “r” indicates that the parameter value is multiplied by (1+ a given
value), the method “v” indicates that the parameter value is going to be replaced, and the method “a” indicates that the parameter is to be
added by a given value (Abbaspour et al., 2007).

Parameter File ext. Method Description

Surface runoff CN2 .mgt r (relative) Curve Number
SURLAG .bsn v (replace) Surface runoff lag time

Groundwater/baseflow ALPHA_BF .gw v (replace) Baseflow alpha factor
GW_DELAY .gw a (absolute) Groundwater delay
RCHRG_DP .gw v (replace) Deep aquifer percolation fraction
REVAPMNa .gw v (replace) Threshold depth of water in the shallow aquifer for “revap” to

occur
GW_REVAPb .gw v (replace) Groundwater “revap” coefficient
GWQMN .gw v (replace) Threshold depth of water in the shallow aquifer required for

return flow to occur

Lateral flow LAT_TTIME .hru v (replace) Lateral flow travel time
HRU_SLP .hru r (relative) Average slope steepness

Channel OV_N .hru r (relative) Manning’s n value for overland flow
SLSUBBSN .hru r (relative) Average slope length
CH_N2 .rte v (replace) Manning’s n value for the main channel
CH_K2 .rte v (replace) Effective hydraulic conductivity in main channel alluvium

Soil ESCO .bsn v (replace) Soil evaporation compensation factor
SOL_K .sol r (relative) Saturated hydraulic conductivity of the soil layer
SOL_BD .sol r (relative) Moist bulk density
SOL_AWC .sol r (relative) Available water capacity of the soil layer

a REVAPMN is the threshold depth of water in the shallow aquifer for evaporation or percolation to occur. b GW_REVAP is the movement of water from the shallow aquifer to
the overlying unsaturated zone.

Table 4. Daily and subdaily SWAT-calibrated parameters and their sensitivities.

Parameters Initial ranges Daily model Subdaily model

t test p value Calibrated ranges t test p value Calibrated ranges

Min Max Min Max Min Max

CN2 −0.10 0.10 0.38 0.70 −0.04 0.10 −0.09 0.93 0.00 0.10
SURLAG 0.00 10.00 0.40 0.69 0.00 10.00 −0.36 0.72 4.00 9.00
ALPHA_BF 0.00 1.00 −0.15 0.88 0.05 0.69 −0.23 0.82 0.50 1.00
GW_DELAY −30.00 90.00 4.78 0.00 10.00 95.00 0.51 0.61 10.00 80.00
RCHRG_DP 0.00 0.50 3.44 0.00 0.00 0.50 0.14 0.89 0.11 0.40
REVAPMN 1000.00 2000.00 1.51 0.13 990.00 1800.00 0.49 0.62 800.00 1800.00
GW_REVAP 0.02 0.20 −1.37 0.17 0.02 0.20 −0.16 0.87 0.06 0.21
GWQMN 0.00 500.00 0.69 0.49 100.00 500.00 0.38 0.71 150.00 500.00
LAT_TTIME 0.00 180.00 15.23 0.00 0.00 170.00 14.59 0.00 0.00 170.00
HRU_SLP −0.50 3.00 −3.87 0.00 −0.01 3.00 −3.71 0.00 0.20 2.30
OV_N −0.50 3.00 −0.94 0.35 −0.30 3.00 −0.73 0.47 −0.05 2.00
SLSUBBSN −0.20 0.20 2.11 0.04 −0.10 0.20 0.89 0.37 −0.06 0.20
CH_N2 0.01 0.30 0.09 0.93 0.01 0.20 6.52 0.00 0.03 0.20
CH_K2 0.00 127.00 −0.83 0.41 0.00 80.00 3.52 0.00 0.00 50.00
ESCO 0.50 0.95 −0.43 0.67 0.50 0.95 −1.35 0.18 0.50 0.95
SOL_K −0.80 0.80 −0.94 0.35 −0.20 0.80 −1.98 0.05 −0.10 0.68
SOL_BD −0.30 0.30 −5.69 0.00 −0.10 0.30 −1.31 0.19 −0.01 0.27
SOL_AWC −0.05 0.05 −1.53 0.13 −0.03 0.03 −0.90 0.37 −0.03 0.02
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the shallow aquifer required for return flow to occur, and
GW_REVAP controls the water movement from the shallow
aquifer into the overlying unsaturated soil layers. As these
parameters increase, the rate of evaporation increases up to
the rate of potential evapotranspiration, resulting in a cor-
responding decrease in the baseflow. Furthermore, the fitted
value of CH_N2 in the hourly simulation was 0.11 (m−1/3 s)
and was larger than 0.08 (m−1/3 s) in the daily simulation.
The CH_N2 parameter affects the rate and the flow ve-
locity (Boithias et al., 2017). Therefore, the larger CH_N2
value was connected to a smaller flow velocity. According
to Boithias et al. (2017), the CH_N2 parameter is more sen-
sitive at the hourly time step rather than the daily time step
because, at the daily time step, the flow peak is influenced
by other processes decreasing the sensitivity of the CH_N2.
In addition, the value range for CN2 (Curve Number 2) was
smaller for the subdaily model, leading to lower peak flows.
Other differences were average slope steepness (HRU_SLP),
average slope length (SLSUBBSN), groundwater delay time
(GW_DELAY), and Manning’s n value for overland flow
(OV_N). Their values were all smaller in the subdaily sim-
ulation. Overall, the differences between the two models lay
mainly in the different runoff estimation methods used by the
two models.

