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Abstract. Reservoir regulation affects various streamflow
characteristics, from low to high flows, with important im-
plications for downstream water users. However, information
on past reservoir operations is rarely publicly available, and
it is hardly known how reservoir operation signals, i.e. infor-
mation on when water is stored in and released from reser-
voirs, vary over a certain region. Here, we propose a sta-
tistical model to reconstruct reservoir operation signals in
catchments without information on reservoir operation. The
model uses streamflow time series observed downstream of
a reservoir that encompass a period before and a period af-
ter a known year of reservoir construction. In a first step,
a generalized additive model (GAM) regresses the stream-
flow time series from the unregulated pre-reservoir period on
four covariates including temperature, precipitation, day of
the year, and glacier mass balance changes. In a second step,
this GAM, which represents natural conditions, is applied to
predict natural streamflow, i.e. streamflow that would be ex-
pected in the absence of the reservoir, for the regulated pe-
riod. The difference between the observed regulated stream-
flow signal and the predicted natural baseline should corre-
spond to the reservoir operation signal. We apply this ap-
proach to reconstruct the seasonality of reservoir regulation,
i.e. information on when water is stored in and released from
a reservoir, from a dataset of 74 catchments in the central
Alps with a known reservoir construction date (i.e. date when
the reservoir went into operation). We group these recon-

structed regulation seasonalities using functional clustering
to identify groups of catchments with similar reservoir oper-
ation strategies. We show how reservoir management varies
by catchment elevation and that seasonal redistribution from
summer to winter is strongest in high-elevation catchments.
These elevational differences suggests a clear relationship
between reservoir operation and climate and catchment char-
acteristics, which has practical implications. First, these ele-
vational differences in reservoir regulation can and should be
considered in hydrological model calibration. Furthermore,
the reconstructed reservoir operation signals can be used to
study the joint impact of climate change and reservoir oper-
ation on different streamflow signatures, including extreme
events.

1 Introduction

Reservoir regulation affects various streamflow characteris-
tics – including variability (Eisele et al., 2004; Ferrazzi et al.,
2019), seasonality (Biemans et al., 2011; Adam et al., 2007;
Rottler et al., 2019), and extreme events (Verbunt et al., 2005;
He et al., 2017; Wang et al., 2017; Wan et al., 2017; Vicente-
Serrano et al., 2017; Mahe et al., 2013; Tijdeman et al., 2018;
van Oel et al., 2018; Volpi et al., 2018; Brunner, 2021) – in al-
most 50 % of the world’s large rivers (> 1000 m3 s−1) and in
8 % of the rivers overall (Lehner et al., 2011). Regulation pat-
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terns may vary across regions and hydro-climates, as reser-
voirs are operated for different purposes including irrigation,
energy production, water supply, and recreation and, in some
cases, in a multi-purpose way (Lehner et al., 2011; Brunner
et al., 2019a). However, information on these reservoir op-
eration signals, i.e. on when water is stored in and when it
is released from reservoirs, is hardly publicly available, de-
spite its importance for model calibration and impact assess-
ments (Yassin et al., 2019; Speckhann et al., 2021; Brunner
et al., 2021; Steyaert et al., 2022). In some cases, reservoir
operation records are made available by the operating agen-
cies (e.g. Steyaert et al., 2022); however, this is the exception
rather than the rule. As a consequence, it is often unclear how
reservoir regulations vary across a region and whether and
how the regulation patterns are related to catchment charac-
teristics – knowledge that might be useful to transfer reser-
voir regulation information to basins without such informa-
tion. Because of the lack of reservoir regulation information,
hydrological and land surface models often use generic reser-
voir operation schemes that do not necessarily reflect local
behaviour, which is particularly problematic when simulat-
ing streamflow at sub-monthly resolution or when modelling
extreme events (Hanasaki et al., 2006; Yassin et al., 2019;
Turner et al., 2021).

Various attempts have been made to infer reservoir op-
eration signals from different types of data sources, includ-
ing optical and altimetry remote sensing (Peng et al., 2006;
Eldardiry and Hossain, 2019; Hou et al., 2022; Du et al.,
2022), reservoir purpose, simulated inflows and water with-
drawals (Hanasaki et al., 2006; Voisin et al., 2013), or in-
and outflows (Turner et al., 2021). To identify the timescales
most affected by reservoir operation, White et al. (2005) and
Shiau and Huang (2014) used the wavelet transform on both
observed in- and outflow time series and compared their
wavelet power spectra. To estimate reservoir release poli-
cies, Coerver et al. (2018) used fuzzy rules to link inflow and
storage with reservoir release for a set of reservoirs in Asia
and North America, and Turner et al. (2021) developed har-
monic regression models using observed and simulated daily
reservoir in- and outflows for large reservoirs in the conti-
nental United States (Steyaert et al., 2022). To map input–
output relationships for dams around the world, Ehsani et al.
(2016) used artificial neural networks and data on inflow, re-
lease, and storage. While these approaches are very helpful
for reservoir signal reconstruction in case both in- and out-
flow data are available, inferring the reservoir operation sig-
nal based on outflow information only remains challenging.

