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Abstract. In the context of global warming, an increase in
atmospheric aridity and global dryland expansion under the
future climate has been expected in previous studies. How-
ever, this conflicts with observed greening over drylands and
the insignificant increase in hydrological and ecological arid-
ity from the ecohydrology perspective. Combining climatic,
hydrological, and vegetation data, this study evaluated global
dryland aridity changes at meteorological stations from 2003
to 2019. A decoupling between atmospheric, hydrological,
and vegetation aridity was found. Atmospheric aridity rep-
resented by the vapor pressure deficit (VPD) increased, hy-
drological aridity indicated by machine-learning-based pre-
cipitation minus evapotranspiration (P −ET) data did not
change significantly, and ecological aridity represented by
the leaf area index (LAI) decreased. P −ET showed non-
significant changes in most of the dominant combinations of
the VPD, LAI, and P −ET. This study highlights the added
value of using station-scale data to assess dryland change as a
complement to results based on coarse-resolution reanalysis
data and land surface models.

1 Introduction

Drylands are defined as regions with a dry climate, limited
water, and scarce vegetation (Berg and McColl, 2021). In the
context of global warming, the global dryland is expected to
expand due to potential higher atmospheric water demand.
This will severely affect the relevant ecosystem functions
and livelihoods in drylands (Reynolds et al., 2007; Yao et
al., 2020; Prăvălie, 2016). To date, there are still major lim-
itations in the consensual knowledge and consistent under-
standing of global dryland aridity changes, such as wet–dry
changes; the location, magnitude, and persistence of the po-
tential dryland expansion; and associated mechanisms (Berg
and McColl, 2021; Lian et al., 2021; Huang et al., 2016,
2017; Grünzweig et al., 2022; Pan et al., 2021). Such knowl-
edge gaps have substantially limited effective climate adap-
tation and related strategy development to realize the Sus-
tainable Development Goals in drylands, especially in the
“Global South” (Li et al., 2021; Fu et al., 2021; Yao et al.,
2021; Ramón Vallejo et al., 2012).

The difficulty involved with the current investigation of
dryland change lies in its multifaceted nature, including the
diverse characteristics of climate, hydrology, and ecosys-
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tems. Thus, the indicators and methods used to assess
changes in drylands are diverse, and previous studies have
obtained different findings (Lian et al., 2021) on dryland
change. Typically, the aridity index (AI) (Middleton and
Thomas, 1997), calculated as the multiyear average precip-
itation (P ) divided by potential evaporation (PET), has com-
monly been used to measure atmospheric aridity in long-
term global dryland change measuring studies (Huang et
al., 2017, 2016). It uses only atmospheric inputs, focuses
only on atmospheric aridity, and does not consider the ef-
fects of ecohydrological aridity nor the influence of land sur-
face processes (Berg and McColl, 2021). AI-based studies
have found global dryland expansions in the past and fu-
ture (Huang et al., 2017, 2016) in a global warming con-
text. However, such AI-based findings appear to be con-
trary to the global greening of dryland vegetation based on
satellite remote-sensing observations (Fensholt et al., 2012;
Poulter et al., 2014; Lian et al., 2021; Hickler et al., 2005;
Zhu et al., 2016). This illustrates the necessity to incorpo-
rate changes in surface properties, such as vegetation, in ad-
dition to atmospheric indicators. Therefore, from an ecohy-
drological perspective, recent studies have employed various
ecohydrological indicators and land surface property changes
such as soil moisture, vegetation greenness, evapotranspira-
tion (ET), P −ET (i.e., P minus ET as surface water avail-
ability), and runoff to assess dryland change (Berg and Mc-
Coll, 2021; Lian et al., 2021; Denissen et al., 2022; Yang
et al., 2018; Milly and Dunne, 2016; He et al., 2019). Such
recent studies have shown that the dryland changes demon-
strated by land surface changes and ecohydrological indica-
tors did not confirm the “expansion of drylands” reported by
previous atmospheric-indicator-based studies (Huang et al.,
2016, 2017; Feng and Fu, 2013). In terms of the mechanis-
tic explanation, these studies claimed that atmospheric dry-
ing and vegetation greening may occur simultaneously and
that an elevated vapor pressure deficit (VPD) does not fully
propagate into surface changes to exacerbate decreases in
soil moisture and runoff. Under elevated atmospheric CO2,
plant stomata may close and reduce transpiration and ET,
thereby improving water use efficiency (WUE) (Lian et al.,
2021; Berg and McColl, 2021; Roderick et al., 2015), which
may compensate for the negative effects of an elevated VPD
on vegetation growth. This mechanism was not accounted for
in the physically based estimates of PET (e.g., the Penman–
Monteith equation); thus, AI-based findings may have over-
estimated the aridity and contained considerable uncertainty.

