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Abstract. Hydrological forecasts are important for oper-
ational water management and near-future planning, even
more so in light of the increased occurrences of extreme
events such as floods and droughts. Having a forecasting
framework, which is flexible in terms of input forcings and
forecasting locations (local, regional, or national) that can de-
liver this information in fast and computational efficient man-
ner, is critical. In this study, the suitability of a hybrid fore-
casting framework, combining data-driven approaches and
seasonal (re)forecasting information from dynamical mod-
els, to predict hydrological variables was explored. Target
variables include discharge and surface water levels for var-
ious stations at a national scale, with the Netherlands as the
focus. Five different machine learning (ML) models, rang-
ing from simple to more complex and trained on histori-
cal observations of discharge, precipitation, evaporation, and
seawater levels, were run with seasonal (re)forecast data,
including the European Flood Awareness System (EFAS)
and ECMWF seasonal forecast system (SEAS5), of these
driver variables in a hindcast setting. The results were eval-
uated using the evaluation metrics, i.e. anomaly correla-
tion coefficient (ACC), continuous ranked probability (skill)
score (CRPS and CRPSS), and Brier skill score (BSS), in
comparison to a climatological reference hindcast. Aggregat-
ing the results of all stations and ML models revealed that the
hindcasting framework outperformed the climatological ref-
erence forecasts by roughly 60 % for discharge predictions
(80 % for surface water level predictions). Skilful prediction
for the first lead month, independently of the initialization
month, can be made for discharge. The skill extends up to
2–3 months for spring months due to snowmelt dynamic

captured in the training phase of the model. Surface water
level hindcasts showed similar skill and skilful lead times.
While the different ML models showed differences in per-
formance during a testing and training phase using histori-
cal observations, running the ML framework in a hindcast
setting showed only minor differences between the models,
which is attributed to the uncertainty in seasonal forecasts.
However, despite being trained on historical observations,
the hybrid framework used in this study shows similar skil-
ful predictions to previous large-scale forecasting systems.
With our study, we show that a hybrid framework is able to
bring location-specific skilful seasonal forecast information
with global seasonal forecast inputs. At the same time, our
hybrid approach is flexible and fast, and as such, a hybrid
framework could be adapted to make it even more interest-
ing to water managers and their needs, for instance, as part
of a fast model-predictive control framework.

1 Introduction

Forecasting in combination with local system knowledge
plays an important role in increasing the readiness for immi-
nent extreme events such as floods and droughts. Especially
over the last few years, where the effects and impacts of cli-
mate change have become more and more distinct, with an
increasing recurrence of extreme events requiring adaptive
planning based on skilful forecasts. For instance, knowledge
of upcoming water surplus or shortage is not only important
to limit damage to infrastructure and impacts on society dur-
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ing floods, and also to increase and sustain the water avail-
ability prior, but also during droughts.

Over the past few years, platforms of openly available
forecasting services and data sets that deliver meteorologi-
cal and hydrological predictions have increased. These data
sets can differ in lead time (e.g. short to medium range, sub-
seasonal, and seasonal timescales) and include uncertainty
by consisting of various numbers of ensemble members. Ex-
amples of openly available seasonal forecasting system are
the operational European Flood Awareness System (EFAS;
Thielen et al., 2009; Arnal et al., 2018) and the Global
Flood Awareness System (GloFAS; Alfieri et al., 2013), and
the ECMWF’s latest seasonal forecasting system of SEAS5
(Johnson et al., 2019). Forecasting systems like these are run
by large-scale, physically based models (e.g. LISFLOOD;
Van Der Knijff et al., 2010; De Roo et al., 2000, in the
case of EFAS), which require a lot of information regarding
parametrization, can be slow and computationally intensive,
and require large data storage facilities. Another example of
forecasting systems facing similar challenges are multimodel
ensemble systems, which combine several general circula-
tion models and hydrological models (Wanders et al., 2019;
Samaniego et al., 2019).

Even though there is continuous improvement in terms
of ease of use and interoperability, the main challenges of
handling such large, computationally and data-intensive sys-
tems remain. Furthermore, Samaniego et al. (2019) high-
lighted that, in cases where forecasting systems are used for
decision-making, prediction horizons, spatial scales, model
choices, storage, and computational requirements, and re-
ported variables can limit the applicability of forecasting sys-
tems for local water management. We hypothesize that in-
corporating data-driven approaches to support seasonal fore-
casting systems can be beneficial not only in terms of re-
ducing computational requirements but also increasing their
flexibility and data use. Especially if the forecasting system
can be kept simple, for example, regarding input forcings or
the complexity of the forecasting set-up, the threshold of ap-
plying it on various spatial and temporal scales would be
lowered even further. This would, for example, bridge the
gap from large-scale to local forecasting systems and make it
more readily applicable for creating efficient operational set-
tings and supporting local water management. In this study,
we explore these opportunities by incorporating data-driven
approaches in a seasonal forecasting framework, combining
both local and global information.

Data-driven approaches, including machine learning (ML)
models, have been explored and tested out increasingly in hy-
drological assessments over the last few years (Shen, 2018;
Shen et al., 2021), either as standalone models or also in hy-
brid settings (coupled with physically based models; Kratzert
et al., 2018; Koch et al., 2019). ML can be used for any
spatial- and temporal-scale study, as long as there are suffi-
cient data available for training and validation. Besides using
local observations and remote sensing information, an up-

coming trend is also to incorporate knowledge-based learn-
ing (Koch et al., 2021), where ML models are also trained
with information provided by physically based models or in
hybrid model set-ups. ML has not only shown to be promis-
ing in simulating hydrological variables such as discharge
and groundwater levels but also in contributing to operational
water management.