Here, we propose a statistical three-step approach for
reservoir signal reconstruction in catchments where reser-
voir outflow time series are available. The approach is based
on a generalized additive model (GAM) that enables recon-
structing reservoir operation signals from observed stream-
flow time series measured downstream of a reservoir or a set
of reservoirs and encompasses the period before and after a
known year of reservoir construction. In a first step, the ap-

proach fits a GAM to streamflow observations representing
natural pre-reservoir conditions using precipitation, temper-
ature, day of the year, and glacier mass balance changes as
covariates. In a second step, this GAM is applied to covari-
ates derived for the regulated post-dam period to predict nat-
ural streamflow for this regulated period. In a last step, the
reservoir regulation signal is reconstructed by subtracting the
predicted “natural signal” from the observed regulated sig-
nal. This resulting signal indicates how much water is stored
in and released from reservoirs in which season (i.e. day of
the year). These reservoir–storage–seasonality signals take a
reservoir perspective and provide information on storage in
addition to releases but not on inflow. Therefore, they are
distinct from the signals extracted through other approaches,
e.g. simulated water releases (Coerver et al., 2018), spec-
tral differences between in- and outflows highlighting the
timescales most affected by reservoir regulation (White et al.,
2005; Shiau and Huang, 2014), or water storage and release
policies, which define release decisions as percent deviations
from long-term mean inflow (Turner et al., 2021). Our ap-
proach can be used to reconstruct reservoir operation sig-
nals in catchments where streamflow and climate data are
available for a period before and after a known date of reser-
voir construction. Such information is more widely available
than reservoir in- and outflow measurements, which means
that the approach is applicable in different regions around
the globe where streamflow observations and information on
reservoir construction dates are available.

Here, we use the proposed approach to shed light on spa-
tial variations in reservoir regulation signals and their rela-
tionship to catchment characteristics. To do so, we apply the
approach to extract reservoir signals from observed time se-
ries of 74 catchments in the central Alps (Sect. 2.2). From
this database of 74 extracted signals, we identify groups of
catchments with similar reservoir operation strategies us-
ing functional data clustering (Sect. 2.3; Chebana et al.,
2012; Ternynck et al., 2016). The functional form is derived
from discrete observations (Ramsay and Silverman, 2002),
either by smoothing the data non-parametrically (Jacques
and Preda, 2014) or by projecting the data onto a set of
basis functions. The basis function (e.g. B spline, Fourier,
or wavelet bases) coefficients can be used for clustering
(Cuevas, 2014). It has been shown in previous studies that
functional data representations can be beneficial for identi-
fying groups of similar hydrographs over a range of tempo-
ral scales, such as spring flood events (duration of 6 months;
Ternynck et al., 2016), flood events (duration of several days;
Brunner et al., 2018), low-flow events (Laaha et al., 2017),
diurnal discharges (duration of 1 d; Hannah et al., 2000),
yearly hydrographs (Merleau et al., 2007; Jamaludin, 2016),
and streamflow regimes (Brunner et al., 2020). Here, we use
functional data clustering to identify groups of catchments
with similar reservoir operation seasonalities. We then assess
whether and how catchments with different reservoir opera-
tion strategies differ in their location and catchment charac-
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teristics. The combination of the proposed reservoir signal
reconstruction approach with functional clustering allows us
to provide insights into how reservoir regulation varies spa-
tially in the Alps and to which degree these variations are
related to catchment characteristics.

2 Methods

2.1 Dataset

The central Alps are an interesting region for studying
different reservoir regulation patterns because this region
is characterized by diverse hydro-climatic regimes (Bard
et al., 2015) which are often heavily influenced by reser-
voirs (Lehner et al., 2005; Brunner et al., 2019a). There-
fore, we identify a large sample of 74 regulated catchments
in the headwater regions of the four major European rivers
originating in the central Alps, namely the Rhine, Rhône,
Danube, and Po, for which the date of reservoir construction,
i.e. the date when a reservoir went into operation, is known
and for which observed daily streamflow data are available
for both a period before and a period after reservoir con-
struction (Fig. 1). The observed streamflow time series were
obtained from national agencies in Switzerland (Federal Of-
fice for the Environment, FOEN), Austria (Austrian Ministry
of Sustainability and Tourism), and eastern France (Banque
HYDRO) and regional agencies in southern Germany (re-
gions of Bavaria, Bavarian State Office for the Environment,
and Baden-Württemberg, State Institute for the Environment
Baden-Württemberg). The streamflow records of the differ-
ent catchments do not necessarily cover the same time pe-
riod; however, each catchment has streamflow data for at
least 10 years before and after reservoir construction (see
Fig. 2, for an example time series in the Swiss Alps). North-
ern Italy was excluded from the analysis because streamflow
records provided by the regional agencies did not cover the
pre-reservoir construction period.

