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Abstract. The impact of droughts on vegetation is essen-
tially manifested as the transition of water shortage from the
meteorological to ecological stages. Therefore, understand-
ing the mechanism of drought propagation from meteoro-
logical to ecological drought is crucial for ecological con-
servation. This study proposes a method for calculating the
probability of meteorological drought to trigger ecological
drought at different magnitudes in northwestern China. In
this approach, meteorological and ecological drought events
during 1982–2020 are identified using the three-dimensional
identification method; the propagated drought events are ex-
tracted according to a certain spatiotemporal overlap rule,
and propagation probability is calculated by coupling the ma-
chine learning model and C-vine copula. The results indi-
cate that (1) 46 drought events are successfully paired with
130 meteorological and 184 ecological drought events dur-
ing 1982–2020, and ecological drought exhibits a longer du-
ration but smaller affected area and severity than meteoro-
logical drought; (2) a quadratic discriminant analysis (QDA)
classifier performs the best among the 11 commonly used
machine learning models which are combined with four-
dimensional C-vine copula to construct the drought propaga-
tion probability model; and (3) the hybrid method considers
more drought characteristics and a more detailed propaga-
tion process which addresses the limited applicability of the
traditional method to regions with large spatial extent.

1 Introduction

Drought is a multivariable and complex natural hazard with
the characteristics of slow evolution, wide impact, and spatial
extent (Feng et al., 2021; Wu et al., 2021; Zhang et al., 2021a,
b). Conventionally, drought can be classified into meteoro-
logical drought, hydrological drought, agricultural drought,
and socioeconomic drought. It is commonly accepted that
all types of drought originate from meteorological drought
(Mishra and Singh, 2010). Crausbay et al. (2017) argued
that existing drought types are described through a “human-
centric” lens to characterize a range of effects generated by
meteorological drought. This implies that the response of the
ecosystem to drought is generally ignored in policy develop-
ment, which in turn elicits water use conflicts between hu-
mans and ecosystems (J. Zhang et al., 2021). The Ecologi-
cal Drought working group of Science for Nature and Peo-
ple Partnership (SNAPP) proposed a framework of ecologi-
cal drought from an “ecology-centric” lens, which incorpo-
rates ecological, meteorological, and hydrological informa-
tion (Crausbay et al., 2017). Ecological drought was thus de-
fined as an episodic deficit in water availability that drives
ecosystems beyond thresholds of resilience into a vulnerable
state, impacts ecosystem services, and triggers feedback in
natural and/or human systems (Bradford et al., 2020; Craus-
bay et al., 2017; McEvoy et al., 2018; Munson et al., 2021;
Raheem et al., 2019).

Vegetation is among the most important components in
terrestrial ecosystems, and the distribution and growth of
vegetation are largely influenced by meteorological factors
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(Wang et al., 2021; Zeng et al., 2020; Z. Zhang et al., 2021).
Developments in remote sensing technology have facilitated
the application of vegetation indices to reflect the response of
vegetation to climate change (Lawal et al., 2021). For exam-
ple, a simple linear relationship was found between the stan-
dardized precipitation evapotranspiration index (SPEI) and
normalized difference vegetation index (NDVI) at a global
scale (Vicente-Serrano et al., 2012). The correlation between
SPEI and NDVI showed a positive relationship in most re-
gions of northwestern China (NWC), with the exception of
a few regions such as the western parts of the Tarim Basin,
Qaidam Basin, and southeastern part of the area (Jiang et al.,
2018). Actually, the impact of drought on vegetation is man-
ifested as the transition of water shortage from the meteoro-
logical stage to the ecological stage. Therefore, this impact
should be analyzed by quantifying the effect of decreasing
precipitation on the variation of available ecological water,
i.e., from the perspective of drought propagation.

Drought propagation refers to the transition of one drought
type to another, and it is vital for drought monitoring and pre-
diction (Fang et al., 2020; Warter et al., 2021). Accordingly,
drought propagation has become a hot topic in meteorology
and hydrology fields (Apurv et al., 2017; Guo et al., 2020).
Approaches to drought propagation analysis are broadly di-
vided into model simulations and statistical methods (Han et
al., 2019). In the former approach, hydrological responses to
meteorological drought are analyzed by using physical-based
models that are considered to be effective in representing rel-
evant hydrological processes. Nevertheless, this approach in-
volves labor-intensive calibration processes and is not suit-
able at large spatial scales (Huang et al., 2017). In contrast,
statistical methods with fewer assumptions are easier to use
at different spatial scales (Huang et al., 2017). However, in
such methods, the propagation process was analyzed using
the time series of an average value of drought index in a re-
gion or subregion (explained in the Discussion section). In
other words, the temporal connection between two drought
types is only considered in the traditional statistical methods,
but their spatial overlap is ignored, which may result in the
miscalculation of drought propagation in regions with large
spatial extent.

