
Hydrol. Earth Syst. Sci., 27, 519–542, 2023
https://doi.org/10.5194/hess-27-519-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Seasonal forecasting of snow resources at Alpine sites
Silvia Terzago1, Giulio Bongiovanni1,2, and Jost von Hardenberg3,1

1Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy
2Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
3Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy

Correspondence: Silvia Terzago (s.terzago@isac.cnr.it)

Received: 20 January 2022 – Discussion started: 9 March 2022
Revised: 28 October 2022 – Accepted: 12 December 2022 – Published: 27 January 2023

Abstract. Climate warming in mountain regions is result-
ing in glacier shrinking, seasonal snow cover reduction, and
changes in the amount and seasonality of meltwater runoff,
with consequences on water availability. Droughts are ex-
pected to become more severe in the future with economi-
cal and environmental losses both locally and downstream.
Effective adaptation strategies involve multiple timescales,
and seasonal forecasts can help in the optimization of the
available snow and water resources with a lead time of sev-
eral months. We developed a prototype to generate seasonal
forecasts of snow depth and snow water equivalent with a
starting date of 1 November and a lead time of 7 months,
so up to 31 May of the following year. The prototype has
been co-designed with end users in the field of water man-
agement, hydropower production and mountain ski tourism,
meeting their needs in terms of indicators, time resolution
of the forecasts and visualization of the forecast outputs. In
this paper we present the modelling chain, based on the sea-
sonal forecasts of the ECMWF and Météo-France seasonal
prediction systems, made available through the Copernicus
Climate Change Service (C3S) Climate Data Store. Seasonal
forecasts of precipitation, near-surface air temperature, radia-
tive fluxes, wind and relative humidity are bias-corrected and
downscaled to three sites in the Western Italian Alps and fi-
nally used as input for the physically based multi-layer snow
model SNOWPACK. Precipitation is bias-corrected with a
quantile mapping method using ERA5 reanalysis as a ref-
erence and then downscaled with the RainFARM stochastic
procedure in order to allow an estimate of uncertainties due
to the downscaling method. The impacts of precipitation bias
adjustment and downscaling on the forecast skill have been
investigated.

The skill of the prototype in predicting the deviation of
monthly snow depth with respect to the normal conditions
from November to May in each season of the hindcast pe-
riod 1995–2015 is demonstrated using both deterministic and
probabilistic metrics. Forecast skills are determined with re-
spect to a simple forecasting method based on the climatol-
ogy, and station measurements are used as reference data.
The prototype shows good skills at predicting the tercile cat-
egory, i.e. snow depth below and above normal, in the win-
ter (lead times: 2–3–4 months) and spring (lead times: 5–6–
7 months) ahead: snow depth is predicted with higher accu-
racy (Brier skill score) and higher discrimination (area under
the relative operating characteristics (ROC) curve skill score)
with respect to a simple forecasting method based on the cli-
matology. Ensemble mean monthly snow depth forecasts are
significantly correlated with observations not only at short
lead times of 1 and 2 months (November and December) but
also at lead times of 5 and 6 months (March and April) when
employing the ECMWFS5 forcing. Moreover the prototype
shows skill at predicting extremely dry seasons, i.e. seasons
with snow depth below the 10th percentile, while skills at
predicting snow depth above the 90th percentile are model-,
station- and score-dependent. The bias correction of precip-
itation forecasts is essential in the case of large biases in the
global seasonal forecast system (MFS6) to reconstruct a re-
alistic snow depth climatology; however, no remarkable dif-
ferences are found among the skill scores when the precipi-
tation input is bias-corrected, downscaled, or bias-corrected
and downscaled, compared to the case in which raw data are
employed, suggesting that skill scores are weakly sensitive
to the treatment of the precipitation input.
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1 Introduction

Mountain snowpack provides a natural reservoir which sup-
plies water in the warm season for a variety of uses, such
as hydropower production and irrigated agriculture in and
downstream of mountain areas. However warming trends, of-
ten amplified in mountain regions (Pepin et al., 2015; Palazzi
et al., 2019), have resulted in glacier shrinking, seasonal
snow cover reduction, and changes in the amount and sea-
sonality of runoff in snow dominated and glacier-fed river
basins (Pörtner et al., 2019). Future cryosphere changes are
projected to affect water resources and their uses (Pörtner
et al., 2019). Current warm winter seasons may become nor-
mal at the end of the 21st century, and there is an indication
for droughts to become more severe in the future (Haslinger
et al., 2014; Stephan et al., 2021; Stahl et al., 2016). Effec-
tive adaptation strategies to address and reduce future water
scarcity involve multiple timescales, from a seasonal scale,
for the optimization of the available water resources with a
few months’ lead time, to climate scales, for the long-term
planning of water storage infrastructures and the diversifi-
cation of mountain tourism activities (Calì Quaglia et al.,
2022). In this wide range of timescales, seasonal predictions
have been considered with growing interest for their poten-
tial to provide early warning of extreme seasons and to en-
able decision makers to take necessary actions to minimize
negative impacts.

The ability of the current seasonal forecast systems at pre-
dicting the main meteorological variables (air temperature
and precipitation) is generally limited in the extra-tropics
(Mishra et al., 2019), and this is reflected in poor streamflow
prediction (Greuell et al., 2018; Arnal et al., 2018; Wanders
et al., 2019; Santos et al., 2021). Some skill is found for the
winter season streamflow prediction in about 40 % of the Eu-
ropean domain (Arnal et al., 2018), while contrasting results
are found for high-altitude catchments, where the discharge
is mostly related to snow and ice melt. Some studies high-
lighted better skill than surrounding areas (Anghileri et al.,
2016; Santos et al., 2021), while others found poor stream-
flow predictions due to the lack of snowpack predictability
in the Alpine region (Wanders et al., 2019). One of the is-
sues in mountain streamflow forecasting is the lack of re-
liable information to initialize physically based streamflow
models, for example, in terms of distribution of snow water
equivalent (SWE) and of soil moisture, and this often results
in limited forecasting skill (Li et al., 2019). In addition to
initialization issues, ensemble streamflow predictions gener-
ally employ hydrological models in which the representation
of snow processes is simplified, and snow accumulation and
melt are poorly captured (Wanders et al., 2019). These stud-
ies highlight the importance of a reliable representation of
mountain snowpack for improving streamflow forecasts in
mountain areas. An original approach to seasonal hydrologi-
cal forecasting in mountain areas is to change the focus from
the prediction of instantaneous hydrological fluxes (rainfall,

streamflow) to that of slowly varying, and probably more
predictable, hydrological quantities, such as the snow wa-
ter equivalent (Förster et al., 2018). Snowpack is a natural
“integrator” of the climatic conditions over multiple days/-
months, so even if daily temperature and precipitation fore-
casts do not match the corresponding observations, the differ-
ences may compensate over monthly/seasonal timescales and
allow for reasonable monthly/seasonal snowpack forecasts.
Several economic activities recognized a value in seasonal
forecasts of mountain snow accumulation, either per se or as
an indicator of the meltwater available in the season ahead:
(i) public water managers, who could prepare strategies to
mitigate the negative effects of extremely dry or extremely
wet seasons; (ii) hydropower companies involved in reser-
voir management, who could use forecasts of the snowpack
evolution to decide whether to release or save water in the
reservoir; and (iii) mountain ski resort managers, for whom
seasonal snowpack predictions are relevant to estimate the
amount of artificial snow to be produced (Marke et al., 2015)
and have high saving potential (Köberl et al., 2021).

The seasonal predictability of snow-related variables has
so far been rarely studied. Kapnick et al. (2018) explored
the potential of predicting the snowpack in March with 8
months’ lead time (starting date 1 July) in the western US,
using three atmosphere–ocean general circulation models
(AOGCMs) at different resolutions (200, 50 and 25 km). That
study showed a good correlation to observations in most parts
of the area, demonstrating the feasibility of such kinds of
forecasts. In the Alpine region, Förster et al. (2018) tested
a method to derive deterministic predictions of the sign of
February SWE anomalies, i.e. SWE below or above average,
over the Inn headwaters catchment. They set up a rather sim-
ple framework in which a distributed water balance model,
driven by seasonal forecasts of monthly air temperature and
precipitation anomalies, provides SWE anomaly forecasts
over the basin. This forecasting method showed some skill in
predicting the sign of the basin-average SWE anomaly and,
more in general, it proved the higher robustness of SWE pre-
dictions compared to precipitation ones. However the deter-
ministic approach adopted in that study does not allow for
the obtainment of a quantification of the uncertainty of the
forecasts, and the only information on the sign of the SWE
anomaly without an associated probability of occurrence is of
limited usefulness in practical applications. In complex mod-
elling chains the accuracy of the output variables is subject
to multiple sources of uncertainty, which are present in the
various components of the modelling chain: the global fore-
cast system(s) employed; bias adjustment eventually applied
to adjust systematic errors in the global models; downscal-
ing techniques eventually applied to mitigate the mismatch
between the scale of the forcing and the scale at which snow
processes occur; and the process model employed, as well
as its setup and initialization. Each component of the chain
should be evaluated to assess its relative contribution to the
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overall forecasting error; however this analysis is often over-
looked or not adequately performed.

In this study we present a method to generate for the
first time multi-system, multi-member seasonal forecasts of
mountain snow depth and snow water equivalent during the
period from November to May of the following year, taking
advantage of the state-of-the-art modelling techniques. We
developed a prototype which uses seasonal forecasts of the
main meteorological variables produced by seasonal forecast
systems of the Copernicus Climate Change Service (C3S)
to simulate the snowpack evolution at a given mountain site.
Seasonal forecast system outputs at 1◦× 1◦ spatial resolution
and daily or 6-hourly temporal resolution are bias-corrected
and downscaled using different techniques depending on the
variable type and characteristics (i.e. instantaneous or flux
variable) to generate kilometre scale, hourly forcings. This
fine-scale hourly forcing is employed to drive the physi-
cal, multi-layer, one-dimensional snow model SNOWPACK
(Lehning et al., 2002), which proved to be one of the best-
performing models in a recent benchmark study (Terzago
et al., 2020). The prototype is run at each location, and at
each location it provides ensembles of snow depth seasonal
forecasts at an hourly time step, which are then aggregated to
monthly or seasonal scales for the analysis.