It is worth noting that the observations, procedures, and
assumptions made for this study may affect the results of this
study. The values of the calibrated parameters and their sen-
sitivities are influenced by the type and quality of input data,
the conceptual model, the choice of the objective function,
and inaccuracies in measured input data used for calibration
and validation (Abbaspour et al., 2015; Arnold et al., 2012;
Polanco et al., 2017).

3.2 Daily and subdaily model performances

Quantitative statistics and criteria recommended by Moriasi
et al. (2007, 2015) were used to evaluate the model perfor-
mance. In order to investigate the influence of rainfall on
model performance and compare daily outputs to hourly out-
puts, the hourly outputs were aggregated to daily averages.
Figure 2a and b shows the temporal dynamics of the hydro-
graphs reproduced by both runoff estimation methods. The
high-flow season is observed during winter and spring. The
low-flow season is observed in summer and early fall due to
high evapotranspiration. Figure 2c shows the observed ver-
sus the simulated daily discharge aggregated from hourly
outputs during the calibration and validation processes. Fig-
ure 3 presents the flow duration curves of the models, indi-
cating good agreement between the observed and simulated
values. Generally, in the subdaily model, the simulated dis-
charge peaks did not always match the observed values and
were sometimes considerably lower.

The performance statistics are illustrated in Table 5 and
indicate reasonable calibrated models for both methods.
Model performance of the daily model using the CN method

showed better results than the hourly model using the GAML
method. In particular, the NSE and R2 indices for the daily
model were 0.84 and 0.79 for the calibration period and 0.87
and 0.86 for the validation period. For the subdaily model,
the NSE and R2 indices were 0.49 and 0.53 for the cali-
bration period and 0.6 and 0.63 for the validation period,
respectively. In addition, when the hourly outputs were ag-
gregated to daily averages, the NSE was improved com-
pared to the subdaily model (e.g., subdaily model, with
NSEcalibration= 0.49 and NSEvalidation= 0.6, and daily av-
erages, with NSEcalibration= 0.66 and NSEvalidation= 0.78).
However, the daily model outperformed the daily aggregated
discharge during both calibration and validation periods. Fur-
thermore, the daily model showed smaller modeling uncer-
tainties with P factor 0.79 and R factor 1.58 (compared
to 0.83 and 1.71, respectively, for the subdaily model).