However, most of the previous research focused on suc-
cessfully simulating past observations or current hydrolog-
ical states but incorporating ML in a seasonal forecasting
framework has only scarcely been explored in the hydrolog-
ical field. Work by Hunt et al. (2022), which is one of the
most recent examples, documents a situation in which long
short-term memory (LSTM) models were explored in a hy-
brid forecasting set-up to predict discharge on a short-term
scale.

A substantial issue with respect to using ML for seasonal
forecasting is often the limited number of samples for train-
ing. This is often resolved by including long climate model
simulations for training as an example; however, depending
on the scale and resolution, these might not always be ideal
for more local studies. Nevertheless, if sufficient local data
are available, then it is worthwhile investigating how one
can exploit the assets of ML for seasonal forecasting (with
a limited complexity regarding the forecasting set-up, com-
putational demand, and handling of large data amounts) to
increase the support for water management. This can not
only be especially useful for floods but also drought occur-
rences, where local information has to be available and up-
dated within a short time frame (floods), and changes in wa-
ter management planning have to be reassessed both ahead of
time and at the time of an event to optimize water availability
(droughts).

To be able to have such a forecasting system that can sup-
port water managers as an example, a first step is to build a
framework that can be explored in a so-called hindcasting ex-
periment, where the forecasting framework is tested based on
historical observations in near-real time. Once this is success-
ful, the forecasting framework could be switched to seasonal
forecasting. The aim of this study is to explore the first step,
which is to test the suitability of a hybrid forecasting frame-
work in a hindcast experiment. The framework will build on
an existing ML model framework based on a previous study
by Hauswirth et al. (2021) in combination with (re)forecast
information as input variables. In this study, we want to test
the suitability of these models based on their historical per-
formance to forecast discharge and surface water levels in a
hindcast setting.

The ML models (trained on historical observations) will be
run with seasonal (re)forecasting data replacing the previous
input data set consisting of discharge, precipitation, evapo-
ration, and seawater level observations. Running the models
with seasonal (re)forecasting information creates an ensem-
ble of the target variables for each station of interest. The
focus of the target variables is laid on discharge and sur-
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face water levels, with the latter including rivers, streams,
and lakes. These ensembles will be analysed and compared
with historical observations not only to assess the skill of
the ML framework for seasonal forecasting of general hydro-
logical conditions but also extreme events such as droughts
by computing different common skill scores to evaluate sea-
sonal forecasting frameworks. Furthermore, the benefits and
also the challenges of such a simple set-up will be explored
and listed to assess whether the framework is suitable for cur-
rent practices and whether it opens up possibilities for future
assessments.

In the following sections, the study’s approach will be laid
out, followed by an evaluation of the performance of the
hindcast experiment by assessing skill scores both for gen-
eral situations and droughts. Thereafter, the findings will be
summarized, discussed, and put into a bigger context of the
field, followed by the main conclusions.

2 Material and methods

This section is divided into subsections covering the general
concept of the hybrid hindcast framework used in this study,
the seasonal (re)forecast data and its preparation, the data-
driven model set-up, and the skill scores used to evaluate the
forecasting skills of the hybrid framework.

2.1 Hybrid hindcast framework

The hybrid hindcast framework used in this study can be
described as a simple three-block system including the pre-
processing of the input data, a main model block including
a selection of ML models, and post-processing of the target
variable and skill score calculation (Fig. 1). The main model
block, which is based on the ML model study of Hauswirth
et al. (2021), was run on seasonal (re)forecasting informa-
tion, which has first undergone the pre-processing block. The
hindcast results were evaluated based on different skill scores
included in the post-processing block to assess how skilful
the hybrid framework is in hindcasting historical observa-
tions. The spatial and temporal settings of the hindcast ex-
periment focus on the Netherlands and the time period 1993–
2018. Target variables include discharge and surface water
level in freshwater bodies for selected stations (69 for dis-
charge and 97 for surface water level) throughout the obser-
vation network of the Dutch National Water Authority.

2.1.1 Data and pre-processing

The input data set, based on seasonal (re)forecasting infor-
mation, covers the period 1993–2018, including a lead time
of 7 months (215 d) and consists of 25 ensemble members
(50 from 2017 on). The input data set replaces the previ-
ously used historic data of the ML framework, which con-
sists of a simple set of variables including discharge, pre-
cipitation, evaporation, and sea level observations at specific

Figure 1. Schematization of a hybrid hindcast framework high-
lighted in a red frame, with the grey box indicating a model frame-
work previously developed by Hauswirth et al. (2021) and used as
a base for the model block.

locations of the case study area for the time period 1980–
2018 (Fig. A1). These variables were chosen as they are part
of the observational network of the Dutch National Water
Authority and are readily available. Furthermore, the main
model block, as defined in Hauswirth et al. (2021), was de-
signed with the idea of being flexible in the sense that in-
put data sets could be easily exchanged by data sets rep-
resenting the same variables (e.g. seasonal (re)forecasting
data). The seasonal (re)forecasting data were obtained from
the forecasting systems SEAS5 and EFAS, accessed via
the openly available data platform Copernicus Climate Data
Store (https://cds.climate.copernicus.eu/#!/home, last access:
March 2021). SEAS5 is ECMWF’s fifth-generation seasonal
forecasting system, providing predictions on atmosphere,
ocean, and land surface conditions (Johnson et al., 2019).
Meteorological information, including precipitation, u and
v wind components, 2 m temperature, surface net solar ra-
diation, and mean sea level pressure were gathered from
SEAS5 and were taken from the grid cell that included the
original observation location. The latter three variables were
used to calculate the Makkink reference potential evapora-
tion (de Bruin and Lablans, 1998). Seasonal (re)forecasting
information on discharge was obtained from the European
Flood Awareness System (EFAS; Thielen et al., 2009; Wan-
ders et al., 2014; Arnal et al., 2018), a pan-European seasonal
hydrological forecasting system which is based on the LIS-
FLOOD model (5× 5 km resolution), with SEAS5 used as
the meteorological forcing. The same approach of selecting
the grid cells including the stations’ location of the original
input data was taken. Having SEAS5 has a forcing for both
the EFAS reforecasts of discharge and, as source for the me-
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teorological input data for the ML framework, enables a con-
sistency in terms of model forcings.

