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Abstract. Groundwater age or residence time is impor-
tant for identifying flow and contaminant pathways through
groundwater systems. Typically, groundwater age and age
distributions are inferred via lumped parameter models based
on measured age tracer concentrations. However, due to cost
and time constraints, age tracers are usually only sampled at
a small percentage of the wells in a catchment. This paper
describes and compares two methods to increase the number
of groundwater age data points and assist with validating age
distributions inferred from lumped parameter models. Two
machine learning techniques with different strengths were
applied to develop two independent metamodels that each
aim to establish relationships between the hydrochemical pa-
rameters and the modelled groundwater age distributions in
one test catchment. Ensemble medians from the best model
realisations per age distribution percentile were used for
comparison with the results from traditional lumped parame-
ter models based on age tracers. Results show that both meta-
modelling techniques predict age distributions from hydro-
chemistry with good correspondence to traditional lumped
parameter model (LPM)-derived age distributions. There-
fore, these techniques can be used to assist with the inter-
pretation of lumped parameter models where age tracers have
been sampled, and they can also be applied to predict ground-
water age distributions for wells in a similar hydrogeological
regime that have hydrochemistry data available but no age
tracer data.

1 Introduction

Groundwater age describes the residence time of a parcel of
water within the aquifer system, i.e. the time elapsed since
recharge. Water from different flow pathways converges at
sampling points such as wells and springs. Thus, each sample
is a mixture of different groundwater with varying sources
and ages (Maloszewski and Zuber, 1996). Understanding the
ages of water in the groundwater system is key to determin-
ing flow paths, recharge rates and recharge sources, as well as
understanding the sustainability of groundwater abstraction,
the movement of contaminants in water and the impacts of
land use on water quality (Ginn et al., 2009; Daughney et al.,
2010; Massoudieh et al., 2012; Morgenstern and Daughney,
2012).

Groundwater age cannot be measured directly but rather
must be evaluated using models. There are two main mod-
elling methods used to infer groundwater age distribution and
the mean age or mean residence time. Commonly, ground-
water age is estimated through age tracer concentrations, in
combination with lumped parameter models (LPMs), to re-
flect mixing of water from different flow paths. LPMs have
also been used to estimate watershed-scale travel time distri-
butions (TTDs) on the basis of hydrogeological information
(Abrams and Haitjema, 2018). However, such approaches
are unable to resolve the fine-scale spatial variations (hetero-
geneity) in groundwater age distributions at individual well
scales.
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LPMs are quick to use and allow the representation of
different flow and mixing models. They can be matched to
the measured concentrations of environmental tracers, like
tritium, sulfur hexafluoride (SFg) and chlorofluorocarbons
(CFCs), in the groundwater sample (Maloszewski and Zuber,
1996; Morgenstern and Daughney, 2012). Tracer-informed
LPM age interpretations are made on a site-by-site basis. One
particular disadvantage is that these types of LPMs can only
be fitted to locations at which tracer concentrations have been
measured and can only represent the aggregation of a hetero-
geneous system along the groundwater flow path, rather than
detailed flow path variability.

As an alternative to LPMs, physically based numerical
flow and transport models can also be used to assess ground-
water age and transit time distributions. Some such inves-
tigations have focused on the mathematical descriptions of
groundwater age and its dynamics (Ginn et al., 2009; Corna-
ton, 2012; Engdahl, 2017), whereas other investigations have
evaluated the role of groundwater age and environmental
tracer data in model calibration, alongside other data sources
such as hydraulic heads and stream flow measurements (Port-
niaguine and Solomon; 1998; Zhu, 2000; Massoudieh et al.,
2012). An advantage of the numerical modelling studies is
that they can evaluate age distributions spatially and tem-
porally across the entire model domain and account for age
distributions with more complex shapes than can be repre-
sented by simple LPMs. An effect of deriving age distri-
butions from a spatiotemporally modelled groundwater flow
field is that there is likely to be some correlation and possi-
ble carry-over of biases in between the age interpretations for
sites that are near to each other, which is less likely for LPM-
derived ages. A key disadvantage is that the development of
numerical models typically requires much more time and ef-
fort compared to the simpler LPMs, even after accounting
for the time and costs of measuring the environmental tracer
concentrations at the sites of interest. Additionally, as out-
lined in Knowling et al. (2020), numerical models require
appropriate structure and parameterisation to ensure that the
information from age tracers can be robustly assimilated by
the model.

In recognition of the limitations of the above-listed meth-
ods, various less time- and cost-intensive methods have pre-
viously been trialled to increase the amount of available
groundwater age data in areas where no age tracers have
been sampled and analysed and where a numerical flow and
transport model is not available. Typically, these alternative
methods for estimating groundwater age rely on groundwater
chemistry data, hydrogeological information (e.g. bore con-
struction parameters, recharge and geology) or a combination
thereof (Edmunds and Smedley, 2000; Daughney et al., 2010;
Beyer et al., 2016; Marcais et al., 2018), linking groundwa-
ter chemistry and hydrogeological parameters to groundwa-
ter age and transit time of water through the aquifer. Most
such previous studies have relied on statistical data analy-
sis methods, i.e. discriminant analysis, principal component
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analysis and regression analysis, etc., that were used inde-
pendently or in combination with each other to identify and
model relationships between groundwater chemistry and age
data (Daughney et al., 2010; Beyer et al., 2016). These meth-
ods have been shown to be reasonably successful in deriving
mean groundwater age, either as an age category or absolute
age, but did not provide estimates of the full groundwater
age distributions, which are more meaningful for contam-
inant transport and drinking water security than mean age
(Beyer et al., 2016; Weissmann et al., 2002; Suckow, 2014).

