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Abstract. Data assimilation techniques that integrate avail-
able observations with snow models have been proposed as a
viable option to simultaneously help constrain model uncer-
tainty and add value to observations by improving estimates
of the snowpack state. However, the propagation of infor-
mation from spatially sparse observations in high-resolution
simulations remains an under-explored topic. To remedy this,
the development of data assimilation techniques that can
spread information in space is a crucial step. Herein, we
examine the potential of spatio-temporal data assimilation
for integrating sparse snow depth observations with hyper-
resolution (5 m) snow simulations in the Izas central Pyre-
nean experimental catchment (Spain). Our experiments were
developed using the Multiple Snow Data Assimilation Sys-
tem (MuSA) with new improvements to tackle the spatio-
temporal data assimilation. Therein, we used a determinis-
tic ensemble smoother with multiple data assimilation (DES-
MDA) with domain localization.

Three different experiments were performed to showcase
the capabilities of spatio-temporal information transfer in
hyper-resolution snow simulations. Experiment I employed
the conventional geographical Euclidean distance to map the
similarity between cells. Experiment II utilized the Maha-
lanobis distance in a multi-dimensional topographic space
using terrain parameters extracted from a digital elevation
model. Experiment III utilized a more direct mapping of
snowpack similarity from a single complete snow depth map
together with the easting and northing coordinates. Although
all experiments showed a noticeable improvement in the

snow patterns in the catchment compared with the deter-
ministic open loop in terms of correlation (r =0.13) and
root mean square error (RMSE =1.11m), the use of topo-
graphical dimensions (Experiment II, » = 0.63 and RMSE =
0.89m) and observations (Experiments III, »r =0.92 and
RMSE = 0.44 m) largely outperform the simulated patterns
in Experiment I (r = 0.38 and RMSE = 1.16 m). At the same
time, Experiments II and III are considerably more challeng-
ing to set up. The results of these experiments can help pave
the way for the creation of snow reanalysis and forecasting
tools that can seamlessly integrate sparse information from
national monitoring networks and high-resolution satellite
information.

1 Introduction

Covering nearly half the land surface of the Northern Hemi-
sphere every year (Déry and Brown, 2007), the snowpack is
a major component of the terrestrial cryosphere. Its reflec-
tive, insulating, and large water storage capacity makes the
snowpack a key modulator of biogeophysical and biogeo-
chemical processes in the areas where it is present (Zhang,
2005; DeWalle and Rango, 2008). It controls the ecology of
cold regions (Slatyer et al., 2022; Pirk et al., 2023), and pro-
vides key freshwater resources to snow-dominated areas and
large downstream regions (Mankin et al., 2015). The mass
and duration of the global snow cover has been reduced by
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recent climate change (Pulliainen et al., 2020), and it is antic-
ipated that these impacts will continue in the coming decades
(Mudryk et al., 2020). All this highlights the increasing need
for monitoring the snowpack, both to evaluate the impacts of
climate change on the cryosphere and to design better adap-
tation strategies (Sturm et al., 2017).

Snowpack monitoring is a difficult task, particularly in re-
mote regions where meteorological conditions are often se-
vere and logistics are challenging (Fayad et al., 2017). The
snowpack exhibits a significant degree of spatial variability
(Lépez-Moreno et al., 2013), especially in areas of complex
topography, as a result of processes such as preferential de-
position, wind redistribution, and avalanching (Comola et al.,
2019; Vionnet et al., 2021). This complexity calls into ques-
tion the representativeness of the typically sparse point-scale
snow measurements from automatic weather stations as well
as those performed during manual field campaigns. For these
reasons, numerical snowpack simulations are widely used for
both scientific and operational goals. Using physically based
energy and mass balance models it is possible to continu-
ously (i.e. without gaps in space and time) simulate the state
of the snowpack represented through a number of variables
that are currently difficult to estimate directly from observa-
tions. This includes the snow water equivalent (SWE), which
is of great interest for hydrologists as it constitutes a di-
rect estimate of the freshwater resources stored in the snow-
pack. Unfortunately, numerical snowpack models require ac-
curate high spatio-temporal resolution meteorological forc-
ing, which is often difficult to obtain. The uncertainties in
the forcing propagate through the snowpack numerical mod-
els inducing strong biases in the simulations. In fact, snow-
pack simulation errors tend to mostly originate from the un-
certainty in the forcing, rather than a lack of knowledge con-
cerning snow physics (Raleigh et al., 2016). Apart from the
uncertainty induced by the forcing, redistribution processes
may cause strong differences between simulations and real-
ity. Despite recent model developments, explicitly account-
ing for wind- and avalanche-driven snow redistribution re-
mains challenging and introduces yet further degrees of free-
dom in the modelling exercise.

Earth observation satellites provide information on various
snow-related variables such as the snow cover extent, snow
depth, snow surface temperature or albedo. However, remote
sensing observations are limited by revisit times, spatial reso-
lution, cloud obstruction, viewing geometry and spectral res-
olution (Ju and Roy, 2008; Dozier et al., 2008). As a result,
it is not yet possible to generate spatially continuous maps of
these variables with a sufficient temporal resolution in near
real time (e.g. daily). In addition, remote sensing does not
enable the retrieval of key snow variables such as the SWE
in mountain regions (Dozier et al., 2016).

Data assimilation (DA) has emerged as a promising
method for enhancing uncertain numerical snowpack simu-
lation results using available in situ or remotely sensed ob-
servations (Largeron et al., 2020). The use of DA methods
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allows for the correction of errors in meteorological forcing,
resulting in improved predictions of snow models through
the incorporation of the information distilled from observa-
tions while taking into account their associated uncertainties.
In particular, the assimilation of in situ and remote sensing
products has already been shown to improve snow simula-
tions, including in situ snow depth (Smyth et al., 2019), frac-
tional snow-covered area (Aalstad et al., 2018), land surface
temperature (Alonso-Gonzdlez et al., 2022b), albedo (Kumar
et al., 2020), or even assimilating satellite reflectances di-
rectly (Revuelto et al., 2021b). If the objective is to recon-
struct the SWE distribution in the absence of direct SWE
observations, snow depth is likely the most useful variable
since it explains most of the SWE variability in many regions
(Sturm et al., 2010). Assimilating snow depth also enables
one to benefit from the wealth of in situ snow depth measure-
ments from automatic stations or manual sampling (Smyth
etal., 2019) or from emerging satellite products (Marti et al.,
2016; Lievens et al., 2022; Deschamps-Berger et al., 2022).
Unfortunately, the assimilation of in situ or remotely sensed
snow depth poses several challenges. One major challenge
is the mismatch in scale between the sparse spatial sam-
pling of in situ or altimetry-based snow depth measurements
and the gridded or semi-distributed geometry of the simu-
lations (Molotch and Bales, 2005). Even imagery-based re-
mote sensing approaches to retrieve snow depth can present
considerable spatial gaps due to orbital constraints, sensor
swath or the presence of clouds in the image. This results in a
vast number of model grid cells that lack local observations,
requiring the propagation of information from observed to
unobserved areas within snow DA frameworks to be able to
fully exploit existing monitoring systems.

Despite the aforementioned issues, the question of spa-
tial information transfer has thus far received relatively little
attention from land surface modellers in general (De Lan-
noy et al., 2022) and snow modellers in particular. Spatio-
temporal DA, also known as “3D” DA, has the benefit of
propagating information from observations both in time and
space with the potential to fill gaps in otherwise sparse ob-
servations (Reichle and Koster, 2003). At the same time, un-
like purely temporal (i.e. 1D) DA, defined here as the case
where each spatial unit is treated independently, adding spa-
tial dimensions vastly increases the dimensionality of the
underlying Bayesian inference problem when performing a
global (domain-wide) analysis. This makes spatio-temporal
DA more challenging to implement in practice than tempo-
ral DA. For example, with ensemble-based DA methods a
global analysis would often require an intractable exponen-
tial increase in ensemble size to avoid degeneracy (Bocquet
et al., 2017; Farchi and Bocquet, 2018).

Thanks to developments fuelled by operational numerical
weather prediction (Houtekamer and Zhang, 2016; Bannis-
ter, 2017), tailor-made methods exist that make ensemble-
based DA feasible even for extremely high-dimensional
spatio-temporal problems with on the order of 1 billion state
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variables. These are known as “localization methods” (Sakov
and Bertino, 2011; Chen and Oliver, 2017), which can be
split in two distinct types: covariance localization and do-
main localization (also know as “local analysis”). Both lo-
calization methods effectively alleviate computational issues
by limiting the radius of influence of observations, thus re-
ducing the spatio-temporal dimensionality of the DA prob-
lem. These methods are often applied as a remedy to spuri-
ous correlations that can cause unphysical or extreme long-
range information transfer from observations. Spurious cor-
relations are, however, only a symptom of the limited en-
semble size in high-dimensional problems, which can lead
to a deficiency of the low rank approximation of ensemble
Kalman methods (Sakov and Bertino, 2011; Evensen et al.,
2022) and make particle methods degenerate (Farchi and
Bocquet, 2018). Given an infinite ensemble size these issues
would disappear, but for all practical purposes they remain
a major concern. This makes localization indispensable for
designing functioning high-dimensional spatio-temporal DA
systems.