In addition to streamflow, we derive daily meteorological
time series (precipitation and temperature) for each catch-
ment from the gridded observational E-OBS dataset at 25 km
spatial resolution for the period 1950–2020 (Cornes et al.,
2018) by averaging over all grid cells within a catchment.
If present, missing values in the time series of all variables
are replaced by the daily mean over the natural period for
the natural data and over the regulated period for the reg-
ulated data. Temperature and precipitation time series are
smoothed over a moving time window of 5 d to remove
noise because smoothing improves model performance. Fur-
thermore, data on reservoir locations and construction dates
are also obtained from national agencies (FOEN in Switzer-
land, the Austrian Ministry of Sustainability and Tourism
in Austria, and the Comité Fran¿ais des Barrages et Réser-
voirs in France; https://www.barrages-cfbr.eu/, last access:
1 March 2022) and open-source databases (for Germany; see

Figure 1. A total of 74 catchments in the central Alps with at least
10 years of streamflow data before and after reservoir construction
(black catchment outlines).

Speckhann et al., 2021). To account for changes in glacier
melt contributions over time, we compute annual glacier
mass balance changes for each of the selected catchments
using simulated mass balance changes over the period 1951–
2020 for the glaciers in the Randolph Glacier Inventory (RGI
Consortium, 2017; Compagno et al., 2021). After estimating
the average mass balance change for each glacier in a catch-
ment by weighting changes across different elevation bands,
each annual mass balance time series is disaggregated into
daily resolution by smoothing the annual signals over 365 d.
This smoothing avoids step-like features in the mass balance
change time series.

2.2 Reservoir signal reconstruction using GAMs

Here, we propose a modelling approach to reconstruct the
reservoir operation signal from observed streamflow time
series measured downstream of a reservoir before and af-
ter reservoir construction, representing natural and regulated
conditions, respectively (Fig. 3a and b). Before the reservoir
construction date, a regression scheme can learn the natural
link between streamflow times series and some appropriate
meteorological explanatory variables. In this work, this natu-
ral baseline signal is obtained by applying a generalized ad-
ditive model (GAM; Hastie and Tibshirani, 1986) during the
pre-reservoir time period. After the reservoir construction,
the reservoir operation signal can be defined as the differ-
ence between the regulated streamflow time series and the
signal that would have been measured without the reservoir.
The latter signal was never observed, but it can be estimated
by applying the learning GAM link to post-reservoir meteo-
rological explanatory variables.

Generalized additive models (GAMs) extend the linear
regression set-up and therefore represent a flexible model
structure to predict streamflow. The classical additive linear
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Figure 2. Streamflow time series for the catchment of the Dranse de Bagnes (gauge Le Châble) illustrating streamflow changes induced by
the construction of the Mauvoisin reservoir in 1957.

link,
∑
βjXj , between the observational vector Y and the

explanatory variables (X1, . . . ,Xp)T is replaced by a sum of
smooth functions

∑
fj (Xj ) (see, for example, Hastie and

Tibshirani, 1986). Hence, GAMs represent nonlinear rela-
tionships between covariates and the target variable. Each
smooth function fj (.) corresponds to a linear projection on a
given basis, which is here a cubic smoothing spline represen-
tation (see, for example, Hastie and Tibshirani, 1986; Wood,
2017). Typically, a GAM is written as follows:

yt =

p∑
j=1

fj
(
xtj
)
+ σεt , (1)

where σ > 0, and εt represents a standardized random noise.
In this study, the response variable yt corresponds to stream-
flow time series in millimetres per day (mm d−1). Alterna-
tively, GAMs have, in the context of reservoirs, also been
used to predict variables other than streamflow such as eu-
trophication levels (Catherine et al., 2010) or downstream
water temperatures (Coleman et al., 2021). The index t rep-
resents the time evolution in days and spans the time period
before reservoir construction, which varies by catchment. For
example, the construction of the Mauvoisin reservoir in 1957
can be clearly identified in the streamflow time series of the
catchment Dranse de Bagnes (gauge Le Châble; Fig. 2). In
this study, the set of explanatory variables, (X1, . . . ,Xp)T ,
contains three climatological parameters including tempera-
ture, precipitation, seasonality (day of year), and modelled
glacier mass balance changes. During the unregulated pre-
reservoir period, the GAM learns the nonlinear relationship
between streamflow time series and corresponding climato-
logical parameters. Then, the estimated transfer function fj
calibrated on the unregulated period is applied via Eq. (1)
to the regulated period to predict natural streamflow. The
approach relies on the assumption that the relationship be-
tween climate variables and streamflow remains stable over
time. The main advantage of GAMs is that cubic spline mod-
elling offers flexibility for each covariate and goes beyond
a restrictive linear regression framework, while the additive
structure among covariates remains simple. This balance be-

tween non-parametric modelling and a simple additive link
facilitates the interpretation of the contribution of each ex-
planatory variable. Still, other regression techniques (neural
networks, random forest, and other machine learning algo-
rithms) could replace our GAM approach in the scheme dis-
played in Fig. 3. Keeping in mind that our training period
can be short (a few decades) at some locations, this lack of a
large training dataset may also limit the application of fully
data-driven machine learning techniques.