This study builds on previous investigations of the use
of groundwater chemistry as a proxy to infer groundwater
age, with the aim of using metamodels to assess the full
age distribution instead of just the mean age. Metamodels
(also known as “surrogate” or “data-driven” models) are sta-
tistical or machine-learning-based “models of models” that
can be used to extrapolate relationships to enable predic-
tions to be made at unsampled locations or times; metamod-
els are thus models that are trained on other models that
themselves had been previously calibrated on observed data
(Fienen et al., 2015, 2016, 2018; Asher et al., 2015; Starn
and Belitz, 2018; Starn et al. 2021). Therefore, metamodels
provide a cost-efficient alternative to both physically based
distributed numerical models or LPMs, whenever sufficient
training data exist (Razavi et al., 2012). Alternatively, in
more data-sparse contexts, they may be used in combina-
tion with numerical modelling efforts (Koch et al., 2019; Re-
ichstein et al., 2019). Metamodels can make relatively rapid
predictions of system behaviour or characteristics based on
the relationships that are established with observed data. Al-
though metamodel predictions will typically have a higher
uncertainty than numerical model predictions (due to the fact
that they are trained on models which have their own un-
certainties), they can be made more rapidly while efficiently
dealing with high parameter dimensionality (Fienen et al.,
2016). Metamodels have been developed for various hydro-
geological applications (Fienen et al., 2018; Nolan et al.,
2018; Starn and Belitz, 2018; Asher et al., 2015), includ-
ing the prediction of groundwater age distributions from hy-
drogeographic and bore-specific observations and features or
numerical flow model outputs (Fienen et al., 2016; Starn and
Belitz, 2018). However, none of these metamodelling studies
have investigated the use of hydrochemistry for the predic-
tions of groundwater age.

Specifically, this study evaluates and compares the per-
formance of two ensemble machine learning techniques
(symbolic regression and gradient boosted regression)
with the goal of estimating groundwater age distributions
from groundwater chemical composition. Symbolic regres-
sion (SR) is a machine learning technique that attempts
to identify explicit mathematical expressions in an input
dataset. It is initiated by developing a population of naive
random mathematical expressions that conform to a priori
selected grammar rules. The initial mathematical expressions
are then combined and evolved through an approach such as
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genetic programming, to develop a set of formulas that de-
scribe the relationship(s) of interest with sufficient accuracy
(Gomes et al., 2019). Gradient boosted regression (GBR) is
a machine learning method that aims to minimise the predic-
tion error through a regression tree model — a sequence of re-
gression trees. Each sequential addition of the new regression
tree will minimise the prediction error made by the previ-
ous tree and thus decrease the overall prediction error. Whilst
there are numerous possible machine learning methods that
can be used for this purpose (e.g. random forest, bagged de-
cision trees, neural networks), we selected the SR and GBR
techniques based on the amount of available data, ease of use
and adaptability, and/or proven potential in similar research.
For example, unlike most other machine learning methods,
SR provides the actual equation for the resulting model. This
means that the user can directly see the calculation that is be-
ing performed, which in turn helps to check on the physical
basis of the equation and helps with transferring the model
into other software like Microsoft Excel, making it more ac-
cessible to a wider user group. GBR, on the other hand, is a
highly adaptive, strong predictive model and has previously
successfully been used in other studies to predict groundwa-
ter age from hydrophysical parameters (Fienen et al., 2016,
2018).

The GBR and SR approaches were implemented to esti-
mate selected percentiles in the LPM groundwater age distri-
bution based on measured groundwater chemistry on a per-
sample basis in a test catchment, the Heretaunga Plains, New
Zealand. Although this study uses LPM-derived age distri-
butions as the metamodel prediction targets, we note that our
approach would also be applicable to the use of groundwa-
ter chemistry to predict the age distributions derived from a
physically based numerical model, which is an additional re-
search direction being pursued by our group to be reported
elsewhere. As noted above, one potential advantage to us-
ing LPM-derived age estimates as inputs to metamodelling
is that errors may be stochastic rather than systematic in na-
ture compared to the potential for site-to-site correlations in
errors or biases in age estimates derived from numerical flow
and transport model.

2 Study area

The Heretaunga Plains is a 300 km?> SW-NE-trending fault-
bounded depression located on the east coast of New
Zealand’s North Island (Fig. 1). The Ngaruroro, Tutaekuri
and Tukituki are the three main rivers that traverse the
Heretaunga Plains, which have long-term, median outflows
of 19.9, 8.5 and 21.8m3s™!, respectively (Waldron et al.,
2019). The area has a temperate climate with average tem-
peratures of 17 °C in summer and 10 °C in winter and aver-
age annual rainfall of approximately 800 mm near the coast
(Dravid and Brown, 1997). Land cover in the western por-
tion of the catchment is comprised primarily of native forest,
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scrub and tussock, whereas the eastern portion is primarily
exotic grassland (mostly used for grazing sheep and beef cat-
tle) with lesser areas of orchard, vineyard and short-rotation
cropland, along with urban areas (Smith et al., 2020).

2.1 Geology and hydrogeology

Starting in the Miocene, tectonic activity associated with the
Hikurangi Trough, which is part of the Australian—Pacific
plate boundary, resulted in the development of an actively
subsiding syncline (‘“Napier Syncline”) in the Heretaunga
Plains (Fig. 1). The axis of this syncline is oriented subpar-
allel to the orientation of the lengths of the plains, and the
resulting depression has since been infilled by marine and
alluvial deposits representing several glacial-interglacial cy-
cles and associated sea level fluctuations (Begg et al., 2022;
Lee et al., 2014). The total depth of this depression is uncer-
tain, but it has been estimated to be between 900 m (Dravid
and Brown, 1997) and 1600 m (Beanland et al., 1998).

The main aquifers of the Heretaunga Plains are com-
posed of highly transmissive, gravel-dominated fluvial de-
posits from the Late Pleistocene (Maraekakaho Formation)
and Holocene (Heretaunga Formation), deposited by the
three major rivers in the plains (Dravid and Brown, 1997).
Lee et al. (2014) analysed 4051 lithological well logs pro-
vided by regional authorities and found that most of the pri-
marily 20-50m deep bores terminate in gravels deposited
during the last glaciation (71 000—12 000 years ago). Towards
the coast, these gravel deposits are overlain by silt- and clay-
dominated marine sediments, deposited during the Holocene
marine transgression, which thicken towards the coast and
act as a confining layer. Smaller gravel aquifers also occur
at the coast. Further inland, Holocene terrestrial deposits, i.e.
gravel, sand, clay and silt, interfinger with the marine de-
posits, resulting in an interconnected confined—unconfined
aquifer system (Dravid and Brown, 1997). Thick Holocene
gravel fans, associated with the Ngaruroro, Tukituki and Tu-
taekuri rivers, which have been mapped from bore logs, are
likely hydraulically connected to the underlying Last Glacial
gravels (Lee et al., 2014; Begg et al., 2022).