However, the data used in most of the abovementioned
approaches have large uncertainties, such as coarse tran-
spiration/soil moisture data (0.5◦× 0.5◦ resolution) from
long-term climate and land surface model simulations
(Berg and McColl, 2021) and coarse soil moisture/ET data
(0.25◦× 0.25◦ resolution) from the Global Land Evaporation
Amsterdam Model (GLEAM) or the Global Land Data As-
similation System (GLDAS), which are not necessarily ap-
plicable to the assessment of dryland expansion at fine scales.

In addition, it is difficult to validate the findings in such
coarse-resolution studies with ground observations. Thus, it
is essential to make better use of station-scale data, which
may have the potential to measure dryland change at a finer
scale, be better combined with ground observations, and pro-
vide more effective climate change adaptation suggestions
for local communities.

Therefore, with the aim of reducing scale-related uncer-
tainty and obtaining a comprehensive finding of multifaceted
characteristics, this study investigated dryland change at the
meteorological station scale using a combination of atmo-
spheric, hydrological, and vegetation condition observations,
including the VPD, P −ET, and the leaf area index (LAI).
The VPD and P are from meteorological observations, and
LAI is from MODIS imagery. ET is estimated by a random
forest (RF) model trained using dryland flux stations from
FLUXNET2015, and the data-driven methods can avoid un-
certainties caused by physically based ET models. At the sta-
tion scale, this study provides new insights into global dry-
land aridity change using multifaceted data with a higher pro-
portion of observations.

2 Methodology

We produced ET data for global dryland meteorological
stations using an RF model trained from FLUXNET2015
dryland flux station (AI < 0.65) data. We selected daily
ET observations (i.e., latent heat observations) from the
FLUXNET2015 dataset for stations in drylands as the tar-
get variable. The selected predictor variables included down-
ward shortwave radiation (RSDN), air temperature (TA),
daily variance (half-hourly daily maximum temperature mi-
nus daily minimum temperature, TArange), VPD, wind
speed (WS), and the LAI from remote sensing (Table 1).

The RF model was constructed using the RandomFore-
stRegressor function from the scikit-learn package of Python.
The “n_estimators” parameter was set to 500, and default
parameter values were used for the other parameters (Zhao
et al., 2019). For the evaluation of model performance, we
used a leave-one-station-out cross-validation approach, as
employed in previous studies of ET predictions (Tramontana
et al., 2016; Zhang et al., 2021; Shi et al., 2022). This is a type
of cross-validation approach in which each station’s obser-
vation is considered to be the validation set and the remain-
ing stations’ observations are considered to be the training
set. It can help us understand the potential adaptability of the
model to new data in the prediction set. Feature importance
(IMP) was used to measure the contributions of predictors,
and we adopted the permutation importance indices to repre-
sent IMP due to their reliability (Díaz-Uriarte and Alvarez de
Andrés, 2006; Strobl et al., 2008; Grömping, 2009; Zhang et
al., 2021) in RF models.
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Finally, the constructed RF model was applied to the
global dryland meteorological stations in the Global Surface
Summary of the Day (GSOD) dataset. In this way, daily-
scale ET time series data were predicted for each meteoro-
logical station. For each station, when the number of pre-
dicted daily ET records for a given year exceeded 100, the
annual ET mean was calculated using the arithmetic mean of
the daily ET values. Given the absence of data such as the
LAI during the winter snowpack at a small number of arid-
zone stations, this approach allows for an effective, dense
sampling of growing season days to represent annual ET and
distinguish between high and low annual ET values across
years. In the subsequent formal dryland change analysis,
cropland meteorological stations were removed due to a po-
tential considerable irrigation influence.