The prototype is demonstrated at three selected sites in the
Western Italian Alps, where seasonal snow forecasts can be
exploited by stakeholders in the fields of hydropower energy
production, water management and ski resort management.
Ensemble seasonal forecasts are evaluated using both deter-
ministic and probabilistic metrics (Wilks, 2011) to assess dif-
ferent forecast features (accuracy, discrimination and sharp-
ness) at monthly and seasonal scales. The skill of the forecast
system is assessed compared to a reference forecast based
on past observations at in situ stations. We also present an
evaluation of the uncertainty associated with each step of the
modelling chain, verifying for example the impact of using
meteorological inputs from different seasonal forecast sys-
tems and alternatively applying bias adjustment or downscal-
ing methods or a combination of both.

The paper is organized as follows. Section 2 describes the
study area, the data used, the modelling chain and the fore-
casting skill assessment methods. Section 3 presents the re-
sults in terms of the forecast skill of the prototype, and it is
followed by a discussion and final conclusions in Sects. 4 and
5, respectively.

2 Methodology

The prototype has been co-designed with stakeholders, who
provided guidance on the features required to make this cli-
mate service useful for applications. Although the purpose
of the prototype is to respond to specific needs of the users,
it has been developed to be general, flexible and applicable
to any area of study for which seasonal snow forecasts are

needed. In the following we present the motivations for the
study that closely determine the area of evaluation of the pro-
totype, the datasets employed and a step-by-step description
of the methodology.

2.1 Motivation for the work, domain of study and in
situ data

The prototype has been conceived for application in the
Western Italian Alps, in three valleys which are relevant
for different stakeholders (Fig. 1a), i.e. (i) the Orco Valley,
hosting an artificial water reservoir serving a plant for hy-
dropower production; (ii) the Ala Valley, relevant for water
supply to the metropolitan city of Torino with 2.2 million in-
habitants; and (iii) the upper Sesia Valley, which hosts one of
the largest ski resorts in Western Italy, at the foot of Monte
Rosa. All stakeholders are interested in seasonal forecasts of
snow abundance to plan activities and investments in advance
for the season ahead. In particular they are interested in fore-
casting low snow seasons to limit snow and/or water short-
age and economic losses. Each area of study hosts at least
one station which has been providing nivo-meteorological
data since the 1990s, useful for evaluating model outputs.
For each station, Table 1 reports the name, geographical po-
sition, variables provided, and start date of the station activ-
ity. All stations are situated at elevations above 2000 m a.s.l.
and snow cover is present for most of the year (Fig. 1b). At
these altitudes a critical variable to measure is total precip-
itation, which is typically underestimated by standard (un-
heated) pluviometers. A quality check of the station data
showed that increases in snow depth are often associated with
daily total precipitation equal or close to zero. This suggests
that standard pluviometers strongly underestimate solid pre-
cipitation, so total precipitation measurements are considered
unreliable during the snow season, and they have not been
used in the analysis.

2.2 ERA5 reanalysis

In addition to observational data we use the latest ECMWF
global reanalysis product, ERA5 (Hersbach et al., 2020),
which provides reanalysis fields at 0.25◦ (about 30 km) spa-
tial resolution and 1 h temporal resolution. Compared to the
previous reanalysis product, ERA-Interim, ERA5 uses one
of the most recent versions of the Earth system model and
data assimilation methods applied at the ECMWF and mod-
ern parameterizations of Earth processes. With respect to
ERA-Interim, ERA5 also has an improved global hydrolog-
ical and mass balance, reduced biases in precipitation, and
refinements of the variability and trends of surface air tem-
perature (Hersbach et al., 2020). To supply the lack of con-
tinuous and/or trusted observational data, we use the ERA5
reanalysis at the grid point closest to each station to run ref-
erence simulations with the snow model. To this end, we per-
form two different ERA5-driven simulations differing by the
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Figure 1. (a) Map of the study sites indicating the three nivo-meteorological stations in the NW Italian Alps (© Google Maps 2021). (b)
Snow depth climatology at the three stations considered in this study and described in Table 1. Averages are calculated over the period
1998–2015.

Table 1. Stations considered in this study, elevation, position and date of start of automatic meteorological station records.

Station

Bocchetta delle Pisse Lago Agnel Rifugio Gastaldi

Valley Sesia Orco Stura di Ala
Elevation (m a.s.l.) 2410 2304 2659
Latitude (WGS 84, ◦) 45.875556 45.467778 45.298056
Longitude (WGS 84, ◦) 7.901111 7.139167 7.143333
Air temperature 01/01/1988 11/10/1996 30/04/1988
Total precipitation 06/07/1996 12/10/1996 05/07/1996
Wind speed 01/01/1990 – 01/01/1990
Total incoming shortwave radiation 22/03/2012 – 06/10/2017
Snow depth 01/01/1995 01/11/1997 01/01/1995
Fresh snow depth 01/01/1995 01/11/1997 01/01/1995

air temperature input: in one case we use ERA5 raw temper-
ature data, and in the other case we use ERA5 bias-corrected
temperature data, to which a simple mean bias correction
with respect to observations has been applied. In detail, the
bias correction is carried out as follows: we derive the multi-

annual average daily temperature bias of ERA5 with respect
to observations, then we linearly interpolate the bias in time
to the ERA5 resolution (1 h), and we finally apply this off-
set to the original ERA5 hourly data. This simple method,
hereafter referred to as the mean bias correction (MBC), al-
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lows us to successfully reproduce (by construction) the ob-
served temperature seasonal cycle (Fig. 2a), and it also im-
plicitly takes into account scaling issues due to the different
resolutions of ERA5 and observational data. ERA5-driven
snow depth simulations employing these two different tem-
perature input data, together with snow depth measurements,
are the benchmark against which we evaluate the seasonal
snow depth forecasts.

2.3 Seasonal forecast data

We employ historical forecasts (hindcasts) from the ECMWF
System 5 (ECMWFS5, Johnson et al., 2019) and the Météo-
France System 6 (MFS6, Dorel et al., 2017) models ob-
tained from the Copernicus Climate Data Store (CDS; https:
//climate.copernicus.eu/, last access: 14 June 2019). For
each system, we consider the 25-member hindcasts initial-
ized each 1 November and run for the 7 months ahead
(November–May) over the period 1995–2015 (21 hindcasts)
for which evaluation data (snow depth observations) were
available from the stations. We consider all the variables
needed to force the snow model: 2 m temperature, 2 m dew
point temperature, total precipitation, surface solar and ther-
mal radiation downwards, soil temperature level 1, and 10 m
U and V wind components. Original C3S flux variables (pre-
cipitation and radiation) are accumulated since the beginning
of the forecast, so they have been converted to daily val-
ues (see Table 2 for details). Horizontal wind components
are converted to wind speed (modulus). Possible discrepan-
cies between the climatologies of seasonal forecast and ref-
erence data (from observations, where available, or ERA5)
have been investigated and adjusted using suitable methods
as described in the following sections. Seasonal forecast res-
olution is 1◦ long× 1◦ lat in space and daily or 6-hourly in
time. These resolutions are insufficient to simulate snow pro-
cesses at a local scale, so we apply simple downscaling tech-
niques to generate data at 1 km spatial resolution and 1 h tem-
poral resolution. The applied techniques are specific for each
variable, and they are briefly described in the following.

2.3.1 Air temperature

Figure 2a shows the multi-year average of the 6-hourly
November–May 2 m air temperature from the ECMWFS5
hindcasts compared to observations. The ECMWFS5 tem-
perature bias is large and time-dependent, and the same hap-
pens for the MFS6 seasonal forecast system (not shown). To
adjust the seasonal forecast system temperature bias we em-
ploy the mean bias-correction method used for ERA5, based
on the correction of the forecast data for the average daily
bias with respect to observations (Sect. 2.2). The effect of
the bias correction is displayed in Fig. 2a: the seasonal fore-
cast system’s annual cycle appears very close to the observed
one, but it is smoother, since it is averaged over all ensem-
ble members. This simple approach has the advantage that it

takes into account both the forecast system temperature bias
and, implicitly, scaling issues due to the different resolutions
of model and observational data.

2.3.2 Total precipitation

Figure 2b shows the discrepancy between the ECMWFS5
daily precipitation climatologies and the ERA5 reference:
the bias has been adjusted with a rather sophisticated ap-
proach which allows us to take orographic effects into ac-
count. First, daily precipitation seasonal forecasts have been
adjusted by applying quantile mapping (Gudmundsson et al.,
2012; Perez-Zanon et al., 2021) on a monthly basis, using
the ERA5 total precipitation data upscaled to 1◦ as a refer-
ence dataset. Then bias-adjusted daily data have been down-
scaled from 1◦ to about 1 km using the RainFARM stochas-
tic precipitation downscaling method (Rebora et al., 2006;
D’Onofrio et al., 2014), improved to take into account oro-
graphic effects (Terzago et al., 2018). This method employs
orographic weights derived from a fine-scale precipitation
climatology (WorldClim; Fick and Hijmans, 2017) to correct
the downscaled field (Terzago et al., 2018). The RainFARM
method is used to generate an ensemble of 10 stochastic re-
alizations of the downscaled precipitation for each of the 25
seasonal forecast system ensemble members. This procedure
allows for generating 250-member ensemble forecasts for
each starting date. Looking at the results in Fig. 2b, the quan-
tile mapping allows us to accurately reconstruct the long-
term climatology of the accumulated precipitation, and this
feature is conserved after the application of the RainFARM
downscaling. After the application of the spatial downscal-
ing, precipitation is then disaggregated in time, from daily to
hourly resolution, by equally redistributing the precipitation
amount over all time steps with sufficient relative humidity
to allow precipitation. We chose RH > 80% as a threshold.

2.3.3 Surface shortwave and longwave radiation
downwards

Daily accumulated surface shortwave and longwave radia-
tion downwards (J m−2) have been converted into average
daily radiation fluxes (W m−2) and downscaled in space us-
ing a simple bilinear interpolation to the coordinates of the
station using the Climate Data Operator command line tools
(CDO; Schulzweida, 2019). The effects of local terrain fea-
tures such as the elevation difference between the model grid
point and the station, as well as the sky view factor and the
terrain shading, are not taken into account with this simple
method, making the hypothesis that the uncertainty intro-
duced by this simplification is much smaller than the un-
certainty of the forecasts. In order to disaggregate in time
average daily fluxes into hourly fluxes we employed a sort
of analogue method using ERA5 as a reference. The choice
of ERA5 as a reference dataset is supported by a high tem-
poral correlation with both seasonal forecast systems, for
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Table 2. C3S seasonal forecast model variables used to create the forcing for the prototype: original variable name, short name and units,
and variable short name and units after post-processing (see Sect. 2.3 for details).