Underlying the Pleistocene gravel deposits are Late Cre-
taceous to Pleistocene marine and terrestrial deposits (mud-
stone, melange and mudstone, sandstone, siltstone, limestone
and conglomerates). Based on their mapped occurrence out-
side of the Heretaunga Plains and seismic reflection data
from within the plains, these deposits are expected to under-
lie the study area at depth. However, none of the groundwa-
ter bores reach these deposits, and the only bore data avail-
able are from a small number of petroleum exploration bores
(Dravid and Brown, 1997; Lee et al., 2014).

2.2 Groundwater flows

Sources of groundwater recharge into the Heretaunga Plains
aquifers have been inferred from river flow gauging surveys
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Figure 1. Bore locations and depth, hydrochemical cluster, geology and inferred groundwater flow dynamics in the Heretaunga Plains
(hydrochemical cluster and groundwater flow dynamics from Morgenstern et al., 2018; geology from Heron, 2020; rivers and lakes from
LINZ, 2022). The length of the arrows is proportional to the estimated flow rate. The red lines identify areas where Morgenstern et al. (2018)
found indication that there is no surface water flow contributing to the main aquifers. The stippled area shows the extent of fine (sand, silt,
clay) estuarine and terrestrial deposits mapped at the ground surface (Lee et al., 2020).

(Wilding, 2018); groundwater level monitoring (Smith et al., The dominant groundwater flow direction is from west to

2020); numerical modelling (Rakowski, 2018; Rakowski and
Knowling, 2018); and assessments of water chemistry, stable
isotopes and age tracers (Morgenstern et al., 2018). These
methods collectively indicate that losses from the main rivers
occur in limited areas but contribute about two-thirds of the
total volume of groundwater recharge to the aquifer system
(approx. 264 x 10® m3 yr~!; Rakowski and Knowling, 2018),
with the remainder of recharge sourced from rainfall perco-
lation through the soil zone across a wider area of the Here-
taunga Plains (Fig. 1).
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east, following the topographic gradient towards the coast
(Fig. 1). Artesian and sub-artesian conditions are observed in
bores in the confined aquifer zone near the coast (Dravid and
Brown, 1997). Age tracer measurements indicate relatively
rapid horizontal groundwater velocities of ca. 3-5 kmyr~—! in
some parts of the Heretaunga Plains aquifer system, particu-
larly in proximity to losing reaches of the main rivers (Mor-
genstern et al., 2018). Bores as deep as 75 m below ground
surface can have tritium concentrations similar to modern
rainfall, indicating that vertical groundwater flow can also be
relatively rapid in some areas. In contrast, the older ground-
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waters and slower flow velocities of ca. 0.1-0.2km yr~! are
inferred nearer the coast, which could result from widening
of the aquifer cross section and/or decreasing hydraulic con-
ductivity, e.g. reflecting the presence of finer-grained sedi-
ments of marine origin (Morgenstern et al., 2018).

Approximately 40 % of the discharge from the aquifer
system is estimated to occur via seepage into streams and
springs, with the remaining discharge evenly split between
abstraction and flows across the coastal boundary (Rakowski
and Knowling, 2018). Total abstraction has approximately
doubled in the last 30 years, with an average annual in-
crease of approximately 3.5 %, due primarily to increases in
irrigation and industrial use of groundwater (Rakowski and
Knowling, 2018). This increase in total abstraction is inferred
to be the cause of long-term declines of summer groundwater
levels (average rate ca. Scmyr~! between 1989 and 2018),
which are observed in some unconfined parts of the aquifer
system (Smith et al., 2020).

2.3 Hydrochemistry

Groundwaters in the Heretaunga Plains have a range of hy-
drochemistry (Fig. 1), arising from the spatially variable
processes of human impact and natural geochemical evo-
lution, as observed elsewhere in New Zealand (Daughney
et al., 2012; Morgenstern and Daughney, 2012). Generally,
natural geochemical evolution is expected to affect the re-
dox state, with younger groundwaters more likely to be oxic
than anoxic, thereby affecting the concentrations of redox-
sensitive substances such as dissolved oxygen (DO), NO3-
N, NH3-N, Fe, Mn and SO4 (Tesoriero and Puckett, 2011;
Daughney et al., 2010) (see list of chemical abbreviations
and units in Table S1 in the Supplement). Natural water—
rock interaction also typically causes the concentrations of
the major ions to increase with time and distance along a
groundwater flow path (Morgenstern and Daughney, 2012).
Human influence on groundwater chemistry in New Zealand
is primarily indicated by elevated concentrations of NOs-
N, sometimes co-occurring with elevated concentrations of
Na, K, Mg and/or CI (Daughney et al., 2012; Morgenstern
and Daughney, 2012). The dominant recharge source also
influences hydrochemistry, with groundwaters sourced pri-
marily from rainfall seepage through the soil zone tending
to have higher total dissolved solids (TDSs) and higher con-
centrations of the parameters associated with human activ-
ity compared to groundwaters sourced from river seepage
(Morgenstern and Daughney, 2012). These general drivers
of hydrochemistry can lead to reasonably strong correlations
among the levels of several parameters, as is observed for the
groundwaters in the Heretaunga Plains (Fig. 2). The follow-
ing paragraphs summarise the key correlations and patterns
among the hydrochemical variables based on facies identified
by hierarchical clustering as previously reported by Morgen-
stern et al. (2018).
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Oxic groundwaters inferred to be recharged from rivers
are found across much of the study area (denoted as Clus-
ter 1 in Fig. 1). These groundwaters typically have Ca and
HCOj3 as the dominant cation and anion, with concentrations
of ca. 20-30 and 50-100 mg L ™!, respectively (Morgenstern
et al., 2018). Due to their redox status, such groundwaters
have concentrations of DO, NO3-N and SO4 above their re-
spective analytical detection limits, but concentrations of Fe,
Mn and NH3-N are usually below detection. These ground-
waters display relatively little indication of land-use impacts:
concentrations of NO3-N are typically below 1 mgL~!, and
microbial pathogens and pesticides are generally not detected
(Smith et al., 2020). In some locations, particularly near
the margins of the plains, these river-recharged groundwa-
ters can display concentrations of Ca and HCO3 that are 2—
3 times higher than elsewhere, likely due to the influence of
carbonate-rich geologies in the surrounding hills (denoted as
Cluster 2 in Fig. 1).