Despite receiving considerably less attention than its
temporal counterpart, some examples of spatio-temporal
snow DA can be found. De Lannoy et al. (2010) in-
vestigated spatio-temporal assimilation of synthetic coarse-
scale (25km) passive microwave SWE retrievals in high-
resolution (1 km) simulations of the Noah land surface model
using the ensemble Kalman filter (EnKF) with covariance
localization based on horizontal distance. In a follow-up
study, De Lannoy et al. (2012) performed similar spatio-
temporal experiments but using real data, showing the added
value of jointly assimilating passive microwave and optical
retrievals at different resolutions. Magnusson et al. (2014)
performed spatio-temporal assimilation experiments using
the EnKF and optimal interpolation with 3D (horizontal
and vertical) localization, effectively transferring informa-
tion from ground-based point SWE observations into a dis-
tributed snow model over Switzerland. More recent studies
have suggested different strategies using particle filters (PF)
for spatio-temporal snow DA. Cantet et al. (2019) adopted
a heuristic approach to propagate information from sparse
SWE observations over the Canadian province of Quebec us-
ing a PF with spatio-temporally correlated perturbations by
performing isolated analyses for grid cells where observa-
tions were available and subsequently spatially interpolating
the posterior weights. This methodology was further devel-
oped by Odry et al. (2022), who suggested using the Schaake
shuffle method (Clark et al., 2004) in order to alleviate spatial
discontinuities that can arise when resampling. Cluzet et al.
(2021) suggested alternative promising approaches to spatio-
temporal snow DA using a PF in synthetic experiments with
a semi-distributed geometry by combining a form of domain
localization with observation error inflation. Cluzet et al.
(2022) extended these approaches using data from a real
snow depth observation network over the French Alps and
Pyrenees, showing marked improvements compared to both
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the open-loop and the current operational approach of Météo-
France.

The aforementioned spatio-temporal snow DA studies
were typically performed at moderate resolution, in semi-
distributed geometries, and/or using relatively simple snow
models. In addition, the quantification of the spatial relation-
ships between cells was typically derived from the Euclidean
distance. Including a measure of the elevation proximity be-
tween cells helped to account for large differences in SWE
for cells that were close in the horizontal dimension but lo-
cated at different elevations (Magnusson et al., 2014). How-
ever, at hyper-spatial resolution (e.g. 5 m), the behaviour of
the snowpack is also correlated with other topographic vari-
ables such as slope, aspect, etc. (Lépez-Moreno et al., 2017,
Elder et al., 1991; Revuelto et al., 2020), which modulate
key processes such as incoming radiation (Liston and Elder,
2006; Baba et al., 2019) and snow redistribution by wind drift
(Vionnet et al., 2021; Sharma et al., 2023). Hence, such topo-
graphical characteristics should also be considered in the DA
process. It is thus necessary to define generalized distances
in higher-dimensional spaces. In the context of the ongoing
proliferation of high-resolution satellite data and with the ob-
jective of maximizing these data together with the benefits of
point-scale observations in snow DA, it is imperative to push
the current limits of these techniques so as to improve fine-
scale snow simulations. In this paper we explore the potential
of sparse snow depth observations to update hyper-resolution
snowpack models using topographical variables in addition
to the usual spatial dimensions so as to maximize the contri-
bution of observations to the analysis. We have implemented
this new spatio-temporal information propagation capability
such that it can be applied to a plethora of emerging snow
DA scenarios. We present the results from three experiments
based on real (rather than synthetic) data that explore increas-
ingly sophisticated approaches to information propagation in
hyper-resolution snow DA.

2 Data and methods
2.1 Observations and meteorological forcing

This work is based on the data available from a time series
of 12 hyper-resolution (5m spatial resolution) snow depth
maps collected during a single snow season over the Izas ex-
perimental catchment in the Pyrenees (55 ha Revuelto et al.,
2017) (Fig. 1). The maps were retrieved from fixed-wing
drone surveys using structure from motion techniques. The
drone surveys were conducted in 2020 on 14 January; 3 and
24 February; 11 March; 29 April; 3, 12, 19 and 26 May;
and 2, 10 and 21 June. Several surveys were conducted
before peak accumulation (estimated to be in mid-March)
but the late snowmelt season in May and June was sam-
pled most densely. This dataset has been extensively vali-
dated (Revuelto et al., 2021a, ¢) and ingested in purely tem-
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Figure 1. Location of the Izas experimental catchment in the central
Spanish Pyrenees (a). Topography of the catchment derived from a
summer drone survey, and a hillshade map showing cells (circles)
where observations were obtained from the random sampling strat-
egy during the observational period in 2020. The colour indicates
which of the cells had snow cover (defined as snow depth over 5 cm)
at the time of the observation (b).

poral snow DA experiments in a previous study (Alonso-
Gonzilez et al., 2022a). According to these previous experi-
ments, the error variance of the observations was assumed to
be 07 =0.04m?.

We used these maps to generate sparse observations to
be assimilated by randomly selecting 20 cells among all the
available grid cells for every map. The complete maps were
also used to evaluate the posterior simulations. We assumed
that the snow depth maps were an independent source of
evaluation given that the assimilated observations only rep-
resent 0.11 % of the 18442 simulated grid cells. The ran-
dom draw of 20 cells was performed independently for each
map, emulating a real case where an observer makes spo-
radic snow depth probe measurements throughout the snow
season. The random sampling led to the selection of several
snow-free cells, because many snow surveys were conducted
late in the snow season (Fig. 1).

We used a meteorological forcing dataset that was previ-
ously generated by Alonso-Gonzélez et al. (2022a) using the
MicroMet meteorological distribution system (Liston and El-
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der, 2006). MicroMet was applied to downscale hourly out-
puts of the ERAS5 atmospheric reanalysis from their native
resolution of 0.25° (Hersbach et al., 2020) to the same 5m
grid as the drone observations.

This meteorological forcing was used to drive the Multiple
Snow Data Assimilation System (MuSA, Alonso-Gonzélez
et al., 2022a). MuSA is an open-source snow DA toolbox. It
is designed to assimilate observations into simulations gen-
erated by the energy and mass balance model — the Flexible
Snow Model (FSM2 Essery, 2015) — or other snow models. It
was necessary to include several modifications in the MuSA
code, as detailed in Sect. 2.4. All the experiments were per-
formed using the most complex parameterization scheme of
FSM2, as it is the default configuration of MuSA. In MuSA,
FSM2 is run in a distributed fashion but in its current ver-
sion the wind redistribution is not simulated. We expect the
spatio-temporal DA to be able to mimic the wind redistribu-
tion process implicitly by correcting the precipitation scaling
parameters.

2.2 Spatio-temporal data assimilation

Data assimilation is a term used in the geosciences for the
ubiquitous exercise of combining models with observations
(Carrassi et al., 2018). This exercise often becomes quite a
formidable computational challenge to implement in practi-
cal DA when complex mechanistic models and real observa-
tions are involved. Several approaches have been developed
to deal with the computational challenge of combining mod-
els with observations (Evensen et al., 2022; Murphy, 2023).
These can broadly be divided into Monte Carlo and varia-
tional techniques. Since the latter involves the computation
of gradient terms (Bannister, 2017) that can be non-trivial, it
has been rarely used for snow DA to date. As such, Monte
Carlo techniques (Chopin and Papaspiliopoulos, 2020) are
widely used in snow DA, with the most common approaches
being ensemble Kalman and particle methods (see Alonso-
Gonziélez et al., 2022a, and references therein). The applica-
tion of particle methods to high-dimensional problems, such
as those that arise in spatio-temporal settings, remains an out-
standing challenge at the research frontier of DA due to par-
ticle degeneracy that occurs in the absence of robust particle
localization methods (Farchi and Bocquet, 2018).

In this work we focus on ensemble Kalman methods which
lend themselves well to spatio-temporal DA thanks to their
Gaussian properties and the compatibility with localization
methods, as is clear from existing practices in the broader
DA community (Sakov and Bertino, 2011; Chen and Oliver,
2017; Evensen et al., 2022). Indeed, ensemble Kalman meth-
ods are closely related to many spatial modelling techniques,
including kriging (Krige, 1951; Matheron, 1963) methods in
geostatistics (Bertino et al., 2003; Chiles and Delfiner, 2012)
and the nearly equivalent optimal interpolation (Eliassen,
1954; Gandin, 1963) methods that are widely used in oper-
ational DA (Talagrand, 1997; de Rosnay et al., 2014). What
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sets the ensemble Kalman methods apart from these meth-
ods is the use of a non-linear mechanistic dynamical model
for probabilistic prediction. The intimate relationship be-
tween these methods is not surprising given that they can
be viewed as special cases of a more general mathemat-
ical concept known as a “Gaussian process” (Rasmussen
and Williams, 2005), which is widely used both in statistics
(Cressie and Wikle, 2011; Wikle et al., 2019) and machine
learning (MacKay, 2003; Murphy, 2022, 2023).

