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Abstract. The study aims to demonstrate that an effective so-
lution can be implemented for modeling complex carbonate
basins, in the situation of limited data availability. Consider-
ing the alternative modeling approaches under circumstances
of data shortage is more significant knowing the vulnera-
bility and effectiveness of these kinds of basins to drought
and climate change conditions. In this regard, a hybrid ap-
proach that combines time series analysis and reservoir mod-
eling is proposed to describe behavior in carbonate basins.
Time series analysis estimates the contributing area and re-
sponse time of the fractured carbonate system beyond the
catchment’s hydrographic boundaries. The results obtained
align with previous literature-based field surveys. This infor-
mation is then used to develop a conceptual reservoir system
using the GEOframe modeling system. The model is vali-
dated using in situ discharge observations and Earth observa-
tions (EO) data on evapotranspiration and snow. Model relia-
bility is assessed using traditional goodness of fit indicators,
hydrological signatures, and a novel statistical method based
on empirical conditional probability. This approach enables
detailed analysis and investigation of water budget compo-
nents in Mediterranean carbonate catchments, highlighting
their response to significant precipitation deficits.

Overall, our results demonstrate that flows from carbonate
rock areas outside the hydrographic boundaries significantly
impact the water budget of the upper Nera River. The stor-
age capacity of the carbonate basin plays a crucial role in
sustaining river discharge during drought years. In a single
dry year, meteorological drought is considerably attenuated,

while in subsequent dry years, it is slightly intensified. Multi-
year droughts result in slower recovery due to the time re-
quired for precipitation to replenish the depleted storage that
supported river discharge in previous dry years. This unique
behavior makes these basins particularly vulnerable to the
more severe and frequent drought episodes expected under
future climate change.

1 Introduction

Carbonate/karst landscapes represent approximately 7 %–
12 % of the Earth’s continental area, and they provide a sig-
nificant challenge for hydrologists (Hartmann et al., 2014).
Due to the capability of these landscapes to retain water for
a longer period (i.e., long-term hydrological memory catch-
ments), their storage plays an important role in the control
of drought propagation and delayed hydrological recovery
(Alvarez-Garreton et al., 2021).

Generally, a carbonate/karst landscape forms when the
percolated precipitation dissolves the subterranean carbon-
ate bedrock and creates extensive fissures, open fractures,
conduits, and caves. This can result in a complex network
of groundwater flowpaths occurring within the same or ad-
jacent aquifers (Kiraly et al., 1995). To model these types of
systems one powerful solution is to use distributed, process-
based models (PB) (e.g., Hartmann et al., 2014), which
are based on solvers for the groundwater partial differential
equation. Yet, the main challenge of this kind of distributed

Published by Copernicus Publications on behalf of the European Geosciences Union.



4486 S. Azimi et al.: Understanding mountainous carbonate basins in the Mediterranean

model is that they require a large amount of hydrogeological
data and extensive field analysis to set appropriate physical
parameter values and correct boundary conditions. On top of
that, high computational power is needed to run these models
(Li et al., 2022).

An alternative to PB is black-box models based on ma-
chine learning (MLM) in which not all details about the
structure of the aquifer and the hydrodynamics parameters
are needed, e.g., Tapoglou et al. (2014) and Castilla-Rho
et al. (2015). Although the implementation of MLM is easy,
the model parameters do not have a physical meaning and are
only indirectly related to the characteristics of the carbonate
system (Zhou et al., 2019). Furthermore, MLM does not ex-
plicitly solve the water budget, and, thus, it is not possible
to have information about the dynamics of all water budget
components.

Hydrological dynamical systems (lumped models,
HDSys) represent another type of model, based on a set of
ordinary differential equations (ODEs) that conceptualize
the entire carbonate system as a series of reservoirs (e.g.,
Bancheri et al., 2019; Hartmann et al., 2014; Rimmer and
Hartmann, 2012; Butscher and Huggenberger, 2008; Tritz
et al., 2011; Jukic and Denić-Jukić, 2009; Dubois et al.,
2020a). Instead of explicitly considering spatial variables,
HDSys specify the interconnection of fluxes between differ-
ent reservoirs, which leads to reducing the computational
complexity. However, HDSys still require the definition of
model parameters, which typically rely on calibration and
inverse modeling using monitored discharge data or other
relevant data sources (Hartmann et al., 2014). Several studies
have also explored modeling the fast and slow drainage from
carbonate systems using tracer information (e.g., Rimmer
and Hartmann, 2012; Dubois et al., 2020a). This approach
involves introducing an artificial tracer into a sinkhole and
then tracking the tracer’s movement in the surrounding areas
at different times (Hartmann et al., 2014; Zhang et al., 2021;
Nanni et al., 2020). While this technique can be useful, it
is time consuming and may not always be feasible due to
accessibility issues.

These HDSys can be conjugated by techniques that rely
on the correlation between precipitation, and discharge can
provide valuable insights about the behavior of carbonate
systems, particularly in situations where field information
about water circulation is limited. It could also provide use-
ful information in the situation of missing tracer test anal-
ysis. For example, Fiorillo and Doglioni (2010) used cross-
correlation analysis to estimate the time that water requires
to flow through fissured aquifers. Another useful method,
borrowed from applied economics (Kristoufek, 2014, 2015),
was employed by Giani et al. (2021) to estimate the basin re-
sponse time of hydrographs to precipitation, with successful
results. However, according to the authors’ best knowledge,
to date, this data analysis technique has not been applied to
complex carbonate systems to determine their hydrological
response to precipitation.

This study aims to address the following five research
questions (RQs):

1. Can the complex response of carbonate catchments to
precipitation be modeled with HDSys relying only upon
streamflow and precipitation time series, aided by cross-
correlation analysis?

2. What type of modeling solution is suitable for this task
and is a parsimonious modeling approach appropriate?

3. Are the classic goodness of fit scores enough to evaluate
the reliability of the models?

4. What is the impact of external contributing areas
on streamflow in catchments with fractured carbonate
rocks? To what extent does this contributing area affect
the total streamflow from small headwater catchments
to the main outlet?

5. What is the role of storage in sustaining streamflow
during the years with significant precipitation deficit in
these types of catchments?