Oxic groundwaters inferred to be recharged from rainfall
occur in a small number of areas of the plains (denoted as
Cluster 3 in Fig. 1). These groundwaters also typically have
HCO3 as the dominant anion but can have either Ca or Na as
the dominant cation (Morgenstern et al., 2018). Otherwise,
these groundwaters are generally hydrochemically similar to
the oxic river-recharged groundwaters described above, ex-
cept for having slightly higher concentrations of NO3-N, typ-
ically in the range 2-2.5mgL~!, as a result of modest land-
use impacts, along with slightly higher concentrations of Ca,
Mg, Na, K and/or SiO; due to their accumulation during pas-
sage of recharge water through the soil zone (see Daughney
and Morgenstern, 2012).

Anoxic groundwaters occur in a small number of wells
(denoted as Cluster 4 in Fig. 1). Depending on their redox
state, these groundwaters typically have detectable concen-
trations of Fe, Mn and/or NH3-N but low or non-detectable
concentrations of DO, NO3-N and/or SO4. Concentrations
of PO4-P are also observed to be higher in anoxic than oxic
groundwaters, likely due to solubilisation associated with
reductive dissolution of iron oxide minerals in the aquifer
(Langmuir, 1997). A small number of wells have NH3-N
concentrations roughly twice as high as elsewhere, which
may indicate contamination by wastewater (denoted as Clus-
ter 5 in Fig. 1).

Groundwater chemistry shows complex relationships to
groundwater age in the Heretaunga Plains (Morgenstern et
al., 2018). Generally, the median value of mean residence
time for shallow groundwaters within the Holocene uncon-
fined gravels is estimated to be between zero and 10 years,
with a progressive increase to the range 40-80 years, for
deeper groundwaters, near the coast (Fig. 3).

Younger groundwaters are more likely to be oxic, whereas
deeper groundwaters are more likely to be anoxic, which af-
fects the location and depth profiles of DO, NO3-N, NH3-N,
Fe, Mn, SO4 and PO4-P. However, due to the complex flow
paths in the Heretaunga Plains aquifer system, the relation-
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Figure 2. Pearson R correlation matrix among hydrochemical parameters and groundwater age, estimated via the LPM at the 50th percentile
of the age distribution, across all Heretaunga Plains groundwater samples used in this study (n = 76).

ships between age, location, depth and groundwater chem-
istry are also complex; for example, there are locations where
young groundwaters are found at depth, and older groundwa-
ters are found near the surface. Accordingly, Morgenstern et
al. (2018) did not report any predictive relationships between

Hydrol. Earth Syst. Sci., 27, 4295-4316, 2023

groundwater chemistry and groundwater age. Moreover, the
relationships among the redox-sensitive hydrochemical pa-
rameters such as DO, NO3-N, NH3-N, Fe, Mn and SO4 are
themselves known to be non-linear because they are medi-
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Figure 3. Locations of sites used for the model development, showing the LPM-derived ages for the 50th percentile. The geological forma-
tions shown on the background map (Heron, 2020) are explained in Fig. 1. Labels correspond to map IDs for each site.

ated by step-wise microbial respiration reactions (Langmuir,
1997; McMahon and Chapelle, 2008).

3 Methods
3.1 Data

This study used hydrochemical data from Morgenstern et
al. (2018) (Table S3) as predictor variables for the mod-
elling approaches. The dataset comprises 76 groundwater
samples collected from 69 sites in the Heretaunga Plains
(Fig. 1). Bore depths ranged from 8 to 147 mb.g.s. (below
ground surface) (25th, 50th and 75th percentiles were 30, 46
and 71 mb.g.s., respectively). These hydrochemical samples
were mainly collected during sampling campaigns in 2014,
2016 and 2019. Most samples (75 %) were collected in the
period April to June, with approximately even proportions
of the remaining samples collected in the periods January to
March or November to December. All sites were sampled
according to standard protocols involving purging of bores
and stabilisation of pH, DO, electrical conductivity (EC) and
temperature (7') as measured in the field using portable me-
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ters prior to sample collection (Daughney et al., 2007). Cen-
sored and uncensored results below the highest censoring
threshold for each parameter were replaced with the corre-
sponding analytical detection limit (Helsel et al., 2020) in
order to allow application of the machine learning methods
in this study.

As response variables for the modelling, this study used
groundwater age distributions based on age tracer data from
Morgenstern and van der Raaij (2019). The age tracers, tri-
tium (®H), CFCs and SFg, were selected for their appro-
priateness for the relatively young groundwaters found in
many New Zealand aquifer systems (Stewart and Morgen-
stern, 2001). One set of age tracer samples was collected
from each site at the same times as the above-mentioned
samples that were analysed for hydrochemistry. Addition-
ally, at 39 of the 76 sites, between 2 and 12 additional sets
of age tracer samples had been collected for other investiga-
tions extending back as early as 1995. We point out that, in
New Zealand and the Southern Hemisphere in general, bomb
tritium has now fully dispersed, reducing ambiguity when
fitting LPMs and increasing the reliability of tritium-based
age interpretations. This is not yet the case for the Northern

Hydrol. Earth Syst. Sci., 27, 4295-4316, 2023



4302

Hemisphere, where bomb tritium is still present in significant
amounts within the groundwater systems and causes ambigu-
ity in age interpretations from tritium (Stewart et al., 2021).

