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Abstract. Floods are often disastrous due to underestimation
of the magnitude of rare events. Underestimation commonly
happens when the magnitudes of floods follow a heavy-tailed
distribution, but this behavior is not recognized and thus
neglected for flood hazard assessment. In fact, identifying
heavy-tailed flood behavior is challenging because of lim-
ited data records and the lack of physical support for cur-
rently used indices. We address these issues by deriving a
new index of heavy-tailed flood behavior from a physically
based description of streamflow dynamics. The proposed in-
dex, which is embodied by the hydrograph recession ex-
ponent, enables inferring heavy-tailed flood behavior from
daily flow records, even of short length. We test the index in
a large set of case studies across Germany encompassing a
variety of climatic and physiographic settings. Our findings
demonstrate that the new index enables reliable identification
of cases with either heavy- or non-heavy-tailed flood behav-
ior from daily flow records. Additionally, the index suitably
estimates the severity of tail heaviness and ranks it across
cases, achieving robust results even with short data records.
The new index addresses the main limitations of currently
used metrics, which lack physical support and require long
data records to correctly identify tail behaviors, and provides
valuable information on the tail behavior of flood distribu-
tions and the related flood hazard in river basins using com-
monly available discharge data.

1 Introduction

Floods remain the leading natural hazards worldwide, di-
rectly threatening the livelihoods of at least one-fifth of
the world’s population (McDermott, 2022; Rentschler et al.,
2022) and causing enormous economic losses (Bevere and
Remondi, 2022). Flood frequency analysis is a central and
commonly used tool to assess the hazard of extreme floods,
which is usually achieved by parametrically fitting a selected
probability distribution on flow maxima, e.g., the annual
maximum flood (Villarini and Smith, 2010), or peak-over-
threshold series (Pan et al., 2022). Selecting a suitable dis-
tribution that can properly describe (or predict) the extreme
events is, however, often challenging due to the notable un-
certainties caused by the lack of data in the maxima approach
(Papalexiou and Koutsoyiannis, 2013; Hu et al., 2023). The
upper-tailed behavior (which we will refer to as tail behavior
throughout the paper for simplicity) of the underlying dis-
tribution critically determines the accuracy of the extreme
events. If a catchment has the potential for heavy-tailed flood
behavior but this characteristic is not accounted for in the
selection of probability distributions, the probability of ex-
treme floods may be significantly underestimated (Merz et
al., 2022). This can lead to disastrous floods and severe dam-
ages (Merz et al., 2021). Therefore, correctly identifying the
tail behavior of flood distributions is crucial for avoiding po-
tential underestimation of extreme floods.
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The tail heaviness of an empirical distribution is typically
estimated through graphical or statistical methods, although
both methods have limitations. Graphical methods, such as
log–log plots (Beirlant et al., 2004), generalized Hill ratio
plots (Resnick, 2007; El Adlouni et al., 2008), and mean ex-
cess functions (Embrechts et al., 1997; Nerantzaki and Pa-
palexiou, 2019), are less objective and efficient for large-
scale analyses (Cooke et al., 2014). In contrast, statistical
methods, such as parametric metrics that fit distributions to
the observed data (Papalexiou et al., 2013; Seckin et al.,
2011; Smith et al., 2018; Villarini and Smith, 2010), and
non-parametric metrics, like the upper-tail ratio (Lu et al.,
2017; Smith et al., 2018; Villarini et al., 2011; Wang et al.,
2022), Gini index (Eliazar and Sokolov, 2010; Rajah et al.,
2014), and obesity index (Cooke and Nieboer, 2011; Sartori
and Schiavo, 2015), provide more objective insights into tail
behavior. However, obtaining reliable estimates from these
methods requires long data records (Papalexiou and Kout-
soyiannis, 2013), a condition which is often not fulfilled
globally (Lins, 2008) and may cause bias when comparing
data across sites with different record lengths (Cunderlik and
Burn, 2002; Wietzke et al., 2020). To reduce uncertainty, es-
pecially in estimating extremes, recent studies recommend
analyzing ordinary dynamics instead of focusing solely on
maximum values (Marani and Ignaccolo, 2015; Mushtaq et
al., 2022) and investigating the underlying factors that con-
tribute to extreme events (Wilson and Toumi, 2005; Tarasova
et al., 2020; Merz et al., 2022).

Floods are often triggered by rainfall, and numerous stud-
ies have contributed to an improved understanding of rain-
fall extremes (e.g., Koutsoyiannis, 2004a, b, 2022; Martinez-
Villalobos and Neelin, 2021). However, several studies have
clarified that rainfall extremes do not necessarily translate
into flood extremes (e.g., McCuen and Smith, 2008; Pall et
al., 2011; Hall et al., 2014; Archfield et al., 2016; Rossi et al.,
2016; Zhang et al., 2016; Hodgkins et al., 2017; Sharma et
al., 2018). For instance, McCuen and Smith (2008) showed
that skewed rainfall distributions do not always produce
skewed flood distributions. They proposed that catchment re-
sponses and storage dynamics contribute to the generation
of flood extremes. This view was supported by Sharma et
al. (2018), who argued that, despite a significant increase in
rainfall extremes, a corresponding increase in flood extremes
was not observed. The thorough review of Merz et al. (2022)
concluded that, while rainfall plays a primary role in gener-
ating runoff, the emergence of flood extremes is largely de-
termined by catchment responses and water balance. Given
these premises, an appropriate approach for describing runoff
and its extremes should be rooted in the dynamics of soil
moisture and rainfall–runoff processes within catchments.