We have examined the water budget of the Nera River
basin, which is a significant tributary of the Tiber River, the
second largest river in Italy. The Nera River basin contributes
nearly 50 % of the total discharge of the Tiber River and is
characterized by a significant portion of fissured and frac-
tured carbonate rocks feeding the river discharge by releas-
ing a large amount of groundwater into the river bed from
streambed springs. Thus, this catchment is a good represen-
tative of the carbonate catchments for answering the RQs.
Additionally, groundwater data shortage is a problem that is
not unique to the Upper Nera River area, and the findings
of this study could help inform water management and pol-
icy decisions in other carbonate basins as well. By provid-
ing a comprehensive analysis of the water cycle in this area,
this study could also help identify potential sources of water
stress and suggest strategies to mitigate them.

2 Study area and datasets

2.1 Study area

The Nera River is the largest tributary of the Tiber River and
its sources are in the Sibylline Mountains in central Italy. It
is 116 km long and flows almost entirely in a deep valley
called Valnerina, through limestone formations that consti-
tute huge aquifers that are drained by the river. The land-
scape is mainly hilly and mountainous and is almost totally
covered by forests, with pastures at higher elevations (from
1200 to 2200 m a.s.l). The Upper Nera River basin up to
the Visso River station (our study area) covers an area of
around 110 km2 and the elevation ranges between 570 and
2200 m a.s.l., with a mean basin slope of 25 %. The basin
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is characterized by a Mediterranean climate, with precipita-
tion concentrated mostly in the autumn–spring period, when
floods generally occur. The annual precipitation and the aver-
age temperature of the basin are around 1100 mm and 10 ◦C,
respectively.

The discharge of the Nera River is contributed to by a
set of permanent streambed springs fed by large limestone
aquifers, already studied in Boni et al. (1986), that give rise
to complex groundwater–surface water interactions. Nanni
et al. (2020) and Mastrorillo et al. (2019) showed how these
aquifers extend beyond the limits of the river basin into the
wide and complex hydrogeological boundary of the Sibylline
Mountains. Mastrorillo et al. (2019) estimated that the total
contributing area of the fractured carbonate system outside
the hydrographic boundaries of the basin (our study area) is
around 97 km2. Fronzi et al. (2021) did several tracer tests
and showed that the river is fed (from the southeast of the
basin) by carbonate aquifers with an area almost four times
larger than that enclosed by the river station of Castelsantan-
gelo, located upstream of Visso (Fig. 1a). Similar findings
were found for the Ussita River, the main tributary of the
Nera River at Visso, which is characterized by a real con-
tributing area almost twice that of its hydrographic bound-
aries (Mastrorillo et al., 2019).

2.2 Terrain data and ground meteorological network

The terrain data for the geomorphological analysis of the
basin were provided by the Marche Region Authority. The
Horton Machine toolbox Abera et al. (2017) was used to
define the basin and the hydrographic boundaries shown in
(Fig. 1a); the basin was then further subdivided into 47 hy-
drologic response units (HRUs) (Fig. 1b).

In the study, we used the meteorological network of the
area provided by the Marche Regional Authority from which
we selected 32 precipitation gauges, 21 thermometers, and 3
hydrometric stations that are distributed throughout the basin
(these data are provided in the supplemental material). The
monitoring network provides 15 min data for which a quality
check to remove anomalous values and a re-sampling to the
hourly resolution were performed. Streamflow data were cal-
culated by transforming water levels measured at the hydro-
metric stations via rating curves updated bi-yearly (Fig. 2).
The stations used in the study are Visso and Castelsantan-
gelo (CSA) on the Nera River, and Madonna dell’Uccelletto
(MU) on the Ussita River. To prevent any confusion, from
this point forward in the text, “MU” will be used to refer to
the station, while “Ussita” will be used to denote the river
basin.

The Visso station is the main outlet section of the study
area and its data, covering the period 2007–2021, were used
for the hydrological analysis. CSA station, with data avail-
able in the period of 2010–2016, is located upstream of the
basin and is affected by a significant proportion of ground-
water discharge coming from the external carbonate area

(Fronzi et al., 2021). It should be mentioned that the conti-
nental deposits preserve this carbonate aquifer from the di-
rect dissolution processes limiting the mature karst devel-
opment in the saturated zones (Petitta et al., 2022). So the
basin is not considered a fully karst system. The two stations
were affected by the seismic sequences of 2016–2018, and
thus these data have been excluded from the analyses. The
earthquake altered the groundwater contribution of the frac-
tured system, determining an abrupt and sustained change in
the river and spring discharges in several parts of the basin
(Di Matteo et al., 2020, 2021a). The MU hydrometric sta-
tion on the Ussita River is characterized by about 3 years of
hourly data since November 2018.

Table 1 summarizes the total contributing area (from the
basin and from outside the hydrographic boundaries of the
basin) of the three hydrometric stations (based on the litera-
ture Sect. 2.1=). These basin areas were derived from the ter-
rain analysis and literature and can be estimated to be equal
to 207 km2 for Visso, 85 km2 for MU, and 87 km2 for CSA
(see Fig. 1a and Table 1).

2.3 Remote sensing data

Remote sensing data of evapotranspiration (ET) and snow
depth were also used to complement the validation. In par-
ticular, we used MODIS actual ET (Mu et al., 2013) and
the Sentinel-1 snow depth (Lievens et al., 2019). The global
MODIS ET dataset (MOD16A2/MYD16A2) provides evap-
oration from wet and moist soil, evaporation from rainwa-
ter intercepted by the canopy before it reaches the ground,
and transpiration through stomata on plant leaves and stems
with 500 m spatial and 8 d temporal resolutions (Mu et al.,
2013). The dataset can be downloaded from (https://modis.
gsfc.nasa.gov/data/dataprod/mod16.php, last access: 12 De-
cember 2023).

The Sentinel-1 snow depth retrieval algorithm is based on
an empirical change-detection method applied to the mea-
surements of the cross-polarization ratio (σ 0

vh/σ
0
vv; in dB)

(Lievens et al., 2019). The Sentinel-1 snow depth retrievals
are available online at https://ees.kuleuven.be/project/c-snow
(last access: 12 December 2023).

3 Characterization of the basin

Data availability plays an important role in selecting a suit-
able modeling approach for carbonate basins. Prior to deter-
mining the groundwater contribution to river discharge with
respect to the other components of the water balance, we an-
alyzed the precipitation and streamflow time series by focus-
ing on the area derived from the terrain analysis (i.e., with-
out external area contribution, Table 1). Figure 3a1 shows a
comparison of the cumulative precipitation against cumula-
tive river discharge observed at CSA. It can be seen that the
cumulative river discharge is much higher than the precipita-
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Figure 1. (a) The study area with the DEM of the basin, additional external area, and the locations of the hydrometric stations on the study
area. (b) Delineation of the hydrologic response units (HRUs) in the hydrological basin, based on the generic method (shape and morphology
of the basin). The background map was retrieved from Google Satellite Hybrid (© OpenStreetMap contributors 2022. Distributed under the
Open Data Commons Open Database License (ODbL) v1.0.).

