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The supplementary materials include Text S1 to S6 and Figures S1 to S9. 

 

S1: Amazon Basin 5 

The Amazon River basin is a major hydrological system containing a variety of rivers, floodplains, and wetlands (Reis et al., 

2019). It contains four of the world's largest rivers, namely Solimões-Amazonas, Madeira, Negro, and Japurá rivers. The 

Amazon Basin receives a high annual rainfall of 2,200 mm/year where 30%-40% of the rainfall is recycled locally through 

evapotranspiration (Fassoni-Andrade et al., 2021). The Amazon River flows into the Atlantic Ocean with an average annual 

discharge of 206 × 10!	𝑚!𝑠"#  accounting for about 20% of total world freshwater reaching the ocean yearly (Fassoni-10 

Andrade et al., 2021). Amazon River serves a variety of human needs, including fluvial transportation, agriculture, fishing, 

and energy generation. The Amazon basin has seen substantial changes in hydrological severe events such as floods and 

droughts in recent years, with documented increases in amplitude and frequency due to increased rainfall intensity. 

Furthermore, there is an obvious pattern of an increasing frequency of severe floods in the northern and main stem regions and 

an upward trend of extreme drought events in the southern regions (Wongchuig et al., 2019). Amazon basin have a 15 

comprehensive river observation network and very well studied especially using remote sensing (Fassoni-Andrade et al., 2021) 

 

Figure S1: Amazon basin with elevations indicated by colors. River 
network is indicated by blue.  
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S2: Preparation of biased runoff  

We introduced artificial bias into the runoff forcing data in the biased runoff experiment to determine the efficacy of DA 

methods when runoff is biased. We used a simple method to artificially corrupt the runoff ensemble rather than the ensemble 20 

generation method described in the main text. We generated the runoff ensemble by applying a –50% bias to the HTEESSEL 

(Balsamo et al., 2011) runoff product from E2O WRR2 (Dutra et al., 2017) and then perturbing it by 25% of the monthly mean 

runoff value. As a result of the introduction of this bias into the runoff forcing, river discharge and WSE were approximately 

50% lower in the open-loop simulation results than in the observations. Figure S4 presents an example of river discharge 

estimation using biased runoff and GRDC observations. 25 

S3: Preparation of corrupted bathymetry  

We artificially corrupted river bathymetry by subtracting 25% of the river channel depth from the original bathymetry to 

investigate the efficacy of DA when river bathymetry is erroneous. Basically, this process deepened the river channel, lowering 

Figure S2: GRDC gauges within Satellite coverage of ENVISAT and Jason1/2 in green circles where others indicated 
by red squares.  

Figure S3: The boxplot of a) relative sharpness (𝒓𝒔𝒉𝒂𝒓𝒑𝒏𝒆𝒔𝒔) and b) difference of reliability ∆𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 for all the experiments. 
This figure indicates Exp 1 is better in reducing the confidence bound. But with the current limitations of hydrodynamic modelling 
reliability will become lower. 
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the river bathymetry. The original river channel depth was calculated with a power-law equation (Yamazaki et al., 2011; Zhou 

et al., 2022), 30 

 

𝑩 = 𝒎𝒂𝒙5𝑩𝒎𝒊𝒏, 𝒄𝑩𝑸𝒂𝒗𝒈
𝒑𝑩 9 (1)  

 where 𝐵 is the channel depth (m) and 𝑄$%&	is the annual average discharge (m3/s). Here, the average climatological land 

surface runoff from the Minimal Advanced Treatment of Surface Interaction Runoff (MATSIRO; Takata et al., 2003), 

simulated by Kim et al. (2009), was used. Other parameters were estimated to be 𝐵'() = 1.0, 𝑐* = 0.1, and 𝑝* = 0.5. Figure 

S4 shows the difference in river channel depth between the corrupted and original values.  35 

S4: Data assimilation into a calibrated hydrodynamic model 

The hydraulic parameters were used to transfer the corrections to the next time step in DA. Therefore, we compared the river 

bottom–calibrated model with the conventional CaMa-Flood model to understand the impact of river bathymetry calibration 

on various DA techniques. We chose to calibrate the river channel bathymetry because uncertainty in river bathymetry is one 

of the largest sources of error in hydrodynamic modeling (Brêda et al., 2019). Inaccuracy in river bathymetry strongly affected 40 

the WSE and worsened the model’s performance compared to satellite altimetry measurements. River bathymetry was 

calibrated with the rating curve method (i.e., the discharge–WSE relationship; Zhou et al., 2022). Calibration was performed 

with in situ river discharge observations and satellite altimetry. The calibrated model simulated WSE more precisely than 

uncalibrated methods relative to WSE observations, but this calibration method did not drastically improve river discharge. 

Figure S4: River discharge comparison between observation (GRDC) and discharge simulated by biased runoff of 
HETESSEL E2O WRR2. 