For the sea level data, the water level for the historic pe-
riod was simulated by using the Pytides Python module.
The difference between the observed and Pytides-predicted
sea level fluctuations (including only tidal components) was
computed to obtain the anomalies. A simple multilinear re-
gression model was then used to compute the final sea level
ensemble set based on the u and v wind speed and the previ-
ously computed sea level anomalies.

The input data set was processed in a similar manner to
that done by Hauswirth et al. (2021), for example, by includ-
ing the lagged time series of every input variable. This was
done in the previous study by using the partial autocorrela-
tion function (PACF) to identify and incorporate significant
information content that could explain the historic patterns
and additionally be fed to the machine learning in its train-
ing phase (Hauswirth et al., 2021). In this case, the seasonal
(re)forecasting data in a first step were bias corrected using
cumulative density function (CDF) matching approach be-
fore extending the input variable by incorporating the lagged
times series approach (Wanders et al., 2014).

We additionally prepared an input data set, including wa-
ter management influence, using the same approach as in
Hauswirth et al. (2021). This simulation includes the oper-
ational rules of the main infrastructures which are related to
the Rhine discharge at Lobith (one of our main input vari-
ables) for two specific input locations and two additional ob-
servation records of locations based at smaller infrastructures
(Fig. A1). We were therefore able to use the same approach
regarding the operational rules for the main infrastructures,
as these are based on the Rhine discharge that we obtain from
the EFAS data set. For the two other additional time series,
climatology was used, as operational plans were not avail-
able.

For every ML model (representing a station of interest),
the input data set after data pre-processing finally consists of
a set of ensembles, including the ensemble members of all
input variables. The models were run with every set of the
ensemble members (e.g. input data set based on first ensem-
ble members of discharge, precipitation, evaporation, and sea
level information).

2.1.2 Data-driven model set-up

We applied here a recently developed ML model framework
by Hauswirth et al. (2021). This framework has a focus on a
simple set-up, using only readily available input data to sim-
ulate target variables such as discharge, surface water level
(including rivers, streams, and lakes), surface water tempera-
ture, and groundwater levels for several stations at a national
scale in the Netherlands. The station information and ob-
servational records were taken from the national monitoring
network and covered 69 discharge, 97 surface water level,
105 surface water temperature, and ∼ 4000 groundwater sta-

tions (Fig. A1, for discharge and surface water level stations).
For every station of interest, a ML model was trained on
the historic observations of the target variable and the input
data set, which consists of the five variables, i.e. precipita-
tion and evaporation from the De Bilt, Rhine discharge at
Lobith, Meuse discharge at Eijsden, and sea level observa-
tions close to the Haringvliet sluice (Fig. A1). Furthermore,
the framework is able to incorporate the influence of water
management aspects. This was done by expanding the input
data set with a discharge time series of the most important in-
frastructure, based their operational rules, which is linked to
one of the main input variables. Different ML methods were
trained and tested based on a 60%/40% train–test split, in-
cluding time series segments which were chosen randomly.
The ML methods incorporated in the study range from sim-
ple to more complex methods including multilinear regres-
sion (MReg), lasso regression (Lasso), decision tree (DT),
and random forest (RF), as well as long short-term mem-
ory (LSTM) models. For more information regarding the spe-
cific models, model set-up steps, and evaluation, as well as
data pre-processing, we refer to Hauswirth et al. (2021).

For this study, the pre-trained models were rerun based
on a prepared seasonal (re)forecast input data set. We de-
cided to test out all the original ML models to see whether
similar observations regarding their performance and differ-
ences could be made. The input data set is made up of the
same variables as in the previous study but taken from sea-
sonal (re)forecasting data sets such as EFAS and SEAS5. The
models were not retrained, so the input data were used for
an extensive validation of the simulation of seasonal fore-
casting skill. Using the pre-trained models has the benefit
of saving computational time, which would have otherwise
been needed for testing and training the models. Second, this
study aims to test the suitability of this ML framework for
seasonal forecasting in an operational setting. In such an op-
erational setting, one would like to keep a consistent mod-
elling framework that has been validated on an extensive
hindcast archive. On the other hand, not retraining the mod-
els on ensemble data sets limits the potential improvement
the model could experience by seeing forecasting data in the
training phase. As we want to test the suitability of the devel-
oped ML framework for hindcasting, we are putting a focus
on the pre-trained model in combination with the seasonal
(re)forecast input data set. This allows us to test the perfor-
mance of the models based on information that the models
have definitely not seen before. Running the model based
on a seasonal (re)forecast input data set, consisting of sev-
eral ensemble members, creates an ensemble of time series
for the target variables discharge and surface water levels.
The same number of ensemble members (25 members, with
50 members from 2017 on) and same lead time (215 d) as the
seasonal (re)forecast input data were generated for the tar-
get variables. These ensemble simulations of the target vari-
ables were then analysed by computing frequently used skill
scores.
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2.2 Evaluation – skill scores

To evaluate the performance of the hybrid hindcast frame-
work, the target variables were compared to observations at
daily, weekly, and monthly temporal scales using different
skill scores. These skill scores are shedding a light on var-
ious aspect of hindcast skills, for example, overall perfor-
mance, accuracy, and reliability. Skill scores that are com-
mon in the forecasting community and are used here include
the continuous ranked probability (skill) score (CRPS and
CRPSS), Brier (skill) score (BS and BSS), and anomaly cor-
relation coefficient (ACC). In this study, the hindcasts (in-
cluding 7 months of lead time) will be addressed by their lead
time, where lead one equals the first months of the forecast
in which it was initiated, lead two equals the second month
after initialization, etc. For the results, the focus will be on
weekly and monthly average timescales, which would also
be of interest to water managers for mid- to long-term plan-
ning.