Figure 2. The discharge time series at the outlet of (a) Castelsantangelo (CSA), (b) Madonna dell’Uccelletto (MU), and (c) Visso (outlet)
stations. The discharge values are not available for the gray color periods and have been eliminated from the hydrological analysis. All the
time series are hourly.

tion. In particular, Fig. 3a2 shows that the runoff coefficient
of the basin at CSA – obtained by dividing the discharge
at CSA by the precipitation time series – ranges between
4 and 5. This means that, assuming as the null hypothesis
that the mean precipitation is constant in the red-shaded area
of Fig. 1, the external groundwater contributing to the CSA
outlet is at least four or five times larger than the extension

of the basin delineated by terrain analysis, which is in line
with Fronzi et al. (2021). Figure 3b1 and b2 also show evi-
dence of external groundwater contributions for MU, deter-
mining a runoff coefficient higher than 1. The relative con-
tribution of external groundwater to river discharge tends to
reduce by moving downstream, as manifested by the smaller
runoff coefficient observed at Visso (Fig. 3c1 and c2). The
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Table 1. Areas obtained from the classical hydrographic catchment delineation and from the hydrogeological survey at the outlet Visso,
Castelsantangelo, and MU hydrometric stations.

Station River Geom. basin External contribution Total Record
area area area

[km2] [km2] [km2] [yr]

Castelsangelo (CSA) Nera 17 70 87 2009–2017
Visso Nera 97 110 207 2007–
Madonna dell’Uccelletto (MU) Ussita 45 40 85 2017–

area of CSA, Ussita, and Visso increases in order, with CSA
being the smallest and Visso being the largest, encompassing
both CSA and Ussita. Figure 3 illustrates that the contribu-
tion from the carbonate (red) catchment decreases with in-
creasing catchment size, which is a reasonable expectation.
For further clarification about the lower runoff coefficient of
Visso, the reader is referred to Sect. 5.2 and Fig. 12. Note that
the panels of Fig. 3a1, b1, and c1 are obtained using the rain
gauges closest to the river stations; the plots related to other
rain gauges located inside and outside the analyzed basins
are available in the Supplement (Figs. S1 and S2).

After understanding that the external contribution to the
basin is significantly greater than that provided by terrain
analysis, it becomes necessary to determine the time delay
between precipitation input and groundwater release into the
basin.

To accomplish this, the approach proposed by Giani et al.
(2021), which characterizes the time lag at which precipi-
tation and streamflow are better correlated, is employed. To
the best of the authors’ knowledge, this method has not pre-
viously been used in the literature to estimate the travel time
of groundwater in reservoir-based models.

Figure 4 shows the application of the method of Giani et
al. (2020) for streamflow at the CSA and MU stations and
the precipitation over the basin to understand the time lag at
which these two variables are most strongly correlated. Fig-
ure 4a shows that∼ 30 d (700 h) is the time window at which
the precipitation and discharge of CSA are most correlated,
which is in line with the results of Nanni et al. (2020), who
showed that the mean tracer transit time (days) is around
26(+/− 3) d for CSA. We attribute the high correlation of
the first time window (3 d/70 h) to the subsurface river dis-
charge response and that of the second to the groundwater
contribution to the total river discharge. Tracer tests con-
ducted later by Fronzi et al. (2021) demonstrated that springs
emerge along the Nera River Valley and feed the river di-
rectly, as well as some streambed springs that emerge a few
kilometers downstream. For MU, Fig. 4b shows that 167 d
(4000 h) is the window length in which the discharge and the
precipitation are most correlated. Evidence of a delayed ex-
ternal groundwater contribution in the Ussita River discharge
is also present in Mastrorillo et al. (2019), who showed that

a fraction of the total external area contribution to the Nera
River feeds the Ussita River basin before MU (see Table 1).

4 Methods for modeling basins with external
groundwater contribution

Generally speaking, the topography and the derived shape
of the basin give a guide on how to separate the pathways
of water and obtain the precipitation volumes for each sub-
basin. This general approach is evidently not applicable in
the case of the Upper Nera basin, as also evidenced by the
values of the runoff coefficients in Sect. 3. However, accord-
ing to the field survey and measurements conducted by Mas-
trorillo et al. (2009) and Nanni et al. (2020), the extension
of the contributing basin area has been determined, but the
groundwater pathways are still unknown, and this poses im-
portant challenges for models based on fully coupled 3D or
2D surface–groundwater contributions.

4.1 Model structure

To model the fissured systems we split the basin area into
two main parts: the surface catchment (SC) and the “external
aquifer” catchment (AC). As mentioned earlier, the SC has
been partitioned into the 47 HRUs, while the ACs are con-
sidered as unique sub-basins where the water flows into the
SC from the CSA and MU.

The snow contribution is taken into account for both SC
and AC, as shown by the extended Petri net (EPN) in Fig. 5.
In particular, the EPN shows how precipitation flux is par-
titioned into snowfall and rainfall, according to the air tem-
perature (Formetta et al., 2014). Snow then melts, increasing
the liquid water in snow, and thereafter it can either refreeze
or flow and be transferred to the vegetation reservoir. After-
ward, the input flux into the canopy reservoir either evapo-
rates from the canopy or falls through to the soil (Fig. 5b).
The part that falls to the soil is partitioned into three reser-
voirs, presented in Fig. 5c. For more details on the function-
ality of the reservoirs, the reader is referred to the main refer-
ences such as Formetta et al. (2014); Bancheri et al. (2019).
To compute actual evapotranspiration (ET), we rely upon the
Prospero model (Bottazzi et al., 2021), which uses a sun-
shade canopy model (de Pury and Farquhar, 1997) that solves
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Figure 3. The relationship between cumulative observed discharge and cumulative precipitation at three different locations: Castelsantangelo
(CSA) (a), Madonna dell’Uccelletto (MU) (b), and Visso (c). For each panel, the two plots are (1) cumulative observed discharge vs.
cumulative precipitation recorded at the closest station, the green line representing a 1 : 1 relationship between discharge and precipitation,
and (2) the runoff coefficient time series computed by dividing the discharge by the precipitation time series recorded at different stations.
The runoff coefficient varies considerably in the basin. For Castelsantangelo (CSA) (a) and Madonna dell’Uccelletto (MU) (b) the runoff
coefficient is approximately 4 and 1.5, respectively, while at the outlet of the basin (Visso, c), the coefficient is around 1.

the energy balance for both sun-lit and shaded vegetation, ex-
tending the one recently developed by Schymanski and Or
(2017) to canopy level.

