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Abstract. Sorptivity is one of the most important parameters
for the quantification of water infiltration into soils. Parlange
(1975) proposed a specific formulation to derive sorptivity as
a function of the soil water retention and hydraulic conduc-
tivity functions, as well as initial and final soil water contents.
However, this formulation requires the integration of a func-
tion involving hydraulic diffusivity, which may be undefined
or present numerical difficulties that cause numerical mis-
estimations. In this study, we propose a mixed formulation
that scales sorptivity and splits the integrals into two parts:
the first term involves the scaled degree of saturation, while
the second involves the scaled water pressure head. The new
mixed formulation is shown to be robust and well-suited to
any type of hydraulic function – even with infinite hydraulic
diffusivity or positive air-entry water pressure heads – and
any boundary condition, including infinite initial water pres-
sure head, h→−∞. Lastly, we show the benefits of using

the proposed formulation for modeling water into soil with
analytical models that use sorptivity.

1 Introduction

Soil sorptivity represents the capacity of soil to absorb water
by capillarity (Cook and Minasny, 2011). The accurate esti-
mation of soil sorptivity is crucial for the modeling of wa-
ter infiltration into soils and the hydraulic characterization of
soils (Angulo-Jaramillo et al., 2016; Stewart and Abou Najm,
2018). Several models and methods make use of this vari-
able, such as the Beerkan Estimation of Soil Transfer pa-
rameters (BEST) methods (Lassabatere et al., 2006; Yilmaz
et al., 2010; Bagarello et al., 2014a; Lassabatere et al., 2019;
Angulo-Jaramillo et al., 2019) and related simplified Beerkan
approaches (Bagarello et al., 2014b; Di Prima et al., 2020;
Yilmaz, 2021). Sorptivity is also required for the computa-
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tion of several hydraulic parameters, like the macroscopic
capillary length (Bouwer, 1964; White and Sully, 1987).

The squared sorptivity is related to the flux-concentration
function, F(θ), as follows (Philip and Knight, 1974):

S2 (θ0,θ1)= 2

θ1∫
θ0

(θ − θ0)

F (θ)
D(θ)dθ, (1)

where D(θ)=K(θ)dh/dθ is the hydraulic diffusivity func-
tion, and θ0 and θ1 stand for the initial and final water con-
tents. In the context of water infiltration into soils, the ini-
tial water content, θ0, refers to the water content along the
soil profile before water infiltration, and the final water con-
tent, θ1, corresponds to that imposed at the soil surface (at
the water source). Several studies have investigated the def-
inition of the flux-concentration functions, depending on the
type of soils (Angulo-Jaramillo et al., 2016, Table 1, p. 33).
Ross et al. (1996) suggested the use of the approximation
proposed by Parlange (1975) for most soils leading to two
main forms of sorptivity, a diffusivity form, SD, and a con-
ductivity form, SK, both summarized below:

F(θ)=
2(θ − θ0)

(θ1+ θ − 2θ0)
(2)

S2
D (θ0,θ1)=

θ1∫
θ0

(θ1+ θ − 2θ0)D(θ)dθ (3)

SD (θ0,θ1)=

√√√√√√
θ1∫
θ0

(θ1+ θ − 2θ0)D(θ)dθ (4)

SK (h0,h1)=

√√√√√√
h1∫
h0

(θ1+ θ(h)− 2θ0)K(h)dh, (5)

where the initial and the final values of the water pressure
heads, h0 and h1, correspond to the water contents θ0 =

θ(h0) and θ1 = θ(h1).
These two forms, the diffusivity form, SD, and the con-

ductivity form, SK, each have their own shortcomings. For
certain hydraulic models, D(θ) tends towards infinity when
θ0→ θs, making it difficult to compute the right-hand side
of Eq. (4). Moreover, when the surface water pressure head
exceeds the air-entry water pressure head, ha, SD misses the

saturated part of sorptivity,
h1∫
ha

(θ1+θ(h)−2θ0)K(h)dh (Ross

et al., 1996). The conductivity form SK must be used when it
is necessary to account for the two parts of sorptivity, i.e., the
unsaturated and saturated parts, as indicated by the following
relationship (Lassabatere et al., 2021):

SK (h0,h1 ≥ ha)=

√
S2

D (θ0,θs)+ 2(θs− θ0)(h1−ha)Ks

=

√
S2

D (θ (h0) ,θ (h1))+ 2(θ (h1)− θ (h0))(h1−ha)Ks. (6)

We can thus conclude that the conductivity form, SK,
is the most general equation. However, SK can also be
difficult to handle when the initial conditions are very
dry. In particular, for very dry initial conditions, the ini-
tial water pressure head corresponding to θr corresponds to
h0→−∞. Then, the calculation of SK requires the evalu-
ation of an integral that involves an infinite lower bound:
h1∫
−∞

(θ (h1)+ θ(h)− 2θr)K(h)dh.

In this study, we propose a new mixed formulation that
overcomes these problems. We compare it to the approaches
commonly used to compute sorptivity, i.e., Eqs. (4) and (5).
The proposed mixed formulation automatically accounts for
the saturated and unsaturated parts of sorptivity. It also al-
lows for easy computation under any initial condition, in-
cluding the extreme case of an initial water content equal to
the residual water content, θ0 = θr (corresponding to a neg-
ative initial water pressure head that tends towards infinity,
h0→−∞), and a final water pressure head higher than the
air-entry water pressure head, h1 ≥ ha, even including pos-
itive values. In addition to proposing a new robust formu-
lation for the computation of sorptivity, we aim to demon-
strate the following points: (i) the computation of sorptivity
with classic approaches may be challenging depending on
the hydraulic models chosen for describing the water reten-
tion (WR) and hydraulic conductivity (HC) functions; (ii) the
proposed mixed formulation is an ideal estimator for sorptiv-
ity and performs well at all times; (iii) the usual methods,
based on the use of SD (Eq. 4) or SK (Eq. 5), do not neces-
sarily provide accurate estimations of the nominal sorptivity;
and (iv) those misestimations of sorptivity may have substan-
tial impacts on the prediction of water infiltration into soils
when inserting sorptivity into analytical models.

The paper is organized as follows. The Theory sec-
tion presents the proposed mixed formulation. Next, the
paper analyzes the precision of the mixed formulation
by comparing it with the exact analytical formulation
for the case of the maximum sorptivity, S(−∞,0)=√

0∫
−∞

(θs+ θ(h)− 2θr)K(h)dh. The maximum sorptivity,

S(−∞,0), encompasses the two types of problems, i.e., in-
finite negative initial water pressure head and infinite dif-
fusivity function close to water saturation (θ→ θs), and
also the omission of the saturated part of sorptivity by
regular approaches when h1 > ha. We considered three
commonly used hydraulic models, for which Lassabatere
et al. (2021) proposed analytical formulations for S(−∞,0):
Brooks and Corey (BC), van Genuchten–Burdine (vGB), and
van Genuchte–Mualem (vGM). The second part of the pa-
per compares the accuracy of the mixed formulation with
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the current strategies for the same three hydraulic models
plus the Kosugi (KG) model and demonstrates the risk of
serious misestimations with prior approaches. By present-
ing a new formulation that is applicable to any type of con-
dition, this paper completes the study of Lassabatere et al.
(2021), who proposed a scaling procedure for the approxi-
mation of SK (h0,h1 = 0) with the condition of null water
pressure head at the surface, i.e., h1 = 0. Lastly, we show
how using the proposed approach can improve the accuracy
of sorptivity estimation and, consequently, the modeling of
water infiltration into soils with analytical models that make
use of sorptivity.

2 Theory

2.1 Proposed new mixed formulation for computing
sorptivity

To build the mixed formulation, SM, we start with the con-
ductivity form of sorptivity, SK, since it includes both unsat-
urated and saturated parts. Then, we define an intermediate
water pressure head between the initial and final water pres-
sure heads, hc ∈ [h0,h1], smaller than the air-entry pressure,
hc < ha ≤ 0, and we split the integral into two separate parts
as follows:

SM (h0,h1)= SK (h0,h1)

=

√√√√√√
h1∫
h0

(θ (h1)+ θ(h)− 2θ (h0))K(h)dh

=

√√√√√√
hc∫
h0

(θ (h1)+ θ(h)− 2θ (h0))K(h)dh+

h1∫
hc

(θ (h1)+ θ(h)− 2θ (h0))K(h)dh

=

√√√√√√
θ(hc)∫
θ(h0)

(θ (h1)+ θ − 2θ (h0))D(θ)dθ +

h1∫
hc

(θ (h1)+ θ(h)− 2θ (h0))K(h)dh. (7)

In Eq. (7), the integral
hc∫
h0

(θ (h1)+ θ(h)− 2θ (h0))K(h)dh is

transformed into
θ(hc)∫
θ(h0)

(θ (h1)+ θ − 2θ (h0))D(θ)dθ thanks

to the change of variable h→ θ . This operation requires that
the function θ(h) is bijective over the whole interval [h0,hc],
which is valid so long as hc < ha. Alternatively, the mixed
formulation, SM, may be written alternatively as follows:

SM (h0,h1)=√√√√√√√√
θc∫
θ0

(θ1+ θ − 2θ0)D(θ)dθ

︸ ︷︷ ︸
A

+

h1∫
hc

(θ1+ θ(h)− 2θ0)K(h)dh

︸ ︷︷ ︸
B

, (8)

where θc = θ (hc), θ1 = θ (h1), and θ0 = θ (h0). The con-
straint hc < ha ensures that the computation of A in Eq. (8)

avoids the challenging integration of infinite diffusivity close
to saturation, D(θs)=+∞, since θc < θs. In addition, hc is
bounded to a finite value to avoid integration over infinite
intervals for part B. Then, the two integrals involved in
Eq. (8), A and B, only involve bounded functions over fi-
nite intervals, ensuring an easy numerical computation. An
illustration of the procedure is depicted in Fig. 1.