2.2.1 CRPS and CRPSS

The CRPS, which is one of the most commonly used evalua-
tion benchmarks used in ensemble forecasting studies (Pap-
penberger et al., 2015), was used to assess the overall per-
formance of the hindcasting framework. It compares the dif-
ferences in the hindcast and observed cumulative distribution
functions (CDFs) and ranges from 0 to infinity. The lower the
computed score, the better the performance of the hindcast-
ing framework (Arnal et al., 2018; Pappenberger et al., 2015).
Equation (1), taken from Hersbach (2000) (where P(x) is the
cumulative density function of the hindcast and Pa (observa-
tion probability) is computed), was used, and the CRPS was
computed over all ensemble members for each lead day of
every hindcast before aggregating it to other temporal scales.

As a skilful benchmark (baseline), we also compare the
hindcast framework with a forecasts based on the historical
distribution of observations. In other words, for each forecast
day, we look at the historical observations for that day and
select values for all the years of this historical observation
to generate an observation-based climatological hindcast en-
semble. Both the hindcast CRPS and the baseline CRPS were
used to compute the CRPSS (Eq. 2). The CRPSS range lies
between 0 and 1, with 1 indicating the forecast giving the
best performance compared to climatology and 0 having no
skill compared to climatology.

CRPS= CRPS(P,xa)=

∞∫
−∞

[P(x)−Pa(x)]2dx (1)

CRPSS= 1−
CRPShindcast

CRPSbaseline
. (2)

2.2.2 BS and BSS

To determine the accuracy and the performance of the hind-
casts for simulating high- and low-flow periods, the BS
(Brier, 1950) and BSS can be used. To assess these spe-
cific categories, thresholds can be defined, e.g. the lowest
20th percentile data are used to account for droughts simi-
lar to other studies (Van Loon and Laaha, 2015). This allows
one to analyse events which are either higher or lower than
the usual observations for a given month (Candogan Yossef
et al., 2017; Wanders and Wood, 2016). This threshold was
used for both hindcasts and observations before aggregat-
ing the data to the temporal scale of interest and computing
the BS. The BS is calculated by Eq. (3), where N equals the
number of hindcasting instances, and f and o are the hind-
cast and observed probability of exceeding a threshold, re-
spectively (Candogan Yossef et al., 2017). Score values range
between 0 and 1, whereas 0 indicates the best performance.

BS=
1
N

N∑
t=1

(ft− ot)
2 (3)

BSS= 1−
BShindcast

BSref
. (4)

Furthermore, the BSS (Eq. 4) can be used to compare
the accuracy and performance of the hindcasting framework
compared to a reference system, which is climatology in this
case. The same range and interpretation can be used as for
CRPSS.

2.2.3 ACC

To measure the quality of the hindcasting framework, the
anomaly correlation coefficient (ACC) is computed by us-
ing Eq. (5), where (ft) represents the hindcasts and (ot) the
observations, while f and o are the long-term averages.

ACC=

N∑
t=1

(
ft− f

)
(ot− o)√

N∑
t=1

(
ft− f

)2 N∑
t=1

(ot− o)2

. (5)

The hindcasts and observations were first aggregated to the
temporal scale of interest before computing the ACC. The
ACC helps to verify the hindcast and observed anomalies
compared to the normal correlation, where seasonality can
influence the calculation results. Therefore, the ACC can also
be seen as a skill score in comparison with the climate. The
ACC score ranges from−1 to 1, with 1 representing a perfect
correlation between observations and forecast. For represen-
tation purposes, the significance level was computed based
on the number of observational years (in general), and only
stations with fewer than 10 missing observation months were
considered (same criteria for station selection were used for
the other scores).
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3 Results

The results will be presented such that first an overview of
the general performance of the hindcast framework for one
target variable, the discharge hindcasts, will be given. Subse-
quently, the focus will be directed towards one model (ran-
dom forest, RF) and an example station to provide more in-
depth insight into the different evaluation scores and differ-
ences in temporal resolution. The scores were calculated for
all the initialization months of the hindcast and for differ-
ent temporal resolutions (daily, weekly, and monthly). For
demonstration, we highlight the performance of the hind-
cast framework for selected months, providing weekly to
monthly scores, which are temporal scales of interest for
long-term water management decisions. Further background
information on the evaluation score results based on different
initialization months, temporal scales, target variables, and
ML models can be found in the Appendix.

3.1 General performance

To obtain an understanding of the overall performance of the
hybrid framework for discharge hindcasts, the CRPSS, ag-
gregated over all hindcasts for all stations and all ML models,
was computed. This was done by computing all the individ-
ual daily CRPSS results of all the hindcasts of every station
and methods. The CRPSS results were additionally aggre-
gated by lead day for the different temporal scales before
averaging. The average CRPSS (weekly temporal scale) was
used for Fig. 2, where the CDFs for the first 12 lead weeks are
highlighted, with CRPSS ranging from −1 to 1, with values
above 0 indicating the hindcast framework outperforming the
climatological reference. As expected, the CRPSS decreases
with increasing lead time (with CDF lines moving up, and
the zero line being crossed earlier) and naturally converges
after 7 weeks. However, up to lead week 12, roughly 60 % of
all stations and models show a better performance than the
climatological reference. Even better results can be seen for
surface water levels (Fig. B1), where up to 80 % show a better
performance. Even though the separate evaluation scores can
vary slightly between target variable and station (locations
shown later on), the overall hindcasting framework shows a
positive tendency compared to hindcasts solely based on cli-
matology.