The probability information of one type of successive
drought events is contained in another type of associated
drought (Wu et al., 2021). Therefore, a number of stud-
ies have attempted to assess the propagation relationships
between the two drought types based on the probabilis-
tic method. A Bayesian network is a probabilistic model
that acquires probabilistic inferences over interacting vari-
ables of interest based on a graphical structure. Therefore,
this method has been proven to be suitable for quantify-
ing the probability relationship between different drought
types (Ayantobo et al., 2018; Chang et al., 2016; Das et al.,
2020). For example, Guo et al. (2020) calculated the oc-
currence probability of hydrological drought based on dif-
ferent intervals of duration and severities of meteorologi-

cal drought. Sattar et al. (2019) identified the occurrence
probability of different classes and lag times of hydrolog-
ical drought according to the intensity of meteorological
drought. Xu et al. (2021) found that the probability of agri-
cultural drought severity increased synchronously with mete-
orological drought in different regions of China. Jehanzaib et
al. (2020) concluded that in the Korean Peninsula, the prob-
ability of meteorological drought propagating into hydrolog-
ical drought increased significantly under climate change.
In general, these studies primarily focused on the relation-
ship between duration and severity between the two drought
types but ignored the relationships among affected areas. Xu
et al. (2015a) found that the probability of drought occur-
rence would be underestimated if drought-affected areas are
not considered. Therefore, the traditional probabilistic model
of drought propagation can be improved by introducing the
three-dimensional clustering method, which would provide
more drought information (Liu et al., 2019).

Taking a typically ecologically fragile region, northwest-
ern China (NWC), as an example, the motivation of this study
is to identify meteorological drought and ecological drought
during 1982–2020 in NWC from a three-dimensional per-
spective, and propose a novel method to investigate the re-
sponse probability of ecological drought to meteorological
drought. The remainder of the current paper is organized as
follows: Sect. 2 briefly overviews the geographic information
of NWC and describes the datasets used in this paper, and the
procedure for estimating propagation probability from mete-
orological to ecological drought. The results and the com-
prehensive analysis of the proposed approach are presented
in Sects. 3 and 4, respectively. Finally, the conclusions are
given in Sect. 5.

2 Materials and methods

2.1 Study area

Northwestern China (NWC; 31◦35′–49◦15′ N, 73◦25′–
111◦15′ E) includes the provinces of Shaanxi, Gansu, Qing-
hai, and the autonomous regions of Xinjiang Uyghur and
Ningxia Hui, covering a total surface area of 3.1 million km2

(Fig. 1) (Zheng et al., 2021). The terrain of NWC consti-
tutes mountains, basins, and the Gobi. The altitude ranges
from −156 to 6647 m, showing the characteristics of “west
high and east low”. Four climatic divisions, including hu-
mid, semi-humid, semi-arid, and arid areas were demarcated,
based on the dryness index (Z. Zhang et al., 2021). As NWC
is located at upstream of the Yangtze, Yellow, and other large
rivers, it is significant to study the impact of drought on its
ecosystem (Liu et al., 2021).

2.2 Datasets

Monthly meteorological data, including surface reflectance,
temperature, relative humidity, atmospheric pressure, down-
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Figure 1. Elevation and four divisions of northwestern China.

ward shortwave radiation, wind speed, and longwave radia-
tion, were obtained from the ERA5-Land reanalysis dataset
(https://cds.climate.copernicus.eu, last access: 18 Novem-
ber 2022) issued by the European Centre for Medium-Range
Weather Forecasts (ECWMF), which has a spatial resolution
of 0.1◦×0.1◦ and covers the period of 1981–2021. Root soil
moisture data were obtained from the hydrological dataset,
simulated by the Noah model of the Global Land Data As-
similation System (GLDAS, 0.25◦× 0.25◦; https://ldas.gsfc.
nasa.gov/gldas, last access: 18 November 2022), covering the
period of 1948–2021. NDVI data covering the period 1981–
2021 were obtained from the National Centers for Envi-
ronmental Information (NCEI) (https://www.ncei.noaa.gov/,
last access: 18 November 2022), with a spatial resolution of
0.05◦×0.05◦. Land use type data (LUTD) with a spatial reso-
lution 1 km was downloaded from China’s multi-period land
use/cover change monitoring dataset (http://www.resdc.cn,
last access: 18 November 2022); it includes the years of
1980, 1990, 1995, 2000, 2005, 2010, 2015, 2018, and 2020.
In order to uniform the spatial resolution of root soil mois-
ture, all spatial datasets were resampled to 0.25◦× 0.25◦ us-
ing the bilinear interpolation method. The temporal range of
all datasets was extracted from January 1982 to December
2020.

2.3 Meteorological and ecological drought index

Previous studies have found that the standardized precipi-
tation evaporation index (SPEI) overestimated the meteoro-
logical drought in NWC where actual atmospheric water de-

mand is determined by precipitation variation (Ayantobo and
Wei, 2019; B. Zhang et al., 2019; J. Zhang et al., 2019). Ad-
ditionally, precipitation is the main water resource for vege-
tation growth in most regions of NWC due to the great depth
to groundwater (Cao et al., 2021). A standardized precipita-
tion index (SPI) is thus used in the current study to represent
meteorological drought. SPI at different time scales was cal-
culated by aggregating n month moving sums, allowing the
identification of various drought types (McKee et al., 1993).
At short time scales, drought events are characterized by high
frequency and short duration, while at long time scales, they
have longer duration and lower frequency. SPI-3 has been
reported to be highly representative of the impacts of meteo-
rological conditions on vegetation, as vegetation variation is
sensitive to precipitation accumulated over 3 months (McKee
et al., 1993; Vicente-Serrano et al., 2012, 2010a). Therefore,
SPI-3 is used to characterize meteorological drought in this
study. Further details on the SPI calculation are available in
McKee et al. (1993).