In spatio-temporal DA, information from observations can
be spread across multiple grid cells through non-local ob-
servations, correlated observation error or prior dependence
(van Leeuwen, 2019). Non-local observations are observa-
tions that cannot be confined to a single model grid cell, as
is the case when the resolution of the observations is coarser
than that of the model (e.g. De Lannoy et al., 2012). Although
it is important to correctly account for the effects of such non-
local observations in DA (van Leeuwen, 2019), they are not
pertinent to the case of local sparse observations considered
in this study. Moreover, non-local observations only affect
the grid cells that their support overlaps with and thus do not
help resolve the challenge of transferring information from
observed to unobserved locations. Not accounting for corre-
lated observation errors, which occur frequently in satellite
remote sensing, can also degrade the performance of the as-
similation (Carrassi et al., 2018). In this study, based on our
knowledge of the drone observations outlined in Revuelto
et al. (2021a, c), we make the common assumption that the
observation errors are uncorrelated by assigning a diagonal
observation error covariance matrix of the form R = oyzl.
Moreover, despite their potential importance, including ob-
servation error correlations would not in itself allow for infor-
mation transfer from observed to unobserved locations. This
leaves prior dependence as the sole mechanism that permits
information to be transferred from sparse local observations
to unobserved locations. It is this mechanism, explained in
detail in Appendix A, that we exploit in this study.

2.2.1 Ensemble generation

Monte Carlo methods in general and ensemble Kalman meth-
ods in particular require the use of an ensemble (i.e. a col-
lection) of model realizations. To generate the prior ensem-
ble of simulations, we used time invariant (within a wa-
ter year) prior parameter ensemble to perturb the precipita-
tion (multiplicative) and air temperature (additive) forcing
variables. To bound these parameters within certain limits
while satisfying the Gaussian prior assumption of ensemble
Kalman methods, they were drawn from logit-normal dis-
tributions as outlined in (Aalstad et al., 2018). The param-
eters are updated with the ensemble Kalman analysis step
in the transformed (Gaussian) space but fed through the for-
ward model in the physical (untransformed) space (Alonso-
Gonzilez et al., 2022a). As such, we adopt a forcing for-
mulation of the DA problem (Evensen et al., 2022) where
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Figure 2. Example of correlation values (p) estimated from dis-
tances (d) by the Gaspari and Cohn function for different correla-
tion length scales.

model parameters are directly updated leading to indirectly
but dynamically consistent updates in the model states. The
mean pq and standard deviation og of the underlying normal
distribution hyper-parameters in transformed space, control
the shape of our weakly informative prior probability distri-
butions (Banner et al., 2020). These hyper-parameters were
selected based on prior predictive checks and conservative
expectations of the range of uncertainty in the meteorologi-
cal forcing, which we distilled from experience obtained in
previous studies at Izas. For temperature, the prior additive
perturbation parameters were drawn from a logit-normal dis-
tribution bounded between —8 and 8 K, with hyperparame-
ters wo = 0 and op = 0.5. In physical space this corresponds
to a right-skew logit-normal distribution with a median (in-
terquartile range) of 0 (—1.34—1.34). The prior multiplicative
perturbation parameters for precipitation were drawn from
a logit-normal distribution bounded between 0 and 8 with
no=—1.6 and op = 1. In physical space this corresponds
to a symmetric logit-normal distribution with a median (in-
terquartile range) of 1.34 (0.75-2.27). The number of ensem-
ble members was fixed at N, = 100 for all experiments.
Each of the transformed prior perturbation parameters
were drawn from independent high-dimensional multivariate
normal distributions (i.e. in the transformed space) by con-
structing prior spatial covariance matrices. This prior depen-
dence structure allows for associations between the parame-
ters in all the grid cells in our domain, which is key for infor-
mation propagation as outlined in Appendix A. For simplic-
ity, the temperature and precipitation perturbation parameters
were assumed to be independent but it would also be pos-
sible to consider a correlation between parameter types. To
generate the prior spatial covariance matrices we first used
the Sth-order piecewise rational function proposed by Gas-
pari and Cohn (1999) (their Eq. 4.10), henceforth referred to
as “GC” (Fig. 2). The GC functions is widely used for lo-
calization (Sakov and Bertino, 2011; Chen and Oliver, 2017)
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to generate a prior correlation matrix based on the pairwise
distances between grid cells in the simulation:

pld,c)=
—4(9) + (%)
+3(¢)°
—3(4)* 41, for0 < (4) <1,
TGN (M
+3(9) +3(4)°
=5(4)+4-32(4)", for1=<9=<2,
0, for§>2,

where d/c is a normalization of the distance d between a pair
of grid cells by the correlation length scale c. With this GC
function, the correlation drops off rapidly from 1 atd =0 to
0.5 at d >~ 0.68¢ and finally to 0 at d = 2c¢. The correlation
length scale ¢ thus plays an important role as a hyperparame-
ter that should be tuned in a sensitivity analysis or determined
empirically from data using geostatistical methods (Chiles
and Delfiner, 2012). In DA, the continuous distance d in the
GC function is typically discretized to a Euclidean distance
between two spatial grid cells defined in 2D (easting and nor-
thing) or 3D (with elevation) geographic space. The concept
can be generalized, however, to be any measure of distance
between two grid cells as detailed in Sect. 2.3. In our exper-
iments, we selected two different values of the hyperparam-
eter ¢ after manual tuning. For Experiment I ¢ = 100, while
for Experiments II and IIT ¢ = 5 (Sect. 2.3). The difference in
the magnitude of the ¢ value in the different experiments is
a consequence of the covariance-based normalization of the
distance matrix (D = [d;;]) in Experiments II and III.

Based on the correlations calculated from the GC function,
we construct a correlation matrix p with dimensions Ng x Ng
where Ny is the total number of grid cells in our domain. This
matrix contains the prior spatial correlations for a particu-
lar (transformed) perturbation parameter. In general, both the
choice of distance d and cutoff ¢ can differ between pertur-
bation parameters, but for simplicity here we kept them the
same for both the temperature and precipitation perturbation
parameters. Through the close relationship between correla-
tion and covariance, it is then possible to construct a prior
covariance matrix Cp by also taking into account the col-
umn vectors o that contain the prior standard deviations of
the transformed perturbation parameters across the domain
through

Co=p0O(000y), 2)
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where © is the element-wise product and (-)T denotes the
transpose. This is a general expression which happens to sim-
plify in our case since we assume that the prior standard devi-
ations are constant in space, such that aoag is just a constant
matrix containing the prior variance. Given that Cy is positive
definite, we can obtain its matrix square root via Cholesky
factorization Cy = LoLg allowing us to sample an Ng X Ne
matrix Ug of prior ensemble of transformed perturbation pa-
rameters Uy from the multivariate Gaussian prior A (pg, Co)
through (Murphy, 2022)

Up = poly, +Log, 3)

where £ ~N(0,1) is a Ng x N matrix of pseudo-random
draws from a standard normal distribution and 1, is a Ne x 1
vector of ones. We repeat this sampling for each of the per-
turbation parameters, effectively drawing both spatial prior
ensembles independently, and then combine them to form a
joint prior ensemble matrix Uy with Nj, x Ng rows (where in
our case we have N, = 2 parameters) and N columns.

2.2.2 Data assimilation scheme

To perform the spatio-temporal DA, we employed the de-
terministic ensemble smoother with multiple data assimila-
tion (DES-MDA) scheme introduced by Emerick (2018). We
use this batch smoother scheme to directly update parameters
(and indirectly update states) by simultaneously assimilating
all available observations in the DA window as outlined in
Algorithm 1.

https://doi.org/10.5194/hess-27-4637-2023
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Algorithm 1 DES-MDA with domain localization.

Require: N, ensemble members, N, assimilation cycles, Ng grid
cells, N, parameters, D = [dij] distance matrix (Ng X Ng), 1,
vector of ones (N x 1), prior parameter ensemble matrix Uy
from Eq. (3)

1: for £ =0to N, do
2: Run Ng x Ne forward simulations to obtain the complete

spatio-temporal ensemble of internal states Vg = M(Uy)
and predicted observations Yy = H(Vy).
3. if £ < N, then
4: fori =1to Ng do
5: Store the ensemble of parameters for this grid cell i and
cycle £ in the Nj x Ne matrix Ug').
6: Store the N(g’) local observations satisfying d;; < 2c in
the Nél) x 1 vector y(i)
7: Store the corresponding local predicted observations in
the N(Sl) X Ne matrix ?2)
8: Build the localization matrices p(l) (size: Np x N, (l))

and p(l) (size: N, W5 N, (’)) by extracting the corre-
spondmg entries from the Ng X Ng domain-wide GC
correlation matrix .

9: Compute the Np x N(gi) local ensemble parameter-

predicted observation covariance matrix C(l; =

] U(’),Y(’) T where primes (-)" denote anomalies (de-
v1at1ons from the ensemble mean).

10: Compute the N(gl) N,El) ensemble predicted observa-
tion covariance matrix C%)? = NL?(i)’?(i)’T

11: Compute the Np x N(Si) localized ensemble Kalman
gain matrix using subspace inversion (Emerick, 2016)

KO <[ ocig) (e ocit] v m)
“

where R=o07 21 N is the diagonal local observation

error covariance matrix with constant inflation Ol(z) =

Ng.