3 Results

3.1 ET estimation evaluation

We evaluated the performance of the RF model at each
flux station using leave-one-station-out cross-validation, and
most stations showed high accuracy (Fig. 2) with respect to
both the Pearson correlation coefficients (Rcorr) of observed
and predicted daily ET values and the root-mean-square er-
ror (RMSE). This indicated the feasibility of accurate daily
ET simulations at most dryland flux stations. Furthermore,
among the predictors, the LAI had the highest IMP (Fig. 2d),
followed by the RSDN, TA, WS, VPD, and TArange. This
demonstrated the importance of surface vegetation condi-
tions in ET simulations at dryland stations.

3.2 Climatic, hydrological, and vegetation changes over
drylands

The pattern of change in each climate and vegetation vari-
able between the 2003–2010 and 2011–2019 periods showed
considerable variations (Fig. 3). The number of stations with
significant increases in the TA, LAI, and VPD was consid-
erably greater than the number of stations with significant
decreases. The number of stations with significant increases
in P , ET, and P −ET was also greater than the number of
stations with significant decreases. For P −ET, the ratio be-
tween the number of increasing and decreasing sites is the
lowest. This shows the spatial variability in the trends indi-
cated by the different indicators: the increase in the TA and
VPD in the context of global warming is widespread and
their spatial pattern is also similarity high. The increasing
trend in the LAI is also dominant. The spatial pattern of ET
changes is highly similar to that of the LAI. Both ET and the
LAI show significant regional increases in the high latitudes
of North America and in central Eurasia as well as decreases
in the middle and low latitudes of North America. The spa-
tial pattern of changes in P −ET is more similar to that of P ,

but the increase in P is not completely propagated to P −ET
and may be partially offset by the trend in ET.

We compared the relationship between 1VPD, which rep-
resents changes in atmospheric aridity, 1P −ET, which rep-
resents changes in hydrological aridity, and 1LAI, which
represents changes in vegetation growth. 1VPD showed a
negative correlation with 1P −ET (R =−0.19, p < 0.001),
indicating that an elevated VPD in drylands did lead to a
decrease in surface water availability. However, the nega-
tive correlation between 1VPD and 1LAI was not strong
(R=−0.13, p < 0.001), indicating that atmospheric drying
was not a dominant determinant of vegetation greening nor
browning. The positive correlation between 1P −ET and
1LAI was not significant (p > 0.1), indicating a decoupling
between the greening of dryland vegetation and changes in
surface water availability.