Next, we scale sorptivity to separate the respective contri-
butions of scale and shape parameters, as suggested by Lass-
abatere et al. (2021). We consider the following scaling rela-
tionships for hydraulic variables and sorptivity:
Se =

θ−θr
θs−θr

h∗ = h
|hg|

Kr =
K
Ks

, (9)

where Se is the saturation degree, h∗ is the scaled water pres-
sure head, Kr is the relative hydraulic conductivity, θr and
θs are the residual and the saturated soil water contents, hg is
the scale parameter for the water pressure head, andKs is the
saturated hydraulic conductivity. The application of scaling
relationships of Eq. (9) to the dimensional sorptivity expres-
sions leads to the following equation (Ross et al., 1996):

S =

√
|hg|Ks (θs− θr)S

∗, (10)

where S and S∗ are respectively the dimensional and the
scaled sorptivities. The application of the scaling equations
Eqs. (9) and (10) to the mixed formulation SM, defined by
Eq. (7), leads to the final expression proposed in our study:


SM (h0,h1)=
√
|hg|Ks (θs − θr)S

∗
M
(
h∗0,h

∗

1
)

S∗M
(
h∗0,h

∗

1
)
=

Se(h∗c )∫
Se(h∗0)

(
Se
(
h∗1
)
+ Se − 2Se

(
h∗0
))
D∗ (Se)dSe

. . . +

h∗1∫
h∗c

(
Se
(
h∗1
)
+ Se (h

∗)− 2Se
(
h∗0
))
Kr (h

∗)dh∗

)1/2
, (11)

where S∗M
(
h∗0,h

∗

1
)

is the scaled version of the proposed
mixed formulation, SM (h0,h1), with h∗0 = h0/|hg| and h∗1 =
h1/|hg|. Equation (11) can be demonstrated by changing the
integration variable θ→ Se in the first and h→ h∗ in the
second integral of Eq. (7). Since Eq. (11) cannot be evalu-
ated with coding software that does not allow infinite values,
h∗0 =−∞, we replace the input h0 (that may be infinite) with
Se,0 = Se

(
h∗0
)
, which always remains bounded in the final

expression of the mixed formulation S∗M:

S∗M
(
Se,0,h

∗

1
)
=√√√√√√

Se(h∗c )∫
Se,0

(
Se
(
h∗1
)
+ Se − 2Se,0

)
D∗ (Se)dSe +

h∗1∫
h∗c

(
Se
(
h∗1
)
+ Se (h∗)− 2Se,0

)
Kr (h∗)dh∗. (12)

Several options exist for the choice of the intermediate
water pressure head h∗c and intermediate saturation degree
Se,c = Se

(
h∗c
)
. In this study, our preferred option is to set the

intermediate saturation degree as the average between the ini-
tial and the final saturation degrees, Se,c =

(
Se,0+ Se,1

)
/2.
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Figure 1. Concept of the mixed formulation, SM(h0,h1): the integration of
h1∫
h0

(θ1+θ(h)−2θ0)K(h)dh (= S2
M(h0,h1)) is converted into the

sum of the integration of two bounded functions over bounded intervals,
θc∫
θ0

(θ1+θ−2θ0)D(θ)dθ and
h1∫
hc

(θ1+θ(h)−2θ0)K(h)dh. Note that the

data are depicted on a log scale for clarity, but the integration is performed directly on the integrands instead of their log-scaled counterparts.
Consequently, the integrals do not correspond to the areas below the curves, conversely to the case of linear scales. An illustrative case of the
computation of sorptivity, SM(h0,h1), for a synthetic loamy soil with an initial water pressure head of −103 mm and a final water pressure
head of −10−1 mm.

However, under certain circumstances (e.g., for soils with
gradual water retention functions; see Results section), the
value of h∗(Se,c) may reach very large values, leading to nu-
merical instabilities. Therefore, we use the following criteria
to ensure that h∗(Se,c) remains finite:{
h∗c =−min

(∣∣∣h∗(Se,0+Se,1
2

)∣∣∣ ,10z
)

z ∈ Z
Se,c = Se

(
h∗c
) . (13)

When necessary, the value of z is varied until the two
integrals in S∗M (Eq. 12) converge. In most cases, z ∈
{−2,−1,0,1,2} ensures convergence regardless of soil type
and situation. Note that for hydraulic models with non-null
water entry pressure head, ha < 0, z should be fixed with
z ≥ 0 so as to ensure −10z ≤−1 and thus h∗c ≤ h

∗
a =−1.

This condition is necessary to ensure the bijectivity of the
function Se (h

∗) over the interval
[
h∗0,h

∗
c
]
, which is required

for the use of Eq. (12).
In the following section, the mixed formulation S∗M

(Eqs. 12 and 13) is compared to several strategies previously
proposed in the literature to cope with situations of numeri-
cal indeterminacy, e.g., at saturation θ1 = θs (or, Se,1 = 1) for
a null water pressure head at the surface, h1 = 0, and for very
dry initial conditions θ0→ θr (or, h∗0→−∞).

2.2 Usual methods for computing sorptivity based
on SD and SK

2.2.1 Computing sorptivity with SK for very dry initial
conditions, h0→−∞

Regarding the computation of sorptivity for very dry initial
conditions with SK, one of the strategies found in the liter-
ature applies the regular definitions of sorptivity (Parlange,
1975), Eq. (5), to the case of very low values of h0. Such
an approach was used by Di Prima et al. (2020) to estimate
SK (h0,h1) for very dry soils. In this case, the maximum
sorptivity, S (−∞,h1), is approached as follows:

S (−∞,h1)=

√√√√√ h1∫
−∞

(θ1+ θ(h)− 2θr)K(h)dh

= lim
h0→−∞

√√√√√√
h1∫
h0

(
θ1+ θ(h)− 2θ

(
h0
))
K(h)dh

= lim
h0→−∞

SK
(
h0,h1

)
. (14)

Note that, for the sake of clarity, the underline in Eq. (14)
shows the variables that are adjusted until the solution con-
verges. Note also that the preceding equations are valid since
√

limf (x)= lim
√
f (x), with x→

√
x being a continuous

function. In practical applications of this method, SK (h0,h1)
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Figure 2. Illustration of the regular strategies for the estimation of the limits for the case of very dry conditions with the estimation of
S(−∞,h1) using either SK(h0,h1), Eq. (5), (a) or SK-V2(h0,h1), Eq. (16), (b). The integration proceeds from the given value of h0 to the
right, h≥ h0, corresponding to the solid zones, and the value of h0 is lowered step by step to reach the limit S(−∞,h1) (see the arrow
and the extension of the solid zones). In the equations, the variables that are adjusted to reach the targeted limits are underlined, and figures
are zoomed in on in the vicinity of the limits. The differences in equations between the target and the integrated integrands are in red. An
illustrative case of the computation of the limits of SK(h0,h1) or SK-V2(h0,h1) for a synthetic loamy soil with a final water pressure head
of h1 =−1 mm; successive values are considered for the initial water pressure heads, h0 ∈ {−101, −102, −103

} mm.

is computed for decreasing values of h0 until stabilization
is reached (Fig. 2a). The last value obtained in this way is
considered to represent the sorptivity at extremely dry condi-
tions, i.e., S (−∞,h1). This option is quite easy to implement
since it requires the user to only code the regular function SK
before applying it to very negative values of h0.