C3S variable Short name Units Frequency Short name CVa Units CVa

2 m temperature t2m K 6 h instantaneous tas K
2 m dew point temperature d2m K 6 h instantaneous tdps K
Total precipitation tp m 24 h aggregationb prlr mm d−1

Surface solar radiation downwards ssrd J m−2 24 h aggregationb rsds W m−2

Surface thermal radiation downwards strd J m−2 24 h aggregationb rlds W m−2

Soil temperature level 1 tsl1 K 6 h instantaneous tsl1 K
10 m U and V wind components u10, v10 m s−1 6 h instantaneous sfcWind m s−1

a CV= converted variable.
b Since beginning of forecast.

Figure 2. Multi-annual (1995–2015) averages at the Bocchetta delle Pisse station (2410 m a.s.l.) of (a) daily air temperature in (grey) the
ERA5 reanalysis, (blue) the ERA5 reanalysis after the bias correction with respect to observations with the MBC method, (orange) the
ECMWFS5 seasonal forecasts, (red) the ECMWFS5 seasonal forecast after the bias correction with respect to observation with the MBC
method, and (black) observations, as well as (b) accumulated total precipitation in (grey) the ERA5 reanalysis and in the ECMWFS5 seasonal
forecasts with different levels of post-processing (green) after the bias correction with the quantile mapping method with respect to ERA5,
(cyan) after the bias correction and the downscaling with the RainFARM method adapted for complex terrains.

each station and for both shortwave (r > 0.82) and longwave
(r > 0.51) radiation. For each day of the forecast period (i)
we consider the seasonal forecast of (shortwave, longwave)
daily radiation for that day; (ii) we consider all ERA5 daily
average radiation values for that month over the period 1993–
2019; (iii) we sort the ERA5 daily values in ascending order,
from the lowest to the highest; (iv) we consider the 11 ERA5
values closest to the forecast for that day; (v) we randomly
choose 1 among the 11 ERA5 daily values, and we consider
the corresponding 24 hourly values; and (vi) we assume these
24 ERA5 hourly values to be the seasonal forecast of hourly
radiation for that day. This technique allows us to reconstruct
hourly forecasts which are plausible for the specific month
and which conserve the daily mean radiation forecast for that
specific day.

2.3.4 Humidity, surface wind and soil temperature

Seasonal forecast models in the CDS archive do not pro-
vide directly specific or relative humidity among their output
variables. So we derive relative humidity from air tempera-
ture and dew point temperature following Lawrence (2005).
Air temperature and dew point temperature, as well as wind
speed and soil temperature, have been bilinearly interpolated
to the coordinates of the station.

2.4 The SNOWPACK model

We simulate snow dynamics with the SNOWPACK model, a
sophisticated snow and land surface model, allowing for a de-
tailed description of the mass and energy exchange between
the snow, the atmosphere, and optionally the vegetation cover
and the soil (Bartelt and Lehning, 2002). It provides a de-
tailed description of snow properties, including weak layer
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characterization, phase changes and water transport in snow
(Hirashima et al., 2010). A particular feature is the treatment
of soil and snow as a continuum, with a choice of a few up
to several hundred layers (Bartelt and Lehning, 2002). The
model is able to accurately estimate mountain snow depth in
a variety of meteorological conditions, with an average error
of about 10 cm when forced by accurate in situ data (Terzago
et al., 2020). The SNOWPACK model is used in its default
configurations, so no tuning of the model parameters is made
to improve the snow depth simulations locally. The snowpack
lower-boundary conditions are provided in terms of ground
temperature in the topmost part of the soil at the soil–snow
interface. We assume that the presence of a thick, insulating
snowpack during the simulation period (Fig. 1b) decouples
soil and atmospheric dynamics, thus ground and soil temper-
atures remain close to 0 ◦C, and deep soil layers do not affect
the snowpack dynamics (Wever et al., 2015).

In our framework the SNOWPACK model has to be initial-
ized with measured snow depth (SD) on 1 November. In most
seasons at the site considered the snow onset is in October,
and on 1 November the snowpack is already well established
(i.e. SD≥ 10 cm) as shown in Fig. 1b. In such cases SNOW-
PACK is initialized with the observed snow depth and a snow
profile which characterizes each snow layer. Since the snow
profile is unavailable from observations, we simulate it by
running SNOWPACK over the previous summer and driving
the model with a mix of reanalysis and observational data: all
meteorological forcing are provided by ERA5 except for air
temperature which is derived by observations. Simulations
generally start on 1 August, or the following first day with
snow-free soil (SD= 0) and end on 1 November, providing
the snow profile for that day, which is then used to initialize
the SNOWPACK simulation in forecast mode. Otherwise, in
the remaining seasons for which on 1 November snow depth
is lower than 10 cm, i.e. snow cover is shallow/discontinu-
ous/absent, the SNOWPACK model is initialized with snow
depth equal to zero and run in forecast mode over the sea-
son ahead. Shallow snow cover has been aligned to snow-
free soil due to the difficulty of reliably simulating such thin
snow covers.

2.5 Experiments with the SNOWPACK model

Precipitation is a critical parameter both to measure and to
represent in model simulations. As explained in Sect. 2.3.2
we employ quite sophisticated techniques to bias adjust and
downscale precipitation forecasts to the station scale. Such
complexity could be a limitation in an operational frame-
work where simple, easy-to-use approaches are preferred. To
this aim we investigate a range of methods to correct pre-
cipitation inputs to verify if simpler methods can provide
comparable results with respect to the most complex ones.
We devised a set of four experiments with the SNOWPACK
model, differing in the treatment of the precipitation input,
with the aim of evaluating the model’s sensitivity to the ac-

curacy of the precipitation input. The experiments are re-
ported in Table 3 and briefly summarized here: (1) the first
experiment (RAW) uses original seasonal forecast precipi-
tation data without any further refinement, (2) the second
experiment (QM) uses precipitation data which have been
bias-adjusted with the quantile mapping method using ERA5
as a reference dataset, (3) the third experiment (RainFARM)
uses seasonal forecast precipitation data stochastically down-
scaled to 1 km with the RainFARM method, and (4) the last
experiment (QM+RainFARM) uses both the quantile map-
ping and the RainFARM methods to bias adjust and down-
scale precipitation forecasts. For each experiment and each
seasonal forecast system we run the modelling chain on a
set of 21 meteorological forecasts starting on 1 November of
each year in the period 1995–2015.

2.6 Output of the modelling chain

For each experiment of Table 3, the output of the modelling
chain consists of an ensemble of hourly snow depth time se-
ries representing the seasonal forecasts for the three consid-
ered stations. The number of ensemble members is 25 in the
RAW and QM experiments and 250 in the RainFARM and
QM+RainFARM experiments, i.e. 10 RainFARM precipi-
tation downscaling realizations for each of the 25 model en-
semble members (Table 3). An example of ensemble snow
depth seasonal forecast for the season 2006/2007 is reported
in Fig. 3, and it will be discussed in Sect. 3. In order to per-
form the statistical analysis of the set of snow depth hind-
casts, the output of the modelling chain originally at an
hourly time step is aggregated at a daily, monthly and sea-
sonal (December to February (DJF), March to May (MAM)
and November to May (NM)) scale to be compared with in
situ station measurements.

2.7 Evaluation metrics

Hourly snow depth seasonal forecasts are first aggregated to
daily data and then to monthly and seasonal means over win-
ter (DJF), spring (MAM) and the full November–May (NM)
season. The seasonal means are computed by using all corre-
sponding daily data. Monthly and seasonal forecasts are then
evaluated by employing both deterministic and probabilistic
metrics. While deterministic metrics consider the ensemble
mean of the forecasts compared to the observations, proba-
bilistic metrics compare different features of the forecast dis-
tribution with respect to the observations or the observed dis-
tribution. In the following we briefly describe all the metrics
used in this study:

– Time correlation. The simplest way to evaluate ensem-
ble forecasts is to assess the time correlation between
ensemble mean forecasts and observations. Since we are
interested in assessing the correlation of fluctuations,
the linear trend in time series has been removed, and
the correlation has been calculated on residuals. The
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Table 3. Plan of experiments with the SNOWPACK model. The meteorological forcing is generated using ECMWFS5 and MFS6 seasonal
forecast system outputs.

Experiment Total precipitation Output ensemble
members

RAW RAW 25
QM Quantile mapping (reference ERA5) 25
RainFARM RainFARM 250
QM+RainFARM Quantile mapping+RainFARM 250

correlation is expressed as Pearson’s correlation coef-
ficient, the confidence interval (CI) is computed by a
Fisher transformation and the significance level relies
on a one-sided Student’s t distribution, with threshold
0.95 (BSC-CNS et al., 2021).

– Brier score (BS). Among the set of probabilistic scores
the Brier score represents the mean square error of the
probability forecast for a binary event, e.g. snow depth
in a given tercile of the distribution (Mason, 2004). In
our analysis, continuous forecasts are first transformed
into tercile-based forecasts (i.e. probabilities for snow
depth forecast to fall into the lower, middle or upper
tercile of the forecast distribution) as suggested in Ma-
son (2018). Then, the BS is calculated for each tercile.
We also explored the forecast skill in predicting extreme
events, i.e. the BS associated with monthly and sea-
sonal snow depth below the 10th and above the 90th
percentile of the forecast distribution. Tercile and per-
centile thresholds are calculated over the reference pe-
riod 1995–2015.

– Area under the ROC curve (AUC). The receiver operat-
ing characteristic (ROC) curve (Jolliffe and Stephenson,
2012), similarly to the Brier score, allows for the evalua-
tion of binary forecasts. Given an ensemble forecast for
a binary event, for example snow depth in the upper ter-
cile, the ROC curve shows the true-positive rate against
the false-positive rate for different probability thresh-
old settings. The area under the ROC curve shows the
ability of the forecast system to discriminate between
an “event” and a “non-event”, i.e. it is a measure of the
discrimination of the forecast system. AUCs are calcu-
lated separately for each tercile.

– Continuous ranked probability score (CRPS). One of
the most widely used accuracy metrics for ensemble
forecasts is the continuous ranked probability score
(Matheson and Winkler, 1976). The CRPS is the inte-
grated squared difference between the forecast cumula-
tive distribution function (CDF) and the empirical (ob-
served) CDF, which is a step function. The CRPS has a
negative orientation, i.e. the lower the score, the better
the forecast CDF approximates the observed CDF. The
perfect value for CRPS is zero.