We also observe that the hindcast framework shows higher
performance compared to the bias-corrected EFAS seasonal
(re)forecasting data (Fig. 3), indicating the added benefit of
having a hybrid framework that includes locally trained mod-
els. In Fig. 3, the CRPSS results for two stations (Lobith
and Eijsden), based on the bias-corrected EFAS (for the grid
cell where the station is located) and the hybrid framework,
are highlighted. Differences not only in skill for larger lead
times but also throughout different initialization months can
be seen for both stations. Furthermore, despite the EFAS
data being bias corrected for the specific locations, the skill,

Figure 2. CDFs of weekly CRPSS shown for different lead weeks,
with CRPSS being aggregated over all models and stations for dis-
charge hindcasts. CRPSS is decreasing with increasing lead weeks,
but even up to 12 weeks, roughly 60 % of all stations and models
show a better performance than the reference hindcasts.

for example, at station Eijsden, is relatively low for some
months, indicating that forecasts based on climatology show
similar skill. The improvement in local skill is a result of the
local training and the ability of the ML model to also use
other information (e.g. precipitation and temperature) to fur-
ther improve its forecast compared to the EFAS system.

During the analysis of the evaluation scores for all the dif-
ferent ML model hindcasts, only minor differences between
the models are noticeable, which is seen throughout most sta-
tions along the main river network, especially for discharge
hindcasts (Fig. 4). Minor differences between methods are
observed for surface water level, depending on the station
location (Fig. B2), where, for the example stations shown,
the more simpler methods show a slightly better skill. The
minor differences are likely due to the limited impact of the
model selection compared to the inherent uncertainty (rep-
resented by the ensemble spread) in the dynamical meteoro-
logical and hydrological forecast data. The forecasting skill
is likely more dependent on the skill by which the input vari-
ables are forecasted, which apparently make the differences
in skill between the ML models insignificant in comparison.
In addition, the high temporal aggregation (monthly) and
post-processing of the results before calculating the differ-
ent evaluation scores that smooth out the original differences
in hindcasts results reduce the differences in performance be-
tween models.

Shifting the focus from the whole hindcast framework to a
more detailed exploration of the evaluation metrics, the fol-
lowing paragraphs focus on results of one ML model and
later on one example station. As hindcast results indicate
that the differences between the models are minor, we will
focus on the RF model, which previously already showed
a promising performance (Hauswirth et al., 2021). Figure 5
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Figure 3. CRPSS (daily) shown for EFAS input data (bias corrected) and hindcasts computed by the hybrid framework for stations Lobith
and Eijsden. (a) EFAS at Lobith, (b) hybrid framework at Lobith, (c) EFAS at Eijsden, and (d) hybrid framework at Eijsden. Differences in
skill for lead times and also throughout different initialization months can be observed with the hybrid framework, indicating a higher skill
for local predictions than the large-scale forecasting system.

Figure 4. Overview of weekly CRPS values for January, May, and September. Different ML model scores, the average of the ML model score
(dashed line), and the climatological reference (grey) are shown for three discharge stations (Hagenstein Boven in orange, Driel in yellow,
and Borgharen Dorp in blue). For most months shown and for the first few lead weeks, the CRPS of the hindcast framework shows a lower
score than the climatological reference. However, only minor differences between the ML models were observed. Maps were created using
the Python package Cartopy (Elson et al., 2022), which uses basemap data made with Natural Earth and © OpenStreetMap contributors 2022.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

shows the weekly anomaly correlation coefficient (ACC) for
the discharge hindcasts at various stations (each represented
by a pie chart) throughout the Netherlands for initialization
months of (a) January, (b) April, (c) July, and (d) October.
The ACC values per week are indicated by the pie slices,
arranged clockwise, and their colours, with dark blue indi-

cating a high correlation coefficient while light yellow slices
show weeks with a lower coefficient (note that only the sig-
nificant values are shown). Looking at the results for the dif-
ferent months in Fig. 5 indicates that, for all months shown,
the ACC decreases with increasing lead weeks. However, for
all months, the first few weeks (minimum of 3–4 weeks)
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Figure 5. Anomaly correlation coefficient (ACC; weekly) for
(a) January, (b) April, (c) July, and (d) October, for discharge hind-
casts computed by the RF model, showing the results for differ-
ent stations (limited selection for visual purposes) in the national
monitoring network. Only significant values are shown (indicated
by a range of 0.4 and higher). Furthermore, only major river net-
works are shown, and smaller streams or infrastructures are not
highlighted (the station along the coast is placed at a sluice along
a stream). Maps were created using the Python package Cartopy
(Elson et al., 2022), which uses basemap data made with Natural
Earth and © OpenStreetMap contributors 2022. Distributed under
the Open Data Commons Open Database License (ODbL) v1.0.

show a high and significant score. This can be observed for
all stations along the main river networks, both the Rhine and
Meuse, while stations which are located at smaller streams
or channels, which are strongly influenced by water manage-
ment, can be more challenging (e.g. station close to the sea
which is located near a shipping channel).