Commonly used drought indices indirectly reflect the in-
fluence of drought on ecosystems, and they do not compre-
hensively reflect the homeostasis between ecological water
consumption and requirement in drought evolution (Jiang
et al., 2021). Additionally, decreases in vegetation coverage
are not only caused by a persistent deficit in available water
for ecosystems but also other aspects, such as wildfire, hail,
flood, and human activities (Bento et al., 2020). This limited
the ability of vegetation indices to reflect drought conditions.
Therefore, a new drought index, the standardized ecologi-
cal water deficit index (SEWDI), was constructed to monitor
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Figure 2. A schematic diagram illustrating the procedure of the drought propagation identification method.

terrestrial ecological drought in our previous study (Jiang et
al., 2021). SEWDI follows a similar procedure as SPI, which
includes the calculation of ecological water deficit (EWD),
the selection of an optimal distribution for fitting monthly
EWD series, and the inverse normal transformation of the
cumulative density distribution of EWD. EWD is the differ-
ence between ecological water requirement (EWR) and eco-
logical water consumption (EWC) (Chi et al., 2018; Jiang
et al., 2021). Among them, EWR was calculated using the
single crop coefficient method recommended by the Food
and Agriculture Organization (FAO). EWC equals the actual
evapotranspiration, which is derived from latent heat fluxes
calculated by the surface energy balance system (SEBS) al-
gorithm. Therefore, SEWDI can reflect the dynamics of en-
ergy and water balance under human activities and climate
change. Additionally, the standardization method facilitates
the same threshold and evaluation criteria in monitoring two
drought types (Peng et al., 2019; Zang et al., 2020), which
reduces the influence of other algorithms on final results and
guarantees spatiotemporal comparability (Liu et al., 2017).
The procedure for calculating the SEWDI calculation is de-
tailed in Jiang et al. (2021).

2.4 Drought propagation probability method

Since a reliable understanding of the drought propagation
process is beneficial for drought forecasting, research interest
in the probability of drought propagation from meteorolog-
ical droughts to other types of droughts has been increasing
(Zhou et al., 2021). The current study thus proposes a novel
method coupling spatial and temporal connection methods of
two drought types with a machine learning model and C-vine
copula to investigate the relationship between meteorological
and ecological drought. A flow diagram of the method is de-
picted in Fig. 2.

Investigating the relationship between the characteristics
of the two drought types is key to constructing a probability
model. The approach is summarized in three steps as follows:

– Step 1. Meteorological and ecological drought events
were identified from a three-dimensional perspective
(Sect. 2.4.1).

– Step 2. The two drought types with a genetic relation-
ship were paired on the basis of a certain spatiotempo-
ral matching rule. Their drought characteristics, includ-
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ing drought-affected area, drought severity, and drought
duration, were calculated according to the method de-
scribed in Sect. 2.4.2.

– Step 3. Taking the characteristics of meteorological
drought extracted in step 2 as inputs, and propagation
results as outputs, the optimal model was selected from
11 machine learning classification models to calculate
the propagated probability of meteorological drought
(Sect. 2.4.3). Then, a conditional probability model
of the paired meteorological and ecological drought
events was constructed based on the C-vine copula
(Sect. 2.4.4). According to the severities of all identi-
fied ecological drought events, cumulative probabilities
of 0.5, 0.75, and 0.9 were selected to demarcate mod-
erate, severe, and extreme drought, respectively (Guo et
al., 2020). The probabilities of ecological drought at dif-
ferent magnitudes triggered by meteorological drought
were obtained by multiplying their conditional proba-
bility with the propagated probability of meteorological
drought.

2.4.1 Drought identification based on the
three-dimensional clustering method

According to Andreadis et al. (2005), the evolution of a
drought event should be viewed as a spatiotemporal con-
tinuum (longitude, latitude, and time). Different from the
traditional one- or two-dimensional drought identification
method, the three-dimensional array of SPI-3 and SEWDI-
3 were extracted to characterize the degree of meteorolog-
ical and ecological droughts. The extraction procedure in-
volves two steps (Fig. 2) (Andreadis et al., 2005; Xu et al.,
2015a, b): firstly, the clustering method was used to identify
drought patches in each month; secondly, the drought con-
tinuum was constructed by selecting the overlapping areas
of drought patches between two adjacent months, which was
greater than 1.6 % of the total area (see Sect. 3.1 for the rea-
son).

For each drought event, three drought characteristics were
extracted as follows: (1) affected area was calculated by cu-
mulating the area affected by drought in each month during
the entire drought period. (2) Duration denotes the time that a
drought event persisted. (3) Severity is a cumulative value of
SEWDI-3 or SPI-3 for the entire drought duration and areal
extent and equals the volume of the three-dimensional con-
tinuum.

2.4.2 Spatiotemporal connection of two drought types

Liu et al. (2019) developed a new method for identifying the
propagation between two related drought types based on the
drought identification method from a three-dimensional per-
spective. The current study employs this method to identify
the propagation from meteorological to ecological drought.
The key to this method is the determination of the tempo-

ral and spatial connection between two drought types. The
specific steps are as follows.

Firstly, the identified meteorological and ecological
drought events are sorted in chronological order. Secondly,
whether the two drought types overlap in time is judged ac-
cording to Eqs. (1)–(2):

Overlapt =
1 if


MBTi ≤ EBTj and min

(
METi,EETj

)
−max

(
MBTi,EBTj

)
≥ 2

MBTi > EBTj and min
(
METi,EETj

)
−max

(
MBTi,EBTj

)
≥ α

0 if MBTi ≥ EBTj and min
(
METi,EETj

)
−max

(
MBTi,EBTj

)
< α,

(1)

α =min
(

MDDi
3

,
EDDj

3

)
, (2)

where 1 and 0 denote the existence and absence of time
overlap between two drought types, respectively; MBTi and
EBTj represent the beginning time of the ith meteorolog-
ical and j th ecological drought events, respectively. Simi-
larly, METi and EETj represent the end time of the ith me-
teorological and j th ecological drought events, respectively;
MDDi and EDDj indicate the duration of the ith meteoro-
logical and j th ecological drought events, respectively.