3.3 Combined atmospheric, hydrological, and
vegetation perspectives

We also analyzed the combinations of the VPD, LAI, and
P −ET changes, and the distribution patterns of the different
combinations across the globe represented different mech-
anisms of dryland changes (Fig. 5). In the dry subhumid,
semiarid, and arid regions, three of the top four combina-
tions exhibited significant increases in the LAI, while the
VPD exhibited increases, no significant change, increases,
and decreases, respectively. In the top four combinations, the
combination with an increase in the VPD accompanied by
an LAI decrease only ranked third or fourth. This suggests
that the effect of vegetation browning caused by an increas-
ing VPD may not be dominant and that the increasing at-
mospheric water demand did not considerably decrease veg-
etation growth. In the dry subhumid region, compared with
the semiarid and arid regions, the “VPD↓& LAI↑& P −ET
(−)” and “VPD↓& LAI↑& P −ET↑” combinations ranked
higher. This indicates that the possibility of the combination
of a VPD decrease accompanied by an LAI increase is higher
in the dry subhumid region. In the arid region, the combina-
tion of “VPD↑ & LAI↑ & P −ET (−)” dropped from first
to second in the ranking compared with the dry sub-humid
and semiarid regions, indicating that the mechanism repre-
sented by the combination of the simultaneous increase in
the VPD and LAI is less likely to occur when AI is lower.
Surprisingly, of the seven combinations of the VPD, LAI,
and P −ET in the top ranking, P −ET showed no significant
change. This suggests a smaller contribution from changes in
surface water availability in explaining the variation in com-
binations of mechanisms for dryland change, although the
changes in P −ET and the VPD in the lower-ranked combi-
nations showed opposite trends. The aridity increase repre-
sented by surface water obtained in this study is smaller than
that indicated by soil moisture and runoff reported previously
(Lian et al., 2021).
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Figure 1. The 59 flux stations in drylands (AI < 0.65) in FLUXNET2015 used in the RF model construction. The AI level classification is
as follows (Middleton and Thomas, 1997): hyperarid (0 < AI < 0.05), arid (0.05 < AI < 0.2), semiarid (0.2 < AI < 0.5), and dry subhumid
(0.5 < AI < 0.65).

Table 1. Description of the predictors used in the RF model to estimate ET at meteorological stations.

Predictor Source Description

LAI MCD15A3H dataset derived from
MODIS data

The 4 d temporal resolution LAI was linearly interpolated to the daily
scale. It was
extracted based on Google Earth Engine (GEE) at a scale of 500 m
(i.e., cutouts of the 500 m× 500 m pixels centered on each station).

RSDN BESS (Ryu et al., 2018)
dataset derived from MODIS imagery

This parameter is of 5.5 km spatial resolution. It was extracted
based on GEE at a scale of 500 m.

WS In situ observation

TA In situ observation

TArange In situ observation Daily TArange is derived from the half-hourly maximum temperature
and minimum temperature data of FLUXNET2015.

VPD In situ observation VPD is calculated from TAmax, TAmin, and dew point temperature
(Tdew) (Howell and Dusek, 1995).

The distribution of these combinations is also highly het-
erogeneous spatially, indicating the high regional hetero-
geneity in global dryland change (Feng et al., 2022; Lian et
al., 2021). Given that this study is at the station scale, the im-
pacts of heterogeneous underlying surface conditions can be
higher. Combinations with nonsignificant changes in P −ET
are widely distributed globally (Fig. 6a, b, c, d, e, f, g), in-
cluding in the western part of North America, Australia, and
southern Europe, where there are more dense stations. Al-
though the combinations of VPD and LAI changes appear to
be spatially variable, some regional patterns were still found.
For example, “VPD↑ & LAI↑ & P −ET (−)” is the domi-
nant combination in Mongolian grasslands (Fig. 6a). An in-
crease in the LAI due to increased P −ET was also observed
in northwestern China and northern Central Asia (Fig. 6i, k),
suggesting that the recent trend of wetting and greening in

this region is more likely to be caused by increased surface
water availability (Shi et al., 2007). The results of previous
coarse regional patterns of dryland change may not necessar-
ily be applicable at the station scale; however, this requires
more station-scale evaluation and validation.