Overall, the general agreement between the observed and
the simulated values during the calibration and the valida-
tion period indicates that the choice of the calibration and
validation periods was relevant. According to Moriasi et al.
(2015), model performance can be evaluated as satisfactory
for flow simulations if daily, monthly, or annual R2> 0.60,
NSE> 0.50, and PBIAS ≤± 15 % for watershed-scale mod-
els. These ratings should be modified to be more or less
strict, based on the evaluation time step. Typically, model
simulations are poorer for shorter time steps than for longer
time steps (e.g., daily versus monthly or yearly; Engel et al.,
2007). Considering these guidelines, the daily and subdaily
models showed satisfactory performance for both calibration
and validation periods.

3.3 Comparison of selected rainfall events

Figure 4 shows the hydrographs of selected high-rainfall
events that occurred in the years 2018 and 2019 (Tatoi
station; Lagouvardos et al., 2017). According to the study
area’s intensity–duration–frequency (IDF) curves, the ap-
proximate return period of the selected episodes was 10 years
(T = 10 years). These events were investigated to examine
the accuracy of the subdaily model and to compare the peak
discharges and time of the peak of the two models. Table 6
displays the rainfall characteristics of each event (i.e., peak
discharge, time of peak, and average discharge).

Generally, the hourly model underestimated the peak flows
with values much lower than the observations for the major-
ity of the events. These results confirm that the daily model
using the CN method estimated the observed values better
than the hourly model using the GAML method and was able
to estimate, with greater accuracy, the peak discharge in most
of the events. In addition, Fig. 4a–c show that the discharge
simulation improved after the main peak discharge event, es-
pecially in the last peaks. The improvement in the simulation
as the rainfall events progressed indicates that the simula-
tion requires time to adapt to the hydrological processes and
conditions of the catchment (e.g., antecedent soil moisture
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Figure 2. Observed and simulated discharge (m3 s−1) during calibration and validation periods. Daily time step (a). Hourly time step (b).
Daily time step aggregated from hourly outputs (c). The CN method, with daily rainfall observations, was used for the daily model, and the
GAML method, with hourly rainfall observations, was used for the hourly model.
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Figure 3. Observed and simulated flow duration curves (m3 s−1) at the daily time step (a), at the hourly time step (b), and at the daily
discharge aggregated from hourly outputs time step (c).

Table 5. Model evaluation statistics of the daily, subdaily, and daily aggregated from hourly output SWAT models for the calibration and
validation periods.

Time step Period p factor r factor R2 NSE PBIAS (%)

Daily Calibration 0.74 1.41 0.84 0.79 6.4
Validation 0.79 1.58 0.87 0.86 4.2

Subdaily Calibration 0.72 1.33 0.53 0.49 16.9
Validation 0.83 1.71 0.63 0.6 11.7

Daily averages Calibration – – 0.76 0.66 16.8
Validation – – 0.82 0.78 11.6

conditions). These outcomes are similar to those of previous
studies, which concluded that the best subdaily performance
for streamflow simulation appeared in wet antecedent soil
moisture conditions and suggested that the GAML method
needs to improve the equation for the infiltration routine
(Jeong et al., 2010; Kannan et al., 2007; Meaurio et al.,
2021).

The better performance of the CN method compared to
the GAML method in this study is consistent with the re-
sults of other studies (Bauwe et al., 2016; Ficklin and Zhang,
2013; Kannan et al., 2007; King et al., 1999). Bauwe et al.
(2016) evaluated both CN and GAML methods and high-
lighted that the CN method performed slightly better than
the GAML method. Ficklin and Zhang (2013) generally sug-
gested that, for daily simulations, the CN method predicted
streamflow more accurately than the GAML model. Kannan
et al. (2007) identified a suitable combination of ET runoff-
generation methods and reported that the CN method per-
formed better than the GAML method. Kannan et al. (2007)
conducted a sensitivity analysis to identify the best combina-
tion of evapotranspiration and runoff method for hydrologi-
cal modeling and concluded that the CN method performed
better than the GAML method for streamflow because the
GAML method tends to hold more water in the soil profile
and predict a lower peak runoff rate. King et al. (1999) con-

cluded that the GAML method appeared to have more lim-
itations in accounting for seasonal variability than the CN
method.