Thirdly, whether the meteorological and ecological
drought patches connecting at a spatial scale is judged ac-
cording to Eqs. (3) and (4)

Overlaps =
{

1 if MDAi ∩EDAi ≥ β
0 if MDAi ∩EDAi < β,

(3)

β =max(1.6% ·ANWC,min(MDAi,EDAi) · b), (4)

where 1 and 0 denote the existence and absence of spatial
overlap between two drought types, ANWC represents the to-
tal area of the NWC, and MDAi and EDAj represent the
projected area of the ith meteorological and j th ecological
drought events, respectively. b is set as 15 % in the current
study (see Sect. 3.1 for the reason).

Fourthly, successfully matched drought events are en-
coded following chronological order. Cells in Fig. 2 repre-
sent the relationship between preliminarily identified events
of the two drought types. The propagation type from mete-
orological to ecological drought can be classified into four
categories: one ecological drought event induced by one me-
teorological drought event (one-to-one), multiple ecologi-
cal drought events induced by one meteorological drought
event (one-to-many), one ecological drought event induced
by multiple meteorological drought events (many-to-one),
and multiple ecological drought events induced by multiple
meteorological drought events (many-to-many). The codes
of cells are identical if the propagation type belongs to one-
to-many, many-to-one, and many-to-many.
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Figure 3. Sensitivity test of overlapping areas of drought patches between two adjacent months.

Finally, the characteristics of meteorological and ecolog-
ical drought events that belong to the same paired drought
event are integrated. Among them, total duration is the differ-
ence between the latest-ending and earliest-starting drought
events, total affected area is the projected area of all individ-
ual drought events, and total severity is the sum of severities
of individual drought events.

2.4.3 Drought propagation identification based on the
machine learning model

The purpose of this part is to identify whether a meteoro-
logical drought event has the potential to trigger ecologi-
cal drought. Eleven commonly used machine learning clas-
sification models, including the K-neighbors (KN) classi-
fier (Parzen, 1962), support vector machine (SVM) classi-
fier (Ben-Hur et al., 2000), Gaussian process (GP) classi-
fier (Chen et al., 2020), decision tree (DT) classifier (Quin-
lan, 1986), multi-layer perceptron (MP) classifier (Cybenko,
1989), AdaBoost (AB) classifier (Freund and Schapire,

1997), Gaussian Naïve Bayes (GNB) (Chan et al., 1982),
quadratic discriminant analysis (QDA) (Cover, 1965), gra-
dient boosting (GB) classifier (Friedman, 2001), XGBoost
(XGB) classifier (Chen and Guestrin, 2016), and random
forest (RF) classifier (Pal, 2005), were employed for prop-
agation judgment. Drought duration, severity, and affected
area of meteorological drought were set as the model inputs
(Fig. 2). One and zero were set as model target which rep-
resents propagation occurrence and non-occurrence, respec-
tively. In this study, each binary classifier was constructed
using a Python package called PyCaret, which wraps several
machine learning libraries, including scikit-learn, XGBoost,
LightGBM, CatBoost, spaCy, Optuna, and Hyperopt (Ali,
2020). The tune_model() function in the PyCaret package
offers simple selection of optimal hyperparameters of each
model. A five-fold cross-validation was used to train and val-
idate the classifiers in each model by setting “fold=5” in
the create_model() function. In using the compare_models()
function, the classifier with the highest summation of accu-
racy, precision, recall, F1 score, and Matthew’s correlation
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Figure 4. Identification results of paired meteorological and ecological drought events.

coefficient was selected as the optimal model. To avoid over-
fitting and maintain high calculation efficiency, the L2 regu-
larization method was selected for each model by setting the
parameter “penalty=‘l2’ ”.

accuracy=
TP+TN

TP+TN+FP+FN
, (5)

precision=
TP

TP+FP
, (6)

recall=
TP

TP+FN
, (7)

F1score=
2 ·TP

2 ·TP+FP+FN
, (8)

MCC=
TP ·TN−FP ·FN

√
(TP+FP) · (TP+FN) · (TN+FP) · (TN+FN),

(9)

where TP and FN represent actual positives that are correctly
and wrongly predicted, respectively; TN and FP represent
actual negatives that are correctly and wrongly predicted,
respectively. MCC represents Matthew’s correlation coeffi-
cient, which is used to evaluate the accuracy of binary clas-
sification tasks.

2.4.4 Drought propagation probability model based on
C-vine copula

Five univariate distributions, including Johnson S_B
(Soukissian, 2013), gamma (Thom, 1958), exponential (Mar-
shall and Olkin, 1967), Pearson III (Wallis and Wood, 1985),
and Weibull distributions (Thoman et al., 1969), were used
to fit affected area, duration, and severity of meteorologi-
cal drought and severity of ecological drought. The optimal
distribution was selected according to the goodness of fit
(GOF), which was estimated with the Kolmogorov–Smirnov

(KS) test (Marsaglia et al., 2003) and root mean square error
(RMSE).

Commonly used copulas, including an elliptical copula
(Gaussian) and four Archimedean copulas (Clayton, Gum-
bel, Frank, and Joe), were used to join two marginal distri-
butions (Chang et al., 2016). The GOF of these copulas was
estimated with RMSE and the Cramer-von Mises (CvM) test
(Genest et al., 2009).