We propose an alternative procedure that employs a spe-
cific integrand to compute the same limit (Fig. 2b). In this
case, the water content θ0 is set equal to θr in the inte-
grand so as to correspond to the targeted initial conditions
θ (h0 =−∞)= θr:

S (−∞,h1)=

√√√√√ h1∫
−∞

(θ1+ θ(h)− 2θr)K(h)dh

= lim
h0→−∞

√√√√√√
h1∫
h0

(θ1+ θ(h)− 2 θr)K(h)dh

= lim
h0→−∞

SK-V2
(
h0,h1

)
(15)

with the specific function SK-V2 defined as follows:

SK-V2 (h0,h1)=

√√√√√√
h1∫
h0

(θ1+ θ(h)− 2θr)K(h)dh. (16)

In comparison to SK, the water content θ0 is replaced
with θr in the integrand for SK-V2. We expect this

modification to improve numerical convergence towards
the lower integration limit since SK-V2 directly inte-
grates the right integrand (Fig. 2b). Conversely, SK inte-
grates a distinct integrand, i.e., (θ1+ θ(h)− 2θ (h0))K(h) 6=

(θ1+ θ(h)− 2θr)K(h), thus involving an additional source
of error (Fig. 2a). Briefly, SK combines the error due to the
integral bound h0 >−∞ and the difference between its in-
tegrand and the targeted integrand. Note that the function
SK-V2 should be restricted to the evaluation of S (−∞,h1)

and never used for the computation of other cases, i.e.,
S (h0 6= −∞,h1), since the water content in the integrand
is fixed at θr, which corresponds exclusively to the case of
h0 =−∞.

The application of the scaling, Eqs. (9) and (10), to the
preceding definitions, Eqs. (14) and (15), leads to scaled ver-
sions of those equations, which will be used in the computa-
tions below:

S∗
(
−∞,h∗1

)
= lim
h∗0→−∞

√√√√√√
h∗1∫
h∗0

(
Se,1+ Se (h∗)− 2Se

(
h∗0

))
Kr (h∗)dh∗

= lim
h∗0→−∞

S∗K

(
h∗0,h

∗

1

)
(17)

https://doi.org/10.5194/hess-27-895-2023 Hydrol. Earth Syst. Sci., 27, 895–915, 2023
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S∗
(
−∞,h∗1

)
= lim
h∗0→−∞

√√√√√√
h∗1∫
h∗0

(
Se,1+ Se (h∗)

)
Kr (h∗)dh∗

= lim
h∗0→−∞

S∗K-V2

(
h∗0,h

∗

1

)
(18)

with S∗K and S∗K-V2, the scaled versions of SK and SK-V2, de-
fined as follows:
S∗K
(
h∗0,h

∗

1
)
=

√√√√h∗1∫
h∗0

(
Se,1+ Se (h∗)− 2Se

(
h∗0
))
Kr (h∗)dh∗

S∗K-V2
(
h∗0,h

∗

1
)
=

√√√√h∗1∫
h∗0

(
Se,1+ Se (h∗)

)
Kr (h∗)dh∗

. (19)

The derivation of these equations involved scaling Eqs. (9)
and (10) along with the change of variable θ→ Se.

2.2.2 Computing sorptivity with SD for null water
pressure head at surface, h1 = 0

A similar approach is often used with the SD formulation to
avoid numerical indeterminacy close to saturation. The first
option considers SD (θ0,θ1) with θ1→ θs as suggested, for
instance, by Fernández-Gálvez et al. (2019):

Su (θ0,θs)=

√√√√√√
θs∫
θ0

(θs+ θ − 2θ0)D(θ)dθ

= lim
θ1→θs

√√√√√√
θ1∫
θ0

(
θ1+ θ − 2θ0

)
D(θ)dθ

= lim
θ1→θs

SD
(
θ0,θ1

)
. (20)

Note that with this method, we can only account
for the unsaturated part of sorptivity, Su (θ0,θs)=√
θs∫
θ0

(θs+ θ − 2θ0)D(θ)dθ , and we systematically miss

the saturated portion of sorptivity 2(θs− θ0)Ks (h1−ha),
as mentioned in Sect. 1. The total sorptivity corre-
sponds to the sum of its two components (see Eq. 6):
S (h0,h1 > ha)=

√
S2

u (θ0,θs)+ 2(θs− θ0)Ks (h1−ha).
The subscript “u” in Su (θ0,θs) stands for “unsaturated” and
serves as a reminder of that limitation (Ross et al., 1996).
This point will be further illustrated and discussed in Sect. 3.

The integrand specified by SD corresponds to
(θ1+ θ(h)− 2 θ0)D(θ). Consequently, SD combines
the error due to the discrepancy between the integrated and
the targeted integrands with the error resulting from the
restriction of the integration to [θ0,θ1] instead of [θ0,θs]
(Fig. 3a, SD). To correct this problem, we define a different
estimator, SD-V2, to integrate directly the targeted integrand,

(θs+ θ(h)− 2θ0) D(θ) (Fig. 3b, SD-V2), and the following
developments emerge:

Su (θ0,θs)=

√√√√√√
θs∫
θ0

(θs+ θ − 2θ0)D(θ)dθ

= lim
θ1→θs

√√√√√√
θ1∫
θ0

(θs+ θ − 2θ0)D(θ)dθ

= lim
θ1→θs

SD-V2
(
θ0,θ1

)
(21)

with the function SD-V2 defined as follows:

SD-V2 (θ0,θ1)=

√√√√√√
θ1∫
θ0

(θs+ θ − 2θ0)D(θ)dθ. (22)

As mentioned above, for SK-V2, SD-V2 should be only used
for the determination of Su (θ0,θs) and not for the computa-
tion of sorptivity corresponding to other values of final wa-
ter contents, since SD-V2 integrates the right integrand if and
only if θ1 = θs. The scaled version of these equations can
be easily found by applying the scaling equations, Eqs. (9)
and (10), to the previous equations, Eqs. (20) and (21), lead-
ing to their scaled versions:

S∗u
(
Se,0,1

)
= lim
Se,1→1

√√√√√√
Se,1∫
Se,0

(
Se,1+ Se− 2Se,0

)
D∗ (Se)dSe

= lim
Se,1→1

S∗D

(
Se,0,Se,1

)
(23)

S∗u
(
Se,0,1

)
= lim
Se,1→1

√√√√√√
Se,1∫
Se,0

(
1+ Se− 2Se,0

)
D∗ (Se)dSe

= lim
Se,1→1

S∗D-V2

(
Se,0,Se,1

)
. (24)

The scaled versions of the formulation SD and SD-V2, S∗D
and S∗D-V2, can be written as
S∗D
(
Se,0,Se,1

)
=

√√√√Se,1∫
Se,0

(
Se,1+ Se− 2Se,0

)
D∗ (Se)dSe

S∗D-V2
(
Se,0,Se,1

)
=

√√√√Se,1∫
Se,0

(
1+ Se− 2Se,0

)
D∗ (Se)dSe

. (25)

In the following sections, we compare these previously
used strategies, based on the use of S∗K, and S∗D, and the im-
proved versions designed for the purpose of this study, S∗K-V2
and S∗D-V2 with the proposed mixed formulation S∗M, by quan-
tifying the accuracy and efficiency of each.
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Figure 3. Illustration of the regular strategies for estimating the limits for the case of saturation θ1→ θs, with the estimation of Su(θ0,θs)
using either SD(θ0,θ1), Eq. (4), (a) or SD-V2(θ0,θ1), Eq. (22), (b). The integration proceeds from the given value of θ1 to the left, θ ≥ θ1,
defining the solid zones. The values of θ1 are increased step by step to reach Su(θ0,θs) (see the arrow and the extension of the solid zones).
In the equations, the variables that are varied to reach the targeted limits are underlined, and figures are zoomed in on in the vicinity of the
limits. The differences in equations between the target and the integrated integrands are in red. An illustrative case of the computation of the
limits of SD(θ0,θ1) or SD-V2(θ0,θ1) for a synthetic loamy soil with an initial water content of θ0 = 0.25; successive values are considered
for the final water contents, θ1 ∈ {0.39, 0.40, 0.41}.

2.3 Validation of estimates against the nominal
sorptivity for the selected hydraulic models

2.3.1 Hydraulic models and nominal sorptivity

The validation of the computation of sorptivity with the pro-
posed mixed formulation SM (Eq. 11) and the usual strate-
gies (see Sect. 2.2) was performed for hydraulic models that
are commonly used for the hydraulic characterization of soils
and also present different challenging features:

– The Brooks and Corey (BC) model (Brooks and Corey,
1964) was among the first hydraulic models of soil
physics (Hillel, 1998). It uses power law relationships
to define the water retention (WR) and hydraulic con-
ductivity (HC) functions and is often considered for in-
tegrating sorptivity and finding analytical solutions for
water infiltration into soils (e.g., Varado et al., 2006).
The BC model reads as follows:
θBC(h)=

{
θs h≥ hBC

θr+ (θs− θr)
(
hBC
h

)λBC
h < hBC

KBC(θ)=Ks

(
θ−θr
θs−θr

)ηBC
. (26)

– The van Genuchten–Burdine (vGB) model combines
the van Genuchten (1980) model with the Burdine con-
dition

(
m= 1− 2

n

)
for the WR function and the Brooks

and Corey (1964) model for the HC function. It was
the basis of the development of BEST methods and
was often considered for the hydraulic characterization

of soils (Lassabatere et al., 2006; Yilmaz et al., 2010;
Bagarello et al., 2014a). These formulations are consid-
ered to be one of the most consistent to use for mod-
eling water infiltration into soils (Fuentes et al., 1992).
The vGB model reads as follows:
θvGB(h)= θr+ (θs− θr)