Hydrological calibration includes uncertainties due to con-
ceptual simplification, processes not incorporated in the
model, and unknown processes to the modeler which in-
terfere with the natural behavior of the system (Abbaspour
et al., 2015). In this study, the sources of uncertainty can be
explained by the following:

i. The characteristics of an urban/peri-urban catchment.
The study area is a hybrid landscape in which urban
and rural characteristics coexist and interact. The dif-
ferent and changing land uses create a complex system
with high variability in management practices and di-
verse hydrological processes (Becker et al., 2019). Fur-
thermore, these systems are characterized by human-
made interventions (e.g., unidentified discharges, agri-
cultural activities, and dumping of construction materi-
als), which are not well known to the modeler and can
increase uncertainty (Immerzeel and Droogers, 2008).

ii. The inaccuracies in the quality of input and observed
data. The interaction between the urban environment
and agricultural activities may not be captured by the
resolution of the soil and land use maps. This could in-
crease the difficulty for the SWAT model to represent

Hydrol. Earth Syst. Sci., 27, 917–931, 2023 https://doi.org/10.5194/hess-27-917-2023



E. Koltsida et al.: Hydrological modeling using SWAT in urban and peri-urban environments 927

Figure 4. Observed and simulated hourly discharge (m3 s−1) using the GAML method for the heavy rainfall events that occurred in 2018
and 2019. (a) Event from 12–14 January 2018. (b) Event from 5–7 May 2018. (c) Event from 29 September–1 October 2018. (d) Event from
5–7 February 2019. (e) Event from 12–14 November 2019. (f) Event from 29–31 December 2019.

Table 6. Rainfall characteristics of selected events for the years 2018 and 2019.

Events Observed Simulated

Avg. discharge Peak discharge Time of peak Avg. discharge Peak discharge Time of peak
(m3 s−1) (m3 s−1) (UTC) (m3 s−1) (m3 s−1) (UTC)

12–14 Jan 2018 2.6 10.7 06:00 2.2 7.1 05:00
5–7 May 2018 2.2 11.1 20:00 2.1 6.6 21:00
29 Sep–1 Oct 2018 5.7 17.2 18:00 5.2 8.9 18:00
5–7 Feb 2019 3.6 16.2 01:00 2.9 6.2 00:00
12–14 Nov 2019 2.9 12.3 03:00 2.4 3.5 03:00
29–31 Dec 2019 4.9 14.8 21:00 3.6 6.9 21:00

the actual conditions of the study area and further affect
the results. The spatial variability in precipitation and
discharge were not also captured accurately by the mon-
itoring stations of the study area, which could have con-
tributed to the simulation uncertainty. In addition, inac-
curacies in the estimation of channel and hillslope ve-
locities and channel geometry, in the nature of the sen-
sor, environmental conditions, and data collection can
generate variability, lead to undesired trends, and influ-

ence the model results (Guzman et al., 2015; Kamali
et al., 2017).

iii. The differences behind the mechanisms of the CN
method and the GAML method for surface runoff es-
timation. In this study, the daily model produced higher
discharge peaks than the hourly model and gener-
ally estimated better the observed values. These results
could be explained by the disadvantages of the GAML
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method. The CN method requires minimum land use,
soil, elevation, and daily rainfall data as input. On the
other hand, the GAML method requires detailed soil in-
formation and high-resolution rainfall data in a subdaily
time step as input, which can be challenging and diffi-
cult to obtain (King et al., 1999). The GAML method
also assumes that the soil profile is characterized by
homogeneity and that the previous soil moisture is dis-
tributed uniformly in the soil profile (Jeong et al., 2010).
In addition, according to the GAML method, when the
precipitation rate is less than the infiltration rate, all
precipitation will infiltrate the soil profile (Ficklin and
Zhang, 2013; King et al., 1999). Figure 2 reflects the
assumption of the GAML method that surface runoff
is estimated only when the precipitation rate is greater
than the infiltration rate. Hence, the uncertainty in the
resolution of the rainfall data, the heterogeneity of the
soil formations, the size of the catchment, and the up-
coming difficulty in determining the parameters’ val-
ues for parameterization could affect the method’s ef-
ficiency (Jeong et al., 2010). The selection of the sub-
daily precipitation input time step and the resolution of
the precipitation data have a significant impact on model
results when using the GAML method, and it should be
based on the scale and characteristics of the watershed
(Bauwe et al., 2016; Kannan et al., 2007).