The idea behind creating a specific reservoir arrangement
for the karst external catchment (AC) is that the fate of wa-
ter in the soil is different in the surface catchment (SC) and
the AC one. Therefore, a different arrangement of reservoirs
has been included for CSA and MU (see Fig. 5d). Follow-
ing the analysis done in Sect. 3, the AC water flowing into
the CSA is conceived as a single reservoir with a travel-time

parameter set to 30 d, while MU is modeled using a reser-
voir with a travel time equal to 167 d. In this study, the pri-
mary focus is on the temporal variation of the precipitation-
recharge-discharge behavior of the AC water flowing from
CSA and Ussita rather than the spatial variability of the car-
bonate system’s behavior. This allows us to specifically in-
vestigate the impact of single or multiple-year drought events
on the basin storage, as discussed in Sect. 5.2. So, a lumped
modeling approach is more appropriate for providing more
insights into the temporal system’s response to drought con-
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Figure 4. The correlation between precipitation time series and discharge for (a) Castelsantangelo (CSA) and (b) Madonna dell’Uccelletto
(MU), using different time window lengths. For Castelsantangelo (CSA), the strongest correlation is related to the 3 d (around 70 h) and 30 d
(700 h) time lags. The earlier correlation is likely linked to the surface basin’s response to the precipitation, while the latter is associated
with water recharge from fissured rocks. For Madonna dell’Uccelletto (MU), the highest correlation between precipitation and discharge is
at 167 d (around 4000 h) time lags. The higher correlation is likely associated with the slow response of the aquifer which responds slowly
to precipitation events.

ditions and its implications for basin storage. Furthermore,
incorporating more spatial variability for the carbonate areas
would result in an increased number of model parameters.
This introduces additional uncertainty into the model. Given
the limited availability of data for calibrating these parame-
ters, using two separate lumped systems has been considered
as an efficient strategy for the modeling. The results will also
demonstrate that the temporal behavior of the AC water and
its response to drought events could be investigated properly
by this modeling approach.

4.2 Experiment setup, calibration, and validation

The model was calibrated with hourly river discharge, ob-
served at the hydrometric stations of CSA, MU, and Visso,
and cross-compared with EO products of evaporation and
snow cover, as well as validated with river discharge obser-
vations. The comparison with EO data provides insights into
the model’s robustness in reproducing spatial patterns of ET
and snow across the study area.

The model was spun up at the CSA sub-basin in the period
January 2005–December 2009, while the period from Jan-
uary 2010 to December 2015 was used to calibrate the model.
Also for Visso, the warm-up period involved the first 5 years
of data (January 2005–December 2009), while the following

years (January 2010 to December 2017) were used for cali-
bration. Finally, the period from January 2019 to December
2021 was applied for the calibration of model parameters for
MU. The model was validated using only data from the Visso
station between January 2019 and December 2021 because
CSA data were not available in this period, and MU data is
quite short for calibrating the model. Note that the warm-up
period was chosen based on the features of the sub-basins.

Based on the results of a sensitivity analysis (not shown),
18 parameters were chosen for the calibration process. The
model calibration process was performed based on LUCA
(Hay et al., 2006), using the available observed discharge at
the mentioned stations. The calibration algorithm was used to
maximize the Kling–Gupta Efficiency (KGE) (Gupta et al.,
2009) value between the observed and simulated discharge
time series.

In addition, different scores and hydrological signatures
(Addor et al., 2017) were used to evaluate the robustness
of the optimized model (Table 2), including mean daily dis-
charge, high flow, low flow, flow duration curve slope, and
low-flow duration frequency. In particular, high flow and low
flow represent the 95th and 5th percentile of the discharge,
respectively. The low-flow duration frequency signature is
defined as the frequency of the days with discharge lower
than 20 % of the mean discharge value (0.2Q). Since the
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Figure 5. The expressions and extended Petri net (EPN) of different components associated with snow (a), canopy (b), runoff (c), and external
groundwater runoff (d). For more details about the components of GEOframe-Newage, the reader is referred to Formetta et al. (2014) and
Bancheri et al. (2019).

Nera River discharge does not show significant variations,
this signature is considered as the frequency of days with
discharges lower than the mean discharge value (Q) instead
of 20 % of the mean discharge (0.2Q). On top of the clas-
sic goodness scores (i.e., NS and KGE) and the mentioned
signatures, the goodness of discharge simulations was eval-
uated in a more statistically elaborated way. This was done
to understand the predictive uncertainty of the model better
and, thus, the information brought by the model based on the
observed river discharge. In particular, we extracted the most
likely expected discharge and the range of probable discharge
values by using an empirical-based conditional probability
approach as described in the next section.

4.3 Assessing the reliability of the model with
empirical conditional probability (ECP)

According to the literature, predictive uncertainty is defined
as the probability of real values of any variable of interest
(i.e., the predictand) conditional on all available information
up to the present (Todini, 2008; Krzysztofowicz, 1999). This

information is provided by any deterministic model (i.e., the
predictor). According to this definition, we propose a method
that identifies the conditional probability (i.e., the probability
density of the predictand conditional on the model simula-
tion, the predictor) based on a non-parametric parsimonious
method to estimate the posterior distribution of a predictand.
This approach overcomes the challenges of most predictive
uncertainty-based statistical methods that have to deal with
Gaussianity assumption (which can be far from reality in
many cases) and problems such as extrapolation to extreme
values.

The process of computing the empirical conditional prob-
ability (ECP) involves the following steps:

– Combining the observed discharge and the correspond-
ing simulated values into a single dataset.

– Grouping the dataset into n classes (bins) according to
the simulated discharge values. The quantile-based dis-
cretization method has been applied for binning data
into different classes.