(
1+

(
h

hvGB

)nvGB
)−mvGB

mvGB = 1− 2
nvGB

KvGB(θ)=Ks

(
θ−θr
θs−θr

)ηvGB

. (27)

– The van Genuchten–Mualem (vGM) model combines
the van Genuchten (1980) model with Mualem’s condi-
tion

(
m= 1− 1

n

)
for the WR function and the Mualem

(1976) capillary model for the HC function. The vGM
model is among the most widely used models, in par-
ticular for the numerical modeling of flow in the vadose
zone (Šimůnek et al., 2003). The vGM model reads as
follows:

θvGM(h)= θr + (θs − θr)
(

1+
(

h
hvGM

)nvGM
)−mvGM

mvGM = 1− 1
nvGM

KvGM(θ)=Ks

(
θ−θr
θs−θr

)lvGM

(
1−

(
1−

(
θ−θr
θs−θr

) 1
mvGM

)mvGM
)2 . (28)

– The Kosugi (KG) model relates the WR function to the
soil pore size distribution assuming lognormal distribu-
tions (Kosugi, 1996). It is quite popular as the conse-
quence of its physical meaning and soundness (Pollacco
et al., 2013; Nasta et al., 2013) and was also recently im-
plemented into BEST methods for the hydraulic charac-
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terization of soils (Fernández-Gálvez et al., 2019). The
KG model reads as follows:

θKG(h)= θr +
(θs−θr)

2 erfc

(
ln
(

h
hKG

)
√

2σKG

)
KKG(θ)=Ks

(
θ−θr
θs−θr

)lKG
(

1
2 erfc

(
erfc−1

(
2 θ−θr
θs−θr

)
+

σKG√
2

))2
,

(29)

where erfc stands for the complementary error function.

These models involve the following common scale hy-
draulic parameters: residual water content, θr; saturated water
content, θs; scale parameter for the water pressure head, hg
(hBC, hvGB, hvGM, or hKG); and saturated hydraulic conduc-
tivity, Ks. The BC models involve a non-null air-entry water
pressure head, hBC, meaning that air needs a given suction to
enter into the soil and to desaturate the soil. For the sake of
simplicity, the scale parameter for the water pressure head is
often fixed at the air-entry pressure head, so that hg = hBC.
In addition, these hydraulic models involve one or two shape
parameters for each set of WR and HC functions, specifically
λBC and ηBC for the BC model; mvGB, nvGB, and ηvGB for
the vGB model; mvGM, nvGM, and lvGM for the vGM model;
and, lastly, σKG and lKG for the KG model. In order to sim-
plify these equations and to reduce the risk of equifinality
and non-unique optimization when inverting (Pollacco et al.,
2013), the following capillary model has been proposed to
link these shape parameters (Haverkamp et al., 2005):

η =
2
λ
+ 2+p, (30)

where λ= λBC for the BC model and λ=mn for the vGB
models. In addition, the shape parameters lvGM and lKG are
usually fixed at 1

2 . In this study, the computations are per-
formed considering the relationship given by Eq. (30).

The application of the scaling procedure Eq. (9) to these
hydraulic models, i.e., Eqs. (26)–(29), leads to the following
scaled hydraulic models (Lassabatere et al., 2021).

– BC model:{
Se,BC (h

∗)= (1−H (1+h∗)) |h∗|−λBC +H (1+h∗)
Kr,BC (Se)= S

ηBC
e .

(31)

– vGB model:
Se,vGB (h

∗)= (1+ |h∗|nvGB)−mvGB

with mvGB = 1− 2
nvGB

Kr,vGB (Se)= S
ηvGB
e .

(32)

– vGM model:
Se,vGM (h

∗)= (1+ |h∗|nvGM)−mvGM

with mvGM = 1− 1
nvGM

Kr,vGM (Se)= S
lvGM
e

(
1−

(
1− S

1
mvGM

e

)mvGM
)2

.

(33)

– KG model: Se,KG (h
∗)= 1

2 erfc
(

ln(|h∗|)
√

2σKG

)
Kr,KG (Se)= S

lKG
e

(
1
2 erfc

(
erfc−1 (2Se)+

σKG√
2

))2
.

(34)

These hydraulic models have the following hydraulic dif-
fusivity functions, D∗ (Se)=K (Se)

dh∗
dSe

(Lassabatere et al.,
2021):


D∗BC (Se)=
1
λBC

S
ηBC−

(
1

λBC
+1
)

e

D∗vGB (Se)=
1−mvGB
2mvGB

S
ηvGB−

1+mvGB
2mvGB

e

(
1− S

1
mvGB

e

)− 1+mvGB
2

D∗vGM (Se)=
1−mvGM
mvGM

S
lvGM−

1
mvGM

e

((
1− S

1
mvGM

e

)−mvGM

+

(
1− S

1
mvGM

e

)mvGM

− 2

)
D∗KG (Se)=

1
2

√
π
2 σKGS

lKG
e

(
erfc

(
erfc−1 (2Se)+

σKG√
2

))2

e
(
erfc−1(2Se)

)2
+
√

2 σKG erfc−1(2Se).

(35)

These equations are needed for the computation of the di-
mensionless sorptivity with the proposed mixed formulation
S∗2M and the regular formulations S∗2K , S∗2K-V2, S∗2D , and S∗2D-V2.

The studied hydraulic models exhibit contrasting and chal-
lenging features for the computation of sorptivity, including
non-null water pressure heads h∗a < 0 and infinite hydraulic
diffusivity close to saturation lim

Se→1
D∗ (Se)=+∞. The com-

plexity may also increase with the values of related shape
parameters. Therefore, Lassabatere et al. (2021) defined a
shape index, x, to characterize the spread of the WR func-
tions around Se (h

∗)= 1
2 . Regardless of the chosen hydraulic

model, the values of x close to zero correspond to a large
spread of WR functions with a smooth descent of the sat-
uration degree, Se, with the increase of |h∗| (see Fig. 2, in
Lassabatere et al., 2021, and also Sect. 3). Conversely, when
x gets close to unity, WR functions approach the stepwise
function with an abrupt decrease of Se with the increase
of |h∗|. Lassabatere et al. (2021) defined the WR shape in-
dex x as follows:
xBC =

λBC
2+λBC

xvGB =mvGB
xvGM =mvGM
xKG =

1
1+σKG

. (36)

Lassabatere et al. (2021) also analytically determined the
maximum squared scaled sorptivity S∗2(−∞,0), also re-
ferred to as the parameter cp, as a function of the WR shape
index x, for the BC, vGB, and vGM models:
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

cp,BC(x)= 2+ 1−x
5x+1 +

1−x
7x+1

cp,vGB(x)= 0
(

3−x
2

)[0( 1+5x
2

)
0(1+2x) +

0
(

1+7x
2

)
0(1+3x)

]

cp,vGM(x)= 0(2− x)

[
0
(

3
2 x
)

(
3
2 x−1

)
0
(

1
2 x
) + 0

(
5
2 x
)

(
5
2 x−1

)
0
(

3
2 x
)
]

+(1− x)

[
0
(

3
2 x
)
0(1+x)(

3
2 x−1

)
0
(

5
2 x
) + 0

(
5
2 x
)
0(1+x)(

5
2 x−1

)
0
(

7
2 x
)

−2
(

1
3
2 x−1
+

1
5
2 x−1

)]
. (37)

Note that no analytical formulation can be found for the
case of Kosugi’s hydraulic model, so cp,KG(x) must be com-
puted numerically (Lassabatere et al., 2021). Note also that
in Eq. (37), nominal sorptivities are defined with the use of
the capillary model Eq. (30) for the BC and vGB models, and
lvGM = lKG =

1
2 .

2.3.2 Paper methodology and computations

In this study, we stress the following points: (i) the studied
hydraulic models for WR and HC functions exhibit challeng-
ing conditions for the computation of sorptivity; (ii) the pro-
posed mixed formulation is an ideal estimator for sorptivity;
(iii) the usual methods, based on the use of SK and SD (Eqs. 5
and 4), or their improved versions, SK-V2 and SD-V2 (Eqs. 16
and 22), do not necessarily provide accurate estimations of
the targeted nominal sorptivity; and (iv) errors in sorptivity
estimation may drastically impact its use for modeling water
infiltration into soils. To demonstrate these points, we con-
sider the following conditions. Firstly, we only investigate
the case of scaled sorptivity. For any estimator any estima-
tor Ŝ of the nominal dimensional sorptivity S, and the related
scaled variables, Ŝ∗ and S∗, the following relations emerge
between the relative errors, Er, related to dimensional and
scaled sorptivity:

Er(S)=
Ŝ− S

S

=
Ŝ∗ ·

√
|hg|Ks (θs− θr)− S

∗
·
√
|hg|Ks (θs− θr)

S∗ ·
√
|hg|Ks (θs− θr)

=
Ŝ∗− S∗

S∗

= Er
(
S∗
)
, (38)

proving that the accuracy of the scaled estimator corresponds
exactly to the accuracy of the dimensional estimator. Next,
we consider the maximum scaled sorptivity, S∗(−∞,0),
since it involves at the same time the two types of challenges,
i.e., very dry initial conditions with infinite water pressure
head, h0 =−∞, and saturated final conditions with null wa-
ter pressure head, h1 = 0. Then, the modeling of water infil-
tration into soils is illustrated for a synthetic loamy soil and
relies on the use of dimensional sorptivity (Sect. 3.4).