12: Update the ensemble mean Et(zl) = N%U,El) 1y, through
al) =a +K [y -5], )
where y( D _ 1 Y(')l N, contains the ensemble mean

predlcted observatlons

13: Update the ensemble anomalies Ug)/ = Uéi) —ﬁy) l;r\,e

using Y = )r(i)l;rve through

@y @y O [y _3®

Uil =uf” —osk [y© -y ©)

14: Combine the mean and anomalies to obtain the updated
@) a® qT @

ensemble U€+1 = £+11 —|—U£+1
15: end for
16:  endif
17: end for
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Herein, the DA window is 1 water year and the parameters
are updated independently for each water year. This DES-
MDA is a deterministic version of the original (stochastic)
ensemble smoother with multiple DA (ES-MDA; Emerick
and Reynolds, 2013), inspired by the deterministic ensem-
ble Kalman filter (DEnKF; Sakov and Oke, 2008), which
is a deterministic version of the classic (stochastic) ensem-
ble Kalman filter (EnKF; Evensen, 1994; Burgers et al.,
1998). Unlike the stochastic schemes, these deterministic
schemes do not require perturbing the actual or modelled
observations (van Leeuwen, 2020), so that sampling errors
are reduced while maintaining sufficient ensemble spread
(Sakov and Oke, 2008). The DEnKF thus serves the same
purpose as “square root” EnKF schemes, such as the lo-
cal ensemble transform Kalman filter (LETKF; Hunt et al.,
2007), which are widely used operationally (Houtekamer and
Zhang, 2016), but it is considerably easier to implement.
Moreover, it allows for both covariance localization and sub-
space inversion (Emerick, 2018). We use a (batch) smoother
rather than a filter to allow information from the observa-
tions to propagate backwards in time, since this has been
shown to lead to better snowpack reconstruction (Alonso-
Gonziélez et al., 2022a). In operational snow hydrology set-
tings, notably for forecast initialization, filtering may be
preferable due to computational constraints. The iterative en-
semble Kalman methods used herein could nonetheless read-
ily be extended to filtering (Sakov and Oke, 2008; Emerick
and Reynolds, 2012). Although the iterations incur an addi-
tional computational cost, they allow for likelihood temper-
ing (Stordal and Elsheikh, 2015) that leads to improved per-
formance compared to non-iterative methods when the model
mapping from parameters to observations is non-linear Em-
erick and Reynolds (2013); Alonso-Gonzélez et al. (2022a);
Pirk et al. (2022); Evensen et al. (2022). The snow DA prob-
lem addressed herein falls under this non-linear category.

2.3 Experimental set-up

In the modelling pipeline, a crucial step is the determination
of the distances between grid cells in the simulation domain.
This is typically accomplished through the calculation of the
pairwise Euclidean distance between cells. The Euclidean
distance between two cells is the Euclidean norm

(E) T
dl] ,/d dij 7

where the vector d;; = r; —r; is the difference between the
generalized coordinates r € RX of two cells. Using Eq. (7)
the pairwise Euclidean distance between all cells in the do-
main can be computed and stored in a Ng x Ng symmetric
matrix D = [d;;] with zeros on the diagonal, which can then
be used to define prior correlation from Eq. (1) and covari-
ance from Eq. (2) matrices.

As explained in the Introduction, we aim to incorporate to-
pographical dimensions in our distance calculations. Thus, it
is necessary to account for the differences in the units and the
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potential correlation between these additional dimensions.
To do so, we employ the Mahalanobis distance (e.g. Mur-
phy, 2022) that both standardizes the respective dimensions
and takes into account the correlation between them through
a covariance-based normalization. The Mahalanobis distance
between two grid cells is computed as follows:

(M) _ TQg-1g4..
di; " =./d;;87djj, (®)

where S is the K x K sample covariance matrix computed of
the generalized coordinates r € RX of all the Ny grid cells
in the domain. The use of dimensions other than the usual
spatial ones in the definition of r opens up a vast array of
possibilities that are not restricted to topographical features
only. Thus, any characteristic of the domain could be used
to map the similarity between cells, including climatological
characteristics such as distance to the ocean as a proxy for
continentality at larger scales and coarser resolutions. An-
other option is to use remotely sensed observations to define
a distance that directly maps the similar behaviour of the cells
within a domain in terms of snow-related variables, such as
snow cover duration.

In this study, we propose three experiments using different
distances to construct the prior covariance and explore the
potential for spatio-temporal snow DA at hyper resolution:

— Experiment I: The prior covariance was constructed us-
ing the Euclidean distance in a two horizontal dimen-
sions (easting and northing) space as is typically done
in 3D land DA (Reichle and Koster, 2003; De Lannoy
etal., 2010).

— Experiment II: The prior covariance was constructed
using the Mahalanobis distance in a high-dimensional
space that includes three spatial dimensions (easting,
northing and elevation) along with four additional to-
pographic dimensions described below.

— Experiment III: The prior covariance was constructed
using the Mahalanobis distance in a space composed of
two horizontal dimensions and one snow depth dimen-
sion based on a snow depth map obtained early in the
water year (14 January 2020).

In Experiment II, the topographic parameters that define
the additional dimensions are the topographic position in-
dex (TPI, with a search distance of 25m), slope, diurnal
anisotropic heating index and maximum upwind slope index
(search distance 15 m, main wind direction 315°). These to-
pographic parameters (as well as their hyperparameters) cap-
ture preferential snow deposition (TPI, wind) and melt (heat-
ing index) and were selected based on previous studies in the
Izas catchment (Revuelto et al., 2020). Among these exper-
iments, we expect the spatio-temporal snow DA in Exper-
iment III to perform best since it incorporates information
from a snow depth map that is directly related to snowpack
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behaviour to construct the prior covariance. One-time snow
depth maps are easier to acquire than annually/monthly re-
peated surveys and available for more catchments, and Ex-
periment III is thus a plausible set-up. In a sense, we are
to some extent committing a cardinal sin of circularity in
Bayesian inference by using the drone data twice: both for
constructing our prior and later for assimilation. Nonethe-
less, we only actually assimilate a minute fraction (0.11 %)
of the data used to construct the prior. Moreover, only a single
drone-based map enters the prior in Experiment III through a
(generalized) distance-based correlation rather than through
some form of direct insertion of empirical estimates of prior
hyperparameters. Finally, the use of data to construct the
prior falls under the domain of empirical Bayes (Efron and
Hastie, 2016), which is widely used in both spatial statistics
(Cressie and Wikle, 2011) and machine learning (Murphy,
2022). As such, one could classify Experiment III as a (very)
mild form of empirical Bayes.

2.4 Computational set-up

All the spatio-temporal DA experiments were developed us-
ing MuSA. In fact, these new capabilities that we test in these
experiments are packaged as an updated version of MuSA
where spatio-temporal DA can be activated optionally while
preserving the previous capabilities. A variety of different
ensemble-based DA schemes were implemented in the origi-
nal version of MuSA. For this study, we also added the deter-
ministic ES-MDA (DES-MDA Emerick, 2018) to this list. To
date, the MuSA system is the first to assimilate drone-based
snow depth retrievals (Alonso-Gonzélez et al., 2022a) and
has also been used to study the potential of assimilating land
surface temperature to improve snow water equivalent sim-
ulations in a synthetic experiment (Alonso-Gonzilez et al.,
2022b).

Several modifications of the MuSA code were necessary
to implement spatio-temporal snow DA capabilities. In the
original version of MuSA, each grid cell in the simulated do-
main was updated independently. This was due to the fact
that both FSM2 and the DA schemes were purely temporal,
in the sense that spatial grid cells did not interact, resulting in
what is known in computer science as an embarrassingly par-
allel problem since it makes parallelization relatively trivial.
However, spatio-temporal DA requires each grid cell to have
access to both the observations and ensemble of predicted
observations from nearby cells. What constitutes nearby will
depend on the distance metric used (i.e. Egs. 7 or 8) as well
as the dimensions of the generalized coordinates r € RX in
which these distances are measured. This posed several com-
putational challenges for the implementation of the spatio-
temporal DA. In particular, it required a substantial modifi-
cation of several MuSA routines that control the timing of
the updates of each grid cell to avoid de-synchronizing the
spatial simulations, especially in distributed computational
facilities.
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The MuSA framework was originally designed to be a
noninvasive Python wrapper around the supported numerical
snowpack model (FSM2) which simplifies implementing up-
dated versions of this model and even altogether new models
of any type. Staying true to this philosophy, the spatial prop-
agation of information was handled using physical disk in-
put/output (I/O) operations. This was designed also with the
intention of alleviating the cost of storing many ensemble
simulations in memory. Such a cost is possibly prohibitive
in applications with a higher spatial density of observations,
since each cell would have to store in memory the ensem-
ble members for all the observed grid cells in its surround-
ings. Nonetheless, the computational problem became signif-
icantly more complex in terms of generating potential bottle-
necks due to intensive I/O use. To overcome this problem we
improved the performance of several internal routines by de-
creasing the numerical precision of many variables whenever
possible and compressing the binary objects to be shared by
I/O operations using the high-performance compressor Blosc
(Blosc Development Team, 2023). These modifications allow
MuSA to run spatial propagation experiments on both a local
(single node) server and on distributed computing clusters
where different nodes have to be synchronized, at an afford-
able cost. However, it is necessary to take into account that
the computational cost of the simulation increases consid-
erably when spatio-temporal DA is used. The experiments
developed in this work were launched in the supercomput-
ing facilities of the Centre National d’Etudes Spatiales. As
a reference, 30 nodes were used, with 10 processors each.
The experiments took around 5 h, but this estimate should be
taken with caution. As the operation is I/O intensive, depend-
ing on the configuration of the simulations, the computing
scheme and the spatial density of observations, the computa-
tional cost can vary tremendously even for the same domain
and spatial resolution.

2.5 Evaluation

The results of the three proposed experiments were evaluated
using different strategies. A small percentage of the available
grid cells (0.11 % of each map) were included in the assim-
ilation, and therefore the evaluation is essentially performed
with independent data despite being compared with the drone
data themselves. Even so, to ensure completely independent
evaluation, the few cells included in the assimilation were not
included in the evaluation metrics for the respective experi-
ments.