This study aims to investigate whether a suitable descrip-
tor of the tail behavior of flood distributions exists by explor-
ing the intrinsic hydrological dynamics of the flow regime.
Currently, to the best of our knowledge, widely used metrics
for tail behavior estimation of flood distributions do not in-

corporate such a physical description. Instead of proposing
a standard probability distribution for streamflow or floods,
as done by several others before (e.g., Vogel et al., 1993;
Merz and Thieken, 2009; Saf, 2009; Rahman et al., 2013;
Kousar et al., 2020; Dimitriadis et al., 2021), our goal is to
test against data the inference capabilities of the proposed
index of heavy-tailed behavior identified from a description
of runoff generation processes in river basins. As mentioned
earlier, classical fitting methods for assessing tail behavior
are known to be highly sensitive to the specific data record
used for fitting. This study presents an alternative method for
inferring heavy-tailed flood behavior by characterizing well
the underlying dynamics of the system which are responsible
for the emergence of tail behavior. This approach has the po-
tential to enhance the accuracy and reliability of tail behavior
estimation for flood distributions because it does not solely
rely on fitting the available datasets.

To achieve this, we begin the analysis with a mechanis-
tic description of hydrological processes. We subsequently
distinguish between the key processes generating heavy- and
non-heavy-tailed behavior of flood distributions and propose
a physical descriptor for heavy-tailed flood behavior which
is based on common streamflow dynamics. We verify its
ability to identify heavy-tailed flood behavior and its robust-
ness in datasets with decreasing lengths through numerous
case studies across Germany encompassing various climate
and physiographic characteristics. This confirms the practi-
cal transferability and stability of the descriptor.

2 Identifying tail behavior from hydrological dynamics

We describe key hydrologic processes occurring at the catch-
ment scale and the resulting probability distributions of
streamflow and floods by means of the PHysically-based Ex-
treme Value (PHEV) distribution of river flows (Basso et
al., 2021). This framework is grounded in a well-established
mathematical description of precipitation, soil moisture, and
runoff generation in river basins (Laio et al., 2001; Porporato
et al., 2004; Botter et al., 2007b, 2009). Rainfall is described
as a marked Poisson process with frequency λp [T−1] and ex-
ponentially distributed depths with average α [L]. Soil mois-
ture increases due to rainfall infiltration and decreases due to
evapotranspiration. The latter is represented by a linear func-
tion of soil moisture between the wilting point and an upper
critical value expressing the water-holding capacity of the
root zone. Runoff pulses occur with frequency λ < λp when
the soil moisture exceeds the critical value. These pulses re-
plenish a single catchment storage, which drains according
to a nonlinear storage–discharge relation. The related hydro-
graph recession is described via a power-law function with
exponent a [–] and coefficientK [L1−a /T2−a] (Brutsaert and
Nieber, 1977), which allows for mimicking the joint effect
of different flow components (Basso et al., 2015). The de-
scription of daily rainfall as a Poisson process is grounded in
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extensive literature (e.g., Cox and Isham, 1988; Rodriguez-
Iturbe et al., 1999; Porporato et al., 2004; Yunus et al., 2017).
Some studies (e.g., Papalexiou et al., 2013), however, ar-
gued that heavier-tailed distributions better represent the tail
of rainfall records. The chosen rainfall description may thus
affect the resulting statistical properties of streamflow. Nev-
ertheless, a recent review of the state of the art (Merz et al.,
2022) on this topic stresses that, although the tail of precip-
itation matters, this is not the dominant factor which deter-
mines the tail of streamflow and flood distributions, as is the
case with catchment processes. The adopted description of
runoff generation and streamflow dynamics was successfully
tested in a variety of hydro-climatic and physiographic con-
ditions (Arai et al., 2020; Botter et al., 2007a, 2010; Ceola et
al., 2010; Doulatyari et al., 2015; Mejía et al., 2014; Müller
et al., 2014, 2021; Pumo et al., 2014; Santos et al., 2018;
Schaefli et al., 2013).

PHEV provides a set of consistent expressions (Basso et
al., 2021) for the probability distributions of daily stream-
flow, ordinary peak flows (i.e., local flow peaks occurring
as a result of streamflow-producing rainfall events; sensu
Miniussi et al., 2020), and floods (i.e., flow maxima in a cer-
tain time frame; Basso et al., 2016). The probability distribu-
tion of daily streamflow q can be expressed as follows (Botter
et al., 2009):

p(q)= C1 · q
−a
(
e

−1
αK(2−a) ·q

2−a)(
e

λ
K(1−a) ·q

1−a)
, (1)

where C1 is a normalization constant. The probability dis-
tribution of ordinary peak flows and flow maxima can be
expressed as pj (q) and pM(q), respectively (Basso et al.,
2016):

pj (q = C2 · q
1−a
· e
−

q2−a
αK(2−a) ·e

q1−aK(1−a)
, (2)

pM(q)= pj (q) · λτ · e
−λτ ·Dj (q), (3)

where Dj (q)=
∞∫
q

pj (q)dq, τ [day] is the duration of the

considered time frame, and C2 is a normalization constant.
Notably, the mathematical expression of flow distributions

provided by the PHEV framework is composed of a power
law and two stretched exponential distributions, although it
is important to note that PHEV does not assume a specific
probability distribution for streamflow representation. The
use of stretched exponential distributions introduces greater
flexibility in capturing tail behavior compared to the expo-
nential distribution. Depending on its parameter values, the
stretched exponential distribution can display either light-
tailed or heavy-tailed behavior, whereas the exponential dis-
tribution consistently exhibits a light-tailed behavior. In fact,
recent studies (Basso et al., 2016, 2021, 2023) have substan-
tiated and documented PHEV’s efficacy in representing high-
flow behaviors.

Taking the limit of Eq. (1) for q→+∞ provides indica-
tions of the tail behavior of the flow distribution (Basso et al.,

2015). This is determined by the three terms in the equation,
namely, one power law and two exponential functions, which
behave differently depending on the value of the hydrograph
recession exponent a (Eq. 4; notice that a > 1 in most river
basins; Biswal and Kumar, 2014; Tashie et al., 2020b).
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(4)

When 1< a < 2, the last term on the right-hand side con-
verges to a constant value of 1 as q increases, thereby no
longer influencing how the distribution decreases toward
zero. The first two terms instead decrease toward zero, af-
fecting how the probability decreases for increasing values
of q. The tail behavior is, in this case, determined by both
a power law and a stretched exponential function, indicating
that the probability decreases faster than a stretched expo-
nential but slower than a power law. When a > 2, both the
stretched exponential terms converge to a constant value of 1
as q increases and thus no longer influence how the probabil-
ity decreases toward zero. In this case, the tail of the distribu-
tion is solely determined by the power-law function. Despite
being aware that several definitions of heavy-tailed distribu-
tions exist (El Adlouni et al., 2008; Vázquez et al., 2006),
in the remainder of the paper we refer to distributions which
exhibit a power-law tail that is heavy tailed.