4 Discussions

4.1 Implications and perspective

This study investigated the characteristics of dryland change
at global dryland meteorological stations using a combina-
tion of atmospheric, hydrological, and vegetation indicators.
A decoupling between atmospheric, hydrological, and eco-
logical aridity was found in this work – specifically, atmo-
spheric aridity represented by the VPD increased, hydrologi-
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Figure 2. The model performance and feature importance in the leave-one-station-out cross-validation: (a) Rcorr and RMSE values of 59
stations, (b) spatial distribution of Rcorr and RMSE records, (c) Rcorr and RMSE of various plant functional types (PFTs), and (d) feature
importance (IMP) ranking.

cal aridity indicated by P −ET did not change significantly,
and ecological aridity represented by the LAI decreased. This
is consistent with the decoupling found in previous studies
based on reanalysis data and coarse-resolution land surface
model simulations (Lian et al., 2021) which considered the
impacts of elevated CO2 concentration. This study also found
that P −ET showed nonsignificant changes in most of the
dominant combinations of the VPD, LAI, and P −ET. This
is slightly different from the reported slight increase in hy-
drological aridity in previous studies based on soil moisture
and runoff data (Lian et al., 2021), although the time span
from 2003 to 2019 in the present study was smaller than these
studies (usually more than 50 years).

The aim of this study is to revisit the dryland change issue
at the station scale. The key to this is the use of a machine
learning approach to estimate daily-scale ET data from me-
teorological stations and to combine the measured P and,
thus, calculate P −ET. Machine-learning-based ET simula-
tions (Jung et al., 2010, 2019) may effectively avoid the set-
ting of various hypothetical mechanisms in physics-based ET
models (Martens et al., 2017; Zhang et al., 2010; Mu et al.,
2011), mine the relationship between dryland ET and var-
ious environmental factors such as climate and vegetation
from measured data, and achieve a high estimation accuracy.
Therefore, the estimation of P −ET at the station-scale ef-
fectively measured the status of surface water change, as soil
moisture and runoff data are difficult to obtain at the meteoro-
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Figure 3. Significant changes (p < 0.1) in ET, TA, P , VPD, LAI, and P −ET for dryland meteorological stations (from 2003–2010 to
2011–2019).

Figure 4. Relations of (a) 1LAI–1VPD, (b) 1(P −ET)–1VPD, and (c) 1(P −ET)–1LAI at dryland meteorological stations (from 2003–
2010 to 2011–2019).
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Figure 5. Combinations of the VPD, LAI, and P −ET changes across various AI areas from 2003–2010 to 2011–2019. The “↑” symbol
represents a significant increase (p < 0.1) in the VPD, LAI, or P −ET; “↓” represents a significant decrease (p < 0.1); and “(−)” represents
insignificant change.

logical station scale. Station-scale studies of dryland change
may be a new direction for the future, given the limitation
in the coarse resolution of current reanalysis data, land sur-
face models, etc., and the difficulty with respect to validating
their results in the field via ground in situ data. Combined
use of climate, hydrological, and vegetation condition vari-
ables at the station scale may have the potential to provide
an interface for dryland change studies to be more connected
to ground observations and associated field experiments. The
current satellite remote-sensing data still cannot fully capture
the physiological and hydraulic characteristics (Zeng et al.,
2022) of dryland plants in the context of climate change and
extreme weather conditions. This illustrates that station-scale
studies will be of ongoing importance in the future.

4.2 Limitations and uncertainties

4.2.1 Uncertainties in the ET estimation

In the past, data for P −ET have rarely been produced at
the meteorological station scale, with most being produced
at the coarse-resolution grid scale (Jung et al., 2019; Martens
et al., 2017; Zhang et al., 2010); thus, this study combined
machine-learning-based estimates of daily ET with actual
measurements of P to produce P −ET data for dryland me-
teorological stations. ET simulations exhibit high accuracy

at most stations, but accuracy is limited at a few stations,
possibly due to the inefficiency of the selected predictor
variables in the explanation of the station-specific ET vari-
ations (Shi et al., 2022). In future studies, it would be ef-
fective to incorporate station-specific plant hydraulic char-
acteristics as well as vegetation-trait-related predictor vari-
ables (Anderegg, 2015; Anderegg et al., 2018; Zhao et al.,
2022; Shi et al., 2023). In addition, combining data-driven
machine learning methods with physical process-based ET
estimation models would be promising (Zhao et al., 2019),
with the potential to further improve ET simulation accuracy.
Moreover, it may be beneficial to combine transpiration ob-
servations such as SAPFLUXNET (Poyatos et al., 2021) to
provide estimates of transpiration. Compared with ET, tran-
spiration can be more precisely correlated with plant physio-
logical and hydraulic characteristics, thereby providing more
detailed mechanism interpretations in dryland aridity change.