As a first step, we compared the spatial patterns of snow
depth from the simulations with a complete snow depth map
retrieved close to peak SWE (11 March 2020). Different met-
rics were used to estimate the performance of the different
experimental setups. We computed the cell-by-cell difference
(error) between the reference map and the posterior mean of
the ensembles. For all non-probabilistic metrics and visual-
izations, we always used the posterior ensemble mean as the
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Figure 3. (a) Observed snow depth map on 11 March 2020 close to
the peak accumulation. (b) Deterministic open loop (OL) simulated
snow depth on the same date. (¢) Difference between the OL and
observed map (OL — Obs). (d) Scatter plot showing the OL versus
observed snow depth for each 5 m pixel.

point estimates that we evaluate. To measure the performance
of the posterior ensembles, we computed the cell-by-cell
continuous ranked probability score (CRPS Hersbach, 2000),
which is a metric for ensemble verification that generalizes
the mean absolute error for probabilistic estimates. Due to
the large number of grid cells, it was not feasible to store
the complete spatio-temporal ensembles. Instead we output
the ensemble mean and standard deviation, from which the
CRPS was estimated based on a normal approximation of
the posterior distribution of the snow depth (Gneiting et al.,
2005).

To visually gauge the overall performance of the experi-
ments, we generated scatter plots showing the simulated ver-
sus the observed snow depth for all grid cells in the domain.
In addition, we computed two commonly used evaluation
metrics: the root mean square error (RMSE) and the linear
correlation coefficient (r). In order to check the spatial scale
dependence of the results and how these agree with observa-
tions we computed the semivariograms (Chiles and Delfiner,
2012; Wikle et al., 2019) of the posterior mean from the DA
experiments, the deterministic open-loop (no assimilation),
and the drone map. The semivariogram was computed based
on the horizontal Euclidean distance lag (or separation) rang-
ing from 10 to 150 m using a bin size of 10 m. To evaluate
the closeness between the reference semivariogram and the
ones simulated by the proposed experiments, we compute the
Fréchet distances between them, which provide an estimation
of the dissimilarity between curves. Finally, we explored the
continuous temporal evolution of the catchment total snow
volume in the simulations and compared it with the evolu-
tion of the total snow volume from the 12 drone maps.
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Figure 4. Experiment I results on 11 March 2020. (a) Posterior
mean snow depth. (a) Difference between the posterior mean and
observed snow depth. (¢) CRPS between the posterior and the ob-
served snow depth. (d) Scatter plot showing the posterior versus
observed snow depth for each 5 m pixel.
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Figure 5. Experiment II results on 11 March 2020 presented in the
same way as those of Experiment I in Fig. 4.

3 Results

The deterministic open loop (OL) model run was not able
to reproduce the intricate spatial patterns of snow depth ob-
served in the drone surveys (Fig. 3). Almost no spatial vari-
ability can be observed; the little variability that exists is
most likely induced by the differences in the incoming short-
wave radiation simulated by MicroMet. As a result of the
poor representation of spatial variability in the snowpack and
the complete lack of snow depths of more than 2 m, the OL
simulation exhibited the worst performance relative to the
observations among all the simulations with r =0.13 and
RMSE=1.11m.
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In all spatio-temporal DA experiments, both the distance-
based prior covariance matrix and the localization had a
strong impact on the DA performance. The results from Ex-
periment I in Fig. 4 show the performance of the spatio-
temporal DA when the horizontal Euclidean distance was
used to construct the prior covariance and for domain local-
ization. The use of spatio-temporal DA resulted in a posterior
snowpack with considerably more spatial variability than the
OL. The posterior simulation partly improved the evaluation
metrics compared with the OL at least in terms of correlation
(r = 0.38), albeit not in terms of the error (RMSE = 1.16 m).
This indicates that although the shapes of the inferred spa-
tial patterns in snow depth are more encouraging than in the
OL, the posterior snow depths in Experiment I could still not
accurately represent the distribution of the observed snow
depth, as shown by the error and CRPS maps (Fig. 4b and c).
Instead of the intricate spatial patterns of the snow depth ob-
servations that reflect wind-redistribution in complex topog-
raphy, the blob-like Gaussian shape of the GC correlation
function based on horizontal distance is evident in the poste-
rior snow depth maps. As such, the point-by-point relation
between the observations and posterior simulations (panel
d) exhibits a large dispersion. This indicates that, at least
for hyper-resolution snow simulations, the prior covariance
structure was poorly specified in Experiment I.

The use of additional dimensions based on topographic pa-
rameters in the construction of the prior covariance matrix in
Experiment II had a markedly positive impact on the perfor-
mance of the posterior inference (Fig. 5). Compared to the
OL or the use of horizontal Euclidean distance in Experi-
ment I, the use of topography-based Mahalanobis distance
led to a notable improvement in the evaluation and the result-
ing evaluation metrics with » = 0.63 and RMSE =0.89 m.
Furthermore, the incorporation of topographic dimensions
enabled the emergence of complex spatial patterns in the sim-
ulation, resulting in a more realistic spatial snow depth distri-
bution that more closely aligns with the intricate snow depth
patterns shown by the drone-based observations. Despite the
improvement in the simulation of spatial patterns in the snow
depth distribution, certain obvious limitations are still evi-
dent. One notable limitation is the inability to accurately sim-
ulate the formation of the cornice at the north-western rim of
the catchment. Due to its position at the boundary of the sim-
ulation domain, there is a strong domain boundary effect on
the maximum upwind slope index, which makes it difficult to
simulate this event. The cornice formation is also influenced
by snow drift that is transported from the surrounding area
outside of the simulated domain. In general, the discrepan-
cies seem to follow the topographical characteristics of the
terrain, as can be seen in the error and CRPS maps.

As expected, the posterior results in Experiment III, where
a single drone-based snow depth map (14 January 2020)
was used to construct the prior covariance, shows by far
the most promising results relative to drone observations
(11 March 2020), as shown in Fig. 6. The evaluation met-
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Table 1. Summary of validation statistics for each of the snow depth drone maps and the mean for all the seasons. The highlighted values

indicate the best performance value for each date.

Date OL | Exp. I Exp. IT | Exp. III

Bias RMSE r | CRPS  Bias RMSE r | CRPS  Bias RMSE r | CRPS  Bias RMSE r
14Jan  —0.06 069 0.8 | 041 009 073 033 | 032 013 055 065| 0I1 005 022 095
3Feb  —006 081 017 | 048 017 087 036 | 038 018 065 065 | 009 005 020 097
24Feb —038 087 019 | 046 —0.13 081 039 | 035 —012 061 066 | 015 —0.17 028 096
I1Mar  —0.19 LIl 013 | 065 015 116 038 | 052 016 089 063 | 025 —001 045 092
29Apr  —078 115 0.15| 051 —025 092 038 | 046 —034 077 061 | 028 —024 046 090
3May —067 104 003 | 047 —025 085 038 | 050 —034 071 061 | 034 -023 043 0.89
12May —0.17 050 000 | 031 015 069 027 | 030 007 050 052| 039 019 054 0.5
19May —030 057 000 | 031 —-003 062 035| 035 —0.13 048 051 | 039 001 042 080

26 May 0.00 031 0.18 0.18 0.15 047 0.29
2 Jun —0.02 0.18 0.14 0.09 0.06 033 023
10 Jun 0.01 0.11 0.00 0.16 0.07 028 0.14
21 Jun 0.01 0.07  0.00 0.14 0.05 021 0.05

0.15 0.08 0.32  0.38 0.16 0.16 037 0.66
0.06 0.00 020 0.25 0.07 0.04 023 0.52
0.13 0.03 0.13  0.15 0.23 0.04 0.17  0.31
0.10 0.01 0.08 0.03 0.14 0.02 0.09 0.14

Mean —-0.22 0.62 0.09 0.35 0.02 0.66 0.30 ‘ 0.30 —0.02 049 047 ‘ 0.22 -0.01 032 0.73
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Figure 6. Experiment III results on 11 March 2020 presented in the
same way as those of Experiment I in Fig. 4.

rics were also considerably better than any of the other sim-
ulations, with a 46 % improvement in correlation (r = 0.92)
and a halving of RMSE (RMSE = 0.44 m) compared to the
second-best result in Experiment II. The largest errors shown
by the error and CRPS maps seem to be concentrated in very
specific locations, exhibiting a mostly homogeneous spatial
distribution over the whole area. Experiment III shows that
using snow depth observations from early in the snow sea-
son to construct a semi-empirical prior covariance matrix to
map the similarity between cells can result in spatially com-
plex posterior simulations that closely align with the peak
snow depth spatial patterns found in the independent valida-
tion data. This is reflected in all evaluation metrics, which are
markedly improved using this approach compared not only to
the OL but also to the alternative spatio-temporal DA strate-
gies tested in Experiments I and II. Table 1 provides a de-
tailed description of the spatial validation metrics for maps
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Figure 7. Comparison of snow depth semivariograms on
11 March 2020 near peak accumulation.

other than the peak SWE occurrence date. All experiments
show decreasing r values over time. This is due to the very
shallow snowpacks found at the end of the season such that
small absolute differences in the snow depth are exaggerated.
The patchy conditions at the end of the season also contribute
to this decrease in performance. In any case, all experiments
were able to greatly improve the statistics during the melt
season compared to the OL, where melting occurred much
earlier, particularly Experiment III which maintained r > 0.5
until early June. After that date, only reminiscent accumula-
tions were left.