All age tracer analyses were performed at the GNS Sci-
ence Water Dating Lab. Tritium was analysed in a 1 L unfil-
tered, unpreserved sample using 95-fold electrolytic enrich-
ment followed by ultra-low-level liquid scintillation spec-
trometry (Morgenstern and Taylor, 2009). The detection limit
was 0.02 TU (tritium units), and the reproducibility of a stan-
dard enrichment was 1 % via deuterium calibration. Samples
for analysis of CFCs and SFg were collected in strict iso-
lation from the atmosphere, as described by Daughney et
al. (2007), using 125 mL and 1L bottles, respectively. Con-
centrations of CFCs (CFC-11 and CFC-12) and SFg were
analysed at GNS Science by gas chromatography (GC) using
an electron capture detector as described by Busenberg and
Plummer (1992) and Van der Raaij (2003). Detection limits
were 3 x 1071 molkg~! for CFCs and 2 x 10™'7 mol kg ~!
for SF¢. Dissolved argon and nitrogen concentrations were
measured simultaneously with CFCs by GC using a thermal
conductivity detector (analytical accuracy is 1% and 3 %,
respectively). The argon and nitrogen concentrations were
used to estimate the temperature at the time of recharge and
the excess air concentration as described by Heaton and Vo-
gel (1981), which allowed calculation of the atmospheric par-
tial pressure (ppt) of CFCs and SFg at the time of recharge.

This study made use of all available age tracer data to con-
strain the LPM for the relevant site. Use of data from several
different tracers allows their applicable age ranges and be-
haviours in the aquifer system to be accounted for, enabling
derivation of the most robust LPM interpretation consistent
with them all (Stewart and Morgenstern, 2001). Evaluation
of the groundwater age distribution involved fitting of a LPM
to the age tracer data using the TracerLPM workbook (Jur-
gens et al., 2012), following the approaches of Daughney et
al. (2010) and Morgenstern et al. (2015). This involved use of
the convolution integral to compare the measured tracer con-
centration at the sampling point (Coy) With its concentration
in rainfall at the time of recharge (Cj,), calculated following
Eq. (1):

o]

Coult) = f Cint — e M g(0)dr, (1)
0

where t is the time of observation, t is the transit time
(groundwater age), e *T is the decay term with A =
In(2)/T1 2 (i.e. radioactive decay term for tritium with half-
life 712 = 12.32 years) and g(r) is the system response
function (Zuber et al., 2005). The time-series Cj, for tri-
tium input via rainfall was based on concentrations measured
monthly at Kaitoke, near Wellington, New Zealand, since the
1960s (Morgenstern and Taylor, 2009), whereas the time se-
ries for inputs of CFCs and SFg were based on measured
and reconstructed data from Cape Grim, Australia, and other
Southern Hemisphere sites (Cunnold et al., 1997; Maiss and
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Brenninkmeijer, 1998; Prinn et al., 2000; Thompson et al.,
2004). The system response function defines the shape of the
distribution of ages within the water sample, for example, as
arising from convergence and mixing of groundwater flow
paths at the well during sampling. System response func-
tions comprising a singular or binary exponential piston flow
model (EPM) have been shown to provide good matches to
time-series age tracer data for a wide range of New Zealand
groundwater systems (Daughney et al., 2010; Morgenstern
and Daughney, 2012; Morgenstern et al., 2015), including
in the Heretaunga Plains, a groundwater system with an un-
confined zone upgradient and a confined zone downgradient
(Morgenstern et al., 2018; Morgenstern and van der Raaij,
2019). A singular EPM involves estimation of two parame-
ters, 7 and f:

g=0fort <T(1—f) @
g= Tife(;ﬁfl'l) fort > T(1— f), 3

where T is the mean residence time (MRT), and f is the ra-
tio of the volume of exponential flow to the total flow volume
at the groundwater discharge point, with 7'(1 — f) being the
time it takes for groundwater to flow through the piston flow
section of the aquifer. A binary EPM combines two singu-
lar EPMs and hence has five unknowns: 77 and f; for the
first EPM; 7> and f> for the second EPM; and r, the ratio
of the two single EPMs in an overall system response func-
tion used to model the final water age distribution. For six of
the sites considered in this study, the age tracer data deviated
significantly from any single LPM-derived model (regardless
of whether a lumped parameter model, either EPM or BMM
(binary mixing model), was adopted). This deviation is as-
sumed to represent sampling of dynamic flow behaviour or a
temporally evolving or changing system. For the purposes of
the metamodelling, these data were treated as separate sam-
ples, with unique chemical and LPM-derived age signatures,
in the input dataset.

3.2 Symbolic regression and gradient boosted
regression models

SR and GBR models were developed using data from all
sites in a single group; in other words, sites were not pre-
segregated into different groups based, for example, on hy-
drochemical cluster, well depth or any other characteris-
tic. While we acknowledge that pre-segregation of input
data followed by development of separate machine learn-
ing models is used in some studies, one goal of our inves-
tigation was to determine whether the SR and GBR algo-
rithms could themselves account for any inherent differences
in the age—chemistry relationships between sites, without
pre-segregation. The effect of this approach is discussed in
Sect. 4.1.

SR models were developed using HeuristicsLab ver-
sion 3.3.16.17186 (Wagner et al., 2014). SR settings allowed

https://doi.org/10.5194/hess-27-4295-2023



C. Tschritter et al.: Estimation of groundwater age distributions from hydrochemistry

a maximum tree depth and length of 15 and 150, respectively,
based on a multi-symbolic expression crossover with inter-
nal crossover point probability of 90 %. SR grammar rules
permitted arithmetic, exponential and logarithmic functions;
permission of conditionals (e.g. if-then statements) was also
assessed in terms of ability to improve model fits.

GBR models were developed using the GBR package
that is available with the open-source scikit-learn library in
Python (Pedregosa et al., 2011). The hyperparameters were
tuned to find the optimal parameters (tree depth =4, sam-
ple split=2 and learning rate = 0.05) that result in the best
performance of the models. A stopping criterion was ap-
plied to determine the number of estimators (regression trees)
required (if the model score was not improved by at least
0.01 in the last 50 iterations, then the model was considered
to have converged), and, in most of the cases, the models
achieved their optimal solution at around 50-75 estimators
(boosting iterations).