The model covariates include the following three cli-
matological drivers: (1) smoothed daily temperatures,
(2) smoothed daily precipitation, and (3) day of the year (sea-
sonality) and interpolated daily glacier mass balance changes
(Fig. 3a; for details on datasets, see Sect. 2.1). The last vari-
able takes into account non-stationarities induced by chang-
ing glacier melt. Discharges during the natural and regulated
period can have different magnitudes as a result of water di-
versions, e.g. in the case of hydropower production. There-
fore, we normalize both the natural and regulated streamflow
time series by dividing by the mean flow over the correspond-
ing period. Such normalization makes natural and regulated
flow magnitudes comparable. All other variables were used
on their original scales. We use these covariates to fit a GAM
for the prediction of streamflow under natural flow condi-
tions (Fig. 3b). To do so, we fit the GAM to the stream-
flow observations of the pre-dam period. As positive and
skewed random variables, it is unlikely that streamflow time
series follow a Gaussian distribution given the four covari-
ates. To handle this issue, we choose a gamma family within
the GAM approach and study the following additive link:

f1 (pt )+ f2 (ht )+ f3 (dt )+ f4 (gt ) , (2)

where pt corresponds to smoothed precipitation, ht to
smoothed temperature, dt to the day of the year, and
gt to the interpolated glacier mass balance changes (for
the implementation, we used the R package mgcv; Wood,
2022, 2017). We assess the model’s performance by compar-
ing observed with predicted streamflow values and by com-
puting a range of different performance metrics including the
Kling–Gupta (KGE) and Nash–Sutcliffe efficiencies (NSE)
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Figure 3. Workflow illustration. (a) Input data used to fit and run the generalized additive model (GAM), including streamflow, precipitation,
temperature, and glacier mass balance changes for a period before and after reservoir construction representing natural and regulated con-
ditions, respectively. (b) GAM fitting using the natural data before reservoir construction. GAM is used to predict the natural signal for the
regulated period, and the regulation signal is reconstructed by subtracting the predicted “natural time series” from the observed regulated time
series (i.e. determining the seasons with reservoir storage and release). (c) Reservoir signal clustering using functional data analysis (FDA),
using hierarchical clustering on functional representations (i.e. spline basis functions) of the reconstructed signals of all catchments in the
dataset.

(Gupta et al., 2009; Nash and Sutcliffe, 1970), volumetric
efficiency (VE, Criss and Winston, 2008), mean absolute er-
ror (MAE), root mean squared error (RMSE), and percent
bias (PB). The model captures the observed values and their
distribution quite well, as illustrated by comparisons of ob-
served vs. predicted values, observed and predicted quan-

tiles, and observed and predicted time series (for an example
catchment, see Fig. 4). This visual impression is confirmed
by the goodness-of-fit statistics computed across all 74 catch-
ments (Table 1). KGE values range between a first quartile
of 0.38 and a third quartile of 0.75, NSE values between 0.23
and 0.64, and volumetric efficiencies between 0.49 and 0.73,
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Figure 4. Evaluation of the GAM model fitted using natural streamflow data of the Dranse de Bagnes (before reservoir construction 1911–
1956) and used to predict streamflow with precipitation, temperature, day of year, and glacier mass balance changes as predictors. (a) Ob-
served vs. predicted values (1911–1956), (b) Q–Q plot of observed vs. simulated quantiles (1911–1956), and (c) observed vs. predicted time
series (3 years; 1950–1953).

Table 1. Performance of GAM in predicting natural streamflow
for the pre-regulation period across catchments quantified by dif-
ferent goodness-of-fit statistics including the Nash–Sutcliffe effi-
ciency (NSE; values between 0–1 with an optimum at 1), Kling–
Gupta efficiency (KGE; values between 0–1 with an optimum at 1),
volumetric efficiency (VE; values between 0–1 with an optimum
at 1), mean absolute error (MAE; mm d−1), root mean squared er-
ror (RMSE; mm d−1), and percentage bias (PB; %).

Statistic First Median Mean Third
quartile quartile

KGE 0.38 0.48 0.53 0.75
NSE 0.23 0.31 0.34 0.64
VE 0.49 0.56 0.58 0.73
MAE 0.27 0.44 0.42 0.51
RMSE 0.45 0.77 0.84 0.96
PB 0 0 0 0

which means that mean flows and volumes are slightly better
simulated than high flows. MAEs range between 0.27 and
0.51 mm d−1 (normalized flow), the RMSEs between 0.45
and 0.96, and the percentage bias is 0. This performance as-
sessment suggests that the model is suitable for predicting
streamflow under natural conditions. Model performance is
independent of the length of the record available to fit the
GAM but depends on catchment area and elevation (Fig. B1).
The best performance is achieved in large and high-elevation
catchments, while performance is worst in small and low-
elevation catchments.