The first step, point (i), involves the study of the selected
models with regard to the shapes of WR and HC functions.
We computed the WR and HC functions for the four selected
models, considering the following values of the WR shape
index: x ∈ {0.01, 0.02, . . . , 0.99}. For the second goal of the
study, point (ii), we compared the values provided by the
proposed mixed formulation S∗M with the nominal (error-
free) values of sorptivity, S∗ = S∗(−∞,0)=√cp, provided
by the exact analytical formulations (Eq. 37) for BC, vGB,
and vGM models. The computations were performed for all
the values of the WR shape index x, and the accuracy of S∗M
is discussed as a function of x.

For the third goal, point (iii), the estimations provided by
the usual strategies were compared to the estimates provided
by the proposed mixed formulation, S∗M, to evaluate the ef-
ficiency of those previously used strategies. We considered
several scenarios for the use of S∗K, S∗K-V2, S∗D, and S∗D-V2,
with several values of the lower water pressure head, h∗0, used
in Eqs. (17) and (18) and several values of the final saturation
degree, Se,1, used in Eqs. (23) and (24). We also investigated
the estimation error as a function of the shape parameters for
the four studied hydraulic models (BC, vGB, vGM, and KG).

Finally, regarding point (iv), we computed the dimensional
sorptivity for a synthetic loamy soil, S(h0,h1), using both
the mixed formulation and the regular methods, to investi-
gate its dependency on both initial and final conditions and
hydraulic models (BC, vGM, and KG). For the sake of clar-
ity, we omitted the case of the vGB model and considered the
other three models since their behaviors provided the great-
est contrasts. Then, we investigated its use for the modeling
of water infiltration into loamy soil. For that final purpose,
we applied the different calculated sorptivity values to an-
alytical models for the modeling of cumulative infiltrations
corresponding to a set of water pressure heads imposed at
the soil surface (hf =−150 or hf = 30 mm) along with an
initial water pressure head of −10 m (hi =−104 mm). The
analytical models used to model the cumulative infiltrations
are described in Sect. 3. The BC, vGM, and KG models were
fitted to the hydraulic functions of the loamy soil, as defined
by Carsel and Parrish (1988), before computation of sorptiv-
ity to investigate the impact of the choice of the hydraulic
models on sorptivity estimation and related impact on cumu-
lative infiltrations. The different synthetic cumulative infil-
trations were discussed with regard to the sorptivity estima-
tion method, the choice of hydraulic models for the WR and
HC functions, and the choice of the analytical model. All the
computations were performed using Scilab software (Camp-
bell et al., 2010) and are available on Zenodo (Lassabatere,
2022).
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3 Results

3.1 Analysis of the selected hydraulic models and
related challenging features

This section presents the four sets of models for describ-
ing the water retention and hydraulic conductivity functions,
their features, and their dependency on related shape param-
eters. The features of the WR-HC functions are determinant
with regard to the estimation of sorptivity. The BC model
has a non-null air-entry water pressure head (Fig. 4a, shown
by the plateau for |h∗| ≤ 1, i.e., h∗ ≥−1), meaning that
the sorptivity has a non-null saturated part that must be ac-
counted for. This condition is one of the challenging features
of the diffusivity form of sorptivity, Eq. (4). Conversely, the
three other hydraulic models do not have any air-entry water
pressure head values (Fig. 4e, i, and m do not have plateaus)
but rather have infinite values of the hydraulic diffusivity
close to saturation, thus posing potential problems of conver-
gence (Fig. 4h, l and p). The use of these models allows us
to characterize the improvements offered by S∗M compared to
the usual use of S∗D for the cases of problematic computation
close to saturation (i.e., h1→ 0 and θ1→ θs). Similarly, the
accuracy of the commonly used S∗K version can be challenged
when integrating over infinite intervals (−∞, 0], particularly
for hydraulic models that are characterized by a slight de-
crease in the saturation degree, Se, for quasi-infinite water
pressure heads, h∗. The chosen hydraulic models are thus
expected to be challenging, in particular the BC, vGB, and
vGM models, which keep high values of saturation degrees
even for quasi-infinite water pressure heads (Fig. 4a, e, and i).
The KG model, which is more symmetrical and characterized
by a larger decrease in Se when h∗ decreases (Fig. 4m), is
expected to be less challenging. Regarding those challenges,
the shapes of the WR, HC, and hydraulic diffusivity func-
tions are also of importance. We expect the small values of x
to be more problematic, in particular with the use of S∗K, due
to the smooth decrease in Se with h∗ (Fig. 4, first column).
Conversely, we expect more problems with the use of S∗D for
large values of x, with quasi-infinite values for the hydraulic
diffusivity close to saturation, i.e., Se→ 1 (Fig. 4h, l, and p).

3.2 Validation of the proposed mixed formulation, S∗M,
against the nominal sorptivity, S∗(−∞,0)

The computations using S∗M (Eqs. 12 and 13) with h∗c =

h∗
(
Se,0+Se,1

2

)
were efficient in most cases, regardless of the

value of the WR shape index x. The use of the threshold 10z

was necessary for the first value of the WR shape index x
for the BC model (xBC = 0.01), the first two values for the
vGB model (xvGB ∈ {0.01,0.02}), and the first 17 values for
the vGM model (xvGM ∈ {0.01,0.02, . . . „0.17}). The value
of z= 0 was enough to allow the computation in all cases,
apart from the case of the vGM model for which the value of
z=−1 had to be considered for xvGM ∈ {0.02, . . . , 0.07} and

Table 1. Absolute values of relative errors, |Er|, between the pro-
posed mixed formulation, S∗M, and the targeted scaled sorptiv-
ity, S∗(−∞,0)=√cp, with the mean |Er|, the standard deviation
(σ|Er|), the minimum and the maximum values for the three hy-
draulic models whose sorptivity is analytically tractable: Brooks
and Corey (BC), van Genuchten–Burdine (vGB), van Genuchten–
Mualem (vGM). Note that 10−16 corresponds to the relative preci-
sion of numbers in Scilab.

|Er| BC vGB vGM

|Er| 1.445× 10−13 5.594× 10−13 3.309× 10−9

σ|Er| 2.774× 10−13 1.014× 10−12 1.934× 10−8

Min < 10−16 < 10−16 8.255× 10−16

Max 1.201× 10−12 6.037× 10−12 2.000× 10−7

z=−2 for xvGM = 0.01. Note that, as long as convergence
is obtained, the values of S∗M(−∞,0) do not depend on z.
With this strategy involving a threshold, the proposed mixed
formulation, S∗M, provides estimates for all cases, i.e., for all
hydraulic models and all values of the WR shape index, x.
A sensitivity analysis was also performed for the KG model
and led to the same success with z= 0 regardless of the value
of the WR shape index xKG (data not shown).

The relative error, Er, between the estimates provided by
the proposed mixed formulation, S∗M(−∞,0), and the tar-
geted sorptivity, S∗(−∞,0)=√cp, was analyzed in terms
of means, standard deviations, and minimum and maximum
values (Table 1):

Er =
S∗M(−∞,0)−

√
cp

√
cp

. (39)

The accuracy of the proposed mixed formulation, S∗M,
Eqs. (12) and (13), is excellent for all the models and all val-
ues of the WR shape index x (Table 1). The average relative
errors are on the order of 10−13 for the BC and vGB models
and on the order of 10−9 for the vGM model (Table 1, Er).
The minimum errors were < 10−15 for all the models (Ta-
ble 1, Min). The maximum errors are≈ 10−12 for the BC and
the vGB models and ≈ 10−7 for the vGM model (Table 1,
Max). In other words, the mixed formulation, S∗M, provides
extremely accurate estimations of the targeted scaled sorp-
tivity S∗(−∞,0). The proposed mixed formulation, S∗M, can
therefore be considered to be an excellent estimator of sorp-
tivity in all cases, regardless of the choice of the hydraulic
model and related values of shape parameters.