The first stage in developing the SR and GBR models was
to generate an ensemble of independent models for each of
nine selected percentiles (5th, 10th, 20th, 33rd, 50th, 66th,
80th, 90th, 95th) in the LPM-derived water age distributions.
Hereafter these are referred to as “unchained models” to dif-
ferentiate them from the “chained models” described below.
The input dataset for the unchained models consisted of the
sample-specific values for 21 hydrochemical parameters: Ca,
Mg, Na, K, HCO3, CI, SOq4, Fe, Mn, SiOy, NO3-N, NH3-N,
PO4-P, pH, EC, §2H and 6180 (all measured in the lab), along
with T and DO (measured in the field). The purpose of de-
veloping these unchained models for individual percentiles
was to enable testing of the validity of the shapes of the age
distributions produced by the LPMs. For example, a site with
an unrealistic LPM-derived age distribution might be identi-
fied by unchained SR or GBR models that perform well for
some percentiles but not others.

For both the SR and GBR methods, for each age per-
centile, 10 data split realisations were generated by dividing
the input data into testing and training subsets. We tested a
range of test/train split ratios for each method, based on typ-
ical approaches used by practitioners use of these modelling
methods. A total of 100 repeat models were constructed for
each split realisation. For the SR method, each split reali-
sation was constructed through independent and random di-
vision of 10 input data duplicates, with a test/train split ra-
tio of 33/66 found to deliver good stability for metamodel
development. For the GBR method, the input data were di-
vided into 10 folds in a 10-fold cross-validation procedure,
and a test/train split ratio of 10/90 was determined to be
optimal. In the cross-validation procedure, each fold was se-
quentially “held out” in the testing data with the remaining
nine folds comprising the training dataset; this was repeated
100 times with some shuffling of the data between folds, for
each repeat. Then, for both SR and GBR, from the total of
100 models produced at each split realisation or fold, we se-
lected the four best-performing models. The best-performing
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models were defined as those with the highest Pearson R2,
as long as R%mining > (.7 and ABS(R%raining — R%esting) <0.2,
ensuring reasonable and similarly high correspondence to the
LPM-derived training and testing datasets, analogously to
the Akaike information criterion (Gomes et al., 2019). We
note that these criteria do not discuss model performance be-
yond model-to-measurement fits, and that selection of such
criteria may result in biased model rankings, as discussed
by Schoniger et al. (2014); however, these criteria are com-
monly adopted for data-driven methodologies.

Overall, for both SR and GBR, this approach produced a
final group of 40 independent models for each of the nine
above-listed age percentiles (Fig. 4). These resulting model
ensembles were summarised using the average, median, me-
dian absolute deviation (MAD) and standard deviation (SD)
of the predictions for each of the nine percentiles in the age
distributions. The SR and GBR methods also automatically
determined the influence of each of the above-listed input
variables with respect to model predictions for each age per-
centile, providing a quantification of the relative importance
(“feature importance”) of each input variable for the predic-
tion of groundwater age distributions. This feature impor-
tance, derived from the unchained models, was subsequently
used to provide insights into the physical and chemical pro-
cesses that characterise the specific hydrogeological system.

The second stage in developing the SR and GBR mod-
els was to implement a chaining approach that connected the
models for the unchained percentiles in the age distributions.
This was done to ensure that the separately simulated per-
centiles had an appropriate relationship to each other, e.g.,
that the value for the 10th percentile in the age distribution
for any sample had to be greater than or equal to the 5th per-
centile in the age distribution at the same sample. The imple-
mentation of the chaining approaches for the SR and GBR
models varied slightly. For the SR method, independent mod-
els were first developed for each of the nine percentiles in the
age distribution as described above, and then the model for
each individual percentile was re-modelled based on the en-
semble median value from all age percentiles; for example,
the chained model estimate for the Sth percentile in the age
distribution was based on the unchained models for all nine
percentiles. For the GBR method, the first step was to use
the hydrochemical data to develop an unchained model to
simulate the Sth percentile in the age distribution across all
samples, as described above. Then this model for the 5th per-
centile in the age distribution was subsequently used as in-
put, along with the hydrochemical data, to develop a second
model to simulate the 10th percentile in the age distribution
across all samples, which in turn was used in conjunction
with the hydrochemical data to develop a third model to sim-
ulate the 20th percentiles across all sites, and so on. For both
the SR and the GBR approaches, the chained model devel-
opment followed the same split and validation procedure as
were used for the development of the unchained models.
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Figure 4. Schematic of workflow used for SR and GBR modelling.

To demonstrate an example application, groundwater age
distributions were subsequently predicted for sites for which
time-series hydrochemistry data were available but no tracer
data and, therefore, no LPM-derived groundwater age dis-
tributions. While, by definition, no assessment of corre-
spondence between metamodel-derived age distributions and
LPM-derived distributions can be made for these sites, the
example application to sites with no tracer data serves to
demonstrate the use of these metamodelling approaches and
does allow comparison of the correspondence between the
two approaches.

4 Results and discussion

This section is split into results and discussions focussing on
(1) the comparison of the model predictions made by the two
metamodelling approaches and how they correspond with
those derived from the LPM, (2) the relationships between
hydrochemistry and groundwater age distributions that are
affecting the predictions, and (3) potential applications these
techniques could be used for.

4.1 SR and GBR model predictions

Age distribution predictions derived from the SR- and GBR-
trained metamodels are presented in Fig. 5 (for mapped me-
dian ages) and Figs. 6 and S1-S4 in the Supplement (for age
distributions).

We note that the metamodel training (and test) datasets
are derived from model-based estimation of age distributions
(i.e. from the LPM). This abstraction is necessary where
the “truth” cannot be known (i.e. it must be estimated or
modelled). As such, the results, and subsequent discussion,
presented here are not directed towards assessing the meta-
models’ abilities to predict true age distributions (as these
are unknowable). Rather, we focus on the ability of these
two metamodelling approaches to extract information con-
tained within geochemical datasets for making predictions
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of groundwater age that are equivalent to those derived from
the LPMs.