Hydrol. Earth Syst. Sci., 27, 4485–4503, 2023 https://doi.org/10.5194/hess-27-4485-2023
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– Computing the empirical cumulative distribution func-
tion (ECDF) for each class j using the formula:

ECDFj (Q)=
1
mj

mj∑
i=1

IXi<Q. (1)

Here, ECDF represents the empirical cumulative distri-
bution function of the j th class, mj is the number of
measures in the group, Xi denotes the ith measure in
the group, and

IXi<Q =

{
1 if Xi <Q
0 otherwise . (2)

– Computing the features of empirical distribution func-
tion (i.e., mode, maximum, minimum, and mean of the
discharge) for each class.

From the ECDF, we can derive the empirical distribution
functions for different classes (e.g., the one shown in Fig. 6b
and c), which are assigned to each time step. Figure 6 shows
an example of implementing this method at two time steps
where the observed discharge values are equal to 3.6 and
4.51 m3 s−1. In Fig. 6, the discharge corresponding to the
highest probability and the observation discharge are indi-
cated by a green bar and a red line, respectively. The x axis
shows the range of probable discharge at each time step. For
instance, as shown in Fig. 6b, the variation range of proba-
ble discharge values is between 3.25 to 5.1 m3 s−1. The dif-
ference between the observed and the highest probable dis-
charge value can be considered as an estimate of the predic-
tive model error. Figure 6b also shows that the observed dis-
charge is well matched with the highest probable discharge,
so the model performance is considered reliable. On the other
hand, for time step t2, as Fig. 6c presents, the observed dis-
charge does not match with the highest probable discharge
value, and the difference between observed discharge and
highest probable discharge is a measure of model reliability.

The histograms obtained for different bins (e.g., Fig. 6b
and c) are dedicated to the time steps visualized as green dots
and gray-shaded areas in Figs. 7, 8, and 9. The green dots and
gray area illustrated in the figures provide an indicator of the
reliability of the simulations, according to previous simulated
and observed data. In particular, the disparity between the
measured and the mode values (green dots) can be consid-
ered as a measure of this reliability. The complete estimation
procedure is thoroughly documented in a specific Notebook,
accessible in the supplementary material. It is important to
highlight that the number of classes (bins) has been carefully
chosen to ensure a meaningful histogram for each discharge
class. Even for the shortest available dataset (at the MU sta-
tion, which encompasses approximately 26 000 hourly data
points), a reasonable number of samples are available for
each discharge class.

5 Results

In this section, the evidence needed to answer the research
questions (RQ) presented in the Introduction is provided. In
Sect. 5.1, it is investigated whether the parsimonious model-
ing solution is efficient to model the water budget of com-
plex systems (e.g., the Nera river basin with a huge external
groundwater contribution). Moreover, different approaches
to evaluate the model’s reliability are investigated and, even-
tually, a new statistical approach is proposed to understand
the model’s uncertainty and reliability. Section 5.2 is con-
cerned with the variability of different water budget compo-
nents and the capability of the basin to sustain streamflow
during single and multi-year drought episodes.

5.1 Model suitability to simulate river discharge (RQ1,
RQ2, RQ3)

Figure 7a shows the simulated hourly discharge at the out-
let of CSA, considering the external reservoir in the model
with its travel time parameter set to 30 d, as found in Sect. 3
and described in Sect. 4.1. During the calibration period, the
KGE (see Table 2) and R2 were obtained equal to 0.51 and
0.62, respectively. Furthermore, looking at Fig. 7b and the
value of the slope of the flow duration curve for CSA in
Table 3, it seems that there is no considerable discrepancy
between the high (95th percentile) and low (5th percentile)
streamflow in CSA. Figure 7a also shows predictive uncer-
tainty results obtained with the ECP method. In this figure,
red dots and the blue line represent simulated and observed
discharge, respectively. Due to the rapid frequency of oscil-
lation, the discharge appears as clouds in the plot. Green dots
represent the highest probable discharge based on ECP anal-
ysis. Higher differences between the green dots and blue line
reveal the lower capacity of the model to predict discharge.
Generally, the relatively small difference between the ob-
served and the highest probable discharge values in each time
step suggests the adequacy of the model to reproduce river
discharge for this river section. In both Autumn 2010 and
Autumn 2012, a notable disparity was observed between the
simulated discharge (represented in red) and the actual mea-
sured discharge (depicted in blue). The pattern of the modal
discharge (green dots) is also similar to the simulated one.
This suggests that these two particular seasons deviated from
the norm in comparison to other periods. Therefore, it would
likely be beneficial to separately conduct more detailed stud-
ies for these anomalous seasons.

Further information is derived from Table 3. It shows that
for the majority of the days of the year, the discharge val-
ues are lower than the average river flow, indicating that the
distribution of discharges is left-skewed. All the signatures
in the Table are well reproduced, even though the calibration
was not targeted at them directly. High-flow statistics show a
discrepancy of−5 %, while low-flow statistics bias is greater
with a difference of around−10 %. The duration curve of the
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Figure 6. (a) Two empirical probability distribution functions (EPDF), represented as histograms, which are conditional on two different val-
ues of simulated discharge. (b) The examples of computing the predictive error at time step t1 with the observed discharge Q= 3.61 m3 s−1

and (c) at time step t2 with the observed discharge Q= 4.51 m3 s−1 in Visso basin. The green bar in each histogram represents the mode of
the EPDF, while the observed discharge is represented by a red line. The difference between the observed and the most probable discharge is
a proxy for the predictive model error.

Figure 7. (a) Simulated discharge at the outlet of Castelsantangelo (CSA) during the calibration period. The part of discharge with low
quality was ignored in the analysis (light gray-shaded area). The variation range of probable discharge values obtained by ECP is shown
in the gray-shaded area. The green dots show the value of the discharge with the highest probability in each time step. The closer to the
observed discharge, the more reliable model performance. The interval is not wide, and this is evidence of the capability of the model in the
Castelsantangelo (CSA) discharge simulation. (b) The flow duration curve for the observed and modeled Castelsantangelo (CSA) discharge
are in blue and red, respectively.

simulated behavior is 30 % steeper, meaning that the actual
discharges are, on average, greater than the simulated ones,
even though the latter have higher extremes. The discrepancy
between simulated and observed mean discharge is, however,
limited to less than 3 %, which can arguably be considered
below the heuristically expected uncertainty of the forecast.
It should be noted that due to different periods of calibration

at the three hydrometric stations, the average daily discharges
cannot be compared to each other.