Furthermore, mismatches between the flux footprints of
flux stations and remote-sensing data pixels may also cause
uncertainty, especially if the flux footprints include consider-
able spatial heterogeneity (Chu et al., 2021). The 500 m scale
of data extraction in this study may have reduced this effect
partially, but it may still exist due to the variability in flux
footprints across stations. Previous studies have shown that
the representativeness of the flux footprint area’s land cover
types can be considerably decreased when data are extracted
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Figure 6. Locations of combinations of VPD, LAI, and P −ET changes from 2003–2010 to 2011–2019. The “↑” symbol represents a
significant increase (p < 0.1) in the VPD, LAI, or P −ET; “↓” represents a significant decrease (p < 0.1); and “(−)” represents insignificant
change.

at scales larger than 500 m (Chu et al., 2021). The use of a
fixed target area extent for data extraction may bias model–
data integration in multi-station-level studies. In the future, to
reduce the related bias, we should pay more attention to the
heterogeneity within the flux footprints of specific flux sta-
tions, especially in remote-sensing data extraction and pro-
cessing (Walther et al., 2022).

The low performance of some flux stations (e.g., shrubland
stations) may be related to inadequate modeling of the in-
fluence of belowground hydrologic processes. Belowground
hydrogeologic properties and groundwater dynamics are dif-

ficult to quantify directly via remote sensing or meteoro-
logical data. Thus, it is difficult to capture the effects of
subterranean ventilation (López-Ballesteros et al., 2017) and
the dynamic relationship between the plant root zone and
groundwater. Previous studies have shown that the root zone
storage capacity (Gao et al., 2014; Wang-Erlandsson et al.,
2016; Singh et al., 2020) is important in hydrological pro-
cesses in drylands and during drought events. Researchers
have attempted to estimate the root depth and root zone stor-
age capacity (Wang-Erlandsson et al., 2016; Stocker et al.,
2023) or to couple drylands’ deep-root distribution mod-
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ules into Earth system models (Zhang et al., 2013; Li et al.,
2015) and improve the hydrological and ecological predic-
tion (Gao et al., 2014). However, in these approaches, par-
tial limitations remain, such as the dependency on satellite-
based ET data (Wang-Erlandsson et al., 2016) containing un-
certainty. On the other hand, accurately modeling groundwa-
ter dynamics remains limited (Gleeson et al., 2016, 2021).
Uncertainties in station-scale groundwater dynamics also af-
fect our understanding of the root–groundwater relationship
and groundwater’s contribution to ET. Combining drought
indices at different timescales (e.g., the Standardized Precip-
itation Evapotranspiration Index, SPEI) at the regional scale
(Secci et al., 2021) and the Gravity Recovery and Climate
Experiment (GRACE)-based anomalies in terrestrial water
storage (Li et al., 2019) can be promising to indirectly rep-
resent the groundwater dynamics, but mismatches in spatial
scales may still cause errors. In addition, our accuracy evalu-
ation was based on the leave-one-station-out cross-validation
(Zhang et al., 2021). Thus, the validation accuracy may be
relatively low when there are no stations with similar envi-
ronmental conditions in the training set. The RF model that
we finally applied to the weather stations included all stations
(i.e., no flux station was left out); thus, the accuracy can be
improved a little, especially at weather stations with simi-
lar environmental conditions (e.g., shrubland stations) to the
previously omitted flux station in the leave-one-station-out
cross-validation.