In this context, the results are summarised in Table S2 and
illustrated in modelled age distribution plots in Figs. S1-S4.
Figure 6 highlights age distributions for selected sites and
demonstrates the variation in model performance between
sites and across age percentiles. Please note that in Fig. 6
(and Figs. S1-S4), we have used the median absolute devi-
ation (MAD) of the ensemble instead of the standard devia-
tion, to accommodate the complexity of the metamodel en-
semble distributions at each age percentile (refer to Fig. S5
for further discussion of this issue). The ensemble MAD is
a description of the variation within the model ensembles.
As the metamodels are trained at each percentile, the MAD
can vary across the predicted age distributions. Even for the
chained models, the MAD at a specific percentile need not
have a strong relation to the MAD at an adjacent percentile.
As discussed in more detail below, we note some general pat-
terns in the results, across sites and age percentiles, for the
SR and GBR approaches.

Firstly, the machine learning models generally provide
good correspondence to the LPM age distributions. The me-
dian = MAD for the 40-model ensembles generally encom-
pass the LPM-derived age, at each percentile (Figs. S1-
S4; e.g. “1940_75”, Fig. 6). Using R?, median absolute er-
ror (MAE) and median relative error (MRE) as correspon-
dence metrics, both approaches appear to perform well, with
ensemble mean R? values generally greater than 0.7 and
MRE generally below 10 % for “test” datasets, across all nine
percentiles (see Table S2). For the unchained models, the av-
erage (mean) R? and MAE, across all nine percentiles in the
age distribution, were 0.83 and 7.5 years, respectively, for
the SR models, and 0.98 and 1.16 years, respectively, for
the GBR algorithm. The chaining procedure provided ap-
parent improved correspondence to the LPM for the SR ap-
proach (R? of 0.94 and MAE of 4.4 years). However, chain-
ing marginally reduced the correspondence for the GBR al-
gorithm (R? of 0.95 and MAE of 2.16 years). The level of
correspondence to LPM-derived groundwater age estimates
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Figure 5. Comparison between the LPM and the SR- and GBR-modelled ages for the 50th percentile. The geological formations shown on
the background map (Heron, 2020) are explained in Fig. 1. Labels correspond to map IDs for each site. Grey numbers: sites used in the
development of the metamodels (map IDs 1-76). Pink numbers: sites without LPM data, used for predictions (map IDs 77-82).

indicates that the hydrochemical dataset is a capable estima-
tor of age distributions, equivalent to those provided by the
LPM, in this study area.

Secondly, we observe some variation in performance be-
tween age percentiles (Table S2). Generally, this is typified
by greater uncertainty and poorer correspondence at the high-
est age percentiles, representing the oldest water component
at a site (e.g. “Hospital_72” and “Brookvale 1_60 in Fig. 6).
However, as Table S2 shows, the lowest percentiles also, col-
lectively, exhibit a tendency for poorer correspondence. For
the unchained models, the ensemble mean R? values for the
SR and GBR algorithms are highest for the 50th percentile
and decrease slightly towards both the lowest and highest
percentiles. The chained models also displayed this relation-
ship between correspondence and percentile being modelled
though to a less pronounced degree. This may result from
the pragmatic censoring of chemistry data at analytical de-
tection thresholds, with the youngest and oldest age frac-
tions being the most likely to have censored hydrochemical
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results for certain parameters. For example, as discussed in
Sect. 2.3, young groundwaters are more likely to be oxic and
hence contain near- or below-detection concentrations of Fe,
Mn and NH3-N, whereas older groundwaters are more likely
to be anoxic and therefore contain near- or below-detection
concentrations of DO and NO3-N (Daughney et al., 2010;
Morgenstern and Daughney, 2012). Thus, the approach taken
in this study of replacing all censored concentrations with
their corresponding analytical detection limits may have im-
pacted the ability of the metamodelling methods to discrim-
inate or simulate the lowest and highest percentiles in the
age distributions. Overall, the slightly poorer correspondence
produced by both the SR and GBR algorithms at the extremes
of the age distribution suggests that caution should be exer-
cised when using hydrochemistry—age relationships to eval-
uate the potential for the presence of contaminants such as
pathogens, which tend to occur in the youngest age fraction
of a water sample, or geogenic substances such as Fe or Mn,
which are more likely to occur in older age fractions.
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the two EPMs in a BMM.

Third, notwithstanding the general good performance of
the two metamodelling approaches, relative to the LPM-
derived groundwater age estimates, the correspondence of
metamodel age distribution predictions to LPM-derived age
distributions does vary between different sites, with bet-
ter correspondence at some sites than others (e.g. compare
“1940_75” and “T2_34” in Fig. 6). As noted above, in the
absence of the known truth (which cannot be provided by
the reference LPM data), it is impossible to definitively at-
tribute poor correspondence to failure of the metamodels. It
does however reflect a break in the complex relationship be-
tween chemistry and the LPM-estimated groundwater ages,
that is established for other sites (e.g. those with good cor-
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respondence). This could be the result of local chemical in-
teractions, or characteristics, that are not well captured in the
broader dataset or extracted by the models. Alternatively, it
could be an indication of complexity in the true age distri-
bution that is captured in the chemistry but is not well repre-
sented in the LPM-derived estimate, based on tracer data.
Finally, we note that, at some sites, there is variation in
the performance (correspondence to the LPM-derived ages)
between the two metamodelling approaches, as illustrated by
the variation in MAE illustrated in Fig. 7. The SR method
appears to show more spatial clustering in the performance
variation. The SR model also appears to show some relation
between sample (bore) depth and the model performance;
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Figure 7. Ensemble average MAE for each site across all nine modelled percentiles vs. bore depth (top panels) and site location (bottom
panels) for chained SR models (left panels) and GBR models (right panels). On the bottom maps, colours represent MAE, and symbol size
is scaled to bore depth. The geological formations shown on the background maps (Heron, 2020) are explained in Fig. 1.

that is, lower correspondence to LPM ages (MAE > 7 year)
was confined to samples from bore depths <50 m. Aspects
of spatial and depth variation in model performance could
be inferred to arise from spatial variations in hydrochem-
istry caused by groundwater—surface water interaction and
groundwater flow paths through the aquifer. The significance
of the apparent relationships is hard to distinguish with the
relatively small dataset available here, and such systematic
variations were not as evident for GBR predictions. How-
ever, the variations in correspondence to the LPM were not
systematically related to the site cluster assignments shown
in Fig. 1. This provides some justification for our approach
of developing metamodels for all hydrochemical clusters si-
multaneously (Sect. 3.2).