Figure 6 shows the spatial variability in snow depth at
different spatial scales estimated for the three experiments,
the OL, and the observations close to peak SWE (11 March
2020). As mentioned before, the OL simulation exhibits very
limited spatial variability compared with the observations,
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and this is reflected in the semivariogram which is nearly flat
and thus shows minimal dependence on separation distance.
On the other hand, the three experiments show increasingly
realistic semivariograms depending on the level of spatio-
temporal DA complexity. The shape of the semivariograms
nonetheless differs considerably between the three experi-
ments. Among the three experiments, the semivariogram for
Experiment I semivariogram is the furthest from the refer-
ence (observed) semivariogram according to the Fréchet dis-
tance metric (FD =0.71), despite showing a noticeable im-
provement over the OL (FD =1.07). In particular, Experi-
ment I semivariogram is constrained to the Gaussian shape
characteristic of the GC function, as this is implemented di-
rectly in the horizontal Euclidean distance, which is directly
related to the x axis in Fig. 7. In geostatistical terms (c.f.
Chiles and Delfiner, 2012; Wikle et al., 2019), the semivar-
iogram for Experiment I diverges from the observations in
two important respects. Firstly, it does not show the correct
high small-scale variability since it lacks the so-called nugget
effect (offset around 0 distance). Secondly, despite perform-
ing better than the OL, it displays lower large-scale variabil-
ity than the observations in that it has a lower sill (stabilizes
at alower value) than the observed semivariogram. In Experi-
ment II the semivariogram is able to capture the same nugget
effect as in the observations, but the larger-scale variability
remains too low with a sill that is similar to that in Experi-
ment I. Overall, the semivariogram is nonetheless closer to
the observations in Experiment II (FD =0.47) than in Ex-
periment I. As could be expected, the use of observations
from an earlier drone-based snow depth map to define the
prior covariance between cells in Experiment III also led to
the most realistic scale-dependence in the simulation spa-
tial patterns of snow depth according to the semivariogram.
Here, the nugget effect, the sill as well as the overall shape
of the semivariogram were more or less in complete agree-
ment. Notably, the semivariogram of Experiment IIT showed
the shortest Fréchet distance (FD = 0.08), confirming a very
close match to the observed steep increase in the semivari-
ance of snow depth as a function of separation distance near
peak accumulation in 2020.

The improvements in the simulated spatial patterns that
we saw near the peak snow depth date for the various ex-
periments is also reflected in the temporal evolution of the
total snow volume in the catchment. Figure 8 compares the
temporal evolution of the total volume of snow in the Izas
catchment as simulated continuously by the OL and the three
spatio-temporal DA experiments with the snapshots retrieved
from the drone surveys. Due to the increasing variability in-
duced by the DA, some parts of the basin show large accu-
mulations, which delays the melt-out date and makes it more
consistent with the trajectory of the effectively independent
observations. All the experiments improved the (temporal)
RMSE metric for the posterior mean total snow volume ob-
taining RMSE = 0.07, 0.08 and 0.06hm?> for the posterior
mean in experiments I, I and III, respectively, compared with
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Figure 8. Time evolution of the total volume of snow in the catch-
ment in units of cubic hectometres (106 m3) from the different sim-
ulations (coloured lines) along with the volume estimates obtained
from the snow depth drone maps (blue dots). Note that the snow
volume can be multiplied by a scale factor of 1.82 to recover the
mean snow depth for the Izas catchment with an area of 55 ha.

a considerably higher RMSE = 0.16 hm® for the OL. This
shows how spatio-temporal DA of sparse observations can
lead to a better representation of both total snow accumula-
tion and snowmelt timing at the catchment level, which could
in turn improve snowmelt runoff simulations. Surprisingly,
despite the improvements shown by Experiments II and III
compared with Experiment I in terms of spatial representa-
tivity, the temporal RMSE values in the three experiments
did not differ markedly. As such, even a relatively simple
spatio-temporal DA system based on horizontal distance in
Experiment I may suffice if the primary quantity of interest
is the temporal evolution of the total snow volume (or possi-
bly by extension SWE) in a catchment, rather than accurately
reproducing the spatial distribution of snow depth.

4 Discussion

In this work, we investigated the capability of propagating
information from sparse observations of the snowpack in
hyper-resolution simulations through ensemble-based spatio-
temporal DA techniques. We performed three experiments
in which we assimilated sparse observations from the Izas
experimental catchment. The observations were obtained
through random sampling of 20 points from each of the 12
available snow depth maps during the 2020 water year. This
set-up was designed to mimic the typical sparse manual sam-
pling of a catchment to test the possibility of propagating this
information in distributed snowpack simulations. It should be
noted that the selection of grid points for sampling is com-
pletely random, and different from one date to another, which
may result in many measurements not being as informative
as they could be. Additionally, most of the snow depth maps
are concentrated on the end of snow season, at which point
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a significant portion of the snow has already melted (Fig. 1),
leading to a partial sampling of snow-free areas. While the
absence of snow on a specific date can provide valuable in-
formation in the context of snow DA (e.g. Margulis et al.,
2016; Fiddes et al., 2019; Alonso-Gonzilez et al., 2021), in
the absence of clouds this information is already available
from fractional snow-covered area (fSCA) retrieved by high-
resolution optical satellite imagery (Aalstad et al., 2020).
In practice it could thus be seen as somewhat of a waste
to choose to sample snow-free areas with manual measure-
ments when we could instead assimilate fSCA from satel-
lites. The joint assimilation of fSCA and sparse snow depth
observations is a certainly promising path forward, which
will be explored in future work. In real-world scenarios, it
would also be beneficial to implement more sophisticated
sampling strategies to maximize the expected information
gain (Molotch and Bales, 2005; Lépez-Moreno et al., 2011a),
but for the sake of simplicity the current completely random
approach is deemed adequate for our intended objectives.

The three experiments that we carried out herein reflect
different strengths and weaknesses of spatio-temporal DA
techniques when applied to the hyper-resolution scales for
snowpack simulation. These three experiments were de-
signed as a sample of the potential of the techniques, rather
than to find the optimal set-up which would likely be highly
problem-dependent and involve considerable hyperparame-
ter tuning. The configuration used in Experiment I was not
able to reproduce the complex spatial patterns present in the
drone-based snow depth map near the snow accumulation
maximum, although the simulated evolution of the total snow
volume was similar to that of the other two DA experiments
and equally close to the observations. Despite this weakness,
the simplicity of the configuration of Experiment I is a key
advantage over the more sophisticated prior covariance mod-
elling experiments. Constructing the prior covariance based
solely on the (horizontal) geographic distance between cells
allows for a much more intuitive configuration of the cor-
relation length scale ¢ in the GC function Eq. (1). Tuning
such hyperparameters by trial and error can be prohibitively
computationally expensive depending on the size of the ex-
periment being carried out (Anderson, 2012). Furthermore,
the use of distances defined in geographic space can be par-
ticularly valuable in the more ideal case of a very high spa-
tial density of observations, where a fine control of spatial
information propagation may be desired. Another clear use
case of regular geographic-distance-based prior covariance
modelling and localization can be in the case of lower spa-
tial resolution simulations (> 1 km), which may be required
for larger-scale snow DA applications (e.g. Magnusson et al.,
2014; Odry et al., 2022), as is typical in land (Reichle and
Koster, 2003; De Lannoy et al., 2010, 2012) and atmospheric
DA (Anderson, 2012; Houtekamer and Zhang, 2016).

The incorporation of other dimensions than the geograph-
ical easting and northing in the distance-based prior covari-
ance and localization markedly improves the results of Ex-
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periments II and III both compared with the OL and Exper-
iment I. Experiment II has demonstrated (see Fig. 5) that
by simply utilizing parameters derived from topography, it
is possible to enhance the hyper-resolution simulations such
that they can partly reproduce the complex spatial patterns
of the snowpack. This is supported by the reasonable as-
sumption that the snowpack often exhibits persistent spatial
patterns between seasons (Schirmer et al., 2011) due to the
topographic controls on snowpack redistribution (Revuelto
et al., 2014). Other promising experimental configurations
could include additional topography-based parameters, such
as avalanche deposition zones (Lépez-Moreno et al., 2017)
or sky view factor (Sicart et al., 2006) as they are both impor-
tant contributors to the mass and energy balances. For simu-
lations at a coarser resolution, we hypothesize that the use of
other parameters with climatological implications could play
a crucial role. These could be indicators of continentality or
marine influences, as well as exposure to atmospheric mois-
ture advection (Alonso-Gonzalez et al., 2021) or teleconnec-
tion indices (L6pez-Moreno et al., 2011b), which have been
shown to play an important role in controlling large-scale
snowpack dynamics. In summary, the approach in Experi-
ment II paves the way towards integrating additional infor-
mation, such as that derived from (snow-off) DEMs, which
can otherwise be difficult to exploit in the context of snow
DA.