4.2.2 Spatial and temporal representativeness of
meteorological stations on dryland change

Although meteorological stations can provide more accurate
climate, hydrology, and vegetation data at fine scales to sup-
port studies associated with dryland change, they may still
have limitations with respect to spatial and temporal repre-
sentativeness. First, the temporal representativeness of mete-
orological stations is highly variable across different regions
of the globe. Inconsistencies in the length of station obser-
vation records, etc., may lead to imbalance when intercom-
paring regions. Second, meteorological stations are sparsely
located in hyperarid areas, and the representativeness of hy-
perarid regions can be low. In other dryland types (i.e., dry
subhumid, semiarid, and arid), the representativeness of me-
teorological stations may also be affected by other factors,
such as human activities. In this study, it was considered that
irrigation of dryland cropland could greatly affect the assess-
ment of P −ET and the VPD; therefore, stations in croplands
were removed. However, other disturbances from human ac-
tivities may still exist, such as possible grazing (Huang et al.,
2018) within the 500 m surrounding extent of the station. In
contrast, climate adaptation management in surrounding re-
gions of local meteorological stations may not require much
attention due to the lack of spatial and temporal representa-
tiveness. The combined use of station-scale VPD, LAI, and
P −ET data would be valuable for the development of as-

sociated adaptation policies in local agriculture management
and ecological conservation.

Compared with previous dryland change studies spanning
decades, the period in this study is only 2003–2019 due to
the constraint of using MODIS-derived data. We split 2003–
2019 into two periods with similar time spans, 2003–2010
and 2011–2019. In this way, it is possible to reduce the effect
of extreme years when comparing the differences between
the two periods. However, the time spans in this study are
not very long compared with studies with longer time series
(Lian et al., 2021; Huang et al., 2016); thus, the associated
findings should be treated with more caution.

5 Conclusions

By combining climatic, hydrological, and vegetation data,
this study assesses global dryland change at meteorological
stations from 2003 to 2019. It shows that global drylands’
atmospheric, hydrological and ecological aridity changes are
inconsistent. Specifically, atmospheric aridity increased and
ecological aridity decreased. Changes in hydrologic aridity
were not significant in most of the dominant combinations of
the VPD, LAI, and P −ET. This study highlights the signif-
icance of the investigation of dryland aridity changes using
weather station-scale data, which can complement previous
findings based on coarse-resolution climate reanalysis. It also
has the promise of being combined with more station-scale
data to provide support for local community’s climate change
adaptation.
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F. M., Tor-ngern, P., Urban, J., Valladares, F., van der Tol, C.,
van Meerveld, I., Varlagin, A., Voigt, H., Warren, J., Werner, C.,
Werner, W., Wieser, G., Wingate, L., Wullschleger, S., Yi, K.,
Zweifel, R., Steppe, K., Mencuccini, M., and Martínez-Vilalta,
J.: Global transpiration data from sap flow measurements: the
SAPFLUXNET database, Earth Syst. Sci. Data, 13, 2607–2649,
https://doi.org/10.5194/essd-13-2607-2021, 2021.

https://doi.org/10.5194/hess-27-4551-2023 Hydrol. Earth Syst. Sci., 27, 4551–4562, 2023

https://doi.org/10.1061/(ASCE)0733-9437(1995)121:2(191)
https://doi.org/10.1061/(ASCE)0733-9437(1995)121:2(191)
https://doi.org/10.1038/nclimate2837
https://doi.org/10.1002/2016RG000550
https://doi.org/10.1038/nature09396
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1038/s43017-021-00226-z
https://doi.org/10.1038/s43017-021-00144-0
https://doi.org/10.1016/j.agrformet.2016.12.021
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.1038/nclimate3046
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1016/j.jaridenv.2020.104414
https://doi.org/10.5194/essd-13-2607-2021


4562 H. Shi et al.: Global dryland aridity changes
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