3.3 Study of the usual strategies for estimating the
nominal sorptivity, S∗(−∞,0)

In this section, we compare the estimates provided by the
strategies commonly considered (i.e., S∗D, S∗D-V2, S∗K, and
S∗K-V2) with the reference values of the targeted sorptivity
S∗ = S∗(−∞,0). For these comparisons, we consider the an-
alytical formulations of Eq. (37) for the BC, vGB, and vGM
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Figure 4. Water retention (WR) and hydraulic conductivity (HC) curves for different values of the WR shape index x. Panels
(a, e, i, m) show WR as Se(h∗), panels (b, f, j, n) show HC as Kr (Se), panels (c, g, k, o) show HC as Kr (h∗), and panels (d, h, l, p) show
diffusivity as D∗(Se); the four tested models include Brooks and Corey (BC) (a–d), van Genuchten–Burdine (vGB) (e–h), van Genuchten–
Mualem (vGM) (i–l), and Kosugi (KG) models (m–p). The arrows indicate the trends with increasing WR shape index x. The hydraulic
parameters λBC, mvGM, mvGB, and σKG were computed as a function of x using Eq. (36) with lvGM = lKG =

1
2 . Adapted from Lassabatere

et al. (2021).

models and use the proposed mixed formulation S∗M for the
KG model. Indeed, no analytical expressions are available for
this last model, whereas the estimates provided by S∗ = S∗M
are very accurate for the BC, vGB, and vGM models (see
Sect. 3.2), and thus S∗M is assumed to be similarly accurate
for the KG model.

3.3.1 Illustrative example

In this example, we investigate the accuracy of the limits of
the functions S∗K and S∗K-V2 towards S∗. These functions, in
particular, S∗K, are often used without special attention re-
garding their accuracy. S∗K and S∗K-V2 converge to the limit S∗

when |h∗0| becomes large enough (Fig. 5, left column). For
instance, for the BC model with λ= 0.56, the use of S∗K
with h∗0 =−10 and h∗0 =−100 has respective relative errors

of Er =−4.1 % and Er =−15 % (Fig. 5a, dashed red line).
The second estimator, S∗K-V2, converges much faster than S∗K.
With the same values of h∗0, the relative errors drop below
0.01 % in absolute values (Fig. 5a, continuous blue line). In
this case, the convergence towards the target can be achieved
by integrating from h∗0 =−10, with high accuracy. Such an
improvement results from setting the initial saturation de-
gree, Se,0, at its target value, Se,0 = 0, in the integrand (see
Eq. 18 versus Eq. 17). The same conclusions hold regardless
of the hydraulic model (Fig. 5c, e, and g).

The convergence of the two functions, S∗D and S∗D-V2,
is depicted for the case of BC functions in Fig. 5b.
For both estimators, the estimates are far from the tar-
get values, S∗, with |Er| close to 50 %. This large
error results from the omission of the saturated part
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Figure 5. Relative errors of the regular functions S∗D(0,Se,1) and S∗D-V2(0,Se,1) (b, d, f, h) and S∗K(h
∗
0,0) and S∗K-V2(h

∗
0,0) (a, c, e, g)

towards S∗(−∞,0) for the four hydraulic models, for the following specific cases: BC model with λBC = 56 (xBC = 0.22), vGB model
with nvGB = 3 (xvGB = 1/3), vGM model with nvGM = 2 (xvGM = 1/2) with lvGM = 0.5, and KG model with σKG = 1.5 (xKG = 0.4) and
lKG = 0.5.
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of sorptivity, as explained above (Sect. 2.2). By de-
sign, S∗D and S∗D-V2 converge towards the unsaturated

part of sorptivity, Su(0,1)=

√
1∫

0
(1+ Se)D∗ (Se)dSe, and

miss the additional saturated part of the scaled sorptiv-
ity, 2

(
Se,1− Se,0

)
Kr
(
Se,1

)(
h∗1−h

∗
a
)
= 2, given that h∗1 = 0

(Se,1 = 1), h∗0 =−∞ (Se,0 = 0), and h∗a = 1. When the sat-
urated portion is added to the estimators, the convergence
becomes excellent (Fig. 5b, green line). These results show
that the computation of sorptivity using the integration with
regards to saturation degree, like Eqs. (4) and (25), leads
to erroneous estimations. Accounting for the term 2(θs−

θ0)Ks|ha| in Eq. (6) is thus essential. Note that Eq. (4) is
often considered and used in most studies, even though it
can lead to a large underestimation of sorptivity for the case
of non-null air-entry water pressure heads. That factor is of
prime importance regarding the accurate estimation of sorp-
tivity.

For the other hydraulic models, the estimators S∗D
and S∗D-V2 are significantly better (Fig. 5d, f, and h). In-
deed, the air-entry water pressure head is null in these mod-
els, which removes the large underestimation due to the
omission of the saturated part of sorptivity, as observed for
the BC model. However, the underestimation remains sub-
stantial, with relative errors on the order of 15 %–20 % for
Se,1 = 0.99 (Fig. 5d, f and h). Even when Se,1 = 0.999, the
relative errors are larger than 10 %. From these results, we
conclude that determining the sorptivity, S∗, by setting the fi-
nal saturation degree to near-unity does not provide good es-
timates, regardless of the estimators considered. These poor
estimates result from the fact that the diffusivity and, thus,
the integrand are infinite. The convergence of the integrals
defined by Eq. (25) and thus Eq. (4) is slow and prevents ac-
curate estimations. Conversely, in the case of S∗K and S∗K-V2,
changing the integrand by fixing it to the targeted integrand
does not significantly improve the convergence.

3.3.2 Relative errors as a function of the WR shape
index x

The previous results were presented for specific values of the
shape parameters in Fig. 5. One may wonder if the accu-
racy of estimators S∗K and S∗K-V2, on the one hand, and S∗D
and S∗D-V2, on the other, varies with the shape parameters
and indices. Figure 6 depicts the relative errors of the esti-
mators S∗K and S∗K-V2 as a function of the shape parameters
for different values of h∗0 (left column of Fig. 6) and of the
estimators S∗D and S∗D-V2 for different values of Se,1 (right
column of Fig. 6). For all hydraulic models except the BC
model, the best estimates for S∗D and S∗D-V2 are obtained for
intermediate values of WR shape indices (Fig. 6, right col-
umn). Discrepancies increase for both small or large values
of the WR shape index. As detailed above (Sect. 3.3.1), accu-
rate predictions require the practitioner to fix the upper inte-

gration boundary, Se,1, to a minimum of 0.999, to get errors
less than 10 %. However, estimates remain poor, even with
Se,1 = 0.9999 or Se,1 = 0.99999, when the WR shape indices
tend towards unity (Fig. 6d, f, and h).
For the BC model, the estimators S∗D and S∗D-V2 provide
poor estimates under all circumstances, since they miss the
saturated part of sorptivity, as explained above (Fig. 6b,
S∗D ≈ S

∗

D-V2). Adding the saturated part of sorptivity sub-
stantially improves the computation, with very accurate es-

timations (Fig. 6b,
√

2+ S∗2D ). Regarding the estimators S∗K
and S∗K-V2 (Fig. 6, left column), the estimates improve when
the WR shape index converges towards 1. It can be noted
that S∗K-V2 always provides quite accurate predictions with
very small relative errors (Fig. 6a, c, e, and f).

The results obtained in this study also revealed particu-
lar behaviors for the different formulations used to compute
sorptivity, specifically S∗K, S∗K-V2, S∗D, and S∗D-V2. The ap-
proaches that compute sorptivity by integration with regards
to h∗ (i.e., S∗K and S∗K-V2) have errors that come from the
choice of the lower integration boundary h∗0 and from the
value of Se,0 in the integrand. Solutions that compute sorp-
tivity by integration with regards to Se (i.e., S∗D and S∗D-V2)
have more error associated with the omission of the saturated
part, as well as slow convergence of the integration proce-
dure when dealing with infinite diffusivity values. Among
the usual procedures, the S∗K estimator is better than S∗D, and
the S∗K-V2 estimate is superior to both. Indeed, S∗K-V2 does
not miss the saturated part of sorptivity, like S∗K, but provides
much lower discrepancies than the other estimators regard-
less of the selected hydraulic model (Fig. 6). At the same
time, the adaptation of the integrand, by fixing the values of
the initial saturation degree, Se,0, to its final values, substan-
tially improves the quality of the estimator. This formulation
thus always provides estimates with |Er|< 10 %, regardless
of the selected hydraulic model and the value of the shape
index. However, these errors are still much larger than those
obtained with the mixed formulation, S∗M. Consequently, the
use of the mixed formulation, S∗M, should be favored as far as
possible.

3.4 Computation of sorptivity and accuracy of water
infiltration models based on sorptivity

In the following, we illustrate the need to use accurate sorp-
tivity estimates when modeling water infiltration into soils.
We consider the case of one-dimensional (1D) water infil-
tration into a loamy soil as a function of initial conditions,
i.e., hi, and final conditions, i.e., hf. In addition to the il-
lustration of the practical use of the proposed mixed formu-
lation, SM, we demonstrate that (i) SM provides better es-
timates for sorptivity than the usual estimator, SD, because
it always includes the saturated part of sorptivity (when ap-
plicable); (ii) this improvement avoids significant misestima-
tions of sorptivity and related errors for the modeling of the
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Figure 6. Relative errors of estimators S∗D and S∗D-V2 (b, d, f, h) and S∗K and S∗K-V2 (a, c, e, g) for the four selected hydraulic models, i.e.,
BC, vGB, vGM, and KG models, as a function of the WR shape indices.