Next, we apply this model to deduce the never-observed
“natural” flow after the reservoir construction. In this case,
the GAM inputs are the same four covariables, i.e. temper-
ature, precipitation, day of year, and glacier mass balance
changes, but taken over the period after the reservoir con-
struction. As an application example, Fig. 8 compares the
natural streamflow regime (i.e. the mean annual hydrograph)
of the Dranse de Bagnes derived using the model for the
regulated period (red) with the natural observed (grey) and

Figure 5. Comparison of the observed natural streamflow regime
(i.e. the mean annual hydrograph) of the Dranse de Bagnes be-
fore reservoir construction (grey; 1911–1956), observed regulated
regime after reservoir construction (black; 1957–2020), and simu-
lated natural regime for the period after reservoir construction (red;
1957–2020).

the regulated observed streamflow regimes (black). The ob-
served regulated regime has a seasonality distinct from the
simulated natural regime. We assume that the difference be-
tween the observed regulated streamflow signal and the pre-
dicted natural baseline represents the reservoir operation sig-
nal.

Under this assumption, we derive the reservoir operation
signal by subtracting the predicted natural signal from the
observed regulated signal (Fig. 6a). To remove noise and re-
trieve a clear signal, we smooth the signal using regression
splines (Fig. 6b). Positive values represent release conditions,
as the observed regulated signal is higher than the predicted
natural signal, while negative values represent storage con-
ditions, as the predicted natural signal would be higher than
the actually observed regulated signal. The reconstructed sig-
nal informs about regulation at a daily scale but can also be
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Figure 6. Reservoir signal for the Dranse de Bagnes reconstructed
for the period 1960–2020 using the GAM predictions by subtract-
ing predicted natural discharge from observed regulated discharge,
where positive and negative values indicate release and storage,
respectively. (a) Raw daily signal. (b) Smoothed signal (spline
smoothing). (c) Mean seasonal signal.

aggregated to mean daily values to represent regulation sea-
sonality, i.e. the regulation regime. We here derive reservoir
regulation seasonality by averaging the reconstructed daily
signals for each day of the year (Fig. 6c).

A direct evaluation of the extracted seasonal reservoir sig-
nals is unfortunately not possible because observed inflow
and outflow data are not publicly available. Therefore, we
evaluated the approach using an alternative validation strat-
egy. The Swiss Federal Office of Energy provides weekly
reservoir storage estimates aggregated over a larger region
(i.e. canton; Bundesamt für Energie BFE, 2022). We use
these regional storage estimates to compute seasonal changes
in regional storage. We then use the regional storage change
curves derived for the regions Valais, Grisons, and Ticino to
evaluate the reservoir signals extracted using the GAM for
all catchments located in the three regions (Fig. 7). That is,
we apply the GAM approach to the catchments located in the
cantons Valais, Grisons, and Ticino using temperature, pre-
cipitation, and glacier mass balance changes as covariables.
We then compare the extracted reservoir regulation signals
to the reservoir signals extracted from the regional storage

curves. The regulation signal estimates for the 10 catchments
using the GAM approach compare very well to the signals
derived from observed regional reservoir storage data.

2.3 Reservoir signal variation analysis

We apply the GAM modelling approach introduced in the
section above to reconstruct the mean reservoir signals
(i.e. reservoir seasonality) of 74 catchments in the central
Alps with streamflow data for a period before and after reser-
voir construction. We then use these reconstructed reservoir
seasonalities to identify groups of catchments with similar
reservoir operation patterns using functional data clustering
(Ramsay and Silverman, 2002) (Fig. 3c). To do so, we fol-
low the approach proposed by Brunner et al. (2020) to clus-
ter streamflow regimes, i.e. mean annual streamflow hydro-
graphs. First, we project the discrete observations, i.e. the
reconstructed reservoir operation seasonalities at daily reso-
lution, to a set of B-spline basis functions (R-package fda;
Ramsay et al., 2014). B-spline functions are defined by their
order of polynomial segments and the number of knots,
which determine their ability to represent sharp features in
a curve (Höllig and Hörner, 2013). Similar to Brunner et al.
(2020), we use five spline basis functions of order four, which
corresponds to a minimal number of basis functions still al-
lowing for sufficient flexibility in representing diverse shapes
of reservoir operation seasonalities. The projection of the
observed reservoir operation seasonalities to the five basis
functions results in five coefficients per observed operation
signal, with one per spline base. The analysis is performed
in R using the packages fda.usc (Febrero-Bande and Oviedo
de la Fuente, 2012) and fda (Ramsay et al., 2014). Second,
we compute a Euclidean distance matrix using the matrix of
n= 74× 5 spline coefficients. Third, we use a hierarchical
clustering algorithm (hclust) with Ward’s minimum variance
criterion, which minimizes the total within-cluster variance
(Ward, 1963). We cut the tree at k = 2 clusters because this
seems to be the most suitable number of clusters, given the
symmetry of the tree. After cluster identification, we assess
various properties of the catchments in the different clusters
including the natural streamflow regime, catchment area, and
catchment elevation.