The vine copula function is an effective tool for integrat-
ing different bivariate distributions and calculating the con-
ditional probability of multiple variables (Ni et al., 2020). In
a vine copula, an n-dimensional multivariate density is de-
composed into n(n− 1)/2 bivariate copula densities and ar-
ranged into n− 1 trees. Among numerous vine copula struc-
tures, the C-vine copula has a relatively simple structure and
good robustness for constructing multivariate distributions
(Wu et al., 2021). Therefore, it is of primary significance to
this study. The GOF of C-vine copulas was estimated with
RMSE and the CvM test. The joint density function of an
n-dimensional C-vine copula is expressed as Eq. (10):

f (x1, . . .,xn)=

n∏
i=1
fi (xi)×

∏n−1
i=1

n−i∏
j=1

ci,i+j |1:(i−1){
F (xi |x1, . . .,xi−1) ,F

(
xi+j |x1, . . .,xi−1

)}
, (10)

where f (x1, . . .,xn) represents the joint density function. c
represents bivariate copula densities, which include Gum-
bel, Gaussian, Frank, and Clayton copula functions; F repre-
sents the cumulative distribution function of marginal distri-
bution. i and j represent root nodes. More detailed informa-
tion about the n-dimensional C-vine copula can be referred to
Wu et al. (2021). By this means, the conditional probabilities
of ecological drought at different magnitudes under impacts
of meteorological drought are calculated using Eq. (11):

https://doi.org/10.5194/hess-27-559-2023 Hydrol. Earth Syst. Sci., 27, 559–576, 2023



566 T. Jiang et al.: Estimating propagation probability from meteorological to ecological droughts

F (X > x|D > d,A > a,S > s)

=
F (D > d,S > s,A > a,X > x)

F (S > s,A > a,D > d)

= (1−F (d)−F (s)−F (a)−F (x)
+C (FD (d) ,FS (s))+C (FD (d) ,FA (a))

+C (FD (d) ,FX (x))+C (FA (a) ,FS (s))

+C (FA (a) ,FX (x))+C (FX (x) ,FS (s))

−C (FD (d) ,FS (s) ,FA (a))

−C (FD (d) ,FS (s) ,FX (x))

−C (FD (d) ,FA (a) ,FX (x))

−C (FS (s) ,FA (a) ,FX (x))

+C (FD (d) ,FS (s) ,FA (a) ,FX (x)))/(1−F (d)
−F (s)−F (a)+C (FD (d) ,FS (s))

+C (FD (d) ,FA (a))+C (FS (s) ,FA (a))

−C (FD (d) ,FS (s) ,FA (a))) , (11)

where D, A, and S represent duration, area, and severity
of propagated meteorological drought, respectively; X rep-
resents ecological drought at moderate, severe, and extreme
magnitudes, which equals the cumulative probability of 0.5,
0.7, and 0.9, respectively. C represents the cumulative distri-
bution function of the joint distribution.

3 Results

3.1 Threshold selection

Determining overlapping areas of drought patches between
two adjacent months is critical in the identification of drought
events from a three-dimensional perspective. Sheffield et
al. (2009) used 500 000 km2 as the area threshold in global
scales. For mainland China, 150 000 km2 was used as the
area threshold in some studies (Wang et al., 2011; Xu et
al., 2015b). Liu et al. (2019) took 1.5 % of the total area as
the threshold in the Loess Plateau. To determine an optimal
area threshold, the number of meteorological and ecological
drought events, as well as the ratio of minor drought events,
were calculated under different area thresholds. Here, a mi-
nor drought is defined as a drought event with 2 months’ du-
ration and average SPI/SEWDI larger than −1. As shown in
Fig. 3, 1328 and 2305 meteorological and ecological drought
events were identified with an area threshold of 0.48 % of
the total area of NWC, and the proportions of minor drought
events were 44 % and 32 %, respectively. The number of
drought events and the proportion of minor drought events
decreased with increasing area threshold. However, this trend
gradually stabilized when the area threshold was set to be
larger than 1.6 % of the total area of NWC, indicating that
most minor drought events with the relatively small area were
excluded. Therefore, 1.6 % of the total area of NWC was
used as the area threshold in this study.

Figure 5. A box plot showing the intensity, duration, and affected
area of paired meteorological–ecological drought among different
types.

Table 1. Sensitivity test of parameter b.

Threshold Number of paired drought events

min(AMi ,AHj ) · 90 % 23
min(AMi ,AHj ) · 70 % 32
min(AMi ,AHj ) · 50 % 36
min(AMi ,AHj ) · 30 % 39
min(AMi ,AHj ) · 15 % 46
min(AMi ,AHj ) · 10 % 46
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Table 2. Top 10 meteorological drought events according to severity.

No. Affected area Duration Severity Start time End time
(km2) (month) (month km2) (year–month) (year–month)

9 1 764 139.2 22 70 730 086 1985–08 1987–05
15 1 675 168.9 12 35 741 813 1997–01 1997–12
74 1 511 945.1 8 29 594 926 2001–02 2001–09
88 1 610 084.0 6 28 099 641 2008–04 2008–09
0 1 613 507.4 8 21 190 554 1982–02 1982–09
46 1 407 943.0 6 19 184 637 1995–03 1995–08
3 1 553 813.5 6 17 818 477 1983–07 1983–12
64 1 194 351.2 4 17 346 922 2000–02 2000–05
120 954 552.3 8 2 642 278 2017–10 2018–05
115 471 019.5 5 1 915 975 2015–12 2016–04

Figure 6. Spatiotemporal continuums of (a) meteorological drought event No. 87 and (b) ecological drought event No. 127.