From the above derivations, the hydrograph recession ex-
ponent emerges as a key index of the tail behavior of stream-
flow distributions, which will be heavy tailed for values of
a > 2. We apply the same analyses to infer the tail behavior
of the probability distributions of ordinary peak flows and
floods by taking the limit of q −→+∞ for both Eqs. (2)

and (3). Because Dj (q)=
∞∫
∞

pj (q)dq = 0, Eqs. (2) and (3)

can be transformed into the following: (set C3 = λτC2)
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Notably, we observe that the same critical value of the re-
cession exponent equal to 2 also separates the absence and
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presence of heavy-tailed behavior in these cases. Therefore,
we propose the hydrograph recession exponent a as an indi-
cator of heavy-tailed flood behavior based on the description
of hydrological processes embedded in the PHysically-based
Extreme Value model. We test its capability to correctly pre-
dict such behavior in Sect. 4 and discuss the results in Sect. 5.

3 Data and parameter estimation

To test the proposed index of heavy-tailed flood behav-
ior (i.e., the hydrograph recession exponent a), we use
daily streamflow records of 98 gauges across Germany (Ap-
pendix B). The analyzed river basins encompass a variety of
climate and physiographic settings (Tarasova et al., 2020).
Their areas range from 110 to 23 843 km2, with a median
value of 1195 km2. The length of the streamflow records
range from 35 to 63 years, with a median value of 58 years
(in between 1951–2013). We perform all analyses on a sea-
sonal basis (winter: December–February, spring: March–
May, summer: June–August, fall: September–November) to
account for the seasonality of hydrograph recessions (Tashie
et al., 2020b) and flood distributions (Durrans et al., 2003).
We term the analysis of a given river gauge during a season
as a case study. We select gauges for which processes driv-
ing streamflow dynamics are reasonably consistent with the
adopted theoretical framework. Hence, we discard gauges af-
fected by large dams, reservoirs (Lehner et al., 2011), and
anthropogenic flow disturbances (based on visual examina-
tion; Tarasova et al., 2018). Case studies with strong snowfall
(during a season), for which the average daily temperature
is below 0 ◦C during precipitation events for over 50 % of a
season, are also discarded (i.e., only the affected season is re-
moved from the analyses). This results in an overall number
of 386 case studies, including 97 case studies in spring, 96 in
summer, 98 in fall, and 95 in the winter season.

The proposed index is derived from hydrograph recession
analysis. The hydrograph recession is typically described
by a power-law relationship between the rate of change of
streamflow in time, dq/dt , and the magnitude of stream-
flow q (Brutsaert and Nieber, 1977). This approach is widely
recognized as a standard practice in the field (e.g., Witten-
berg, 1999; Biswal and Marani, 2010; Krakauer and Temimi,
2011; Troch et al., 2013; Pauritsch et al., 2015; Jepsen et al.,
2016; Sharma et al., 2023). Recent studies have suggested
estimating this power-law relationship for individual reces-
sion events rather than aggregating them in order to enhance
the representation of observed recession behavior. Fitting a
single power-law relationship to the aggregated data points
from all observed recessions often results in an underestima-
tion of the observed hydrograph recession behavior (Biswal
and Marani, 2010; Basso et al., 2015; Karlsen et al., 2019;
Jachens et al., 2020; Tashie et al., 2020a; Biswal, 2021). In
line with these studies, we calculate the recession exponent
for each individual event and then take the median exponent

across all events as the representative value for a given case
study. In particular, a power law is used to represent hydro-
graph recessions of a single event i, dq/dt =−Ki ·qai , where
t denotes the unit time, and Ki and ai denote the estimated
coefficient and exponent of hydrograph recessions for event
i, respectively. The median value of all the ai computed for a
case study is the estimated value of a, here used to represent
the average nonlinearity of a catchment response. The value
is obtained from the analysis of 48 to 170 (0.05–0.95 quan-
tile range; median number of 109) hydrograph recessions for
each case study. Hydrograph recessions are composed of or-
dinary peak flows and the following streamflow values for
a minimum decreasing duration of 5 d (Biswal and Marani,
2010). The proposed index of heavy-tailed flood behavior
can thus be estimated based on commonly available daily
discharge observations. It is worth mentioning that a previous
study (Dralle et al., 2017) demonstrated the robustness of the
adopted procedure for estimating the median value of event-
based recession exponents, and the selection of the median
value is suggested as a suitable method to estimate the rep-
resentative hydrograph recession characteristics of a catch-
ment (e.g., Biswal and Marani, 2010; Bart and Hope, 2014;
Mutzner et al., 2015; Roques et al., 2017; Dralle et al., 2017;
Jachens et al., 2020).

To validate the identification of tail behavior obtained by
means of the proposed index, we benchmark it against data
by fitting a power-law distribution to the empirical data dis-
tribution. A case study is considered to be heavy tailed ac-
cording to the observations if the fitted power law reliably
describes the tail behavior of the data distribution. This is
evaluated by means of a state-of-the-art method proposed by
Clauset et al. (2009). The exponent b of the empirical power
law is first computed by fitting a power law to the upper
tail of the data distribution. An optimized lower boundary
is determined by considering the best fit according to the
Kolmogorov–Smirnov (KS) statistic, one of the most com-
mon measures of the distance between two non-normal dis-
tributions. The method then assesses whether the fitted power
law reliably represents the observed data by using statistical
tests such as the Kolmogorov–Smirnov statistic and a Monte
Carlo procedure to verify that the residual errors between the
data and the power-law distribution fall within the range of
fluctuations expected from random sampling. If the residual
errors are found to be within the range of fluctuations ex-
pected from random sampling, the power law is deemed to
be a reliable representation of the empirical data distribution
(Appendix A). We use the Python package plfit 1.0.3 to im-
plement these computations and refer the reader to Clauset et
al. (2009) for further details concerning the approach.