To facilitate the interpretation of the results of ensemble
forecast evaluations, the BS, AUC and CRPS scores are pre-
sented in terms of skill scores (BSS, AUCSS and CRPSS, re-
spectively). The skill score indicates the skill of the forecast
method with respect to a reference “trivial” forecast method
based for example on the climatology, the persistence of
the observed anomaly, etc. In our case the reference is the
(monthly or seasonal) climatological forecast, derived from
the set of climatological values except for the value that oc-
curred. The sign and the absolute value of the skill score pro-
vide information on the added value of the forecast method
compared to the climatological forecast: the more positive
the skill score is, the better the quality of the forecast is;
the more negative the skill score is, the worse the quality of
the forecast is. A skill score of zero indicates no improve-
ments with respect to the reference forecast; a skill score of
one would instead indicate a perfect forecast. The analysis in
terms of skill scores provides quantitative and rigorous infor-
mation on the quality and the different features of the fore-
cast method. BSS and CRPSS are calculated for each starting
date and lead time and then averaged over all starting dates
and converted into skill scores as follows:

SS=
S− Sref

Sperf− Sref
, (1)

where SS is the value of the skill score, S is the value of the
score of the forecast system against the observations, Sref is
the value of the score of the climatological forecast against
the observations and Sperf is the value of the score in the the-
oretical case that forecasts perfectly match observations. The
AUC skill score (AUCSS), instead, is derived using the fol-
lowing formula (Wilks, 2011):

AUCSS= 2(AUC− 0.5). (2)

The uncertainty in the time correlation and the skill scores
has been evaluated by estimating the confidence interval (CI)
using the bootstrap method (Bradley et al., 2008; Wilks,
2011), as recommended by Mason (2018). Bootstrapping is
widely used to find the sampling distribution of a quantity
and then to compute its standard error and CI. At first, given
that n is the number of ensemble members, depending on
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whether n is odd or even, n/2 or (n+ 1)/2 members are
randomly selected with replacement. Then, a skill score is
computed considering only selected ensemble members. The
procedure has been iterated 1000 times, generating a sample
distribution from which mean and 90 % confidence interval
error bars are estimated.

3 Results

3.1 An example of snow depth forecast

Figure 3 presents an example of snow depth forecast for
the season 2006/2007, referring to the station of Bocchetta
delle Pisse. The forecast is derived using the meteorological
forcing provided by ECMWFS5, post-processed as described
in Sect. 2.3. Precipitation forecasts have been bias adjusted
with the quantile mapping method and then downscaled to
1 km with the RainFARM method (QM+RainFARM exper-
iment), generating 10 stochastic realizations for each of the
25 forecast ensemble members (250 downscaled precipita-
tion forecasts in total). The ensemble spread, the 5th–95th
percentile range and the ensemble median of the forecasts
for the season 2006/2007 are compared to the ensemble me-
dian of all forecasts for all seasons of the period 1995–2015
in order to highlight the characteristics of the considered sea-
son with respect to model climatology and determine if snow
depth is expected to be below or above median. The plot also
reports the snow depth observations for that season and the
observed climatology to visually inspect the accuracy of the
forecast (please note that differences between the observed
and the modelled climatology are due to uncertainties in the
bias-adjusted meteorological forcing and in the snow model
structure).

We also present the output of the modelling chain in the
form of tercile-based forecasts (Fig. 4). For each month of
the season, the tercile-based forecast plot shows the proba-
bility density function (PDF) of the 250 monthly mean snow
depth forecasts, together with the probabilities to have snow
depth in each tercile, and the indication of the most likely
tercile. The plot also reports the probability for snow depth
to be lower than the 10th percentile and higher than the 90th
percentile. Tercile and percentile thresholds are calculated on
the 21× 250 monthly mean snow depth forecast values over
the period 1995–2015. In the example reported in Fig. 4 snow
depth forecasts indicate the lower tercile (below normal) as
most likely in each month of the snow season. In order to vi-
sually evaluate the quality of the forecast, the observed snow
depth is also reported: if the observed snow depth falls within
the most likely tercile, the forecast is successful. In this sea-
son the forecast is successful in February, March, April and
May, so in late winter and spring.

Figure 3. ECMWFS5-SNOWPACK snow depth ensemble forecasts
(QM+RainFARM experiment, 250 ensemble members) initialized
on 1 November 2006 and issued for the 7 months ahead, for the
site of Bocchetta delle Pisse (2410 m a.s.l., North Western Italian
Alps). Dark green lines represent the ensemble spread, cyan lines
represent the 5th–95th percentile range of the snow depth distri-
bution, the blue line represents the ensemble median of the snow
forecasts over the considered season, the black line represents the
ensemble median of the forecasts over the reference period 1995–
2015, the orange line represents in situ observations and the red line
represents the median of the observations over the reference period
1995–2015.

3.2 Effects of the precipitation bias adjustment and
downscaling

The snow depth forecast presented in Figs. 3 and 4 is ob-
tained after applying quite sophisticated bias correction and
downscaling techniques to precipitation data. In this section
we assess the added value, if any, of applying those bias ad-
justment and/or downscaling methods compared to the use
of raw precipitation data. We present the results of the four
experiments (RAW, QM, RainFARM, QM+RainFARM)
listed in Table 3, in which we do or do not apply the cor-
rection methods to precipitation forecasts. We use an indirect
approach, i.e. we assess the added value of total precipitation
corrections by measuring the agreement between the snow
depth climatology obtained from the four experiments and
the observed climatology in terms of root mean square error
(RMSE). For each of the two forecast systems, ECMWS5
and MFS6, and each experiment, Fig. 5 shows the simulated
snow depth climatology (multi-annual and multi-member av-
erage) compared to the observed climatology at the station
of Bocchetta delle Pisse for the period 1995–2015. Figure 5
also shows the two ERA5 snow depth climatologies obtained
using raw (ERA5) and bias-corrected (ERA5TMBC) tempera-
ture forcing, respectively (Sect. 2.2). The corresponding RM-
SEs are reported in Table 4.
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Figure 4. Probability density functions (PDFs) of the ECMWFS5-SNOWPACK monthly mean snow depth ensemble forecasts for the season
2006–2007 (starting date: 1 November 2006; lead times: 2, 3, 4, 5, 6, and 7 months) and for the station of Bocchetta delle Pisse, 2410 m a.s.l.
in the Italian Alps. Areas in blue, green, and coral colours represent the % probability to have monthly average snow depth below, near and
above the normal conditions for the period, respectively, and the asterisk indicates the most likely tercile. Areas with blue and red parallel
lines represent the probability to have monthly snow depth below the 10th percentile and above the 90th percentile, respectively. Observations
are reported as purple diamonds.

Figure 5. Daily snow depth climatology for the period 1995–2005 as simulated by the SNOWPACK model forced by ERA5 when using
(grey) raw and (orange) bias-corrected air temperature, as well as by (a) ECMWFS5 and (b) MFS6 seasonal forecast data with different
precipitation input (RAW, QM, RainFARM and QM+RainFARM) as specified in Table 3, for the site of Bocchetta delle Pisse. Observations
are reported in black for comparison.

When SNOWPACK is driven by ERA5 forcing (raw tem-
perature), the model RMSE on snow depth is in the range
of 0.30–0.35 m for Bocchetta delle Pisse and Lago Ag-
nel stations, while it is higher (RMSE= 0.5 m) for Rifugio
Gastaldi: in this last station, snowfalls are typically followed
by rapid snow ablation (not shown), so the large RMSE
can be related to ERA5 issues in capturing the meteorolog-
ical conditions responsible for the fast melting. When bias-
corrected (ERA5TMBC) instead of raw (ERA5) temperature

input is used, the SNOWPACK RMSE is remarkably re-
duced at all three stations: the reduction is by more than
50 % at Bocchetta delle Pisse and Lago Agnel, with RM-
SEs of 0.14 and 0.15 m, respectively, and by almost 50 %
at Rifugio Gastaldi with RMSE= 0.27 m. A simple bias cor-
rection of ERA5 temperature input is sufficient to remark-
ably improve the agreement between the simulated and ob-
served snow depth climatology. ERA5-driven simulations
are the reference against which to compare seasonal forecast-
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Table 4. RMSE between simulated and observed daily snow depth climatologies at the station of Bocchetta delle Pisse for the experiments
listed in Table 3. Model simulations are obtained by forcing SNOWPACK with ERA5, ECMWFS5 and MFS6 meteorological variables.
ECMWFS5 and MFS6-driven experiments (RAW, QM, RF and QM+RF) differ in the treatment of total precipitation (see Table 3).

RMSE (m)

ERA5 ERA5TMBC ECMWFS5 MFS6

RAW QM RF QM+RF RAW QM RF QM+RF

Bocchetta delle Pisse 0.31 0.14 0.19 0.21 0.16 0.21 1.04 0.21 1.01 0.20
Rifugio Gastaldi 0.50 0.27 0.27 0.35 0.30 0.45 1.38 0.39 2.13 0.57
Lago Agnel 0.32 0.15 0.18 0.22 0.37 0.60 1.19 0.24 2.63 0.78

driven simulations. Compared to the ERA5TMBC run, the
RAW experiment shows a similar RMSE when using the
ECMWFS5 forcing and a remarkably higher RMSE when
using the MFS6 forcing. This suggests that after the bias ad-
justment of both ERA5 and seasonal forecast temperature,
(i) the ECMWFS5 forcing has comparable accuracy to the
ERA5 forcing, and (ii) the MFS6 forcing has residual sys-
tematic errors that affect the reliability of the simulations.

The application of the quantile mapping to heavily biased
precipitation forecasts (MFS6) allows for a clear improve-
ment of the model RMSE which is reduced up to almost 5
times compared to the RAW experiment. On the other hand,
the application of the quantile mapping to already accurate
forcing (ECMWFS5) can have different effects depending on
the accuracy of the reference dataset. Here the application of
the quantile mapping using ERA5 as a reference has no re-
markable effects (Bocchetta delle Pisse and Lago Agnel), or
it slightly increases (Rifugio Gastaldi) the RMSE (see Ta-
ble 4, ECMWFS5 model, QM experiment), but it might also
have detrimental effects when the reference dataset is inac-
curate.

The application of the RainFARM downscaling (RF exper-
iment) produced small effects at Bocchetta delle Pisse station
(orographic weight equal to 1.05) and gradually more rel-
evant effects at Rifugio Gastaldi and Lago Agnel (weights
equal to 1.21 and 1.43, respectively, see Terzago et al. (2018)
for details). In these last two cases the orographic downscal-
ing amplifies precipitation amounts and leads to an overes-
timation of the snow depth output, with snow depth errors
doubling with about a 50 % increase in the precipitation in-
put (Lago Agnel).