3 Results of the reservoir signal variation analysis

Reservoir operation in the central Alps varies by season and
across catchments, and the types of reservoir signals ex-
tracted using the GAM approach can be grouped into two
classes (Figs. 8a, b and 9a). In catchments belonging to
cluster 1, seasonal flow redistribution from summer to win-
ter is much more pronounced than in catchments belong-
ing to cluster 2. This seasonal redistribution pattern seems
to be related to the natural flow regime, which has a more
pronounced seasonality in catchments belonging to clus-
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Figure 7. Regional reservoir storage change curves for the regions (a) Valais, (b) Grisons, and (c) Ticino derived from regional reservoir
storage data provided by the Swiss Federal Office of Energy compared to the reservoir regulation signals estimated using the GAM of the
catchments located in the corresponding cantons (d). (a) Rhône, Porte-du-Scex, Rhône, Sion, Rhône, Branson, Dranse de Bagnes, Le Châble,
and Vispa, Visp. (b) Inn, Tarasp, Inn, Martina, and Spöl, Punt dal Gall. (c) Brenno, Loderio and Moesa, Lumino.

ter 1 than those belonging to cluster 2 (Fig. 8c and d).
The catchments with stronger seasonal redistribution are lo-
cated at higher elevations and have larger storage capac-
ities than catchments with weaker seasonal redistribution
(Fig. 9c and d) but do not differ in terms of catchment
area (Fig. 9a). While some catchments are strongly regulated
(i.e. those with strong signal amplitudes), less water is stored
and released in other catchments (i.e. those with weak ampli-
tudes; Fig. 8a and b). Independent of magnitude, the seasonal
release–storage signal appears to be similar in most catch-
ments. Water is mostly stored in summer (negative values),
when snowmelt, precipitation, and runoff are abundant (Frei
and Schär, 1998; Brunner et al., 2019b; Vorkauf et al., 2021),
and released in winter (positive values), when electricity de-
mand is high because of cold temperatures and elevated heat-
ing needs (Thornton et al., 2016; Wenz et al., 2017). This reg-
ulation seasonality is particularly pronounced in the catch-
ments in the central Alps, which are identified as a first clus-
ter of catchments sharing similar reservoir operation patterns
(Figs. 8a and 9a). In this region, reservoirs are mostly op-
erated for hydropower production (Fig. 10; Brunner et al.,

2019a). In contrast, reservoir operation seasonality is weaker
in the catchments in the pre-Alps and lowland areas (Figs. 8b
and 9c), where the second cluster of catchments with simi-
lar reservoir operation signals is found. In this region, reser-
voirs are operated for a wider variety of purposes includ-
ing flood protection, recreation, energy production, and wa-
ter and industrial supply (Fig. 10; Speckhann et al., 2021).
The catchments belonging to the two clusters clearly dif-
fer by elevation and, to a smaller degree, in the catchment
area (Fig. 9). That is, high-elevation catchments with melt-
dominated streamflow regimes show much stronger regu-
lation signals than low-elevation catchments with rainfall-
dominated streamflow regimes (Fig. 8c and d).

4 Discussion

We proposed a generalized additive modelling approach to
reconstruct the seasonality and magnitude of reservoir oper-
ation using observed streamflow time series, including a pe-
riod before and after reservoir construction. This statistical
approach has the advantage of being observation-based and
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Figure 8. Reservoir regulation seasonality patterns clustered into two groups, namely (a) release in winter and storage in summer and
(b) weak seasonal storage pattern. Natural streamflow regimes (computed using the undisturbed streamflow time series before reservoir
construction) belonging to the two reservoir regulation clusters (c, d).

computationally inexpensive. It does not require setting up a
hydrological model to simulate natural streamflow. However,
the approach also has some limitations. First, it is only appli-
cable in catchments where streamflow observations are avail-
able for a natural period before and a regulated period after
reservoir construction. This means that the approach is not
applicable in ungauged catchments and in catchments where
streamflow is only available for a post-reservoir construction
period. Turner et al. (2021) proposed a regionalization ap-
proach for reservoir operation signals. Our signals may also
be regionalized by establishing a relationship between group
membership and catchment characteristics, e.g. elevation,
which seems to be strongly related to the type of reservoir
regulation signal observed (Fig. 8). Second, while the predic-
tive performance of the GAM is satisfactory, there is room
for improvement with respect to the simulation of extreme
events, which are, as in other approaches, not perfectly rep-
resented. The residuals not only represent the reservoir oper-
ation signal but also include residual model error. Nonethe-
less, by smoothing the residuals, we are able to reconstruct
a regular pattern representing reservoir regulation. As an al-
ternative to GAMs, we tested the use of generalized additive
models for location, scale, and shape (GAMlss) which are
said to be more appropriate for modelling time series fol-
lowing extreme value distributions. However, such a model

adaptation did not improve the model performance, and new
statistical modelling frameworks are needed to better repre-
sent extreme events. Third, separating flow changes induced
by reservoir operation and other types of changes induced by
climate change, such as glacier melt contributions, is chal-
lenging. While the GAM representing natural conditions can
theoretically consider changes in glacier melt contributions
by including glacier mass balance changes, these effects are
in practice not perfectly represented because glacier mass
balance changes are observed and simulated at a coarse res-
olution (annual). This means that the signal reconstructed
by comparing the simulated natural signal with the observed
regulated signal may not solely represent reservoir operation
but, to some degree, also changes in glacier melt contribu-
tions that are not accounted for by the model. A better sep-
aration of the confounding changes – glacier melt and reser-
voir operation – may be achieved if more detailed informa-
tion about glacier mass balance were available or in cases
where the seasonality of reservoir regulation is clearly differ-
ent from the seasonality of glacier melt.