Figure 8a shows the simulated discharge at the outlet of the
basin (the Visso River station). The model simulation here
yields R2 and KGE values of 0.77 and 0.83 for the calibra-
tion period and 0.77 and 0.87 for the validation period, re-
spectively, which is a sensible improvement with respect to
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Table 2. Classic signatures applied to evaluate the performance of the model

Type of scores Name Description

General scores KGE (Gupta et al., 2009) KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2

Correlation coefficient R =

∑N
i=1(Si−M i )

2∑N
i=1(Mi−M i )

2

High flow 95th percentile of streamflow 95 % flow quantile (high flow)(mm yr−1)

Low flow 5th percentile of streamflow 5 % flow quantile (lowflow) (mm yr−1)

LFD frequency Frequency of low-flow days
(Westerberg and McMillan, 2015) d yr−1

Flow duration slope Slope of flow duration
(Sawicz et al., 2011) SFD= ln(Q33 %)−ln(Q66 %)

0.66−0.33

Mean daily discharge – mm d−1

Table 3. Different signatures, after Addor et al. (2017), of simulated and observed flows during the calibration period at CSA, Visso, and
MU hydrometric stations. It should be noted that the calibration periods are different for the three hydrometric stations and that the average
daily discharges cannot be compared with each other.

Data High Low LFD Flow duration Mean daily
flow flow frequency slope discharge

CSA basin

Observation 2.9 2.23 208 0.19 2.55
Simulation 2.78 2.03 180 0.25 2.48

Visso basin

Observation 5.6 1.66 205 1.35 3.2
Simulation 5.19 1.90 211 1.03 3.15

MU basin

Observation 3.6 1.59 198 0.85 2.46
Simulation 3.5 1.82 208 1.04 2.52

CSA. Considering Table 3, the frequency of low-flow (LFD)
score for Visso, which is 205 d for the observed discharges, is
similar to the observed value at CSA, demonstrating that low
flows dominate the river even at the Visso outlet (except for
the November 2013 event). However, at Visso, the model es-
timates more days with low flow than observed (211 vs. 205),
while at CSA the opposite happens (180 vs. 208). In Table 3,
a comparison of the slopes of the flow duration curves for
Visso and CSA shows a lower oscillation of flow in CSA (see
also Fig. 8b). Figure 8a also shows how the model performs
statistically with regard to historically observed discharge.
The model accurately reproduces the jump in discharge ob-
served in November 2014, although the average discharge is
slightly overestimated. Overall, the green, red, and blue lines
exhibit close agreement.

Considering the travel time parameter of the external reser-
voir equal to 167 d (see Sects. 3 and 4.1), the R2 and KGE
values of the model for simulating MU river discharge dur-

ing the calibration period were equal to 0.71 and 0.68, re-
spectively. Figure 9a–b also shows the simulated discharge
at MU during the calibration period. Table 3 presents dif-
ferent scores related to the signatures, which show relatively
good agreement. Although the long-term average value of
discharge is almost the same at CSA and MU, the difference
between low and high flows at MU is higher (Table 3). This
confirms the dissimilar river regime behavior in these two
parts of the Nera basin. Furthermore, the flow duration slope
values in Table 3 demonstrate a higher variation of discharge
at MU than CSA. Additionally, Fig. 9a shows the variation
range of probable discharge at each time step (gray-shaded
area) for MU, which seems to be generally narrower com-
pared to those of Visso, suggesting that the model has more
uncertainty to give information about the river discharge vari-
ability at Visso station. It is interesting to note that this comes
with a calibration score for simulating Visso discharge better
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Figure 8. (a) Simulated discharge at the Visso outlet during the calibration (2008–2017) and validation periods (2019–2021), depicted in the
same plot. The discharge affected by the earthquake was ignored for analysis. The variation range of the probable observed discharge values
in each time step is shown in the gray-shaded area. The green dots show the value of the discharge with the highest probability in each time
step. (b) The flow duration curves for observed and modeled Visso discharge are shown in blue and red, respectively.

than those of MU, providing evidence about the information
that ECP can give on top of classical metrics.

5.1.1 Evapotranspiration

As was mentioned in Sect. 4.2, ET was assessed by com-
paring GEOframe-Prospero ET (GET) and actual ET (MET)
from the MODIS product (Mu et al., 2013), based on the
Penman–Monteith relation and various measured optical
quantities. Figure 10a1–a2 and a3–a4 compare the GET and
MET for two CSA sub-basins characterized by different ele-
vations of 696 and 1615 m above sea level, respectively. The
two ET time series show good correlation, with correlation
coefficients of 0.86 and 0.78, respectively. Furthermore, the
figure shows MET with much higher values than GET (i.e.,
it is less sensitive to stresses than Prospero).

Likewise, the comparison of GET and MET for two sub-
basins located at 778 and 824 m a.s.l is shown in Fig. 10b1–
b2 and b3–b4, with the correlation values of 0.76 and 0.77,
respectively. In terms of bias, some positive systematic dif-
ferences were expected as the MET is partially based on
large-scale forcings that embrace a much larger area at lower
elevations than the study area. Comparing the plot of MET
and GET reveals that higher ET values are more frequent
in MET than in GET, resulting in a fatter tail for the MET
than for the GET. The absolute difference between the two
estimates can be used as an indicator of the error in these
simulations.

The dynamics of ET is similar for both products but the
peculiarity of the upper Nera catchment, located in a very
mountainous basin, along with the uncertainty of the EO
dataset makes the evaluation of the bias very uncertain. Over-
all, we are more confident in the estimates provided by Pros-
pero, given that in a complex topography region like the one
of the study area, the radiation component of the ET can play
an important role in evaporative fluxes, and this is not explic-
itly considered in the MET product.

5.1.2 Snow

The current version of the GEOframe snow component pro-
vides the snow water equivalent (SWE) and not the snow
depth. Thus, a comparison between the model results and
the Sentinel-1 EO product was done only in terms of the
spatial correlation between the snow cover obtained by the
model and Sentinel-1. Figure 11a, and the associated box
plot, shows the spatial correlation of Sentinel-1/GEOframe
snow cover over time for CSA. To avoid uncertainties re-
lated to snow compaction (SWE vs. snow depth), only the
period from December to March was considered in the analy-
sis, which corresponds to the snow accumulation period. The
figure shows the 75th and 25th percentiles of correlation are
in the range of 0.79 and 0.5 for the CSA basin.

Figure 11b presents the spatial correlation between snow
cover obtained by Sentinel-1 and GEOframe for the HRUs
of the Nera River basin at Visso in the period of December
to March varying quite widely. The 75th and 25th percentiles
of correlation are in the range of 0.75 and 0.25, respectively.
This agreement is relatively less for the Ussita sub-basin, as
can be clearly seen in the same figure (Fig. 11c), but we do
not have sufficient elements to explain the reason for this.
Overall, although the agreement of Sentinel-1 and in situ
snow depth has been investigated (Fig. S3); further investi-
gations on the ground are necessary for snow modeling.