Hydrol. Earth Syst. Sci., 27, 895–915, 2023 https://doi.org/10.5194/hess-27-895-2023



L. Lassabatere et al.: Mixed formulation for sorptivity 909

Table 2. Hydraulic parameters, i.e., values of the residual and satu-
rated water contents, θr and θs; the scale parameter for water pres-
sure head hg; the air-entry water pressure head ha; the saturated hy-
draulic conductivity Ks; and the shape parameters involved in the
hydraulic models used for the description of the water retention and
the hydraulic conductivity curves, i.e., Eqs. (26), (28), and (29).

vGM BC KG

θr 0.078 0.078 0.078
θs 0.43 0.43 0.43
hg [mm] −277.8 −111.5 −1018
ha [mm] 0 −111.5 0
Ks [mm s−1

] 2.288× 10−3 3.667× 10−3 2.288× 10−3

Shape parameter nvGM = 1.56 λBC = 0.34 σKG = 1.997
Tortuosity parameter lvGM = 1/2 pBC = 1 lKG = 1/2

cumulative infiltration into soils; and (iii) the proper analyt-
ical model is needed to account for positive water pressure
head at surface. Note that, for the sake of clarity, we com-
pare SM to SD, only, with no comparison with the other meth-
ods since SD-V2 gives similar results to SD and since SK and
SK-V2 do not miss the saturated part of sorptivity and involve
much lower errors. Lastly, the impact of the selection of the
hydraulic models for the description of the soil hydraulic
functions on the computation of sorptivity and on related
modeling of the cumulative infiltration is also discussed.

3.4.1 Illustrative example of computation of sorptivity
and dependency upon initial and final conditions

The studied synthetic loamy soil was defined by Carsel
and Parrish (1988) considering the vGM hydraulic model
(Eq. 28) with the hydraulic parameters tabulated in Table 2
(column “vGM”). In addition, we used the BC and KG mod-
els (Eqs. 26 and 29), with the parameters tabulated in Ta-
ble 2 (column “BC” and “KG”). Related hydraulic parame-
ters were optimized by fitting BC and KG models to the vGM
model and are available in the HYDRUS software suite (Rad-
cliffe and Simunek, 2010). Figure 7 depicts the water reten-
tion curve (Fig. 7a) and unsaturated hydraulic conductivity
(Fig. 7b) and demonstrates the proper alignment of BC and
KG models on the vGM model, despite the slightly greater
discrepancy for the BC model close to saturation for the hy-
draulic conductivity (Fig. 7b).

At first, we illustrate the use of the mixed formulation, SM,
for the computation of sorptivity for a final water pressure
head at the surface of hf =−150 mm and an initial water
pressure head of hi =−104 mm=−10 m. This initial con-
dition corresponds to the isostatic water pressure head in
equilibrium with a water table positioned at 10 m below the
ground. The value of −150 mm, considered at the surface,
is often used for water infiltration with tension disk exper-
iments to deactivate the macropores and infiltrate only into
the matrix (e.g., Timlin et al., 1994; Malone et al., 2004;
Lassabatere et al., 2014). Practically, the computation of di-

mensional sorptivity with the proposed procedure SM can
be performed using the codes developed for this paper and
downloadable from Zenodo (Lassabatere, 2022). Alterna-
tively, computations may be performed as follows:

1. Compute the initial and final saturation degrees, Se,i =

Se(hi) and Se,f = Se(hf).

2. Compute the intermediate water pressure head, h∗c =

−min
(∣∣∣h∗(Se,i+Se,f

2

)∣∣∣ ,10z
)

with z ∈ {−2,−1,0,1,2}.

3. Compute the intermediate saturation degree from the in-
termediate water pressure head, Se,c = Se(h

∗
c).

4. Integrate the lower part of the squared sorptivity

A=

Se,c∫
Se,i

(Se,f+ Se− 2Se,i)D
∗(Se)dSe.

5. Integrate the upper part of the squared sorptivity

B =

h∗f∫
h∗c

(Se,f+ Se(h
∗)− 2Se,i)Kr(h

∗)dh∗.

6. Combine the two parts to compute the mixed formula-
tion S∗M =

√
A+B.

7. Upscale by multiplying the scaled sorptivity,

SM =
√
|hg|Ks(θs− θr)S

∗
M.

For the studied case, with hi =−10 m and hf =−150 mm,
it leads to the following results:

1. The related scaled water pressure heads are h∗i =−36
and h∗f =−0.54, with related saturation degrees of
Se,i = 0.134 and Se,f = 0.89.

2. The intermediate water pressure head takes the value of
h∗c =−1, which corresponds to the maximum between

h∗
(
Se,i+Se,f

2

)
=−2.96 and −100

=−1.

3. The corresponding saturation degree takes the value of
S∗e,c = 0.780.

4. The computation of the lower part of the squared sorp-
tivity gives A= 0.0344.

5. The computation of the upper part of the squared sorp-
tivity gives B = 0.0515.

6. The combination of the two parts gives the scaled sorp-
tivity: S∗M = 0.2931.

7. The upscaling finalizes the computation of sorptivity:
SM = 0.156 mm s−1/2.
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Figure 7. Water retention (a) and hydraulic conductivity (b) curves described by the three sets of hydraulic models (BC, vGM, and KG) and
sorptivity as a function of initial (c) and final (d) water pressure heads with the sorptivity estimated by the proposed mixed formulation SM
and the regular model SD.

Then, we computed sorptivity with the mixed formula-
tion, SM, and the regular estimator, SD, as a function of
the initial water pressure head, hi, for the water pressure
head at the surface of hf =−150 mm (Fig. 7c) and as a
function of final water pressure head, hf, for an initial wa-
ter pressure head of hi =−104 mm=−10 m (Fig. 7d). We
considered three different models (vGM, BC, and KG). We
first analyzed the values of sorptivity as estimated by the
mixed formulation SM. The values of sorptivity decrease
with the initial water pressure head, hi (Fig. 7c), and in-
crease with the final water pressure head, hf (Fig. 7d), re-
gardless of the chosen hydraulic model, vGM, BC, or KG.
This trend was expected since the integrand is always posi-
tive, and the integration of positive functions decreases with
regard to its lower boundary and increases with regard to
its upper boundary. Those trends have already been docu-
mented by many authors (e.g., Stewart et al., 2013). The val-
ues of sorptivity were also computed with the regular esti-
mator SD (Fig. 7c and d, dashed lines). In most cases, the
two estimators, SM and SD, provided the same estimations,
except when the final pressure head was higher than the air-
entry water pressure head, hf ≥ ha. In this case, as explained
above, SD missed the saturated part of the sorptivity, which
explains why the values predicted with SD no longer increase

with hf but remain equal to the unsaturated part of sorptivity:
SD (θi, (hf ≥ ha))= SD (θi,θs)= Su (θi,θs) (Fig. 7d, plateaus
with dashed lines). Note for vGM and KG models, the air-
entry water pressure head is zero, then the plateaus begin at
hf = 0, whereas the air-entry water pressure head is lower
than zero for the BC model, ha =−111.5 mm, inducing an
earlier beginning of the plateau (Fig. 7d, BC versus vGM
and KG).

Another interesting point is the difference between the
three models. The BC model exhibits much larger sorptiv-
ity values, followed by the vGM model and then the KG
model. However, the three models are meant to represent the
same water retention and hydraulic conductivity functions,
i.e., the same soil. That result shows that the selection of the
hydraulic model for the water retention and hydraulic con-
ductivity functions substantially impacts the value of sorptiv-
ity, even when the models are fitted to the same data and rep-
resent the same soil. This point was already raised by Lass-
abatere et al. (2021). This feature is counterintuitive since the
use of close hydraulic models is expected to provide close
values of sorptivity. Such a discrepancy may result from the
different mathematical behaviors of the three different hy-
draulic models close to saturation. A closer look at the hy-
draulic functions shows that the unsaturated hydraulic con-
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ductivity differs close to saturation with the following rank-
ing – BC� vGM�KG (Fig. 7b) – which may explain the
observed discrepancy between values of sorptivity. We sus-
pect that the ranking of the values of sorptivity between mod-
els reflects the ordering between unsaturated hydraulic con-
ductivity close to saturation. Stewart and Abou Najm (2018)
also attributed higher sorptivity values with the use of the BC
model to the extra area under the K(h) curve.