We analyze three types of empirical data, namely daily
streamflow, ordinary peaks, and monthly maxima , and ob-
tain estimates of the fitted exponent b for each case. We use
these results to validate the capabilities of the proposed in-
dex to infer heavy-tailed flood behavior from common hy-
drological dynamics, i.e., from the analysis of hydrograph
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recessions. We acknowledge that the benchmark we use, i.e.,
the empirical power law, may be influenced by fitting un-
certainty due to data scarcity in some cases (i.e., especially
when we analyze maxima; we considered monthly maxima
(Fischer and Schumann, 2016; Malamud and Turcotte, 2006)
instead of the seasonal maxima previously used in the litera-
ture (e.g., Basso et al., 2021) to extend the sample size). The
parallel analyses for cases with larger sample sizes (i.e., daily
streamflow and ordinary peaks) provide more robust valida-
tion and support the interpretation of results for maxima. The
topic is further discussed in Sects. 4 and 5.

4 Results

We examine if power-law distributions fitted to the empir-
ical distributions of daily streamflow, ordinary peaks, and
monthly maxima describe well the observed data for case
studies identified as having heavy-tailed behavior (i.e., a >
2) according to the proposed index. First, we identify the
case studies with either heavy- (a > 2) or non-heavy-tailed
(a < 2) behavior based on the proposed index. Then, we uti-
lize the KS statistic κ to measure the distance between the
frequency distributions of observations and a power-law dis-
tribution (specifically, on the tail of the distribution). This
assessment gauges the effectiveness of the fitted power-law
distribution in characterizing the dataset (with κ ∈ [0,∞],
where κ = 0 represents the utmost reliability). The KS test is
a common non-parametric method suitable for non-normal
distributions. Low values of the KS statistic κ indicate that
the empirical data are likely to be drawn from a power law.
Figure 1a–c show that the histograms of the number of case
studies for decreasing values of the KS statistic are signif-
icantly skewed (i.e., the skewness is significantly different
from zero) toward lower values of κ for all cases of daily
streamflows, ordinary peak flows, and monthly flow max-
ima with a > 2 (red histograms), whereas this is not true
for cases with a < 2 (green histograms) (i.e., the skewness is
not significantly different from zero in these cases). The sta-
tistical significance of the skewness was evaluated through
the Jarque–Bera test at a significance level of 0.05. The re-
sult indicates that data from case studies which are identified
with heavy-tailed behavior according to the proposed index
(a > 2, red) are indeed more likely to come from power-law
distributions.

We further estimate the accuracy of the proposed index
based on the fraction of case studies that are identified as
heavy tailed by the proposed index among all cases that are
heavy tailed according to the available observations. To de-
fine the latter, we set a threshold value of κ: the power law
is a reliable representation of the data for cases with κ below
the threshold. Mathematically, the accuracy can be expressed
as P(a > 2|κ < κr)=Nc(a > 2|κ < κr)/Nc(κ < κr), where
κr is the imposed threshold of κ , Nc(κ < κr) is the number of
case studies whose κ < κr, and Nc(a > 2|κ < κr) is the num-

ber of case studies with a > 2 among the Nc(κ < κr) case
studies. Higher accuracy essentially means that a higher frac-
tion of heavy-tailed cases is correctly identified by means of
the proposed index. To achieve this, we systematically re-
duce the threshold of the KS statistic κr (imposing a more
stringent criterion for incorporating cases in the computation
of the conditional probability of accuracy) along the x axis in
Fig. 1, progressing from left to right. It is important to note
that, as the κr threshold becomes smaller, the reliability of
describing the data using power-law distributions increases
(as denoted by the second axis legend of Fig. 1).

Figure 1d—f display the accuracy of the proposed index
as a function of the reliability threshold κr. In all three cases
(daily streamflows, ordinary peak flows, and monthly flow
maxima), the accuracy values increase with the reliability
level of the power-law distribution fitted on observed data.
This means that the proposed index shows high accuracy for
case studies where the empirical distributions of observed
data are more consistent with power laws. In other words, the
proposed index, which is estimated from common stream-
flow dynamics as the hydrograph recession exponent, ac-
curately identifies heavy-tailed behavior of streamflow and
flood distributions displayed by the available observations.

We further employ the goodness-of-fit testing procedure
proposed by Clauset et al. (2009) (Appendix A) to identify
case studies for which the representation of daily stream-
flow, ordinary peak flows, and monthly maxima by means
of power-law distributions is convincingly supported by the
available data. We refer to these case studies as confirmed
heavy-tailed cases (Fig. 2, black dots). Conversely, we term
the remaining ones as uncertain cases (Fig. 2, gray). The lat-
ter label denotes the fact that it cannot be determined with
certainty whether the distributions underlying the available
observations in these cases are or are not power laws due to
scarcity of data.