5.2 Water budget analysis and the effect of
groundwater discharge on the river regime (RQ4
and RQ5)

In this section, we present the interannual variability of the
different water budget components of the catchment to un-
derstand the response of Mediterranean carbonate systems to
climate variability. In particular, we focus on the ability of
these basins to sustain streamflow during periods of signifi-
cant precipitation deficit, such as the one experienced in the
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Figure 9. (a) Simulated discharges at the Madonna dell’Uccelletto (MU) outlet of the Ussita subbasin for the calibration period (2019–2021).
The uncertainty analysis results obtained by the ECP method for the simulated discharge are shown by the gray area (b). The flow duration
curve for observed and modeled discharge are shown in blue and red, respectively.

region in 2012 (Di Matteo et al., 2021b). For each delineated
sub-catchment, the budget can be expressed as

dS
dt

q
= P +Q

q
AC −ET

q
−Q

q
, (3)

where q denotes quantities estimated by GEOframe, dS/dt
is the variation in water storage in the sub-catchment, P is
the total precipitation in the sub-catchment, QAC is the ex-
ternal discharge supplied by fissured rocks, ET is the evapo-
transpiration, and Q is the discharge at the outlet. Note that
the water budget is resolved over a hydrological year (from
September of the previous year to October of the current
year). In this section, all the simulated values of the differ-
ent components of the budget during the period 2010–2021
are considered, even the years impacted by the earthquake
which showed different behavior.

Figure 12 displays the different annual water budget com-
ponents from 2010 to 2021, closed at CSA and Visso (outlet)
stations. The carbonate areas and fissured rocks located up-
stream of CSA and MU are now called “external CSA” and
“external Ussita”, respectively. In the figure, for each year
the left-hand side bars are related to the input fluxes, includ-
ing precipitation and the additional discharge supplied by the
external CSA and external Ussita, the middle bars are asso-
ciated with the output fluxes, which contain actual ET and
river discharge at the outlet, and the right-hand side bar is
the variation of the basin storage. Figure 12a (CSA) shows
that the external CSA dominates the input fluxes and, con-
sequently, the discharge at the outlet of CSA is significantly
generated by this external area. Similarly, the external water
from external Ussita and external CSA combined make a no-
table contribution to the input fluxes of the whole catchment
(i.e., Visso station, Fig. 12b), almost equaling the average
precipitation falling within the hydrographic boundaries of
the catchment.

Regarding the dynamics of the external CSA (Fig. 12a),
it can be seen that it is not constant, but rather it follows
the interannual precipitation variability. For instance, dur-

ing the dry year of 2012, the external CSA was significantly
reduced with respect to the other years, while in 2014 the
basins experienced the maximum annual precipitation for the
observation period, resulting in the greatest increase of dis-
charge from external CSA. Because of the low precipitation
in 2012 CSA shows a slightly larger output flux than input
flux, with a negative storage change, meaning that the basin
was able to sustain river discharge during periods of signif-
icant precipitation deficit. For Visso (Fig. 12b), the storage
differences remain positive for the period of interest, indi-
cating a potentially infinite stored water accumulation over
multiple years. Possible explanations are either that the basin
feeds the groundwater system (not simulated by the model)
between the CSA and Visso hydrometric stations (see also
the observation discharge at CSA and Visso stations) or, con-
sidering the long-term memory of the basin, that 10 years
(2010–2021) is a relatively short period for observing stor-
age changes. While both assumptions remain unanswered,
the complexity of the system makes the first assumption plau-
sible; however, further investigations are needed to provide
compelling evidence of this. Moreover, the first assumption
could also justify the lower runoff coefficient at Visso station.

Overall, ET plays a minor role at CSA, but its contribution
to Visso increases significantly. In a future drier and warmer
Mediterranean, this could become a frequent situation, mak-
ing this basin more vulnerable to drought episodes than oth-
ers.

To better understand the catchment dynamics at Visso, in
Fig. 13 we get rid of absolute values of the different water
balance components and instead show the anomalies of pre-
cipitation, discharge, storage variation, and actual ET with
respect to the average. Based on Fig. 13, it is clear that the
pattern of anomalies for precipitation and storage are well in
agreement. It can be seen that during dry years the storage
anomalies are negative, meaning that the storage is able to
sustain river discharge in the catchment during these years.
In particular, during single dry years like 2017 and 2019, the
meteorological drought was significantly attenuated (the pre-
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Figure 10. Comparison of actual evapotranspiration from MODIS and GEOframe-Prospero, and the associated scatter plots, for two Cas-
telsantangelo sub-basins located at 696 m a.s.l (a1 and a2) and 1615 m a.s.l (a3 and a4), and two Nera sub-basins located at 778 m a.s.l (b1
and b2) and 827 m a.s.l (b3 and b4). The green and red lines in the scatter plots show the regression and 1 : 1 lines, respectively. At higher
elevations, a larger discrepancy between the MODIS and GEOframe-Prospero actual ET is observed.

cipitation deficit was larger than the river discharge deficit),
while for subsequent dry years, like 2011 and 2012, the me-
teorological drought was slightly exacerbated (the precipi-
tation deficit was smaller than the river discharge deficit).
These results confirm the findings of Bruno et al. (2022),
where a dataset of catchments in Italy indicated that carbon-
ate basins are capable of attenuating meteorological droughts
during single dry years. Also, the study of Alvarez-Garreton

et al. (2021) shows that for basins characterized by large hy-
drological memory (i.e., large residence time of water within
different stores, e.g., snow, GW, soil moisture) multiple dry
years can result in an exacerbation of the meteorological
drought. This is explained by the recovery from drought for
these basins, which is slower given the time that precipita-
tion takes to replenish the depleted storages that sustained
discharge during the previous drought year. This can be ob-
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Figure 11. The spatial correlation of Sentinel-1 and GEOframe snow cover over time and the corresponding box plots for the (a) Castelsan-
tangelo (CSA), (b) Nera, and (c) Ussita basins.

served by comparing the anomalies of discharge in 2013 and
2018 in Fig. 13. Regarding evapotranspiration, a relatively
constant pattern is observed, with a tendency to increase dur-
ing 2012-2013, likely due to higher evaporative demand sus-
tained by water stored in the unsaturated zone in weathered
bedrock (i.e., rock moisture, Rempe and Dietrich, 2018).