The GAM approach proposed here can be used to recon-
struct reservoir operation signals in other parts of the world,
given that streamflow and climate data are available for a
period before and after a known date of reservoir construc-
tion. Depending on the hydro-climate, the type of predictors
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Figure 9. Two groups of catchments with distinct reservoir regula-
tion signals, where panel (a) shows catchments belonging to clus-
ters 1 (turquoise) and 2 (red) with similar seasonal regulation pat-
terns (see Fig. 8). Panel (b) shows distributions of catchment areas
for clusters 1 and 2, (c) distributions of elevations for clusters 1
and 2, and (d) distributions of reservoir storage capacities for clus-
ters 1 and 2.

used in the GAM might need to be adjusted. For example,
the glacier melt part can be removed in non-alpine regions
where streamflow is uninfluenced by glacier melt. The GAM
modelling approach introduced here can also be used to as-
sess changes in reservoir operation over time. Such an adap-
tation in reservoir operation might be necessary to account
for changing environmental conditions (Feng et al., 2017).

By applying our GAM model to 74 regulated catchments
in the central Alps, we are able to show how reservoir regula-
tion seasonality varies in space. We identify two main groups
of regulated catchments (Fig. 9), namely those in the central
Alps, with storage in summer and release in winter, and those
in the pre-Alps and lowland regions, with a less-pronounced
operation seasonality and generally weaker storage and re-
lease cycles (Fig. 8). The catchments with pronounced regu-
lation cycles in group 1 are mainly operated for hydropower
production (Fig. 10), while those with less-pronounced reg-

Figure 10. Reservoir purpose mix of catchments in regulation clus-
ters 1 and 2 (see Fig. 9), including energy production, flood control,
and recreational use.

ulation seasonality in group 2 are operated for a variety of
purposes such as flood control or recreation (Fig. 10). This
finding that lowland catchments have weak reservoir reg-
ulation seasonality is in line with findings by Eisele et al.
(2004), who have shown that reservoir regulations in Baden-
Württemberg, Germany, have a very small impact on the tim-
ing of hydrological extremes. Applied at a larger or even
global scale, the GAM approach could help us to even better
understand spatial variations in reservoir operation.

5 Conclusions

We develop a generalized additive modelling approach us-
ing climate variables as predictors to extract reservoir oper-
ation signals from observed streamflow time series available
for a period before and after reservoir construction. We ap-
ply this approach to a set of 74 regulated catchments in the
Alps to extract reservoir regulation signals at daily resolu-
tion by comparing simulated natural flow with observed reg-
ulated flow. The mean reservoir operation seasonalities de-
rived from these daily signals are grouped using functional
data clustering to identify groups of catchments with simi-
lar reservoir operation strategies. We find that, in the central
Alps, there are two groups of catchments with distinct reser-
voir operation strategies, i.e. high-elevation catchments with
pronounced seasonal water redistribution from summer to
winter for hydropower production and low-elevation catch-
ments with weak seasonal water redistribution for different
reservoir purposes. The reservoir signals reconstructed using
the GAM modelling approach may be used to inform hy-
drological model development and calibration. Furthermore,
the reconstructed signals could inform the representation of
reservoir operation in hydrological models. Improving this
representation is crucial for advancing the field of change at-
tribution, as it will allow for a better separation of climate and
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regulation signals, which both influence streamflow charac-
teristics.

Appendix A: Catchments

Table A1. Catchment characteristics of the 74 Alpine catchments used in the analysis, including country, name of river, location of gauging
station, record length (years), catchment area (km2), elevation (m a.s.l.), and start year of reservoir operation.

Country River Station Record Start Catchment Elevation Start year of
length date of area reservoir