Similarly, the sensitivity of b in Eq. (4) for matching two
drought types was tested. The binding mode of absolute and
relative thresholds was employed to extract spatial intersec-
tion. b is set as 10 %, 15 %, 30 %, 50 %, 70 %, and 90 % to
match two drought types. Although some of the successful
matching drought events may be merged into one drought
event under larger b, the number of successful matching
drought events showed little difference under different b (Ta-
ble 1). In the current study, b = 15 % is set, because the most
paired drought events could be identified for fitting machine
learning models and C-vine copula.

3.2 Top 10 meteorological and ecological drought
events according to drought severity

A total of 130 meteorological drought events were identified
based on SPI-3 from a three-dimensional perspective. The
first 10 meteorological drought events in terms of severity in
NWC during 1982–2020 are shown in Table 2. Meteorologi-
cal drought events with longer duration exhibited a relatively
larger affected area and were mainly concentrated between
1982 and 2000. Zou et al. (2005) estimated meteorological
droughts with the Palmer drought severity index (PDSI) from
1951 to 2003 in China and found that most parts of NWC ex-
perienced severe droughts during 1997–2003, which is sim-
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Table 3. Top 10 ecological drought events according to the severity.

No. Affected area (km2) Duration (month) Severity (month km2) Start (year–month) End (year–month)

2 390 824.2 25 4 446 071 1982–04 1984–04
35 347 893.4 24 4 197 729 1986–07 1988–06
50 407 626.7 30 4 182 267 1990–06 1992–11
37 348 522.9 21 4 047 585 1986–10 1988–06
3 371 975.6 18 3 732 552 1982–04 1983–09
59 407 626.7 21 3 566 368 1991–03 1992–11
49 399 717.3 27 3 555 634 1990–06 1992–08
56 391 178.4 23 3 360 346 1991–01 1992–11
58 399 638.6 18 3 124 954 1991–03 1992–08
55 120 839.9 20 3 085 452 1991–01 1992–08

Figure 7. Temporal evolution of severity and area of (a) meteo-
rological drought event No. 87 and (b) ecological drought event
No. 127.

ilar to the results of this study. As shown in Table 2, 2 of
10 meteorological drought events occurred during this pe-
riod. Moreover, according to the historical record, Xinjiang
and Gansu experienced severe meteorological drought dur-
ing 1985–1986 (J. Zhang et al., 2019). The three-dimensional
identification method could sensitively capture these events.
Event No. 9 started from southern Gansu in August 1985 and
ended in May 1987, and ranked first.

A total of 184 ecological drought events during 1982–
2020 were identified using the three-dimensional identifi-
cation method. Table 3 lists the top 10 ecological drought
events in terms of severity. The most severe ecological
drought event started in April 1982 and originated from cen-
tral Gansu, which was induced by the persistent meteorolog-
ical drought Nos. 0 and 3. Compared with the characteris-
tics of meteorological droughts, ecological droughts showed
a longer duration and a smaller affected area. This reveals

that a longer recovery time is required for the mitigation of
ecological droughts.

3.3 Identifying propagation from meteorological to
ecological drought

A total of 46 paired drought events were successfully
matched based on the spatiotemporal connection criterion.
As shown in Fig. 4, points representing paired drought events
were mainly distributed along a diagonal line, illustrating a
relatively high consistency between the two types of droughts
on the temporal scale. The number of one-to-one, many-to-
one, one-to-many, and many-to-many were 8, 8, 4, and 26,
accounting for 17.4 %, 17.4 %, 8.7 %, and 56.5 % of the to-
tal number of paired drought events, respectively. Meteoro-
logical drought of type one-to-many showed a longer dura-
tion, a larger affected area, and a greater severity than eco-
logical drought. However, this is contrary to type many-to-
one. Simultaneously, ecological drought of type many-to-one
showed a longer duration, a larger affected area, and a greater
severity than those of type one-to-many (Fig. 5).

Paired drought event No. 36, comprising meteorological
drought event No. 87 and ecological drought event No. 127,
was taken as an example to show their spatiotemporal contin-
uums (Fig. 6). The affected area of meteorological and eco-
logical drought in each month was extracted to show their
temporal variation. Meteorological drought No. 87 (Fig. 6a)
started two months ahead of ecological drought (Fig. 6b),
and its effects lasted for two months. It is noteworthy that the
most severe meteorological and ecological droughts mainly
occurred in central Xinjiang. The affected area and sever-
ity of meteorological drought event No. 87 and ecologi-
cal drought event No. 127 maintained a similar trend of
increase–decrease (Fig. 7). Among them, the peaks of the
meteorological drought event appeared 2 months ahead (De-
cember 2007) of that of the ecological drought (February
2008). In terms of drought trajectory (Fig. 8), they all orig-
inated from the Yili basins and showed a counterclockwise
shift.
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Figure 8. Cumulative SPI/SEWDI and migration trajectory of (a) meteorological drought event No. 87 and (b) ecological drought event
No. 127.

3.4 Propagation probability from meteorological to
ecological drought

To estimate the propagated potential of meteorological
drought, 11 commonly used machine learning models were
trained based on the characteristics of 81 integrated meteoro-
logical drought events. As can be seen in Fig. 9, propagated
meteorological droughts have greater severity, larger affected
area, and longer duration than non-propagated droughts. Ta-
ble 4 lists the evaluation results of five-fold cross-validations,
including accuracy, precision, recall, F1 score, and MCC
metrics. The closer these values are to 1, the higher the preci-
sion of the model. Therefore, the five metrics were summed
to compare the performances of the 11 models. Most mod-

els showed a good performance except for Gaussian process
and multi-layer perceptron. The QDA classifier with maxi-
mum total value was chosen as the best model to identify the
propagation potential of meteorological drought.