The observations from countrywide ACC analysis are sup-
ported by a more detailed analysis for the Hagenstein Boven
station located on the Rhine river network, roughly in cen-
tre of the Netherlands, and influenced by water management.
We clearly see that there are differences in ACC per lead and
initialization month, related to the initialization month of the
hindcast and the length of the forecast (Fig. 6), that are also
already observable in Fig. 5 for the different stations and ini-
tialization months. In addition, Fig. 6 shows that the differ-

ences on the ACC in temporal aggregation from daily and
weekly to monthly temporal scales has a minor impact and
that the skill assessment is robust. Significant ACC values
can be observed throughout the first lead month for all ini-
tialization months. For the early spring and summer months
(March–July), significant ACC values for discharge predic-
tions can be seen until 2 months in advance in all tempo-
ral aggregation levels. The increase in the significant lead
time for the early spring months (March and April) is due
to the snowmelt dynamics in the upstream catchment that
were captured in the model training period (done prior to this
study) and the physical model inputs from the EFAS sys-
tem at the Lobith and Eijsden stations. The observation of
more significant ACC values during the spring months due
to the snowmelt dynamic can be found throughout the sta-
tions along the Rhine, and this is less pronounced for the
stations along the Meuse. Discharge predictions from late
summer onwards show lower ACC values, likely due to the
lower predictability in atmospheric weather patterns and re-
duced water storage in highly predictable stores like snow
and groundwater. Unrealistically long lead times with signif-
icant values are likely due to lower the observation records
that can occur throughout the years, despite the selection of
stations with limited missing records. Overall, ACC values
for the discharge hindcasts show that hindcast anomalies are
captured well for lead times up to 1 or 2 months for all ini-
tialization months compared to the observed anomalies for
a complex station like Hagenstein Boven, which is affected
by water management and upstream water reallocation. Fur-
thermore, the hindcast framework was able to capture the
general snowmelt dynamic in early spring, resulting in sig-
nificant values up to a lead time of 2 months at the onset of
summer.

To check the robustness of the results, we also analysed the
forecast performance with the CRPSS and BSS. The CRPSS
was computed to assess the general performance in terms of
the spread and accuracy of the hindcast framework. Figure 7
represents the weekly CRPSS values for the same example
station of Hagenstein Boven in the centre panel. The heatmap
gives an overview of the skill score throughout the year, with
values ranging from 0 to 1 and values above 0 representing
lead weeks in which the hindcast framework outperforms the
climatological reference. Similar to the ACC, the first few
lead weeks show consistently good performance, indicating
that the hindcast spread is close to the one of observations,
while the CRPSS decreases with increasing lead time. This
pattern can be observed by stations along the main river net-
works.

3.2 Hydrological extremes – low flows

To assess the hindcast framework’s capability to simulate
low-flow events, the BSS was computed using a threshold
for the lowest 20th percentile of discharge observations and
hindcasts. This approach is similar to other studies using a
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Figure 6. ACC results for the discharge hindcasts using the RF model of station Hagenstein Boven over different temporal scales – (a) daily,
(b) weekly, and (c) monthly – and different initialization months. Only significant values are shown (indicated by a range of 0.4 and higher).

Figure 7. Heatmaps of weekly ACC (same as in Fig. 6), CRPSS, and BSS for discharge hindcasts (RF model) of the example station
Hagenstein Boven for different initialization months. Cells in blue, for (a) ACC, (b) CRPSS and (c) BSS, indicate a good performance. For
(b) CRPSS and (c) BSS, values above 0 indicate that the hybrid framework is outperforming the climatological reference.

threshold approach for drought definition (Van Hateren et al.,
2019; Van Loon and Laaha, 2015). Figure 7 represents the
weekly BSS in the right panel, again for the example station
of Hagenstein Boven. Blue tiles on the heatmap indicate lead

times where the hindcast framework outperforms the clima-
tological reference strongly.

The BSS shows a less consistent skill pattern in the first
lead month compared to the other scores. However, most of
the skill that is seen shows a similar range of lead time, and
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the skill throughout long lead periods is decreased (e.g. af-
ter lead week 5). Compared to the other scores, tiles with
lower BSS performance can be spotted in summer (June and
August for longer lead times; September for the first lead
month) and early spring months (February and March) for
this station, in some cases for the first lead month or the
following longer lead months. Some of these weeks appear
to be more difficult to predict compared to early months in
the year. This is likely due to unequal distribution of low-
flow occurrences throughout the year, where, during summer
months, low flows can be more common and therefore the
chances of not fully capturing every event are higher; the
low flows during winter are less common and are captured
relatively well with the snowmelt dynamic, as seen in previ-
ous scores. However, important months in terms of capturing
drought development (April and May) show skill for up to
5 weeks. The described observations for the example station
are in line with findings at other stations along the Rhine river
network and are less pronounced along the Meuse.

3.3 Difference between target variables and scenario
runs

The result section so far has been focusing on the discharge
hindcasts in order to be able to focus on the different evalua-
tion scores in more detail. However, the hindcast framework
was also used to hindcast surface water levels (Figs. B1–
B4). Surface water level prediction skill for the national and
model average (Fig. B1) show a slightly higher CRPSS skill
than for discharge (Fig. 2). In addition, similar patterns and
trends regarding ACC for stations along the main river net-
work (Fig. B2) and CRPSS results (Fig. B3, for an example
station) were observed. Yet, surface water levels seem to be
more challenging to hindcast, with the evaluation scores be-
ing slightly lower, especially for stations in smaller channels,
and further away from the main river network. Similar find-
ings are found for BSS, where the performance of the hind-
cast for low flow periods was tested. As can be expected,
stations which are not along the main river network and are
located downstream of the main input variables (Rhine at Lo-
bith; Meuse at Eijsden) show lower skills in capturing low
flow periods compared to stations closer to input variables
and the Rhine river. While ACC and BSS show a slightly
lower performance, the CRPSS ranges are in the same range
as for discharge hindcasts.