The results obtained in Experiment III (see Fig. 6) were
by a good measure the closest to the reference observations
used for evaluation. The empirical Bayes approach (Efron
and Hastie, 2016) of using observations in the construction
of the prior covariance is thus a highly effective way to di-
rectly map the similarity between cells. The case shown in
Experiment III is likely an example where the benefits from
this technique are maximized, as distances are defined using
a complete drone-based snow depth map, a snowpack state
variable that is closely related to SWE. It should be noted that
today, it is possible to obtain hyper-resolution snow depth
maps also for larger or more remote catchments from satel-
lite products such as from the Pléiades constellation (Marti
et al., 2016) that can be scheduled in advance. Given the
high inter-annual similarity of the snowpack spatial distribu-
tion (Schirmer et al., 2011), the snow depth map used for the
prior covariance could be from a different year and possibly
still perform nearly as well as in our Experiment III. Alter-
natively, other observation-based products such as satellite-
based snow cover duration maps could serve as a proxy for
SWE patterns and thus help with prior covariance modelling
both at larger scales and at coarser resolutions. Prior covari-
ance modelling can also provide a way to integrate other
sources of information into the snow DA. An example may
be the Landsat constellation where the low revisit frequency
may limit its direct usage in a snow DA context (Alonso-
Gonzilez et al., 2022b), but the long climate data record
can be used to compute long-term snow climate statistics
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that could be used to map the similarity between grid cells
(Macander et al., 2015).

The spatio-temporal DA techniques that we explored
herein also have wider implications. An immediate possible
operational application could be to integrate information ob-
tained from the typically sparse national snow-monitoring
networks into high-resolution distributed physically based
snow simulations, building on the work of Magnusson et al.
(2014); Cluzet et al. (2022), as an alternative to approaches
based purely on statistical interpolation (Fassnacht et al.,
2003; Collados-Lara et al., 2020). In a similar vein, as an ex-
tension of the work of Odry et al. (2022), the spatio-temporal
snow DA approach presented here allows for the fusion of
sparse manual snow surveys into high-resolution distributed
snowpack simulations. In a broader sense, these techniques
could be used to propagate information obtained from op-
tical satellites that often contain spatial gaps for several rea-
sons. For example, as an extension to the study by De Lannoy
et al. (2012), it would be possible to propagate information
from clear observed cells to those that lack observations due
to the presence of clouds. Propagating information from for-
est clearings to areas where canopy obstructs snow visibility
from space could also be a promising approach that should be
investigated in future studies. More generally, the techniques
can be employed to propagate information from areas where
information is easily obtained from optical satellites to ar-
eas where obtaining information is problematic due to terrain
characteristics such as steep slopes or the presence of shad-
ows (Gascoin et al., 2019). The use of spatio-temporal DA
techniques in these contexts would make it possible to con-
trol the influence of outliers in the observations, increasing
the spatial consistency of the posterior simulations. The use
of DA techniques with localization (Sakov and Oke, 2008)
also impedes distant observations from affecting local simu-
lations thus avoiding spurious correlations that can degrade
the quality of the analysis. The ensemble Kalman-based DA
approach pursued herein could also be adopted as a proposal
distribution in particle-based DA (e.g. Pirk et al., 2022), such
that our approach may also be relevant to particle-based snow
DA frameworks (e.g. Cluzet et al., 2021).

A particularly promising potential application is the assim-
ilation of snow depth acquisitions from the ICESat-2 laser
altimeter (Enderlin et al., 2022; Deschamps-Berger et al.,
2022), which records data along linear tracks that exhibit
a discontinuous pattern in space. A straightforward exten-
sion of the experiments herein could involve joint DA using
(nearly) spatially continuous satellite retrievals together with
sparser retrievals or ground-based measurements. This could
for instance involve combining high spatial resolution fSCA
products (Gascoin et al., 2020; Aalstad et al., 2020) derived
from Sentinel-2 and/or Landsat acquisitions with in situ in-
formation obtained from stations or manual surveys, or even
ICESat-2 snow depth retrievals. This would exploit the infor-
mation derived from complementary sources within the same
simulation, as done for glacier DA by Leclercq et al. (2017).
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Despite the promising results, new configuration and nu-
merical challenges arise when a high-dimensional space is
used to define the pairwise distance between cells. For ex-
ample, the Mahalanobis distance in Eq. (8) is dimensionless,
which impedes an intuitive interpretation of the prior corre-
lation length scale c. This, along with the aforementioned
computational cost associated with tuning the hyperparam-
eter ¢ by trial and error, further hinders an optimal and au-
tomated configuration of the entire assimilation workflow.
A possible solution to avoid the computational cost of ad-
justing the ¢ hyperparameter could be to explore the semi-
variogram of the available observations and deduce its value
from it (for either the Euclidean or Mahalanobis distance).
However, there is another issue that may complicate the use
of the Mahalanobis distance: if simple geographic Euclidean
distance is not used, it is not guaranteed that the resulting
correlation matrix will be numerically positive definite (Cur-
riero, 2006). The Cholesky decomposition used in Eq. (3)
is only possible if the prior covariance matrix is positive
definite, which can thus make some configurations of di-
mensions in combination with some values of ¢ not possi-
ble. Fortunately, this is not a new problem within the geo-
statistics (Chiles and Delfiner, 2012), spatio-temporal statis-
tics (Cressie and Wikle, 2011; Wikle et al., 2019) or ma-
chine learning (Rasmussen and Williams, 2005; Murphy,
2022, 2023) communities. Different procedures have been
proposed to address this issue, including the use of dimen-
sion reductions through multi-dimensional scaling (Murphy,
2022). Other approaches such as finding the closest posi-
tive definite matrix have been proposed (Davis and Curriero,
2019). The use of specific prior correlation models other than
the GC and different approaches to robustly ensure the posi-
tive definiteness of the covariance matrix will be explored in
future work.

5 Conclusions

In this study, we explored the potential of spatio-temporal
DA methods for updating hyper-resolution simulations of the
snowpack in an experimental catchment situated in the Pyre-
nees. Three different experiments were proposed and exe-
cuted, each employing a distinct prior covariance modelling
strategy for assimilating sparse snowpack observations that
were subsampled from drone-based snow depth maps. The
assimilated data consist of 20 randomly selected snow depth
measurements obtained from the Ny = 18442 possible grid
cells (excluding some minor gaps) that were mapped for each
of the 12 drone flights. This sampling strategy aims to emu-
late several manual snow surveys performed intermittently
during a water year.

The three proposed experiments are essentially built on
the same underlying DA scheme (Algorithm 1), the only dif-
ference being in the distance calculation used for the prior
covariance matrix and localization. Experiment I utilized
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the conventional horizontal Euclidean distance between cells
following the usual set-up of 3D land DA. The results of this
first experiment demonstrated an inability to accurately sim-
ulate the complex spatial snow depth patterns found in the
drone-based observations. Subsequently, Experiments II and
III significantly enhanced the performance of the DA system
compared to Experiment I, by incorporating additional di-
mensions in the form of topographic parameters and a snow
depth map, respectively, in the distances used to construct
the prior covariance. Experiment III performed best by most
accurately reproducing the snow depth spatial distribution.
At the catchment scale, all three experimental set-ups led to
nearly equally and relatively accurate simulations of the tem-
poral evolution of total snow volume, with a considerable
improvement over the deterministic OL (without DA) both
in terms of peak accumulation and snowmelt timing.

It should be noted that setting up the better performing
Experiments (II and III) can entail considerable technical
difficulties. In particular, the use of generalized (rather than
simpler geographic) multi-dimensional distances to construct
the prior covariance matrix and perform localization leads
to a less intuitive experimental design. Notably, the perfor-
mance of these experiments is sensitive to the choice of
hyperparameters, especially the correlation length scale c.
These parameters can be difficult to get a sense for when
working with generalized distances. Moreover, the computa-
tional cost of performing hyperparameter optimization can
be prohibitive and some choices for the hyperparameters
can even result in non-trivial numerical issues related to
matrix positive definiteness. Further research is necessary
to develop and refine the covariance functions utilized in
DA to ensure compatibility with hyper-resolution scenarios
that require non-conventional distance metrics to exploit and
propagate information from observations. Despite the new
challenges encountered, the results are promising and pave
the way for improving hyper-resolution snow simulations
through ensemble-based assimilation of spatially sparse data.
The methods presented here have many new applications,
which will enable the combination of spatially incomplete
but potentially very informative data such as those obtained
from automatic ground-based monitoring networks or orbital
LiDAR, with continuous satellite products such as fSCA
or LST (land surface temperature) within the same hyper-
resolution distributed simulations.

Appendix A: Local information propagation using prior
dependence

Herein, we outline the role that prior dependence plays in
propagating information from local observations. In Sect. A1l
we show formally how prior dependence is the only way
to propagate information from observed to unobserved lo-
cations in the general Bayesian DA setting. In Sect. A2 we
go through an illustrative toy example in the form of a simple
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Gaussian model that demonstrates how observed information
can be propagated from an observed to an unobserved lo-
cation using prior dependence. Distance-based prior depen-
dence modelling is at the core of Gaussian process regression
(Rasmussen and Williams, 2005), of which Kalman methods
can be seen as a special case. Thereby, the simple Gaussian
linear model is an elementary demonstration of the inferen-
tial mechanism that powers these Gaussian spatio-temporal
techniques (Cressie and Wikle, 2011; Wikle et al., 2019).
Many applied spatio-temporal problems involving Gaussian
processes, including the one in this study, are of course non-
linear. The simple Gaussian linear model can nonetheless be
helpful to gain a high-level intuition of how the inference
works.