record operation

CH Rhône Porte du Scex 115 1905 5224 2124 1957
CH Rhône Sion 104 1916 3363 2287 1957
CH Rhône Branson 79 1941 3718 2231 1957
CH Inn Martina 116 1904 1936 2342 1968
CH Muota Ingenbohl 103 1917 316 1363 1966
CH Brenno Loderio 116 1904 399 1812 1963
CH Dranse de Bagnes Le Châble, Villette 109 1911 253 2601 1956
CH Doubs Ocourt 99 1921 1272 960 1953
CH Spöl Punt dal Gall 69 1951 294 2390 1968
CH Inn Tarasp 63 1957 1577 2383 1968
CH Doubs Combe des Sarrasins 67 1949 996 985 1953
CH Vispa Visp 117 1903 784 2642 1965
CH Moesa Lumino, Sassello 108 1912 471 1667 1958
AT Rhein Lustenau (Höchster Brücke) 66 1951 6289 1770 1976
AT Bregenzerach Kennelbach 66 1951 826 1120 1979
AT Vils Vils (Lände) 56 1961 198 1274 1965
AT Inn Prutz 66 1951 2454 2284 1966
AT Inn Magerbach 66 1951 5091 2212 1966
AT Inn Innsbruck (above Sill) 66 1951 5750 2139 1981
AT Ziller Zell am Ziller – Zellbergeben 66 1951 695 2056 1969
AT Inn Kirchbichl – Bichlwang 66 1951 9279 1941 1986
AT Salzach Golling 66 1951 3547 1577 1958
AT Salzach Oberndorf 56 1961 6099 1340 1974
AT Mur Muhr 56 1961 76 2043 1991
AT Möll Kolbnitz at the Tauernbahn 46 1971 1045 1935 1981
FR La Moselle Remiremont 50 1970 627 724 1983
FR La Moselle Épinal 50 1970 1214 653 1983
FR La Plaine Raon-l’Étape 50 1970 117 514 1986
FR La Durance La Durance à Briançon 62 1955 202 2150 2000
FR La Durance La Durance à l’ Argentière-la-Bessée 111 1910 961 2177 1966
FR La Durance La Durance à Espinasses (Serre-Ponçon) 69 1948 3567 2028 1966
FR La Tinée La Tinée à la Tour (Pont de La Lune) 44 1972 703 1746 2006
FR Le Var Le Var à Malaussène (La Mescla) 51 1965 1824 1482 2006
DE Baierzer Rot Achstetten 96 1924 264 631 1971
DE Jagst Schwabsberg 79 1941 178 514 1968
DE Würm Schafhausen 68 1952 237 492 1976
DE Rot Binnrot 60 1960 130 679 1971
DE Nagold Nagold 52 1941 376 625 1965
DE Kinzig Schwaibach 106 1914 952 604 1978
DE Erms Riederich 98 1922 159 637 1962
DE Rems Schorndorf 89 1931 417 432 2006
DE Zaber Hausen 89 1931 108 257 1968
DE Schwarzbach Eschelbronn 64 1954 191 248 2000
DE Lauter Süßen 79 1941 68 562 1976
DE Lein Abtsgmünd 99 1921 246 492 1957
DE Jagst Dörzbach 97 1923 1027 458 1958
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Table A1. Continued.

Country River Station Record Start Catchment Elevation Start year of
length date of area reservoir

record operation

DE Nagold Calw 79 1941 586 603 1965
DE Rottach Greifenmühle 63 1957 31 914 1984
DE Wertach Biessenhofen 100 1920 444 884 1959
DE Altmühl Treuchtlingen 91 1929 990 469 1974
DE Altmühl Eichstätt 91 1929 1391 482 1974
DE Naab Unterköblitz 80 1940 2002 514 1965
DE Schwarzach Warnbach 80 1940 819 551 1960
DE Schwarzer Regen Teisnach Schwarzer Regen 90 1930 624 782 1976
DE Kleiner Regen Lohmannmühle 59 1961 116 859 1976
DE Chamb Furth im Wald 70 1950 279 540 1989
DE Chamb Kothmaißling 60 1960 408 522 1989
DE Amper Fürstenfeldbruck 100 1920 1248 744 1961
DE Amper Inkofen 95 1925 3135 622 1961
DE Maisach Bergkirchen 85 1935 1581 705 1961
DE Vils Rottersdorf 81 1939 722 475 1972
DE Vils Grafenmühle 81 1939 1433 443 1972
DE Rott Birnbach 90 1930 854 460 1960
DE Main Schwürbitz 80 1940 2414 488 1968
DE Main Kemmern 90 1930 4235 434 1968
DE Rodach Unterlangenstadt 90 1930 712 530 1968
DE Itz Coburg 95 1925 363 458 1982
DE Itz Schenkenau 53 1967 505 423 1982
DE Regnitz Pettstadt 98 1922 6951 404 1956
DE Rednitz Neumühle Rednitz 110 1910 1816 424 1975
DE Roth Roth Bleiche 52 1968 179 414 1985
DE Pegnitz Nürnberg Lederersteg 110 1910 1180 457 1956
DE Fränkische Saale Bad Kissingen Golfplatz 91 1929 1572 382 1965
DE Fränkische Saale Wolfsmünster 90 1930 2116 374 1965

Appendix B: Further model evaluation

Figure B1. Relationship between model performance and catchment characteristics, including (a) record length used to fit the GAM,
(b) catchment area, and (c) elevation.

Hydrol. Earth Syst. Sci., 27, 673–687, 2023 https://doi.org/10.5194/hess-27-673-2023



M. I. Brunner and P. Naveau: Reservoir signal reconstruction 685

Data availability. The data used in our analysis are available
for download through HydroShare at https://www.hydroshare.org/
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