These results suggest that the choice of the forecast sys-
tem strongly impacts the agreement between the simulated
and the observed climatology. The application of the quan-
tile mapping is recommended in the case of large biases in the
precipitation input, in order to reproduce a snow depth clima-
tology as realistically as possible. However, the application
of the quantile mapping is recommended only if a trusted,
reliable reference dataset is available. In fact, if the reference
dataset is less accurate than the dataset that we want to cor-
rect, the application of the bias adjustment may lead to larger

errors. The RainFARM downscaling is blind to model biases
so, in the presence of heavily biased forcing, it should be ap-
plied only after bias correction. Since the downscaling might
have either positive or negative effects depending on the oro-
graphic weights, the added value of the downscaling should
be checked against observations before using the fine-scale
precipitation data.

3.3 Evaluation of the snow depth forecasts

In order to assess the skill of the forecasting method pre-
sented in this study, we evaluate the snow depth forecasts
over the period 1995–2015 (hindcasts) in comparison to
snow depth observations, using the set of metrics introduced
in Sect. 2.7. We recall that all metrics are calculated on de-
trended time series.

3.3.1 Time correlation

Figure 6 shows the correlation between ensemble mean
monthly and seasonal hindcasts and observations for the two
seasonal forecast systems, ECMWFS5 and MFS6, and for
the four experiments listed in Table 3 for the station of Boc-
chetta delle Pisse. Confidence intervals represented in Fig. 6
as error bars or as a grey rectangle correspond to the 5th–
95th percentile range of 1000 bootstrap samples derived as
described in Sect. 2.7. The correlation values for all three
stations, together with their significance at 95 % confidence
level, are reported in Table 5.

A common behaviour is found among all stations: the cor-
relation is highest in November, i.e. at a lead time of 1 month
when the meteorological input is generally well correlated
with observations, then the correlation decreases reaching a
minimum in winter months (January or February depending
on the station and forcing). After February the correlation
increases to a secondary maximum in April, then it finally
drops in May. Correlation values are very similar among
different experiments, especially for the ECMWFS5 model.
The largest differences among experiments are found for the
MFS6 model in spring (March and April), when QM and
QM+RainFARM experiments provide higher time correla-
tions than the RAW experiment, although they lie within the
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uncertainty range of the RAW experiment, and none of these
correlations are statistically significant.

Focusing on significant correlations at a 95 % confidence
level (Table 5), we observe differences between seasonal
forecast systems: using ECWMFS5 forcing, correlations are
significant for all stations, all experiments and most lead
times; the correlation is significant at a lead time of 1 and
2 months (November and December, respectively) and, in-
terestingly, also at a lead time of 5 and 6 months (March
and April), at a seasonal (November–May), winter (DJF),
and spring (MAM) scale. Correlation is statistically signif-
icant in January and February only for some stations and ex-
periments, while it is generally not statistically significant in
May. Compared to ECMWFS5, MFS6’s correlation is con-
siderably lower and generally not statistically significant af-
ter December, probably owing to a lower skill and larger bi-
ases in the meteorological forcing.

In challenging conditions such as poor meteorological
forcing (MFS6), the application of bias adjustment, down-
scaling or the combination of both generally improves cor-
relations with respect to the RAW experiment; however this
improvement does not lead to statistically significant corre-
lations.

3.3.2 Brier skill score

The Brier skill score (BSS) shows the relative skill of the
forecast prototype with respect to the climatological fore-
cast in terms of the mean square error of the probability
forecasts for a binary event. In our case the binary event
is “snow depth in a given tercile of the forecast distribu-
tion”. BSS takes positive values whenever the forecast pro-
totype is more skillful than climatology. Figure 7 shows the
time evolution of BSS for the two seasonal forecast systems,
ECMWFS5 and MFS6, and for the four experiments listed
in Table 3, for the station of Bocchetta delle Pisse. Error
bar computation is based on 1000 bootstrap samples derived
as described in Sect. 2.7. The winter (DJF), spring (MAM)
and seasonal (November–May) BSS values are reported in
the plot as dashed lines, dotted-dashed lines and grey strips,
respectively. BSS values for all three stations are reported
and compared in Fig. 8, where positive (negative) BSSs are
highlighted in hues of green (blue), and a discretized scale
with thresholds of 0, ±0.2 and ±0.4 allows us to distin-
guish between fair, good and remarkable skill, respectively
(i.e. fair corresponds to 0 < BSS 6 0.2, good corresponds to
0.2 < BSS 6 0.4, remarkable corresponds to BSS > 0.4).

The BSS is generally positive for both seasonal forecast
systems and both lower and upper terciles for almost all ex-
periments, all lead times and all stations (Figs. 7 and 8). The
BSS is highest in November and/or December, and then it de-
creases reaching its minimum, but still with positive values
(in all cases but one, which is close to zero) in May (Fig. 7),
demonstrating a clear added value of the prototype forecast
with respect to the climatological forecast. ECMWFS5 gen-

erally shows higher BSS than MFS6 for both lower and up-
per terciles, indicating better forecast skills than its counter-
part (Fig. 8). The difference is more evident in DJF when
ECMWFS5 shows predominantly good or even remarkable
skill, while MFS6 shows predominantly good or fair skill.
In MAM ECMWFS5 still outperforms MFS6, but the differ-
ence between the two is reduced, and both show fair skill in
most of the experiments. MFS6 shows larger differences be-
tween the four experiments without a clear relation between
the prototype skill and the application of the bias adjustment
and downscaling methods to precipitation data.

3.3.3 Area under the ROC curve skill score

AUCSS is a measure of the “discrimination” of the seasonal
forecast system: it indicates how good individual hindcasts
are at discriminating mean monthly snow depth falling in the
upper, middle and lower terciles in comparison to the ref-
erence climatological forecast. We recall that positive val-
ues indicate improvements, while negative values indicate
poorer skills than the reference climatological forecast. Fig-
ure 9 shows the time evolution of AUCSS for the two sea-
sonal forecast systems, ECMWFS5 and MFS6, for the four
experiments listed in Table 3, for the station of Bocchetta
delle Pisse, and for the lower and upper terciles. Error bars
are calculated based on 1000 bootstrap samples derived as
described in Sect. 2.7. The winter (DJF) and spring (MAM)
AUCSS values for all three stations are reported in Fig. 10,
where positive (negative) AUCSS are highlighted in shades
of green (blue).

Considering the ECMWFS5 forecasting system, a clear
added value emerges in predicting the events in the terciles
below normal and above normal for all stations, all experi-
ments and all lead times at least up to April included (up to
May for Lago Agnel, not shown). For all stations the AUC
skill scores at a seasonal scale (DJF and MAM) indicate an
improvement with respect to the climatological forecast, with
remarkable forecast skill in winter and generally good skill
in spring.

Considering the MFS6 forecast system, we find a clear
added value at forecasting snow depth in the upper tercile
(generally with good or remarkable skills in DJF and a more
or less strong decrease in MAM) and in the lower tercile in
DJF. The prediction skills for MAM snow depth in the lower
tercile depend on the station: in detail, skills are good or re-
markable for Lago Agnel, while contrasted results with both
positive and negative skills depending on the experiment are
found for Rifugio Gastaldi, and negative skills are found for
Bocchetta delle Pisse.

Seasons with snow depth within the norm are usually pre-
dicted with similar or lower skills than the climatological
forecast, with some differences depending on the seasonal
forecast system. While ECMWFS5 shows limited added
value in all stations, experiments and seasons, the skill of
MFS6 is more station- and experiment-dependent, and some
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Figure 6. Pearson’s correlation coefficient between forecasts of ensemble-mean, monthly mean snow depth obtained with (a) ECMWFS5
and (b) MFS6 forcing (FCST) and observations (OBS) at the site of Bocchetta delle Pisse. Forecasts are initialized on 1 November and run
with a lead time of 7 months. Coloured dots represent the correlation for each month and each experiment, dashed horizontal (dotted-dashed)
lines represent DJF (MAM) values, and the grey rectangle and the four coloured triangles represent seasonally averaged (November–May)
values. Error bars represent the 5th–95th percentile range of the distribution of 1000 bootstrap samples as described in Sect. 2.7.

Table 5. Time correlation of the detrended monthly mean snow depth forecasts with respect to observations at the three stations for
ECMWFS5 and MFS6 systems. Correlations significant at 95 % confidence level are identified in bold and by an asterisk (∗).

Pearson’s time correlation

Bocchetta delle Pisse Rifugio Gastaldi Lago Agnel

ECMWFS5

ERA5 RAW QM RF QM+RF ERA5 RAW QM RF QM+RF ERA5 RAW QM RF QM+RF

Nov 0.93∗ 0.64∗ 0.64∗ 0.64∗ 0.64∗ 0.44∗ 0.74∗ 0.76∗ 0.73∗ 0.75∗ 0.91∗ 0.62∗ 0.66∗ 0.65∗ 0.68∗
Dec 0.92∗ 0.55∗ 0.54∗ 0.55∗ 0.54∗ 0.52* 0.59∗ 0.59∗ 0.59∗ 0.60∗ 0.89∗ 0.51∗ 0.53∗ 0.53∗ 0.53∗
Jan 0.88∗ 0.35 0.34 0.34 0.33 0.71∗ 0.46∗ 0.45∗ 0.43∗ 0.45∗ 0.84∗ 0.37 0.38 0.39∗ 0.39∗
Feb 0.84∗ 0.34 0.38∗ 0.33 0.36 0.71∗ 0.37∗ 0.38∗ 0.36 0.39∗ 0.89∗ 0.35 0.37 0.41∗ 0.43∗
Mar 0.85∗ 0.39∗ 0.42∗ 0.41∗ 0.42∗ 0.67∗ 0.41∗ 0.39∗ 0.39∗ 0.40∗ 0.89∗ 0.43∗ 0.41∗ 0.50∗ 0.48∗
Apr 0.79∗ 0.48∗ 0.53∗ 0.51∗ 0.53∗ 0.60∗ 0.40∗ 0.39∗ 0.41∗ 0.38∗ 0.92∗ 0.43∗ 0.44∗ 0.49∗ 0.46∗
May 0.80∗ 0.31 0.37 0.31 0.36 0.66∗ 0.30 0.30 0.30 0.30 0.93∗ 0.26 0.29 0.33 0.32
NM 0.89∗ 0.54∗ 0.55∗ 0.54∗ 0.54∗ 0.66∗ 0.52∗ 0.53∗ 0.52∗ 0.53∗ 0.92∗ 0.48∗ 0.51∗ 0.54∗ 0.54∗
DJF 0.90∗ 0.44∗ 0.45∗ 0.44∗ 0.44∗ 0.65∗ 0.50∗ 0.50∗ 0.48∗ 0.51∗ 0.88∗ 0.42∗ 0.45∗ 0.46∗ 0.47∗
MAM 0.82∗ 0.44∗ 0.49∗ 0.46∗ 0.49∗ 0.70∗ 0.39∗ 0.39∗ 0.39∗ 0.39∗ 0.93∗ 0.41∗ 0.41∗ 0.46∗ 0.44∗