6 Conclusions

Carbonate catchments supply a significant fraction of wa-
ter for domestic water supply, energy production, agricul-
ture, and industry, and they are strategic in dry climate ar-
eas like the Mediterranean region. Yet, the modeling of these
complex systems is challenging because of the differences
between the hydrogeological and hydrographic basin delin-
eation. Regarding the malfunctionality of the conventional
approach to delineate river basins, our findings demonstrated
that it is still feasible to model complex carbonate rock catch-
ments effectively by utilizing streamflow time series and ad-
ditional information about the contributing area, specifically
in case of lack of data. In particular, we leveraged the time
series analysis to assist the hydrological modeling of the Up-
per Nera River basin – a complex fissured rock catchment
located in the Apennines in central Italy. It is necessary to
conduct a preliminary, yet straightforward, check on the wa-
ter balance closure whenever doubts arise about the pres-
ence of external groundwater inputs in the river basin (see
Sect. 3). Specifically, for this study area the runoff coeffi-
cients in the upper part of the basin range from 4 to 5, indi-
cating a substantial contribution of runoff in that particular
area (Figs. 3 and 4). A time series analysis has been applied
to determine the response times of the external catchments

which are aligned with the estimates derived from field sur-
veys incorporating tracer tests. Thereafter, by incorporating
additional groundwater reservoirs into the modeling solution,
with their average response time obtained through rainfall-
discharge time series analysis, a significant improvement in
the model’s performance was observed. This highlights the
importance of considering the presence of groundwater reser-
voirs and their response times for accurately simulating the
hydrological behavior of the catchments. The configurable
structure of GEOframe played a crucial role in the investi-
gations, as it enabled us to customize the modeling solutions
according to the specific characteristics of the hydrological
system in a straightforward manner. This flexibility allowed
us to adapt the model to the unique features and complexi-
ties of the study area, ensuring a more accurate representa-
tion of the hydrological processes. Although difficulties still
remain in river discharge estimation, we do not have suffi-
cient elements to say whether these difficulties can be over-
come with more complex and data-demanding modeling so-
lutions. Overall, having more data with a longer period of
overlapping records would probably be beneficial to improve
the simulation of such a complex basin behavior. Although
one of the limitations of our study is the limited number
of stations with overlapping records, employing a physically
based (albeit lumped) modeling approach together with a ro-
bust correlation analysis could mitigate the data shortage is-
sue. The results also revealed that external groundwater dis-
charge, primarily originating from fissured rocks, has a sig-
nificant impact on the water budget of the basin, particularly
in the upstream areas (CSA). Although this influence dimin-
ishes downstream, it remains a substantial component of the
water budget, nearly equivalent to the average precipitation
within the hydrographic boundaries of the basin.
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Figure 12. The annual water budget components during 2010–2021 over (a) Castelsantangelo (CSA), and (b) Visso (the whole catchment).
The left-hand side bars are related to the input fluxes, i.e., precipitation and the additional discharge coming from the external Castelsantan-
gelo (CSA) and external Ussita (purple bars), the middle bars are associated with the output fluxes, i.e., actual ET and river discharge, and
the right-hand side bar is the variation of storage over each year.

Figure 13. The anomalies pattern of annual precipitation, discharge, actual ET, and storage variation for the catchment during the water years
of 2010–2021 at Visso station.

To evaluate the reliability of simulated discharges, besides
more traditional indicators, we employed a method based on
the empirical probability of the observed discharge, condi-
tioned on the simulated discharge. This methodology effec-
tively assessed the model’s performance. The relatively small
variation range of probable discharge for CSA (the gray-
shaded area) generally suggests the adequacy of the model
to reproduce river discharge for this river section. The ECP
analysis has provided compelling evidence that the discharge
levels in Autumn 2010 and 2012 were anomalously low com-

pared to the anticipated average. This finding strongly sug-
gests that these seasons need further detailed investigation.
Concurrently, these discrepancies underscore the uncertain
inherent of parameter calibration. This remains true even for
modeling procedures intended to be “physically based”. De-
spite the better classic scores for simulating Visso discharge
than those of MU, the variation range of probable discharge
values at each time step for Visso seems to be generally wider
than that of MU, suggesting that the model has more uncer-

Hydrol. Earth Syst. Sci., 27, 4485–4503, 2023 https://doi.org/10.5194/hess-27-4485-2023



S. Azimi et al.: Understanding mountainous carbonate basins in the Mediterranean 4501

tainty to give information about the river discharge variability
at Visso station.

Additionally, the model performance is cross-validated us-
ing Earth observation ET and snow products. The results con-
sistently showed a slight underestimation of ET obtained by
the GEOframe compared to the MODIS ET product. How-
ever, assuming MODIS-based ET as a reliable reference
would imply lower discharges or reduced water accumula-
tion in the groundwater system, which is inconsistent with
the budget analysis of the CSA. While this discrepancy can-
not be dismissed for the entire Nera basin, the CSA budget
suggests opposition. Moreover, the model snow simulations
are not in reliable agreement with EO snow information,
which warrants further investigation and analysis.

The water budget analysis of CSA shows that ET is not
a significant component of the budget due to the substan-
tial groundwater contribution from the carbonate area. The
behavior of soil moisture/groundwater storage at the CSA
station oscillates around zero, indicating a balance between
recharge and discharge. The water budget analysis at the out-
let of Visso shows a consistently positive accumulation of
groundwater, which suggests the presence of a groundwa-
ter flow feeding by the river that is not adequately captured
by the modeling solution. Therefore, further investigation is
needed to better understand and incorporate these factors into
the model to improve the representation of groundwater dy-
namics at the Visso closure.

We also examined the role of storage in sustaining river
discharge during periods of significant precipitation deficit.
The results revealed that during single dry years, such as
2017 or 2019, the anomaly of river discharge remained pos-
itive, indicating that groundwater storage played a crucial
role in maintaining streamflow. However, during multi-year
droughts, such as 2011–2012, slight drought conditions were
observed.

Additionally, our research determined that periods of con-
secutive dry years led to a proportionally slower recovery of
streamflow compared to single-year droughts as derived from
the analysis of the discharge anomalies in 2013 and 2018.
This discovery bears significant implications, especially in
light of the Mediterranean region’s trend towards increased
aridity and warming, as underscored by preceding studies
(Giorgi, 2006).
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