An additional discharge hindcast run was done, includ-
ing water management information, to represent some of
the major infrastructure, based on the same approach pre-
viously explored by Hauswirth et al. (2021). Similar to the
findings in Sect. 3.1, only minor difference between the dif-
ferent ML methods were observed. Furthermore, incorporat-
ing the additional water management information only led to
insignificant improvements regarding the hindcast skill. The
improved performance and the differences in the ML model
performance, as seen in the previous study by Hauswirth

et al. (2021), could therefore not be detected in this forecast-
ing experiment.

4 Discussion

In this study, we tested the suitability of ML models for
seasonal predictions of several hydrological target variables
at local scales throughout the Netherlands. This framework
incorporated ML models over varying complexity, ranging
from multilinear regression, lasso regression, and decision
tree to random forests and LSTM random forest and long
short-term memory model.

While the methods have shown differences in their per-
formance during the training and testing phase on historical
observations (especially their ability to reproduce extreme
events; Hauswirth et al., 2021), interestingly, applying the
same subset of models on seasonal (re)forecasting informa-
tion did not lead to large differences in model performance.
We hypothesize that this is caused by the large uncertainty
in the meteorological and hydrological input data that out-
weighs the relative difference in performance by the differ-
ent ML algorithms. In other words, the forecasting skill is
very much dependent on the skill by which the input vari-
ables are forecasted, which apparently make the differences
in skill between the ML models insignificant in comparison.
In addition, the minor differences seen between the ML al-
gorithms in the original hindcasts were further smoothed out
while calculating the evaluation scores on different temporal
scales. The results in this hindcast experiment and the minor
differences between the methods that were observed can be
interesting in terms of model choices, in case computational
demand is a key factor. With simple methods showing simi-
lar performance to more complex ones, which require more
time regarding set-up and training, the previous might appear
more suitable. However, a more important factor limiting the
model performance is the uncertainty introduced by incor-
porating seasonal (re)forecasting information. A subject for
future research could be on how to incorporate and assess the
way the different models deal with that additional challenge.
Nevertheless, we observed that the ML modelling framework
used here, which is based on locally trained models, allows
for the opportunity to make hydrological forecasting more
locally relevant by being able to forecast based on the station-
specific characteristics.

While the ML models were previously trained on direct
observations, the seasonal (re)forecasting information from
SEAS5 and EFAS introduces additional uncertainty from
their forecasting system. We deliberately decided not to re-
train the ML models on the forecasting information, as this
more closely mimics the normal operational setting in which
an already-trained model is used to produce forecasts. How-
ever, this provides an additional challenge, as we add an-
other source of potential uncertainty because the ML mod-
els might not be well tuned to the forecast information. Re-
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training the models would also open up the opportunity for
the overfitting the ML models on the forecast data, which is
something that should be avoided. Therefore, we preferred to
use the more realistic operational scenario, and ML models
trained on historic observations only, over a set-up that uses
ML models specifically trained on forecast data. Assessing
the approach of additionally retraining the models for differ-
ent cases, e.g. focusing on extreme events or climate change
trends, is an opportunity for future projects.

We extended our runs, including water management, in
line with the approach previously explored by Hauswirth
et al. (2021). However, incorporating variables that represent
water management settings in the ML models led to negligi-
ble improvement, and the improved performance as seen in
the previous study could not be detected. We think that the
uncertainty included in the seasonal (re)forecast input data is
having a larger influence than the one of added water man-
agement information, and therefore, the strength of incorpo-
rating the additional information as seen in the previous study
could not be observed. For future research, it might be inter-
esting to explore what additional steps would be beneficial in
terms of model framework and data in order to also be able to
capture and simulate the details of water management set-ups
in a forecasting setting, as this would create the opportunity
for scenario simulations.

The evaluation metrics show that, for hindcasts of dis-
charge and surface water level stations initialized in the early
spring, skilful predictions for the first lead month 1 can be
made. For early spring and summer months, the skill in-
creases up to 2–3 months, due to the snowmelt dynamic be-
ing captured by the models in their training phase and the
presence of this signal in the seasonal reforecasts of the dis-
charge at Lobith used as input to the ML models. The skilful
prediction for the first few lead months is comparable with
other studies which have evaluated physically based sys-
tems (Wanders et al., 2019; Arnal et al., 2018; Girons Lopez
et al., 2021; Pechlivanidis et al., 2020). However, contrary
to the large-scale physically based forecasting systems, hy-
brid frameworks such as the one presented in this study have
been shown to skilfully forecast target variables at specific
locations which would not be feasible and at a fraction of the
computation demand. While training ML models can range
from a few minutes to hours, depending on the method and
set-up (Hauswirth et al., 2021), running the hybrid frame-
work as used in this study only takes a few seconds to min-
utes per station and ensemble member. This can be inter-
esting for water management needs at smaller scale or sce-
nario analysis. Besides the fast running times of the mod-
els, an additional benefit for the current framework is the
input data set, which can easily be replaced by other input
sources regarding precipitation, evaporation, discharge, and
surface water level as was done in this study with EFAS
and SEAS5 data. It is, however, important to realize that the
original computation time required for large-scale seasonal
(re)forecasting information such as the latter two is still re-

quired but is outside of the hybrid framework presented here.
However, in the case of scenario simulations, where local in-
formation would be required and tested in a more quick set-
ting but based on one large-scale input data set, the hybrid
framework is still of benefit as it can compute the different
hindcasts more efficiently.

A further point to realize is that this framework only fo-
cuses on time series at existing stations and therefore does
not address the challenge of predicting at ungauged basins.
However, recent advances in deep learning methods show
that forecasting at ungauged sites may be a possibility if
auxiliary geographically distributed variables (elevation, soil,
and river network topology) are incorporated (Kratzert et al.,
2019).