MFS6

ERA5 RAW QM RF QM+RF ERA5 RAW QM RF QM+RF ERA5 RAW QM RF QM+RF

Nov 0.93∗ 0.49∗ 0.47∗ 0.49∗ 0.47∗ 0.44∗ 0.44∗ 0.45∗ 0.43∗ 0.44∗ 0.91∗ 0.30 0.28 0.29 0.29
Dec 0.92∗ 0.55* 0.48∗ 0.55∗ 0.48∗ 0.52∗ 0.46∗ 0.43∗ 0.45∗ 0.42∗ 0.89∗ 0.45∗ 0.40∗ 0.45∗ 0.41∗
Jan 0.88∗ 0.34 0.31 0.38∗ 0.33 0.71∗ 0.21 0.29 0.16 0.24 0.84∗ 0.23 0.27 0.20 0.25
Feb 0.84∗ 0.28 0.22 0.35 0.25 0.71∗ 0.11 0.16 0.09 0.12 0.89∗ 0.23 0.27 0.21 0.27
Mar 0.85∗ 0.29 0.31 0.36 0.37 0.67∗ 0.15 0.24 0.12 0.20 0.89∗ 0.29 0.41∗ 0.24 0.36
Apr 0.79∗ 0.21 0.27 0.30 0.36 0.60∗ 0.09 0.17 0.06 0.13 0.92∗ 0.19 0.30 0.18 0.28
May 0.80∗ 0.04 0.10 0.07 0.11 0.66∗ 0.03 0.07 0.01 0.05 0.93∗ 0.09 0.14 0.10 0.16
NM 0.89∗ 0.39∗ 0.38∗ 0.45∗ 0.41∗ 0.66∗ 0.22 0.29 0.18 0.25 0.92∗ 0.28 0.32 0.25 0.33
DJF 0.90∗ 0.41∗ 0.36 0.46∗ 0.38∗ 0.65∗ 0.27 0.31 0.23 0.28 0.88∗ 0.31 0.33 0.29 0.33
MAM 0.82∗ 0.15 0.21 0.21 0.27 0.70∗ 0.06 0.14 0.04 0.10 0.93∗ 0.16 0.26 0.15 0.24

https://doi.org/10.5194/hess-27-519-2023 Hydrol. Earth Syst. Sci., 27, 519–542, 2023



532 S. Terzago et al.: Seasonal forecasting of snow resources

Figure 7. Brier skill score for seasonal forecasts of monthly and seasonally averaged snow depth in the (a, c) lower and (b, d) upper terciles
for (a, b) ECMWFS5 and (c, d) MFS6 forcing, starting date 1 November, lead times from 1 to 7 months for the site of Bocchetta delle Pisse.
Coloured dots represent the BSS for each month and each experiment; dashed (dotted-dashed) horizontal lines represent DJF (MAM) BSS
values; and the grey-filled rectangle and the four coloured triangles all refer to the seasonal (November–May) values, indicating the BSS
spread (min–max) and the single BSS values for the four experiments, respectively.

Figure 8. Brier skill score of the detrended seasonal (DJF, MAM) snow depth forecasts in the lower (LT), middle (MT) and upper (UT) tercile,
as well as in the lower (P10) and upper (P90) extreme of the distribution, with respect to the climatological forecasts, using observations at
the three stations as a reference, for (a) ECMWFS5 and (b) MFS6 systems. Positive and negative BSSs are highlighted in shades of green
and blue, respectively.
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Figure 9. AUCSS for seasonal forecasts of monthly and seasonally averaged snow depth in the (a, c) lower and (b, d) upper terciles for (a, b)
ECMWFS5 and (c, d) MFS6 forcing, starting date 1 November, lead times from 1 to 7 months for the site of Bocchetta delle Pisse. Coloured
dots represent the AUCSSs for each month and each experiment, dashed (dotted-dashed) horizontal lines represent DJF (MAM) AUCSS
values, the grey-filled rectangle and the four coloured triangles all refer to the seasonal (November–May) snow depth forecasts, indicating
the AUCSS spread (min–max) and the AUCSS values for the four experiments, respectively.

skill is found for Rifugio Gastaldi and Lago Agnel stations
(see Fig. 10 for more details).

It is interesting to note that limited to the upper tercile,
the AUCSS generally shows a secondary maximum in March
or April (particularly evident for Rifugio Gastaldi and Lago
Agnel stations, not shown), indicating that the forecast sys-
tem has skill at predicting spring seasons with above-normal
snow depth. For the lower tercile this secondary maximum is
often less pronounced.

The largest differences among the four experiments are
found for MFS6; however there is not a single experiment
usually performing better than others.

3.3.4 Continuous ranked probability skill score

The continuous ranked probability score (CRPS) is a mea-
sure of the overall accuracy of the ensemble forecast. The

Brier score and the CRPS are complementary measures, with
the former providing information on the accuracy of tercile-
based forecasts and the latter evaluating the overall accuracy
of the forecast distribution, considering the entire permissi-
ble range of values for the considered variable. Figure 11
shows the time evolution of the corresponding skill score
(CRPSS) for the two seasonal forecast systems, ECMWFS5
and MFS6, and for the four experiments listed in Table 3 for
the station of Bocchetta delle Pisse. In addition to the plots,
Fig. 12 shows the monthly and seasonal CRPSS values for all
three stations, with positive (negative) CRPSS highlighted in
shades of green (blue).

Considering the ECMWFS5 forecasting system, the
CRPSS is generally positive, although with small values
across the different experiments, lead times and most of the
stations (Fig. 12). Few exceptions with CRPSS values close
to zero are found, and they are mostly in winter months.
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Figure 10. AUCSS of the detrended seasonal (DJF, MAM) snow depth forecasts in the lower (LT), middle (MT), upper (UT) tercile, as well
as in the lower (P10) and upper (P90) extreme of the distribution, with respect to the climatological forecasts, using observations at the three
stations as a reference, for (a) ECMWFS5 and (b) MFS6 systems. Positive and negative AUCSSs are highlighted in shades of green and
blue, respectively.

Figure 11. CRPSS for seasonal forecasts of monthly and seasonally averaged snow depth for (a) ECMWFS5 and (b) MFS6 forcing, start-
ing date 1 November, lead times from 1 to 7 months, for the site of Bocchetta delle Pisse. Coloured dots represent the scores for each
month and each experiment; dashed (dotted-dashed) horizontal lines represent DJF (MAM) scores; and the grey-filled rectangle and the
four coloured triangles all refer to the seasonal (November–May) snow depth forecasts, and they indicate the score spread among the four
different experiments and the score for each of the four experiments, respectively.

When using the MFS6 forecasting system, the skill is lower
than ECMWFS5: the skill is present up to a lead time of 5
months (March) only for selected stations and experiments.
Skill at a lead time of 6–7 months (April, May) and/or in the
QM experiment is rare, suggesting a worsening of the per-
formances when the total precipitation input is bias-adjusted
with the quantile mapping method with respect to ERA5. The
application of the quantile mapping with respect to ERA5 to
MFS6 precipitation seems to waste some of the limited fore-
cast skill.

Like many other skill scores analysed, the CRPSS also de-
creases from November up to the end of the winter, then it
increases again for a secondary maximum in March or April.
This behaviour is very common, and it seems to be a ro-

bust feature across different forecast systems, experiments
and test sites. Overall, the presence of positive CRPSS val-
ues, also when the score reaches its minimum (i.e. Fig. 11a),
clearly indicates the added value of the prototype forecast
over the climatological forecast, in terms of overall accuracy.

3.3.5 Events outside the 10th–90th percentile range

The analysis of the prototype performance also covers the
ability to predict events below the 10th percentile (P10, lower
extreme) and above the 90th percentile (P90, upper extreme).
Figure 13 shows the time evolution of BSS for extreme val-
ues for the two seasonal forecast systems, ECMWFS5 and
MFS6, and for the four experiments listed in Table 3 for

Hydrol. Earth Syst. Sci., 27, 519–542, 2023 https://doi.org/10.5194/hess-27-519-2023



S. Terzago et al.: Seasonal forecasting of snow resources 535

Figure 12. CRPSS of the detrended monthly and seasonal (DJF, MAM) snow depth forecasts with respect to the climatological forecasts,
using observations at the three stations as a reference, for (a) ECMWFS5 and (b) MFS6 systems. Positive and negative CRPSS are highlighted
in shades of green and blue, respectively.

the station of Bocchetta delle Pisse. Figure 8 summarizes
the BSS values for all the stations. Looking at the plots for
the Bocchetta delle Pisse station for the events below P10
(Fig. 13a, c), the BSS is generally positive during the snow
season, indicating a clear skill at predicting low snow month-
s/seasons. In only one case the BSS is close to zero in all
experiments (i.e. EMWFS5 forcing, DJF season, Bocchetta
delle Pisse station), and the application of bias correction,
downscaling or the combination of both do not improve the
skill. In all other cases (Fig. 8), the skill is robust across dif-
ferent forecast systems, seasons, experiments and stations. It
is interesting to note that MFS6 shows good skills at forecast-
ing months/seasons with snow below P10, with similar per-
formances or even outperforming the ECMWFS5-driven ex-
periments. Looking at the plots for the Bocchetta delle Pisse
station for the events above P90 (Fig. 13b, d), the BSS is gen-
erally negative, indicating no skill of the forecast system at
predicting months/seasons with exceptionally abundant snow
depth. This property is maintained considering different driv-
ing models, seasons, experiments, and stations (Fig. 8). Some
skill (positive BSS) is found for the Rifugio Gastaldi station
(in DJF), especially when using the MFS6 forcing.