Figure 2 shows the empirical power-law exponent b as a
function of the proposed index of heavy-tailed behavior a.
Red markers display the median values of a and b (squares),
the interquartile intervals of b (vertical bars), and the binning
ranges of a (horizontal bars, equal number of case studies
in each bin), highlighting the correlation between the em-
pirical power-law exponent b and the hydrograph recession
exponent a for confirmed heavy-tailed cases (black dots) in
all three cases (i.e., daily streamflows, ordinary peak flows,
and monthly flow maxima). We test the correlation by cal-
culating their distance (Székely et al., 2007) and Spearman
(Spearman, 1904) correlations, which are valid for both lin-
ear and nonlinear associations between random variables. We
find that a and b are significantly correlated at a signifi-
cance level of 0.05 in all three cases with distance (Spear-
man) correlation coefficients of 0.45, 0.44, and 0.81 (0.42,
0.46, and 0.60) for daily streamflows, ordinary peak flows,
and monthly flow maxima. The high values of the correla-
tion coefficients for monthly flow maxima are likely affected
by the existence of two clusters in Fig. 2c. Nonetheless, the
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Figure 1. Accuracy of the proposed index. (a–c) Number of analyzed case studies as a function of the KS statistic κ of empirically fitted
power-law distributions (the latter is a measure of how reliable the power law is as a model for the given data: the lower κ , the more reliable the
power-law model). Case studies are identified as having either heavy- (a > 2, red histograms) or non-heavy-tailed (a < 2, green histograms)
behavior based on the hydrograph recession exponent a estimated from daily flow records, which is proposed as an index of heavy-tailed
streamflow and flood behavior. (d–f) Accuracy of the proposed index as a function of decreasing thresholds of κr (i.e., increasing reliability
of empirical power laws). The values of the KS statistic κ are derived from records of (a, d) daily streamflows, (b, e) ordinary peak flows,
and (c, f) monthly flow maxima.

Figure 2. Empirical power-law exponent b as a function of the proposed index of heavy-tailed behavior a. Case studies are classified into
groups of confirmed heavy-tailed (black dots) and uncertain (gray dots) cases on the basis of the hypothesis test (Appendix A; Clauset et
al., 2009). The former denotes cases for which a power law provides a reliable description of the empirical data distribution, while the
latter denotes cases whose data cannot convincingly support such a distribution. Red markers highlight the correlation between the empirical
power-law exponent b and the hydrograph recession exponent a for confirmed heavy-tailed cases in the case of (a) daily streamflows (n= 121
case studies), (b) ordinary peak flows (n= 116), and (c) monthly flow maxima (n= 34). Red markers display the median values of a and b
(squares), the interquartile intervals of b (vertical bars), and the binning ranges of a (horizontal bars, equal number of case studies in each
bin).
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existence of a statistically significant correlation between the
empirical power-law exponent and the proposed index, ob-
tained for Fig. 2a–c, confirms that the proposed index can
be used not only to identify heavy-tailed flood behavior (as
Fig. 1 shows) but also to evaluate the degree of the tail heav-
iness of the underlying distributions.

Figure 2c is of particular interest because it shows an ex-
ample of the typical limitations of methods that rely solely
on observations to determine the tail behavior of the distribu-
tion of maxima (e.g., Papalexiou and Koutsoyiannis, 2013),
and, at the same time, it highlights the power of the pro-
posed index. Large values of the recession exponent a, in
agreement with corresponding large values of b, are found
for all confirmed heavy-tailed cases (black dots in Fig. 2c)
where the power law provides a plausible representation of
the empirical distribution of monthly maxima. For uncer-
tain cases (gray dots in Fig. 2c), the values of the empirical
power-law exponents are unreliable (according to the applied
method; Clauset et al., 2009) since it cannot be determined
with certainty whether the empirical distributions are or are
not power laws due to data scarcity. Conversely, the hydro-
graph recession exponent is calculated from daily streamflow
data. We can therefore identify cases with heavy-tailed be-
havior and evaluate their tail heaviness based on the values
of a. This estimate is deemed to be robust, provided that the
predictions of the proposed index are confirmed by observa-
tions in cases (Fig. 2a and b) where data size is not a limita-
tion (i.e., for daily streamflow and ordinary peak flows).

In Fig. 3 we test the stability of the categorization of case
studies into heavy- and non-heavy-tailed flood behavior as
provided by the proposed index (i.e., the hydrograph reces-
sion exponent a) for decreasing data lengths. We compare
results for the proposed index against two other frequently
used metrics of heavy tails in hydrological studies: (1) the
upper-tail ratio (UTR) (Lu et al., 2017; Smith et al., 2018;
Villarini et al., 2011) and (2) the shape parameter ξ of the
GEV (generalized extreme value) distribution (Morrison and
Smith, 2002; Papalexiou et al., 2013; Villarini and Smith,
2010). The UTR is defined as the ratio of the flood of record
to the 0.9 quantile of floods (Smith et al., 2018), here rep-
resented by monthly flow maxima, while ξ is estimated by
fitting a GEV distribution to the sample of monthly max-
ima using the Python package OpenTURNS 1.16 (Baudin
et al., 2017). For all three indices (a, UTR, and ξ ), we es-
timate their values for data lengths decreasing from 35 (i.e.,
the shortest entire record length in the dataset) to 2 years.
We acknowledge that estimating parameters of extreme value
distributions from such short records is not recommended.
However, the exercise highlights the perks of the proposed
index that, as it will be shown, is also able to provide ro-
bust results when only short data series are available. For
each case study, we obtain 30 samples with the assigned test
length from the entire data series using resampling without
substitution (to avoid the results with a strong dependency
on the specific streamflow time series). For each test length,

we calculate the median values of the indices estimated from
these samples and plot them in Fig. 3 together with their vari-
ability across case studies (vertical shaded bars and lines in
Fig. 3 show the 0.25–0.75 and 0.05–0.95 quantile ranges of
the index estimates across case studies).

To evaluate the consistency of the categorization of tail be-
havior across different data lengths, we proceed as follows.
For each case we first compute the hydrograph recession ex-
ponent and GEV shape parameter from the entire data record
and denote them with an asterisk superscript (i.e., a∗ or ξ∗).
Heavy-tailed cases are defined as having a∗ > 2 or ξ∗ > 0
(Godrèche et al., 2015), while non-heavy-tailed cases have
values below these thresholds. To visualize heavy-tailed and
non-heavy-tailed behaviors, we mark them in Fig. 3 in red
and green colors, respectively, based on the reference val-
ues obtained from the entire data record. We then recalculate
the indices from shorter samples and evaluate whether their
values are consistent with the above categorization. For the
UTR, we cannot implement this approach because there is
no specific threshold for the identification of heavy- and non-
heavy tails. We therefore directly compare the stability of the
UTR’s values across data lengths (a larger value indicates a
heavier tail).