Similar to Hunt et al. (2022), we show that a hybrid fore-
casting system can provide added benefits compared to phys-
ical forecasting system. In addition to Hunt et al. (2022),
this work confirms that the benefits of hybrid forecasting
can also be obtained for long-term forecasting. In this study,
we also show that these hybrid forecasting systems have
the ability to provide more local information compared to
large-scale physically based systems. As with other mod-
els, using ML models in hydrology comes with benefits
and drawbacks. While the data availability can be a limit-
ing factor for effectively training a model, the flexibility and
low computational demand compared to large-scale physi-
cally based models is an advantage. We think that, with the
right data available, ML models like the ones used here can
easily be (re)trained for more specific studies and cases as
well. Additional training on low-flow periods, for example,
could enhance drought predictions while incorporating cli-
mate change aspects, and land use could help to assess future
trends regarding water availability under increased human in-
fluence.

5 Conclusions

In this study, we explored the suitability of a hybrid hind-
casting framework, combining data-driven approaches and
seasonal (re)forecasting information to predict hydrological
variables locally for multiple stations at a national scale for
the Netherlands. Different ML models, previously trained
on historical observations, were run with a simple input
data set based on forecast data from EFAS and SEAS5
and evaluated using the evaluation metrics anomaly correla-
tion coefficient (ACC), continuous ranked probability (skill)
score (CRPS and CRPSS), and brier skill score (BSS). The
hindcast framework’s skill was compared to the skill of a
climatological reference hindcast. Aggregating the hindcasts
of all stations and ML models revealed that the hindcasting
framework was outperforming the climatological reference
forecast by roughly 60 % and 80 % for discharge and surface
water level hindcasts. ACC results further show that, inde-
pendent of the discharge prediction’s initialization month, a
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skilful prediction for the first lead month can be made. For
spring months, the skill extends up to 2–3 months due to
stronger link to snowmelt dynamics and temperature-related
impacts on the hydrological cycle that were captured in the
training phase of the model. CRPSS and BSS show a similar
pattern of skilful predictions for the first few lead weeks com-
pared to the climatological reference forecasts. Skilful dis-
charge predictions are particularly observed along the main
river networks, the Rhine and Meuse, which can be linked
to the close proximity of the discharge input variables. This
distribution of performance is also observed for surface wa-
ter level hindcasts. We also observed that the difference be-
tween different ML models in the hindcast results are only
minor, contrary to the differences observed when reproduc-
ing historical time series. This reduction in differences in per-
formance between ML models is attributed to the relatively
large uncertainties in seasonal (re)forecast data, reducing the
relative impact of the model uncertainty in the total hind-
cast uncertainty. Even though the current hindcast framework
is trained on historical observations, the hybrid framework
used in this study shows similar skilful predictions to previ-
ous large-scale forecasting systems. With the focus on cre-
ating a hindcast framework that is simple in its set-up, fast,
and also locally applicable, challenges that can come with
large-scale operational forecasting systems for local users
can be lowered. In addition, the ML hindcast framework also
significantly reduces the computational demand and allows
decision-makers to explore more options and better quantify
forecast uncertainty using a variety of ML models and inputs.
Adapting the framework to special interests, e.g. droughts or
climate change trends, by retraining the original ML models
for specifically this purpose could further increase its per-
formance. We conclude that the ML framework, as devel-
oped in this study, provides a valuable way forward to mak-
ing seasonal (re)forecast information more accessible to local
and regional decision-makers in the field of operational water
management. In this study, we purposely used publicly avail-
able seasonal forecast information which is globally avail-
able. This allows us to deploy this framework around the
world and potentially provide relevant forecasting informa-
tion for water managers and decision-makers outside of the
study area.
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Appendix A: Material and methods

Figure A1. Overview input stations (a) for the ML model framework, the locations of discharge (b), and surface water level (c) target
stations used during model development. All figures are directly taken from Hauswirth et al. (2021). Discharge and surface water level
stations include the RMSE score achieved during evaluation of the modelling framework (more details can be found in Hauswirth et al.,
2021). Maps were created using QGIS (QGIS Development Team, 2022), HCMGIS plugin and basemap data from Esri Ocean (Sources:
Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, https://www.geonames.org (last access: March 2021), and other contributors),
and the Global Administrative Areas (GADM) database.

Appendix B: Results

B1 General performance

Figure B1. CDFs of weekly CRPSS shown for different lead weeks, with CRPSS being aggregated over all models and stations for fresh
surface water level hindcasts (rivers, streams, and lakes).
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Figure B2. Overview of weekly CRPS scores for the months of January, May, and September. Different ML model scores, the average
of the ML model score (dashed line), and climatological reference (grey) are shown for three surface water level stations along the main
river networks – Hagenstein Boven (orange), Nijmegen Haven (yellow), and Borgharen Julianakanaal (blue). Maps were created using the
Python package Cartopy (Elson et al., 2022), which uses basemap data made with Natural Earth and © OpenStreetMap contributors 2022.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

Figure B3. Anomaly correlation coefficient (ACC; weekly) for (a) January, (b) April, (c) July, and (d) October for surface water level
hindcasts (fresh surface water levels such as rivers, streams, and lakes). Simulation results are based on the RF model showing the results for
different stations (limited selection for visual purposes) in the national monitoring network. Only the major river networks are shown, and
smaller streams or infrastructures are not highlighted (a station along the coast is placed at a sluice along a stream). Maps were created using
the Python package Cartopy (Elson et al., 2022), which uses basemap data made with Natural Earth and © OpenStreetMap contributors 2022.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.
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Figure B4. Overview of the weekly evaluation scores for fresh surface water level hindcasts for different initialization months. (a) ACC,
(b) CRPSS, and (c) BSS heatmaps for the example station of Nijmegen.
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