The reliability of the copula function is highly depen-
dent on the dependence between two variables, which
was measured by Kendall’s τ and Spearman’s ρ (Chang
et al., 2016; Feng et al., 2021). The τ and ρ between
affected area (M_Area), duration (M_Duration), severity
(M_Severity) of meteorological drought, and severity of eco-
logical drought (E_Severity) both reached significance at
level 0.01 (Tables S1–S2 in the Supplement). The optimal
marginal distributions of M_Area, M_Duration, M_Severity,
and E_Severity are listed in Table 5. All the distributions
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Table 4. Estimations of 11 machine learning models in identifying the potential of meteorological drought to trigger ecological drought.
Bold formatting represents the machine learning model with the highest accuracy.

Classifier Accuracy Precision Recall F1 score MCC Total

KN 0.89 0.89 0.91 0.89 0.80 4.38
SVM 0.80 0.84 0.83 0.80 0.67 3.94
GP 0.43 0.22 0.50 0.30 0.00 1.45
DT 0.83 0.84 0.84 0.82 0.68 4.02
MP 0.62 0.40 0.59 0.46 0.17 2.24
AB 0.82 0.83 0.82 0.81 0.65 3.92
GNB 0.85 0.88 0.88 0.85 0.75 4.21
QDA 0.93 0.93 0.94 0.93 0.87 4.58
GB 0.83 0.83 0.84 0.82 0.67 4.00
XGB 0.85 0.86 0.87 0.85 0.72 4.15
RF 0.87 0.87 0.89 0.86 0.76 4.25

Figure 9. Three-dimensional diagram showing characteristics of
meteorological drought events. Larger circles indicate greater sever-
ity.

Table 5. Goodness of fit of the marginal distribution.

Distribution Marginal distribution RMSE KS test

Statistic P value

M_Area Johnson S_B 0.044 0.129 0.963
M_Duration Johnson S_B 0.068 0.161 0.823
M_Severity Pearson III 0.057 0.226 0.413
E_Severity Johnson S_B 0.079 0.194 0.615

passed the KS test and their RMSE was small. Similarly, the
parameters of bivariate distribution were estimated using the
τ method. The copula estimation can be eased by the itau
method, which inverts Kendall’s τ method (Demarta and Mc-
Neil, 2005). The CvM test and RMSE were used to evaluate

Table 6. Goodness of fit of the bivariate distribution.

Joint variables Copula RMSE CvM test

Statistic P value

M_Area–M_Duration Frank 0.005 0.086 0.373
M_Area–M_Severity Gaussian 0.052 0.098 0.605
M_Area–E_Severity Gumbel 0.032 0.042 0.933
M_Duration–M_Severity Gaussian 0.057 0.102 0.585
M_Duration–E_Severity Gaussian 0.053 0.087 0.663
M_Severity–E_Severity Frank 0.054 0.105 0.570

Table 7. Goodness of fit of the multivariate distribution.

Joint variables RMSE CvM test

Statistic P value

M_Area–M_Duration–
M_Severity–E_Severity

0.079 0.073 0.398

their goodness of fit (Table 6). The selected bivariate copulas
also demonstrated a good applicability. In the end, the C-vine
copula was constructed centered on E_Severity. The CvM
test, RMSE (Table 7), and P–P plots (Fig. S1 in the Supple-
ment) indicated that the distribution can be used in probabil-
ity analysis. The copula structure of M_Area–M_Duration–
M_Severity–E_Severity was shown in Table 7.

Conditional probability is helpful in providing valuable in-
formation for the effective allocation of water resources un-
der a certain drought level (Guo et al., 2020). In the current
study, the occurrence probabilities of ecological drought at
different levels were determined according to the character-
istics of meteorological drought (Fig. 10). For example, the
occurrence probabilities of moderate, severe, and extreme
ecological drought events were 80 %, 63 %, 14.7 %, respec-
tively, when M_DA>17.6×105 km2

∩M_DD>11.8 months
∩ M_DS >7.5× 106 months km2. Furthermore, the occur-
rence probability was found to increase more rapidly with in-
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Figure 10. Conditional probability of ecological drought at (a) extreme, (b) severe, and (c) moderate levels, given that characteristics of
meteorological drought exceed a certain value.

Table 8. E_DS with polynomial functions based on meteorological drought characteristics.

Model types Expression Assessment metrics

RMSE AIC BIC R2

Ternary linear model E_DS= 4.85× 105
+ 0.15M_DS+ 4099.35M_DD− 1.20M_DA 9.24× 105 1350.67 1357.89 0.58

Ternary quadratic model E_DS= 1.54− 0.05M_DS− 16.91M_DD− 0.08M_DA−
1319.23M_DD2

+ 0.03M_DD×M_DA
7.29× 105 1085.75 1100.20 0.85

creasing M_DS and M_DD compared with M_DA, indicat-
ing that the duration and severity of meteorological drought
had stronger effects on ecological drought than affected area.
Additionally, meteorological drought events with a duration
of 2 months but great severity have a high potential to trig-
ger ecological drought. This may be attributable to water
shortage induced by meteorological droughts with extremely
high intensity (intensity is the drought severity divided by the
product of drought duration and affected area).