The proposed index provides consistent categorization of
heavy- and non-heavy-tailed flood behavior across varying
data lengths (Fig. 3a). The index estimates remain above 2
for most heavy-tailed cases (red) and below 2 for most non-
heavy-tailed cases (green) (as defined according to the refer-
ence value a∗ computed using the entire data record) when
the data length decreases. The index estimates demonstrate
the consistency throughout the test data length, as evidenced
by the narrow range of variation in the median values of the
estimates. For heavy-tailed cases, the median values ranged
from 2.64 to 2.92, while for non-heavy-tailed cases, they
ranged from 1.84 to 2.0. Additionally, the coefficient of vari-
ation for the estimates remained relatively constant, rang-
ing from 0.29 to 0.33 for both heavy- and non-heavy-tailed
cases. This indicates that the variability of the results (verti-
cal shaded bars and lines in Fig. 3) is mostly due to pooling
together different case studies belonging to the same cate-
gory (heavy or non-heavy tailed) and does not increase as a
result of decreasing length of the available data.

In contrast, the upper-tail ratio shows pronounced instabil-
ity for decreasing data lengths (Fig. 3b). The median value of
the index estimates varies between 1.32 and 2.36, with a co-
efficient of variation ranging from 0.15 to 0.64. These values
indicate uncertain assessments based on the UTR and its ten-
dency to underestimate the tail heaviness as the data length
decreases.

Figure 3c illustrates the categorization of tail behavior us-
ing GEV shape parameter estimates. The results indicate that
ξ estimates are stable with longer data series, yet their vari-
ability increases – leading to both underestimation and over-
estimation of tail heaviness – when the data length is short.
To ensure a stable categorization of flood tail behavior us-

https://doi.org/10.5194/hess-27-4369-2023 Hydrol. Earth Syst. Sci., 27, 4369–4384, 2023



4376 H.-J. Wang et al.: Inferring heavy tails of flood distributions through hydrograph recession analysis

Figure 3. Stability of the categorization of case studies into heavy- and non-heavy-tailed flood behavior for decreasing data lengths. Estimates
of three different indices of tail behavior as a function of data length. (a) Hydrograph recession exponent a (i.e., the proposed index of this
study). Two frequently used metrics of heavy tails in hydrological studies: (b) the upper-tail ratio UTR and (c) the shape parameter ξ of the
GEV distribution. Dots display the median values of the estimates for 386 case studies; vertical shaded bars and lines show the 0.25–0.75
and 0.05–0.95 quantile ranges of the estimates, respectively. The entire data record was used for computing the reference values of the
hydrograph recession exponent a∗ and the GEV shape parameter ξ∗ and for categorizing each case study as either having (red) or not having
(green) heavy-tailed behavior. (d) Consistency of identified tail behavior (either heavy or non-heavy) as a function of available data length
for the indices recession exponent and shape parameter of GEV.

ing this method, data series spanning more than 10 years (for
seasonal analyses and monthly maxima, i.e., sample sizes of
around 30 values) are needed, in line with the findings of pre-
vious studies (Cai and Hames, 2010; Németh et al., 2019).
The median values of ξ range from 0.39 to 0.52 for heavy-
tailed cases and remain at 0 for non-heavy-tailed cases. Fur-
thermore, the coefficient of variation demonstrates relatively
higher variation across different test data lengths, ranging
from 0.37 to 1.03 for heavy-tailed cases.

Figure 3d presents a summary of the consistency in identi-
fying tail behavior (either heavy or non-heavy) compared to
the identification based on the complete data record (i.e., the
y axis in Fig. 3d shows the fraction of cases for which catego-
rization based on shorter data series provides the same result
obtained with the complete data record). This assessment is
conducted for both the methods of recession exponents and

GEV shape parameters (unfortunately, this approach is inap-
plicable to the UTR due to the absence of a specific thresh-
old for distinguishing heavy and non-heavy tails). For data
series longer than 10 years, both indices (ξ and a) exhibit
comparable consistency and display an ascending trend, with
the performance of the GEV shape parameters being slightly
higher than the one of the recession exponents. Conversely,
when analyzing data series shorter than 10 years, the perfor-
mance of the shape parameter of the GEV drops, whereas the
consistency of the hydrograph recession exponent, although
slightly declining, maintains high values.

This result is possible because the proposed index in-
fers heavy-tailed behavior from common discharge dynam-
ics through the analysis of hydrograph recessions instead of
fitting probability distributions to short records of extreme
values as conventional approaches do. This allows for a more
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effective use of information contained in the data. For exam-
ple, in the 2-year sample, we analyze a median number of
four hydrograph recessions (which is not a large number),
but these recessions have an average length of 8 d, which is
sufficient to robustly characterize typical discharge dynamics
of the rivers (Biswal and Marani, 2010; Dralle et al., 2017).
The literature also evidenced that the variability of the hy-
drograph recession exponent across events is limited (Biswal
and Marani, 2010), which makes it possible to reliably char-
acterize it from a few hydrograph recessions only.

5 Discussion

The assessment of flood tail behavior is challenging due to
high levels of uncertainty arising from the limited lengths
of records of floods, which are, by definition, rare events.
This issue is particularly prominent when maxima are used
in the analysis as in the annual-maximum approach. Despite
the widespread use of this method, its limitations for what
concerns the reliability of flood tail estimates are well rec-
ognized. Very large sample sizes are indeed essential for ob-
taining accurate predictions of tail behavior (Papalexiou and
Koutsoyiannis, 2013).