Al General Bayesian formulation

DA can be formalized as an exercise in Bayesian inference
(Wikle and Berliner, 2007; Evensen et al., 2022) that in-
volves updating prior beliefs p(x) about model states (and/or
parameters) using information from observations encoded in
the likelihood p(y|x) to obtain the posterior

pxly)=pylx)p(x)/Z, (A1)

where the model evidence Z = p(y) is a normalizing con-
stant (MacKay, 2003). Now split the state space in two re-
gions x = [x1, x2] where the first (x) is directly observed
via local observations y; while the second (x2) is unob-
served. In general, these two regions could have different
spatio-temporal extents. The likelihood becomes p(y|x) =
p(y1]x1) and thus the joint posterior Eq. (A1) is

px1,x2|y) = p(y|lx)px)px2lx1)/Z, (A2)

where we have factorized the joint prior p(x) = p(x1,x32) =
p(x2|x1)p(x1). Since the marginal posterior for x is

pxilyp) =pWyilx)px1)/Z, (A3)

then Eq. (A2) can be written more compactly as
p(x1,x2|y;) = p(x1ly;)p(x2|x1), such that the marginal
posterior for x; is

p(xz|y1)=/p(x1,xz|y1)dx1

Z/p(mlyl)p(mlxl)dxl, (A4)
demonstrating that local information from y, is transferred to
X7 through the prior dependence encoded in p(xz|x). Only

in the special case of prior independence, i.e. p(x2|x1) =
p(x3), do we have

P(leyl)=P(X2)/P(x1|y1)dx1 = p(x2), (A5)

whereby observing y; does not provide any information
about x,, highlighting the vital role that prior dependence

Hydrol. Earth Syst. Sci., 27, 4637-4659, 2023



4652

plays in propagating information from local observations in
general Bayesian DA. This will apply to any scheme that at-
tempts to implement such a propagation in practice, whether
it be an ensemble Kalman, particle, MCMC, variational or
hybrid method.

A2 Simple Gaussian linear example

To make the above general derivation more concrete, we con-
sider a specific toy example in the form of a simple model
where a scalar variable of interest x;, such as snow depth
or air temperature, at location i = 1 is directly observed with
some observation error while the same variable is unobserved
at a second location i = 2. The task now is to infer the value
of x; using noisy observations of xj. Using the following
forward (data generating) model for the noisy observation
y1 = x] + & where x7] is the (unknown) true value at the ob-
served location and & ~ N (0, ayz) is a zero-mean additive
Gaussian observation error with observation error variance
(75 leads to a Gaussian likelihood p(y1]x1) = N (y1lx1, o}?)
of the form

1
pyilx1) ocexp <—5 O —xoz), (A6)

which, given this particular forward model, does not depend
on x7. We also adopt a bivariate Gaussian joint prior distri-
bution to encode our uncertainty about the values of x| and
xo of the form

1
p(x1,x2) < exp (‘5[" —p"C 7 x — u]) : (A7)

_ !
where x — u = S x} are the anomalies from
X2 — U2 Xy
. o2 po2 . .
the prior means (@1, u2) and C = 2 5 | is the prior
po;s o
covariance matrix with variance o2 and correlation p whose
inverse is the prior precision matrix C~! = adj(C)/det(C) =
[ ¢ —pg
—pp ¢
exponent in the prior Eq. (A7) and multiplying the prior with

the likelihood Eq. (A6), the posterior becomes

:| where ¢ = [(1 — ,02)0)62]’1. Expanding the

p(xi, x2ly1) o< p(yilx) p(xi, x2)
x exp( — 0.50;2()11 —x1)2

—0.5¢[px] + x5 ] + ppx|x5). (A8)

Since the model is linear with a Gaussian prior and
Gaussian observation error, the posterior is also Gaussian.
Thereby, the mean will coincide with the mode which hap-
pens to be the unique point at which the gradient of a Gaus-
sian vanishes. One simple way to obtain the posterior mean
m= [ml, my ]T analytically is thus to compute the gradi-

ent of the posterior g—i and identify the mean as the point at
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which it is zero. Taking this route, the posterior mean at the
unobserved location is

my =+ p(mip — @), (A9)
and the posterior mean at the observed location is

my =1+ K1 — pn), (A10)

where K =of(af+03)_l is a Kalman gain K € (0,1)
which is determined by the ratio of the prior variance axz to
the observation error variance 03,. Using second derivatives

to compute the Hessian (MaCKay, 2003), we also obtain the

_2 _
posterior precision matrix P~ = |:a3'_ p—;¢> g(ﬁ i| whose
inverse is the posterior covariance matrix

K ag K ,ooy2
P= ’ All
Kpo? K[(1-p?)oi+0}]. (A1)

whereby the exact joint posterior is given by the
bivariate Gaussian p(x|y;) =N (x|m,P) with marginal
distributions p(x1|y1) = N (x1|my, Kayz) and p(x2]y1) =
N(xzlma, K[(1— ,oz)ax2 +a§]) where the marginal variances
are given by the corresponding diagonal terms in P. Similar
derivations for more general Gaussian linear systems can be
found in Murphy (2023).

The point of deriving the exact posterior for this simple
toy bivariate model is to demonstrate the importance of prior
dependence, which in the case of the Gaussian prior is con-
trolled through the prior correlation p, in propagating infor-
mation. First consider the special case of prior independence
which occurs when p = 0. In this case, the posterior mean at
the unobserved location my in Eq. (A9) reverts to the prior
mean w>. Moreover, the posterior variance at the unobserved
location given by the final diagonal term in Eq. (A11) be-
comes K [af + ayz] = axz, which is simply the prior variance.
As such, the observations at the observed location have no ef-
fect on the posterior inference at the unobserved location. At
the observed location, however, the observation has an effect
on the inference with the posterior mean m| in Eq. (A10)
pulling from the prior mean | towards y; in accordance
with the Kalman gain. Similarly, the posterior variance at
the observed location given by the initial diagonal term in
Eq. (All)is K oyz, which will always be less than the prior
variance oxz. As such, unsurprisingly, the observations con-
strain the posterior at the observed location. This case is
shown in Fig. A1 where we see that the marginal posterior
at the observed location is both narrower and closer to the
observations than the prior, whereas at the unobserved loca-
tion the marginal prior and posterior are identical.

For the more general case of prior dependence obtained
when p # 0 we see information propagate from the observed
to the unobserved location. As shown in Eq. (A9) the up-
date (i.e. m» — u2) in the posterior mean at the unobserved

https://doi.org/10.5194/hess-27-4637-2023



E. Alonso-Gonzalez et al.: Spatio-temporal hyper-resolution snow data assimilation 4653

location is proportional to the update in the posterior mean
at the observed location with a constant of proportionality
equal to the prior correlation p. Moreover, the posterior vari-
ance at the unobserved location K[(1 — ,02)0')(2 + 0')2,] will al-

ways be less than the prior variance oxz (since p® > 0). Thus,
it is clear that with prior correlation the marginal posterior in
the unobserved location will be both shifted and constrained
(narrowed). This exemplifies how prior specification is a vi-
tal part of the modelling process, and although there is no
true or false prior, there are better and worse priors in terms
of how well the subsequent inference will perform. In par-
ticular, the sign of the prior correlation will determine the
direction in which the posterior mean is shifted in the unob-
served location. Thus, if we prescribe anticorrelation (p < 0)
in the prior when the actual (but usually unknown in prac-
tice) errors are correlated (o > 0) or vice versa then the in-
ference would not perform well for the unobserved location.
Here, Tobler’s first law of geography, that the behaviour of
nearby elements in a system will be more alike than those
that are further apart (Wikle et al., 2019), is a helpful guid-
ing principle for spatio-temporal modelling suggesting that
we should often set p > 0 if locations i =1 and i =2 are
close in some sense. On the other hand, in some cases when
the locations are further apart or x| and x, are different vari-
ables (e.g. one is snow depth, the other is air temperature)
prescribing a prior anticorrelation p < 0 is more appropriate.
In Fig. A2 we show an ideal case where a strong positive
prior correlation of p = 0.9 is in line with the underlying er-
ror structure, such that the posterior inference also performs
well at the unobserved location. In line with the likelihood
principle (MacKay, 2003), the prior correlation plays no role
in the inference at the observed location, as can be seen in
Egs. (A9) and (A11), since there is nothing to learn from the
unobserved location. This is reflected in Figs. Alb and A2b
where the marginal posterior at the observed location is iden-
tical for p =0 and p =0.9.
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Figure Al. Simple Gaussian linear example with an uncorrelated prior p = 0, prior means u| =0 and uy = —1, equal prior variances

O')? = (.25, observation error variance 03 = 0.0625, and observation y; = 1.1911. (a) Joint prior (red) and posterior (blue) means (dots) and
68 % (10),95 % (20), and 99.7 % (30) highest-density credible intervals (innermost to outermost ellipses), and true value (star). (b) Marginal
prior (red curve), marginal posterior (blue), (scaled) likelihood (grey), true value (star), and observation (grey dot) for the observed location.

(¢) Same as (b) but for the unobserved location.
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Figure A2. As in Fig. A1 but with a correlated prior p = 0.9.

Code and data availability. The MuSA code can be found at
https://github.com/ealonsogzl/MuSA (last access: 8 May 2023;
https://doi.org/10.5281/zenodo.7906965, Alonso-Gonzilez, 2023).
The complete drone surveys and meteorological forcing can
be downloaded from https://doi.org/10.5281/zenodo.7248635
(Alonso-Gonzilez, 2022).
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