3.4.2 Impact of misestimations of sorptivity on
cumulative infiltrations

Given the dependence of sorptivity on the choice of the esti-
mator and the hydraulic model, we expected some implica-
tions for water infiltration. To demonstrate this, we modeled
water infiltration into the studied loamy soil, with a 30 mm
water pressure head at the surface (hf = 30 mm) and an initial
water pressure head of −10 m (hi =−104 mm). To model
water infiltration, we used the analytical model developed
for hf ≤ ha by Haverkamp et al. (1994) with its extension
to hf > ha developed by Haverkamp et al. (1990). The first
model, referred to as the quasi-exact implicit (QEI) model
by many authors (e.g. Fernández-Gálvez et al., 2019), reads
as follows:

21K2

S2 t =
1

1−β

(
21K
S2 (I1D−Kit)

− ln

e 2β1K
S2 (I1D−Kit)

+β − 1
β

 , (40)

where 1K stands for the difference between final and initial
values of hydraulic conductivity1K =Kf−Ki, and β stands
for an infiltration constant, usually fixed at 0.6. Varado et al.
(2006) followed by Lassabatere et al. (2009) suggested intro-
ducing the following scaling procedure for time t and cumu-
lative infiltrations I :{
γI =

S2

21K I = γII
∗
+Kit

γt =
S2

21K2 t = γt t
∗

. (41)

These scaling equations lead to the following relationship be-
tween the scaled and dimensional versions of the QEI model
(Lassabatere et al., 2009):

IQEI(t)= γII
∗

QEI

(
t

γt

)
+Kit (42)

with the following equations for the scaled QEI
model, I ∗QEI (t

∗):

t∗ =
1

1−β

(
I ∗− ln

(
eβI

∗

+β − 1
β

))
. (43)

Note that in both equations Eqs. (40) and (43), the cumula-
tive infiltration is defined implicitly, since time is defined as a

function of the cumulative infiltration, instead of defining cu-
mulative infiltration as a function of time. On the same basis,
Ross et al. (1996) scaled the model developed by Haverkamp
et al. (1990) for the case of hf > ha, leading to

I ∗ =
σ

q∗− 1
+

1− σ
β

ln
(

1+
β

q∗− 1

)
(44)

t∗ =
1− σ
β(1−β)

ln
(

1+
β

q∗− 1

)
+

σ

q∗− 1

−
1− σβ
1−β

ln
(

1+
1

q∗− 1

)
, (45)

where q∗ = q
γq

is the scaled infiltration rate and γq =1K . In
this case, there is no direct relationship between the time t∗

and the cumulative infiltration I ∗ but instead two relation-
ships, with the first relating time and the infiltration rate,
t∗ = t∗ (q∗), defined by Eq. (45), and the second relating the
cumulative infiltration and the infiltration rate, I ∗ = I ∗ (q∗),
defined by Eq. (44). To compute the cumulative infiltration as
a function of time, the infiltration rate q∗ must be retrieved as
the root of the Eq. (45) before being inserted into Eq. (44) to
define the scaled infiltration as a function of the scaled time,
I ∗QEI_ext (t

∗). In the following, this relationship is referred to
as the extended version of the QEI model and denoted as the
QEI_ext model. This set of scaled models, Eqs. (44) and (45),
must be upscaled considering the same scaling factors, as
defined in Eq. (41) with the additional parameter, σ , which
quantifies the relative contribution of the saturated part of
sorptivity to the total sorptivity:

σ =
2(θs− θi)Ks (hf−ha)

S2 . (46)

The QEI_ext model addresses all cases. When hf ≤ ha, the
saturated part of sorptivity is null, leading to σ = 0, and the
QEI_ext model reduces to the regular QEI model. When
hf > ha, the regular QEI model is no longer valid, and the
extended QEI_ext model should be used instead. In other
words, the QEI_ext model is always valid and should be pre-
ferred to the QEI model in any case. In the following exam-
ple, we consider that two different errors may arise: (i) the
wrong choice of the estimator for the sorptivity and (ii) the
wrong choice of the model.

Before investigating the impact of errors, we evaluated
the dependence of the cumulative infiltrations as a function
of initial and final conditions. For this analysis, we use the
mixed formulation for sorptivity with the extended QEI_ext
model. The results are depicted in Fig. 8a and b. Cumulative
infiltration decreases with the initial water pressure head hi
(Fig. 8a, arrows downwards) and increases with the final wa-
ter pressure head hf (Fig. 8b, arrows upwards), as a con-
sequence of the variations of sorptivity as a function of hi
and hf (Fig. 7c and d). It can be noted that the impact of the
water pressure head at surface hf is much more important,
with much wider curve beams (Fig. 8b versus a; see shaded
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Figure 8. Cumulative infiltrations as a function of initial (a) and final (b) water pressure heads, computed with the correct estimate for
sorptivity (SM) and the right model and illustration of the dependency of cumulative infiltration on the model selection (QEI model versus
extended QEI_ext model) and on the selected estimator for the sorptivity (SM versus SD) for (c) the case of unsaturated conditions imposed
at surface hf ≤ ha (BC model, hi =−10 m and hf =−150 mm) and (d) the case of saturated conditions, hf ≥ ha (BC model, hi =−10 m
and hf = 30 mm).

areas). Again, these trends are in line with previous stud-
ies (e.g., Lassabatere et al., 2009, 2014; Angulo-Jaramillo
et al., 2016). The driver of water infiltration into the soil is
the hydraulic gradient and, thus, the difference between the
final and the initial water pressure heads. The higher the final
water pressure head and the lower the initial water pressure
head, the higher the hydraulic gradient and, thus, the higher
the cumulative infiltration. As for the sorptivity, the selection
of a hydraulic model for the water retention and hydraulic
conductivity functions drastically impacts the results, with
the same ordering as for sorptivity, i.e., largest cumulative
infiltration for BC, then vGM, and, lastly, KG models. As
a consequence, the fit of specific hydraulic models on the
same water retention and hydraulic conductivity functions
may lead to contrasting results in terms of water infiltration.
To the authors’ knowledge, this is the first time that the in-
fluence of the choice of the hydraulic model on sorptivity
estimation and water infiltration has been so clearly demon-
strated.

As stated above, either a wrong estimation of sorptivity
or a wrong choice of the analytical model (QEI instead of
QEI_ext model) may lead to erroneous estimates of the cu-

mulative infiltration. The four combinations of the two mod-
els and the two estimates of sorptivity were used to model
water infiltration for the case of an initial water pressure
head of hi =−104 mm and a final water pressure head of
hf =−150 mm (Fig. 8c) and for the case of the same initial
water pressure head, hi =−104 mm, but a positive surface
water pressure head hf = 30 mm (Fig. 8d). For the first case,
there was no difference at all (Fig. 8c). Both SD and SM accu-
rately quantified the sorptivity, and the two models, QEI and
QEI_ext were similar. In contrast, for the second case, the
difference was quite significant. The use of the more appro-
priate estimator, i.e., SM instead of SD, increased the amount
of modeled cumulative infiltration, regardless of the selected
model. In addition, the use of the correct model, i.e., the
QEI_ext instead of the QEI model, substantially increased
the cumulative infiltration, with a slightly lower increase in
comparison to that brought by the choice of SM for the com-
putation of sorptivity. These results demonstrate the impor-
tance of using the proper estimator for sorptivity in combina-
tion with the best possible infiltration model.
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4 Conclusions

The proper calculation of sorptivity is crucial to model ac-
curately water infiltration into soils. However, in some cases,
e.g., when the initial state is very dry, or the final state cor-
responds to saturated conditions, the numerical computation
of sorptivity using Eq. (4) or Eq. (5) from the hydraulic func-
tions may be a source of numerical errors and difficulties. In-
deed, the integration procedure typically used involves either
an infinite boundary or unbounded integrands. Many previ-
ous studies had attempted to alleviate these problems by fix-
ing arbitrarily finite limits for the integration interval. In this
study, we investigated the accuracy of these approaches and
demonstrated the potentially massive misestimation of sorp-
tivity that is possible when these arbitrary corrections are
used. To alleviate those problems, we proposed a mixed for-
mulation that was validated against analytical expressions of
sorptivity for specific hydraulic models. The proposed mixed
formulation proved highly accurate for all hydraulic mod-
els and shape parameters tested, with negligible relative er-
rors (< 10−7). Conversely, the use of regular estimates for
sorptivity leads to large underestimates in many instances,
in particular when the final water pressure head exceeds the
air-entry water pressure head.

This study demonstrates that, through the use of the new
mixed formulation, it is possible to compute sorptivity eas-
ily and very accurately. The proposed formulation presents
a very practical tool that may be applied to any type of hy-
draulic model and any value of initial and final water pres-
sure heads and water contents. The proposed approach allows
sorptivity to be computed in all cases, thus improving the
modeling of water infiltration into soils and the estimation of
soil hydraulic properties. In addition, we used the proposed
formulation to investigate the sensitivity of sorptivity to ini-
tial and final water pressure heads and to the choice of the
hydraulic model chosen to quantify the water retention and
unsaturated hydraulic curves. This analysis clearly demon-
strated that sorptivity increases with the final water pressure
head and decreases with the initial water pressure head. We
also showed that a proper estimate of sorptivity is crucial
with regard to the modeling of water infiltration into soils
and that the selection of the model for the hydraulic func-
tions drastically impacts the computation of sorptivity and,
consequently, the final amounts of cumulative infiltrations.
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