4 Discussion

In this paper we present an original prototype for generat-
ing multi-system ensemble seasonal forecasts of snow depth
at a local scale from November up to May of the following
year (7-month lead time), providing information which is rel-
evant for economic activities such as hydropower production,
water management and winter ski tourism. The prototype is
based on the SNOWPACK model forced by meteorological
data of the Copernicus Climate Data Store seasonal forecast
systems, namely ECMWFS5 and MFS6. The skill of the pro-
totype has been assessed using different deterministic and
probabilistic metrics: (i) the time correlation of the ensem-

ble mean snow depth forecast with the observed snow depth,
(ii) the accuracy (BSS) and the discrimination (AUCSS) of
the tercile-based forecasts, (iii) the accuracy of the forecast
distribution (CRPSS). All probabilistic skills have been cal-
culated with respect to a simple forecast method based on the
climatology (reference).

The prototype shows clear skill in tercile-based fore-
casts, i.e. higher accuracy (BSS) and higher discrimination
(AUCSS) at forecasting events below and above normal com-
pared to the climatological forecasts, independently of the
driving seasonal forecast system, station, season and experi-
ment considered. The prototype also shows skill at forecast-
ing extreme snow seasons with snow depth below the 10th
percentile, while it has difficulties in predicting extremely
snowy seasons (snow depth above the 90th percentile).

The choice of the forecast system has an impact on the
skill of the prototype, with ECMWFS5 providing more ro-
bust skill across different seasons, metrics and experiments
than MFS6. The ECMWFS5-driven prototype provides high
and significant time correlation between ensemble mean
snow depth forecasts and observations for different time ag-
gregations of the forecasts, i.e. over the whole period from
November–May, at a seasonal scale (DJF, MAM), or even at
a monthly scale in November, December, March and April.
These features are valid for all three stations considered, and
single stations provide even better results, with high and sig-
nificant correlations also in January and February. By con-
trast, MFS6 shows significant correlation only at short lead
times, i.e. November and/or December. The ECMWFS5-
driven prototype shows skill at predicting the snow depth
forecast distribution (CRPSS) at the November–May and
MAM scales (all stations) and at the DJF scale (for two out of
three stations). On the contrary, MFS6 shows CRPSS values
close to zero or slightly positive with a scattered pattern de-
pending on the station, season and experiment. In conclusion,
compared to ECMWFS5, the MFS6 forcing prototype pro-
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Figure 13. Brier skill score for seasonal forecasts of monthly and seasonally averaged snow depth (a, c) below the 10th percentile (P10) and
(b, d) above the 90th percentile (P90) for (a, b) ECMWFS5 and (c, d) MFS6 forcing, starting date 1 November, lead times of 1 to 7 months,
for the site of Bocchetta delle Pisse. Coloured dots represent the BSS for each month and each experiment; dashed (dotted-dashed) horizontal
lines represent DJF (MAM) BSS values; and the grey-filled rectangle and the four coloured triangles all refer to the seasonal (November–
May) snow depth forecasts, and they precisely indicate the BSS spread among different experiments and the BSS values for each of the four
experiments, respectively.

vides less widespread skills, and the performances are more
score-, season-, experiment- and station-dependent.

A common feature of both driving systems is their bet-
ter skill at predicting above- or below-normal snow depth
compared to near-normal snow depth. This issue has been
found in several previous works (e.g. Calì Quaglia et al.,
2022; Athanasiadis et al., 2017), and it has been explained
with the difficulty at predicting small rather than large am-
plitude anomalies.

A second common feature of the two seasonal forecast
systems is the time evolution of the monthly correlation: as
expected it is maximum at the beginning of the season and
then it decreases; however, surprisingly, it increases again
to a secondary maximum in April (or March). This feature
can probably be related to the fact that the spring snow-
pack is determined by the climatic conditions over the pre-

vious months, and even modest skill in the prediction of the
main meteorological drivers (temperature and precipitation)
at short lead times is reflected in the skill at predicting snow-
pack at longer lead times. So even if temperature and precipi-
tation forecasts do not match the corresponding observations
at a monthly scale, they can match at a longer (seasonal) scale
and allow for surprisingly good predictability of the snow
accumulation. Moreover, enhanced climate predictability in
winter due to teleconnections such as the North Atlantic Os-
cillation (Lledó et al., 2020) may increase the skill in fore-
casting snowpack in the following spring. Increasing agree-
ment from mid-winter to spring has been found not only for
the time correlation but also for other skill scores, although
in this last case the signal is not consistent throughout all
forecast systems, terciles and experiments.
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A third common feature of the two seasonal forecast sys-
tems is their skill at forecasting extremely low snow sea-
sons, with snow depth below the 10th percentile. This result
is in line with previous studies on tercile- or quintile-based
streamflow prediction (Santos et al., 2021; Wanders et al.,
2019) where some reliability is achieved in the lower tercile
for high forecast probabilities. In contrast, for the upper ter-
cile and even clearer for the middle tercile, no reliability is
found. Our findings show that it is relatively easier to pre-
dict low snow than high snow seasons: this feature is of key
importance, since the most relevant feature requested by end
users to be available from the prototype is the capability of
anticipating the occurrence of low snow seasons.

The accuracy of seasonal snow forecasts is subject to mul-
tiple sources of uncertainty, which are present in the vari-
ous components of the production chain, that is: forecasts of
the meteorological forcing, bias adjustment methods, down-
scaling techniques, snow model employed, model setup and
initialization. Consequently, each component has to be evalu-
ated to assess its relative contribution to the overall forecast-
ing accuracy.

4.1 The impact of the choice of the seasonal forecast
system

At the time when our snow depth forecast prototype was
developed, only two seasonal forecast systems provided all
the variables necessary to drive the snow model, namely
ECMWFS5 and MFS6, so we considered these two. Of
course, additional seasonal forecast systems should be anal-
ysed as a further step, investigating also the skill of the multi-
system ensemble compared to the models taken individu-
ally. From our results based on ECMWFS5 and MFS6, the
choice of the seasonal forecast system strongly impacts the
skill of the prototype in terms of time correlation between
forecasted and observed snow depth, which is higher, sig-
nificant and more widespread during the snow season when
using ECMWFS5 forcing with respect to MFS6 forcing. The
choice of the seasonal forecast system also impacts the abil-
ity of the prototype to provide forecast distributions close
to the observed ones (CRPSS). However, the choice of the
forecast system does not substantially affect the ability of
the system at providing skillful tercile-based forecasts (BSS
and AUCSS). This finding suggests that even heavily bi-
ased seasonal forecast systems such as MFS6 over the study
area can provide skillful tercile-based snow depth forecasts.
In a recent study a similar behaviour has been found for
ECMWFS5 and MFS6 DJF temperature and precipitation
forecasts over the Mediterranean region (Calì Quaglia et al.,
2022).

4.2 The impact of precipitation bias correction

Accurate temperature and precipitation data are essential for
simulating snow processes, since the former controls the

phase of precipitation and snow melt, and the latter con-
trols snow accumulation. To adjust temperature biases we
employed the most accurate data available, i.e. measure-
ments at the meteorological station, to correct the annual
cycle of the seasonal forecast systems to make it similar to
the observed one. The adjustment of precipitation biases de-
serves more sophisticated techniques. Precipitation measure-
ments in mountain areas are affected by large errors, owing
to wind drift and inadequacy of unheated and insufficiently
heated pluviometers, both leading to a large underestimation
(Kochendorfer et al., 2017a, b). Clearly the lack of reliable
ground measurements hampers the possibility to accurately
bias adjust seasonal forecast precipitation data. In this study
we adjusted precipitation forecasts with the quantile mapping
method using ERA5 reanalysis as a reference data, assum-
ing ERA5 to be an adequate approximation of the ground
truth. An alternative option would have been to estimate total
precipitation from snow depth station measurements by us-
ing the parameterization included in the SNOWPACK model
(Mair et al., 2013). We tested this procedure and derived to-
tal precipitation at the three stations by running the SNOW-
PACK model driven by the ERA5 forcing (all variables used
in the ERA5 experiment except for total precipitation) and
the measured snow depth. We then compared the total pre-
cipitation simulated in this way to ERA5 total precipitation
in terms of November–May accumulated precipitation, and
the results are shown in Fig. 14. At the end of May the % dif-
ference between the SNOWPACK simulated values and the
corresponding ERA5 values is −22 %, −14 % and +12 %
for Bocchetta delle Pisse, Lago Agnel and Rifugio Gastaldi,
respectively, so it is relatively small in all three stations. The
study of how the difference between the two precipitation
estimates affects the bias correction of seasonal forecasts is
beyond the scope of this study and is left for further investi-
gation. However, from the analysis carried out in this paper it
is relatively easy to measure the added value of the precipita-
tion bias correction on the simulated snow depth (Fig. 5). The
precipitation adjustment is of little usefulness in the case of
small bias in the forecast system (ECMWFS5) when the ap-
plication of the bias correction can lead to similar or slightly
higher RMSEs compared to the use of RAW precipitation
data. On the contrary, the application of bias adjustment to
original precipitation data is useful, or even necessary, in the
case of strong biases in the forecast system (MFS6): in this
case it allows us to reconstruct the observed snow depth cli-
matology. In any case, however, the difference in skill scores
between RAW and QM experiments is generally very small.
In fact, the scores of the QM experiment lie within the range
of uncertainty of the score of the RAW experiment, so the
bias adjustment does not substantially influence the skills of
the prototype. These results are in agreement with a former
study which found that the application of the quantile map-
ping to forecast products eliminates forecast biases in the re-
forecasts, without adding much to correlation skill (Becker,
2019).
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Figure 14. November–May accumulated total precipitation as estimated by (black) the ERA5 reanalysis and (red) the SNOWPACK model
driven by the ERA5 forcing (all variables except for total precipitation) and the measured snow depth (HSmeas), for all three stations.

4.3 The impact of the spatial downscaling of
precipitation

The application of the RainFARM downscaling to seasonal
precipitation forecasts has different effects on the model
RMSE depending on the station but not on the forecast sys-
tem considered. In fact, the successful application of the
RainFARM method (i.e. lower RMSE in the RF experiment
compared to the RAW experiment) mainly depends on the
accuracy of the reference climatology used to derive the
weights. If the reference climatology overestimates or under-
estimates local precipitation amounts, this feature will also
be reflected in the downscaled data, irrespectively of the sea-
sonal forecast system employed. So, a locally inaccurate ref-
erence climatology introduces an additional source of error
(see for example the case of Lago Agnel station, RF vs. RAW
experiments). Since the results are station-dependent, we rec-
ommend checking the effects of the precipitation downscal-
ing by verifying the improvement of the agreement between
the simulated and the observed snow depth climatologies. If
results are not good, one should consider either using another
reference dataset with higher accuracy or directly employing
the original (RAW) precipitation at a coarse scale as input
for the modelling chain. In support of this last option are the
results of the probabilistic metrics, which do not show a sig-
nificant increase in skill scores when using downscaled data
compared to original coarse-scale data.