To address the challenge of obtaining reliable estimates,
alternative methods have been proposed. A frequently used
approach is the peak-over-threshold analysis, which uses the
information content of a larger sample of data (Lang et al.,
1999; Pan et al., 2022). Previous studies have demonstrated
that this method leads to lower uncertainty in estimating high
floods (Kumar et al., 2020). Volpi et al. (2019) also showed
the advantage of using all the available observations (i.e.,
not only the peaks over a certain threshold) for estimating
extreme events. In summary, all these methods suggest that
discharge values other than maxima can provide information
about the characteristics of extreme events. Specifically, in-
corporating information from less extreme (but more numer-
ous) observations can reduce the uncertainty in the estima-
tion of extreme events and lead to improved accuracy. Fur-
thermore, non-asymptotic methods suggest that extremes are
realizations of the underlying ordinary events (Marani and
Ignaccolo, 2015; Lombardo et al., 2019), which can thus be
used to assess rare events. These methods have improved the
estimation of extreme values, especially by reducing their
uncertainty (Marra et al., 2018; Miniussi and Marani, 2020;
Mushtaq et al., 2022; Hu et al., 2023).

Similarly to the latter approaches, the index introduced in
this study (i.e., the hydrograph recession exponent) lever-
ages information on ordinary discharge dynamics to infer
the tail behavior of flood distributions. This approach en-
tails some advantages: firstly, it extracts information from
a larger amount of available streamflow data. Secondly, es-
timating the hydrograph recession exponent requires signif-
icantly less data than conventional approaches that involve
fitting probability distributions to hydrological samples. But

most importantly, the proposed index offers a mechanistic
approach to understand the emergence of heavy-tailed flood
behavior, thus providing a process-based alternative to meth-
ods that solely rely on statistical analysis of observations. We
acknowledge that assumptions underlying the method (e.g.,
the description of daily rainfall as a Poisson process) may
influence the identification of heavy-tailed behavior. How-
ever, the importance of understanding intrinsic watershed dy-
namics which promote the occurrence of extreme events and
contributing factors that lead to heavy-tailed flood behavior
(Tarasova et al., 2020; Mushtaq et al., 2023) was recently
highlighted in a comprehensive review by Merz et al. (2022).
Identifying reliable proxies for inferring such behavior (Wil-
son and Toumi, 2005) is also important. The proposed index,
which represents such a proxy grounded in the intrinsic hy-
drologic dynamics of the river basin, is thus especially useful
in the very common cases when the tail of the flood distribu-
tion cannot be known from limited available observations.

The hydrograph recession exponent (which is the identi-
fied index of heavy-tailed flood behavior) essentially repre-
sents the nonlinearity of the storage–discharge response in
catchments (Wittenberg, 1999; Biswal and Marani, 2010).
A higher degree of nonlinearity leads to higher peak flows
and a heavier tail of the streamflow distribution (Basso et al.,
2015). In agreement with these findings, former simulation-
based and field studies have shown that high nonlinearity of
the catchment hydrological response linked to an increase in
the runoff-contributing area results in a marked increase in
the slope of flood frequency curves (Fiorentino et al., 2007;
Rogger et al., 2012), which may be indicative of a heavy-
tailed flood behavior. Gioia et al. (2012) also demonstrated
that a nonlinear catchment response can convert light-tailed
rainfall inputs into flood distributions with heavy tails, fur-
ther confirming the role of nonlinear storage–discharge re-
sponses in producing heavy-tailed flood behavior. Merz et
al. (2022) established, based on a comprehensive review, that
the nonlinearity of the catchment response is a plausible con-
tributor to the emergence of heavy-tailed flood behavior. Ad-
ditionally, Basso et al. (2023) demonstrated that the hydro-
graph recession exponent aids in predicting the propensity of
rivers for generating extreme floods. In line with these stud-
ies, our research further highlights that the hydrograph re-
cession exponent, which provides a description of catchment
nonlinearity obtained from common streamflow dynamics, is
capable of robustly identifying heavy-tailed flood behavior.

The findings in Fig. 2 showcase the drawbacks of relying
on purely statistical data analyses (which supply the empiri-
cal power-law exponents b) to identify flood tail behavior and
the advantages of adopting the mechanistic approach pro-
posed in this study (which yields the hydrograph recession
exponent a). The gray markers in Fig. 2 indicate uncertainty
in determining whether the distribution has a power-law tail,
which is shown to be more prevalent when the sample size is
reduced based on statistical analyses according to the Clauset
et al. (2009) method (in 69 % and 70 % of the case stud-
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ies of daily streamflow and ordinary peak analyses, we do
not know whether or not they exhibit heavy-tailed behavior.
However, this percentage increases to 91 % in the analysis
of monthly maxima). The proposed index finds a solution
to these limitations through a mathematical description of
hydrological processes. Such an index is shown to perform
well in cases where statistical methods may be limited due
to a lack of data, as confirmed by the significant correlations
between the recession exponent and the reliably empirical
power-law exponent in all three panels (represented by black
dots in Fig. 2). Even in cases where the statistical method is
unable to confirm the underlying distribution (e.g., monthly
maxima in Fig. 2c), our proposed index can still provide ro-
bust estimates of tail heaviness based on the values of reces-
sion exponents. This is supported by the analyses of daily
streamflows and ordinary peaks, where sample size is not
a limitation and where the predictions of the proposed in-
dex are confirmed by observations. Overall, the proposed in-
dex offers a promising solution for accurately characterizing
the tail behavior of flood distributions, especially when tra-
ditional statistical methods may be limited due to a lack of
data.

Data scarcity is a major challenge for reliable flood haz-
ard assessment, mainly because of relatively short hydrolog-
ical data records worldwide (Lins, 2008). The availability
of a robust index of heavy-tailed flood behavior that works
even with short data records is desirable. We test three in-
dices, namely the recession exponent (the proposed index),
the upper-tail ratio (UTR), and the shape parameter of the
generalized extreme value (GEV) distribution (ξ ), for cate-
gorizing tail behavior for decreasing data lengths. The re-
sults (Fig. 3a) show that the recession exponent provides sta-
ble estimates and categorizes cases consistently into heavy
or non-heavy tails for decreasing data lengths. Furthermore,
the slight variation in the estimates of the recession exponent
for each test data length implies that variation in estimates
primarily arises from case study heterogeneity rather than
decreasing data length. Conversely, UTR significantly un-
derestimates both the tail heaviness and the variation across
cases for decreasing data lengths (Fig. 3b). In agreement with
previous studies, underestimation of tail heaviness occurred
when using UTR when the sample size was small (Smith
et al., 2018; Wietzke et al., 2020). Meanwhile, the catego-
rization of tail behavior was stable for cases with datasets
longer than 10 years using the GEV shape parameter. How-
ever, high uncertainty in the variation of estimates across
cases is observed when available data are relatively short,
as also highlighted by previous studies (e.g., Wietzke et al.,
2020) (Fig. 3c). Implied by this observation is that the es-
timates are biased by the short analyzed data, and a longer
data record is desirable for a more reliable fitting of a GEV
to data (Papalexiou and Koutsoyiannis, 2013). In summary,
both the recession exponent and the GEV shape parameter
exhibit greater stability across data lengths than the UTR,
which is highly dependent on the available amount of data.