For comparison, ternary linear and ternary quadratic mod-
els were constructed based on 46 pairs of meteorological–
ecological drought events (Table 8). The comparisons were
made in terms of three independent variables, M_DS,
M_DD, and M_DA, and one dependent variable, E_DS.
As shown in Table 8, the R2 of the ternary quadratic
model was evidently higher than that of the ternary lin-
ear model, whereas the RMSE, AIC, and BIC were lower.
This illustrates that M_DS, M_DD, M_DA, and E_DS fol-
low a nonlinear relationship and that the ternary quadratic
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Figure 11. Conceptual graph depicting (a) traditional and (b) spa-
tial and temporal connectivity rule of two drought types.

model is more suitable for simulating their relationship.
According to the ternary quadratic model, E_DS equals
1.4× 106 months km−2 when M_DA >17.6× 105 km−2

∩

M_ DD >11.8 months ∩ M_DS >7.5× 106 months km−2.
These values correspond to the thresholds of moderate (1.7×
106 months km−2), severe (2.4× 106 months km−2), and ex-
treme (4.6× 106 months km−2) ecological drought.

4 Discussion

4.1 Advantages of the proposed approach

Many studies have linked meteorological drought to hydro-
logical drought at different time scales (Ding et al., 2021;
Fang et al., 2020; Feng and Su, 2020; Han et al., 2019; Huang
et al., 2017; Ma et al., 2019). In these studies, propagated
drought events were identified on the basis of the time se-
ries between two drought types, and they focused on their
lagging, attenuation, lengthening, and pooling (Fig. 11a).
The spatial and temporal drought propagation identification
method used in the current study not only preserved the
characteristics identified by the low dimensional method but
also considered the spatial overlap of two drought types
(Fig. 11b). Using this method, two types of drought events
without spatial connection would be excluded (only 103 out
of 184 ecological drought events were induced by 81 out
of 108 meteorological drought events), and more drought
characteristics, such as affected area, and migration path
could be extracted. This addresses the limited applicability
of the traditional method to regions with large spatial ex-
tent and provides more reliable information for quantifying
the relationship between characteristics of meteorological

drought and ecological drought. Additionally, we improved
the method for calculating the affected area and duration of
paired drought events developed by Liu et al. (2019), repre-
sented by a simple sum of characteristics of multiple drought
events. However, this method overestimates the duration and
affected area of some paired drought events, which is incon-
sistent with the real situation. In this study, the enhanced
method could reflect the characteristics of paired drought
during the propagation process more accurately.

The conditional probability model was constructed based
on paired meteorological and ecological drought events;
it is not suitable for calculating the probability of eco-
logical drought at different levels according to meteoro-
logical drought events without propagation potential. For
example, the probability of moderate ecological drought
was 63.3 % if the characteristics of meteorological drought
event No. 122 (M_Area= 5.1× 105 km−2, M_Duration=
6 months, M_Severity= 1.89× 106 months km−2) were di-
rectly input to the conditional probability model. In reality,
this meteorological drought event did not trigger ecologi-
cal drought. The QDA model added before the C-vine cop-
ula was used to address this issue, which could estimate the
propagation potential of the corresponding meteorological
drought. After this modification, the probability of the prop-
agation of meteorological drought event No. 122 to moderate
ecological drought changed to 24.8 %.

4.2 Uncertainty of the model and its improvement
measures

The QDA model could simulate the propagation potential
of most meteorological drought events well (Table 4). How-
ever, some errors occurred in humid southern Shaanxi. For
example, meteorological drought event No. 22 showed the
potential to trigger ecological droughts, which were incor-
rectly classified as propagation occurrence. This could be
attributed to the compensation of rich water resources for
short-term ecological water deficit. Additionally, this paper
provides a method for estimating the occurrence probability
of ecological drought under the condition of a certain pre-
cipitation deficit. The effects of human activities and climate
change on ecological drought were not distinguished in the
current study. The proposed method may not be accurate for
regions with complex water supply systems and strong an-
thropogenic impacts on vegetation growth.

To improve the accuracy of the method, future studies
should consider the non-consistence of ecological drought to
quantify the impacts of human activities on drought propa-
gation. Moreover, SPI can be replaced by PDSI or scPDSI
to represent meteorological drought through which multiple
water balance processes are considered to analyze their rela-
tionship with ecological drought (Altunkaynak and Jalilzad-
nezamabad, 2021). However, such modification may lead to
new problems associated with spatiotemporal incomparabil-
ity. Nevertheless, this approach is worth applying in ecolog-
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ical drought warning. For example, when a meteorological
drought event occurs, its characteristics can be applied as in-
put to the tuned model to estimate propagation probability
from meteorological to ecological drought in different de-
grees.

5 Conclusions

This study proposes a method in identifying the propaga-
tion probability of meteorological drought events to trigger
ecological drought in different magnitudes. Taking NWC as
an example, 130 meteorological drought and 185 ecologi-
cal drought events during 1982–2020 were extracted using
the three-dimensional identification method. Compared with
meteorological drought, ecological drought events exhibited
longer duration but smaller affected area and severity, sug-
gesting that a longer recovery time is required for mitigating
ecological drought.

A total of 46 drought events were successfully matched
according to a certain spatiotemporal connection principle.
The paired drought events were divided into four categories,
including one-to-one, many-to-one, one-to-many, and many-
to-many. The four categories accounted for 17.4 %, 17.4 %,
8.7 %, and 56.5 % of the total number of paired drought
events, respectively. Then, a drought propagation probability
model was constructed by coupling QDA and C-vine cop-
ula. Compared with the traditional propagation probability
model, the proposed model intuitively provides more objec-
tive probabilities of ecological drought at different magni-
tudes.

The current study certainly provides a more robust method
for estimating propagation probability from meteorological
to ecological drought in similar ecologically fragile regions.
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