Figure S5: Difference of river channel depth between corrupted and original 
bathymetry. 
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More information about the methods used to calibrate river channel bathymetry can be found in Zhou et al. (2022). Hereafter, 45 

“calibrated model” refers to the CaMa-Flood model in which the river channel bathymetry was calibrated using the rating 

curve method. We denote the direct, anomaly, and normalized value DA experiments as DIR_2, ANO_2, and NOM_2, 

respectively. 

Figure S6a illustrates the kernel density estimate of the probability density function for the 𝛥𝑟  of river discharge. All 

experiments that used the calibrated model (i.e., DIR_2, ANO_2, and NOM_2) showed an improvement in median ∆𝑟	(> 0), 50 

which indicates improved simulation of the flow regimes with DA for 50% or more of all gauges. The ∆𝑟 of river discharge 

in DIR_2 showed a left-skewed distribution, which suggests poor reconstruction of seasonality at some gauges (47.6%). At a 

few locations, the flow regimes improved greatly (𝛥𝑟 > 0.2) with calibration of the river bathymetry. More than 70% of 

gauges showed flow regime improvements in the anomaly and normalized value DA experiments. However, Exp 3a had 

positive median 𝑁𝑆𝐸𝐴𝐼 values, which indicates that at least 50% of gauges had improved 𝑁𝑆𝐸 values with DA. Figure S6b 55 

shows a boxplot of 𝑁𝑆𝐸𝐴𝐼 for all experiments, indicating considerable improvement in the DA experiments with normalized 

value assimilation. 

S5: Data assimilation under various conditions 

We compared the DA performances with different hydrodynamic model conditions and combinations of them. We tested 

biased runoff condition (“with runoff bias”: Text S2); corrupted bathymetry condition (“with bathymetry error”: Text S3); and 60 

a combination of biased runoff and corrupted bathymetry. Figure S7 indicates the hydrograph of Mancapuru gauging station 

for different DA methods and different model conditions. The normalized assimilation method estimated the discharge closer 

to the observed discharge neither with any runoff bias nor bathymetry error. But when the bathymetry error is imposed none 

Figure S6: a) Probability distribution of the correlation coefficient (∆𝒓) for each experiment, shown in blue, yellow, and red for 
direct (DIR_2), anomaly (ANO_2), and normalized value (NOM_2) using calibrated model, respectively. b) Boxplots of the Nash-
Sutcliffe based assimilation index (𝑵𝑺𝑬𝑨𝑰) of assimilated compared to open-loop discharge for all the experiments. Boxes in blue, 
yellow, and red indicates direct (DIR_2), anomaly (ANO_2), and normalized value (NOM_2) using calibrated model, respectively. 
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of the assimilation methods performed better than the open-loop simulation. When the runoff was erroneous the direct DA 

method performed better in estimating river discharge. The main reason for poor performance in anomaly and normalized 65 

value DA methods especially in bathymetry error conditions is the underestimation of the open-loop statistics (i.e., mean and 

standard deviation). The better performance of direct DA with runoff bias and without bathymetry error can be due to no error 

in river channel parameters (i.e., river bathymetry). Therefore, the poor performance of the anomaly and normalized value DA 

methods is due to the errors in the statistics used to generate anomalies and normalized values in the erroneous hydrodynamic 

model. 70 

S6: Annual peak and though estimation 

We investigated further into the peak and low flow values of the normalized value assimilation experiments namely normalized 

value assimilation with normal conditions (NOM) and normalized assimilation to calibrated model (NOM_2); since they are 

important parameters of a hydrograph that directly affects floods and drought occurrences. Normalized assimilation 

underestimated annual maximum discharges while accurately estimating annual low flows (Figure S9). Peak discharge 75 

underestimation is noticeable in larger river segments, such as the Amazon mainstem. Other limitations of global 

hydrodynamic modeling, such as the uncertainties of river width estimations, the assumption of rectangular river cross-sections 

and simplified floodplain physics, might contribute to these underestimations.  Improving the parameters directly involved in 

converting assimilated WSE values to prognostic variables in the model is important for a successful assimilation framework. 

 80 

 

Figure S7: Hydrographs of assimilated river discharge under various conditions: a) without runoff bias or bathymetry 
error, b) without runoff bias and with bathymetry error, c) with runoff bias and without bathymetry error, and d) with 
runoff bias and bathymetry error. The direct, anomaly, and normalized value DA results are represented in blue, yellow, 
and red, respectively. 
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Reference: 

Balsamo, G., Dutra, E., Beljaars, A. and Viterbo, P.: Evolution of land-surface processes in the IFS, ECMWF Newsl., 

Figure S8: Hydrographs for Santo Antonio Do ICA, and Humaita in Amazon and Maderia rivers, respectively. Observations, 
open loop, and assimilated river discharge presented in black, blue, and orange. Santo Antonio Do ICA represents the ability 
of DA to characterise the unexpected secondary peak. Humaita hydrograph shows the DAs’ ability to estimate low flows 
better. 

Figure S9: Scatter plot of the simulated annual maximum and minimum compared to observed maximum river discharge for NOM 
and NOM_2. Circles and squares represents assimilated and open-loop river discharge, respectively.   
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