iv. The conceptual simplifications made during the model
parameterization process. The initial ranges of the cal-
ibrating parameters were set according to the litera-
ture and sensitivity analysis. Then, based on the perfor-
mance of the default model, specific parameters were
parameterized using calibration protocols (Abbaspour
et al., 2015). The ranges of the calibrating parameters
should be kept within reasonable limits, using quan-
titative statistics and graphical comparisons to ensure
that hydrological processes represent the characteristic
of the study area (Daggupati et al., 2015b). The choice
of the objective function and the selection of the values
of the parameters that influence surface runoff, ground-
water, channel routing, and evapotranspiration is a crit-
ical point in model calibration, which can increase the
uncertainty in the results (Polanco et al., 2017).

4 Conclusions

Experimental catchments provide long-term time series of
hydrological data, which are essential for improved appli-
cation of best management practices and the development
and validation of watershed models. In this study, discharge
was monitored for 3 years (2017–2019) in an experimental
basin with mixed-land-use characteristics (i.e., urban/peri-
urban) in Athens, Greece. Discharge simulation, calibration,
and validation were achieved with the SWAT model, which
has been increasingly used to support decisions on various

environmental issues and policy directions. Daily and hourly
rainfall observations were used as inputs to investigate the
influence of the rainfall resolution on model performance in
order to analyze the mechanisms governing surface runoff at
the catchment scale. Surface runoff was estimated using the
CN method for the daily model and the GAML method for
the hourly model.

A sensitivity analysis conducted in this study showed that
the parameters related to groundwater flow were more sensi-
tive for daily time intervals, and channel-routing parameters
were more influential for hourly time intervals. These find-
ings indicate that the model operational time step affects the
parameters’ sensitivity to the model output, thus demonstrat-
ing the need for a different model strategy for the simulation
of subdaily hydrological processes.

Quantitative statistics of the observed and the simulated
records indicate that the calibration and validation processes
produced acceptable results for both runoff estimation meth-
ods. Additionally, graphical techniques at the outlet station
show that both models succeed in capturing the majority
of the seasonality and peak discharge. Generally, the daily
model performed better than the subdaily model in simulat-
ing runoff. The CN method produced higher discharge peaks
than the GAML method and estimated the observed values
better. In particular, from the comparison of the selected rain-
fall events, the critical role of the antecedent soil moisture
conditions of the catchment and their impact on subdaily
performance is also evident, indicating the need for the im-
provement of the SWAT subdaily option for soil moisture es-
timation. The differences in the calibrated values of the two
models lay mostly in the different runoff estimation meth-
ods used by the two models. In addition, errors in the quality
of input data, diverse management practices and hydrological
processes of an urban/peri-urban environment, unknown pro-
cesses to the modeler, and conceptual simplifications made
during the model structure/calibration process may increase
the uncertainty in the outputs.

Overall, the general agreement between observations and
simulations in both models suggests that the SWAT model
appears to be a reliable tool for predicting discharge in a
mixed-land-use basin with a high complexity and spatial dis-
tribution of input data. This study contributed to understand-
ing the mechanisms controlling surface runoff and the pa-
rameters that influence the hydrological processes that take
place in an urban/peri-urban hydrological environment. Fur-
thermore, the results of this study could help planners and
managers to decide which time step is more useful regard-
ing their goals and will provide a calibrated tool to assess
potential hydrological impacts of future planning and devel-
opment activities. However, it should be noted that several
factors such as data limitation, observational errors in input
data, spatiotemporal-scale complexities, and inaccuracies in
model structure may lead to uncertainty in model outputs. In
the future, emphasis will be placed on the investigation of a
correlation between the antecedent moisture conditions and
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hourly model performance when more data become available
and on quantifying the parameter uncertainty by including
more observed variables in the calibration process, such as
evapotranspiration and soil moisture satellite data.
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