When comparing the first two indices (recession exponent
and GEV shape parameter) (Fig. 3d), the recession expo-
nent demonstrates a high level of stability across all data
lengths, even those shorter than 10 years based on this study’s
analyses. On the other hand, the GEV shape parameter dis-
plays lower stability when the available data are shorter than
10 years, but this stability significantly improves as the data
length exceeds 10 years. Beyond the 10-year threshold, both
indices show comparable consistency and an upward trend,
with GEV shape parameters slightly outperforming recession
exponents.

The hydrograph recession exponent allows for at least
two significant applications as a proxy for heavy-tailed flood
behavior. Firstly, it can be directly used to improve com-
parability across catchments and to provide a fair assess-
ment of mapping regional patterns of flood hazards (Merz
et al., 2022). Traditionally, assessing flood behavior across
catchments using the same record length has been preferred
(Cunderlik and Burn, 2002), but this is often not possi-
ble due to differences in data availability. The proposed in-
dex can robustly estimate heavy-tailed flood behavior from
data with different record lengths, overcoming this limita-
tion. Secondly, it can be applied as a preliminary step to
correctly identify whether a considered catchment exhibits
heavy-tailed flood behavior or not and to select an appro-
priate probability distribution to be used in flood frequency
analysis. This prior identification of tail behavior is crucial to
avoid potential underestimation of flood extremes (Miniussi
et al., 2020; Mushtaq et al., 2022).

6 Conclusions

A new index of heavy-tailed flood behavior is identified from
a physically based description of streamflow dynamics. The
new index is embodied by the hydrograph recession exponent
and can be readily estimated from daily streamflow records.
Our findings demonstrate that this index enables the iden-
tification of heavy- or non-heavy-tailed flood behaviors in
a large set of case studies across Germany. Importantly, it
provides an evaluation of the tail heaviness (i.e., the sever-
ity of flood risks) based on analyses of common discharge
dynamics. The results also remain robust even with limited
data records.

The proposed index addresses the main limitations of cur-
rent approaches, including the lack of physical support and
low reliability in cases with limited data records. By extract-
ing more information from available data and manifesting
the nonlinearity of the catchment response, it represents a re-
liable method for the selection of suitable underlying distri-
butions for flood frequency analyses and for the assessment
of the peril of extreme floods in data-poor areas.
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Appendix A: Goodness-of-fit tests for the empirical
power laws

To test if the empirical power law is a plausible underlying
distribution of the observed data, we follow the hypothesis
test proposed by Clauset et al. (2009). The null hypothe-
sis is that the empirical power law is a plausible underlying
distribution of the observed data. Residual errors exist be-
tween the empirical power law and the observed data, which
can be estimated by the error distance εd by means of the
Kolmogorov–Smirnov statistic. The Kolmogorov–Smirnov
test is selected because it is one of the most common mea-
sures for non-normal data. The core of the hypothesis test
is to statistically prove that the errors between the data and
the power law (i.e., εd) are a rational fluctuation of sam-
pling randomness rather than being drawn from an incor-
rect underlying distribution. To determine the rationality of
the sampling randomness, a Monte Carlo procedure is intro-
duced: (1) a large number of groups n of synthetic data (with
the same size as the observed data) are randomly generated
from the empirical power law; (2) the error distance εsi of
each synthetic group to the empirical power law is calculated
for i = 1, 2, . . . , n; (3) the frequency of εs > εd defines the p
value of the hypothesis test, which indicates the probability
that the residual errors between the empirical power law and
the observed data are located within the range of sampling
randomness fluctuations; and (4) the rationality is determined
by p > 0.1 using this package.

When p ≤ 0.1, the null hypothesis is rejected; that is, the
observed data are not plausibly drawn from the empirical
power law. On the contrary, the empirical power law is con-
sidered to be a plausible distribution for the observed data
because their residual errors are a statistically rational fluc-
tuation of sampling randomness when p > 0.1. Notice that
a greater p value is better in this case because the aim is to
verify the null hypothesis rather than to indicate that it is un-
likely to be correct, as others often considered. Thus, p > 0.1
is a more rigorous setting than p > 0.05 in this case.

The setting of n= 1000 is used as an adequate (great
enough) number of iterations in this framework to distinguish
underlying distributions that are commonly mixed (as sug-
gested by Clauset et al., 2009).

The hypothesis test of the empirical power law, includ-
ing all the above procedures, can be implemented via the
function test_pl in the Python package plfit 1.0.3 (https:
//pypi.org/project/plfit/, last access: 13 March 2023).

It is worth mentioning that, statistically, we cannot say
that those who do not pass the hypothesis test are not power
law distributions. There are at least two potential reasons for
this result: (1) they are indeed not power law functions, or
(2) conclusions about the underlying distribution cannot be
drawn due to the high uncertainty in the empirical data with
small sample sizes. We thus use the term uncertain cases to
indicate this awareness in the main paper.

Appendix B: A reference map of gauges across
Germany used in this study

Figure B1. A reference map of gauges across Germany used in
this study. These river basins encompass a variety of climate and
physiographic settings without strong impact from dams and snow-
fall. Their areas range from 110 to 23 843 km2 with a median value
of 1195 km2. The minimum, median, and maximum lengths of the
daily streamflow records are 35, 58, and 63 years (in between 1951–
2013).
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