4.4 Spatial downscaling of other input variables

Apart from air temperature and precipitation, the other vari-
ables necessary to drive the SNOWPACK model are critical
to be adjusted and/or downscaled mainly due to the lack of (i)
surface observations to be used as a reference for bias adjust-
ment and (ii) robust downscaling methods with proven effec-
tiveness. Different methods have been developed to down-
scale wind fields, based on cluster analysis (Mengelkamp
et al., 1997; Salameh et al., 2009) or using a dynamical-
statistical approach (Pryor and Barthelmie, 2014), but all
of these are affected by large uncertainties (Pryor and Hah-
mann, 2019). Martinez-García et al. (2021) show a compar-

ison of different statistical methods, demonstrating the non-
existence of an optimal approach for all regions and applica-
tions. Humidity variables are rarely considered by downscal-
ing studies. The most common approach consists of the us-
age of a stepwise multiple linear regression (Anandhi, 2011).
The downscaling performance depends on predictors selec-
tion, however upper air humidity variables are assessed as
the most efficient ones. Spatial downscaling for incoming ra-
diation is more complex than other variables. For example,
Gupta and Tarboton (2016) downscaled MERRA reanalysis
data of incoming shortwave radiation by interpolating them
from coarse grid to DEM elevation one, while the incoming
shortwave radiation is estimated from air temperature, cloud
cover and atmospheric emissivity. In that case, the downscal-
ing did not reduce the uncertainty of raw data. Since bias
adjustment and downscaling techniques for variables other
than temperature and precipitation are affected by large un-
certainties, we preferred to (i) verify the overall agreement
between seasonal forecasts and corresponding station mea-
surements (when available) or ERA5 data over the period of
study and then, provided that there is acceptable agreement
between the forecast and the reference dataset, (ii) downscale
seasonal forecasts using a simple bilinear interpolation to the
coordinates of the station, which is an acceptable procedure
in the absence of more sophisticated methods. Further work
should clarify the effect of using more sophisticated bias-
correction and downscaling methods in the modelling chain
and in particular their impact on the quality of the snow depth
forecasts.

4.5 Impact of the choice of the snow model

A variety of snow models with different degrees of complex-
ity have been developed for different purposes and applica-
tions, from very simple empirical models (e.g. degree-day
models) to sophisticated, multi-layer physical snow models.
An advantage of simple snow models is the limited input
data requirement, which avoids uncertainties associated with
other forcings, and the low computational load of the simu-
lations. However, a limitation of simple degree-day models
is that they need to be calibrated over each study site, so
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sufficiently long time series of forcing and validation data
are necessary to calibrate and validate the model over inde-
pendent subperiods. Such long-term datasets are often un-
available, especially in remote areas. On the other hand, so-
phisticated snow models have higher input data requirements
and a higher computational load compared to simpler snow
models, but they have the advantage that they can be di-
rectly used without calibration, and their snow estimates usu-
ally have higher accuracy (Terzago et al., 2020). The choice
of the appropriate model complexity depends on the objec-
tive of the work. Förster et al. (2018) aimed at forecasting
February SWE anomalies spatially averaged at a catchment
scale, so they employed a simple hydrological snow model
driven by air temperature and precipitation anomalies only,
at coarse (monthly) time resolution. Our objective is to work
with finer spatial detail, moving from a catchment scale to a
local scale, and forecast monthly snow depth at specific sites
of interest for economic activities. In this paper we adopted
a sophisticated, physical, multi-layer snow model (SNOW-
PACK) which provides accurate daily snow depth estimates
(RMSE= 0.10 m, BIAS= 0.00, Pearson correlation= 0.79
in NW Italian Alps) across a number of different conditions
and seasons (Terzago et al., 2020). The high level of accuracy
of this model allows us to make the hypothesis that the model
error is neglectable compared, for example, to the error asso-
ciated with the forcing. This hypothesis simplifies the inter-
pretation of the results and allows us to better distinguish the
contribution of the different elements of the modelling chain
to the total error. The main drawback of using SNOWPACK
is the number of input variables needed to run the simula-
tions; that has also limited the number of seasonal forecast
systems that could be considered in this analysis.

4.6 Uncertainty in the validation data

The snow depth data used to evaluate snow forecasts are
quality-controlled in situ measurements, whose typical errors
are on the order of few centimetres. This approach allows us
to reduce the uncertainty associated with the reference data
compared to more common cases in which reference data are
simulated by hydrological models, and the model errors af-
fect the quality of the reference data (i.e. Förster et al., 2018).

4.7 Computational costs

The modelling framework presented in this study is quite
complex and includes the following steps: (i) download
of ensemble seasonal forecast forcing, (ii) bias adjustment
of temperature and precipitation, (iii) spatial downscaling
(all variables), (iv) temporal downscaling (all variables),
(v) SNOWPACK simulations, (vi) post-processing of the
SNOWPACK forecasts, (vii) generation of the plots, and
(viii) update of the website. The most time-consuming steps
are the bias adjustment and the downscaling of the precipi-
tation input. The bias adjustment with the quantile mapping

method can substantially improve the agreement between the
modelled and the observed climatology; however it is found
to have a small impact on the forecast skills, especially re-
garding tercile-based forecasts. The limited added value of
precipitation bias adjustment and downscaling to the forecast
skill seems to suggest that, in these sites and in these con-
ditions, original RAW precipitation input can be employed,
obtaining similar results as in the more complex frameworks.

5 Conclusions

The paper presents first-of-their-kind multi-system ensemble
seasonal forecasts of the snow depth evolution from Novem-
ber up to May of the following year (7-month lead time) and
evaluates them at three study sites in the Italian Alps which
are relevant for water management, hydropower production
and alpine ski tourism. The prototype to generate snow fore-
casts is based on the SNOWPACK model forced by mete-
orological data of two Copernicus Climate Data Store sea-
sonal forecast systems, namely ECMWFS5 and MFS6. The
forecast skill has been assessed, employing both determin-
istic and probabilistic metrics, and using snow depth station
measurements as a reference. The skill has also been investi-
gated in relation to different levels of post-processing of the
total precipitation input, i.e. using raw, bias-corrected, and
downscaled precipitation data as well as bias-corrected and
downscaled precipitation data, since this variable deeply af-
fects snow dynamics and the accuracy of snow simulations.

Many robust features have been found across different sea-
sonal forecast systems, seasons, stations, and skill scores.
The prototype running from 1 November up to 7 months’
lead time shows surprisingly good skill at predicting the
tercile category for different time aggregation of the snow
forecasts: below- and above-normal winter (DJF), spring
(MAM), and November–May average snow depth are pre-
dicted with higher accuracy (BSS) and higher discrimination
(AUCSS) with respect to a simple forecasting method based
on the climatology. Ensemble mean monthly snow depth
forecasts are significantly correlated with observations not
only at short lead times of 1 and 2 months (November and
December) but also at lead times of 5 and 6 months (March
and April) when employing the ECMWFS5 forcing. More-
over the prototype shows skill at predicting extremely dry
seasons, i.e. seasons with snow depth below the 10th per-
centile, while the prediction of extremely wet seasons (i.e.
snow depth above the 90th percentile) is model-, station-
and lead-time-dependent. The bias adjustment of precipita-
tion forecasts with the quantile mapping technique can sub-
stantially improve the agreement between the modelled and
the observed snow depth climatology provided that a reliable
reference dataset is used. However, the application of bias
adjustment, downscaling or bias-adjustment and downscal-
ing techniques does not result in remarkable differences on
the skill scores compared to the case in which raw precipi-
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tation data are employed. This suggests that the probabilistic
skill scores are weakly sensitive to the treatment of the pre-
cipitation input. The use of raw precipitation data allows for
simplifying the modelling chain and boosting the production
of snow forecasts, at least at the three study sites considered.
The exportability of these results to other study sites should
be checked.

The predictability of the snowpack deviation with respect
to normal conditions at lead times of up to 7 months is the
major result of this study and corroborates the hypothesis
that snowpack is a natural “integrator” of the climatic con-
ditions (conditions of the meteorological drivers) at a month-
ly/seasonal scale, so even if the forecasts of the drivers (air
temperature, precipitation, etc.) do not exactly match the ob-
servations at sub-monthly timescales, the differences may
compensate over monthly/seasonal timescales and provide
reasonable monthly/seasonal snowpack forecasts. This is an
important step forward in the seasonal prediction of hydro-
logical variables: while the skill in streamflow prediction is
limited, the storage of water within the snowpack can also be
predicted with lead times of a few months. This is particu-
larly relevant in mountain catchments where most of the run-
off in spring is due to snow melt, and the forecasts of below-
or above-normal snow depth have immediate applications in
the management of water resources, hydropower production
and ski resort management. A reliable seasonal forecasting
system, e.g. with a lead time of up to 3–6 months, could bring
an important improvement in the long-term optimization of
the energy production, since the hydropower reservoir man-
agement heavily depends on the expected seasonal hydrolog-
ical characteristics, e.g. the snowpack development.

Although this prototype has been conceived to respond
to the practical needs of end users, and it has been applied
in specific study areas where forecasts were meaningful to
them, it is extremely flexible and can be applied to any
other mountain area, provided that long-term temperature
and snow depth time series are available for bias-correcting
temperature forecasts and validating snow predictions, re-
spectively.

In light of the exportability of this prototype to any moun-
tain site, future work should be done to run this prototype at
other sites of the Alps and beyond to further check its skill
and to obtain a more complete picture of the snow forecasts
for the season ahead along elevational transects or at a re-
gional or even mountain-range scale. These forecasts are par-
ticularly useful for all activities and sectors related to snow–
hydrological fields, i.e. irrigation, industry, hydropower gen-
eration, ski resorts, and water resource management. In ad-
dition, they help to estimate the amount of water made avail-
able by snowmelt, mainly at the head of Alpine catchments,
since in summer it accounts for almost the total runoff. This
knowledge can help to better address problems related to the
dearth of water in drought periods, which is expected to be-
come more and more frequent in the future in the Alpine re-
gion.
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