Based on these results, the SR and GBR methods are
seen to produce equivalently good correspondence to LPM-
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derived ages for the application in this study. This is in agree-
ment with studies that successfully predicted groundwater
age from hydrophysical data using metamodels (Fienen et
al., 2016, 2018; Starn and Belitz, 2018; Starn et al., 2021), in
particular with Fienen et al. (2016), who produced compara-
ble results predicting groundwater age using three different
machine learning approaches with a consistent input dataset.
Both SR and GBR have their advantages and disadvantages
regarding model construction, transparency, and adaptabil-
ity to new parameters or applications, etc. For example, SR
provides an explicit model equation as output, which is more
transparent and straightforward to apply in other applications
but may be subject to injection of bias by the modeller’s deci-
sions for the allowable SR grammar rules. GBR is less trans-
parent but may be less subject to the injection of modeller
biases. Both SR and GBR can be adapted to new parameters
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and modelling settings rapidly. The performance of the two
metamodelling methods is very similar in terms of providing
groundwater age distributions that correspond to those gen-
erated from the LPM.

4.2 Relationships between hydrochemistry and
groundwater age distributions

Both metamodelling approaches provide an opportunity to
explore, interrogate and quantify the respective influence of
different variables (e.g. hydrochemical analytes) on the pre-
dictions (e.g. age distributions). These provide insights into
the relative importance (‘“feature importance”) of recording
specific analytes for making predictions of groundwater age
and also provides insights into the hydrogeological system
itself and the controls on physical (flow) and chemical pro-
cesses (reactions). The results of this analysis and a discus-
sion on potential insights and implications follow.

The hydrochemical parameters with most influence on the
SR and GBR models were identified by scaling the relative
variable weights for each model from O to 1 and then de-
termining the median and MAD of these weightings, within
each 40-member ensemble, at each of the five modelled per-
centiles in the age distribution (Fig. 8). Additionally, for the
SR model, a sensitivity analysis was undertaken whereby the
value for a given hydrochemical variable was increased or
decreased by 10 %, while the values for all other variables
were held constant.

PO4-P (dissolved reactive phosphorus, DRP), NH3-N, DO
and T (groundwater temperature) were found to be the pa-
rameters with greatest overall influence on the unchained
models, having median weights across all age percentiles
0f 0.74,0.55, 0.46 and 0.48, respectively, for the SR and 0.37,
0.98, 0.17 and 0.20 for the GBR, respectively. All other hy-
drochemical parameters had median weights of less than 0.4
and most had median weights of less than 0.2 for the SR.
Median weights for all other hydrochemical parameters for
the GBR were below 0.2 (Fig. 8). Sensitivity analysis with
the SR model showed that, when the values of all other hy-
drochemical variables were held constant, a 10 % increase in
PO4-P or NH3-N resulted in a median increase in the esti-
mated age of 3 % and 1 %, respectively, across all simulated
age percentiles, whereas a 10 % increase in DO caused a 1 %
decrease in the simulated age but only for the 5th to 20th per-
centiles. Temperature was the most sensitive parameter, with
a 10 % increase in T causing the estimated age to decrease by
approximately 20 % across all percentiles. Sensitivity analy-
sis showed that, for all other variables, a 10 % increase in
value resulted in a change of less than 1 % in the estimated
age for any percentile. This indicates, that for the specific
case of this study area, reasonable estimates of site-specific
age distributions can be generated with fewer hydrochemical
parameters as input into the metamodels, though this could
not have been known a priori.
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The importance of most hydrochemical parameters var-
ied substantially within the individual models of each 40-
member ensemble, as shown by relative MADs (MAD di-
vided by median) of up to 60 % (Fig. 8). This shows that, for
a given age percentile, a particular hydrochemical variable
could have high weighting in some models but low weight-
ings for other models. This result likely reflects the high cor-
relation among some hydrochemical variables (Fig. 2). Due
to this correlation, if a particular variable is randomly se-
lected for inclusion in the initiation of the SR or GBR al-
gorithm, those variables to which it is correlated provide rel-
atively little improvement in model predictions and so tend
to be excluded. For example, a model that includes K would
be relatively unlikely to include Na, due to the correlation be-
tween them. However, because the SR and GBR algorithms
are seeded randomly, models that include K (but likely not
Na) as well as models that include Na (but likely not K) can
be produced within a single 40-member ensemble — result-
ing in an overall higher MAD and lower median weighting
for such variables across the ensemble. This interpretation is
supported by the fact that the variables such as PO4-P, NH3-
N, DO and T have relatively low correlations to other vari-
ables (Fig. 2).

4.2.1 Organic matter oxidation

Consistent with a decrease in redox potential over time, the
SR and GBR models identify that the concentrations of NH3-
N, Fe and Mn all tend to increase with groundwater age,
whereas concentrations of DO and NO3-N tend to decrease.
These patterns are anticipated, based on observations of other
New Zealand groundwater systems (Daughney et al., 2012;
Morgenstern and Daughney, 2012) and the known sequence
of energetics in the oxidation of organic matter in aquifers
(McMahon and Chapelle, 2008). The strong positive weight-
ings of PO4-P in the age models (Fig. 8) are inferred to reflect
its release into solution concomitant with reductive dissolu-
tion of iron and/or manganese oxide minerals (e.g. Hongve,
1997; Johnson and Loeppert, 2006). Of note, PO4-P is re-
tained as a predictor variable in over 90 % of the individ-
ual SR models developed across all percentiles, indicating
that the geochemical processes that control its concentra-
tion are omnipresent across the study area. The SR and GBR
models do not identify a strong negative correlation between
SO4 concentration and groundwater age (Fig. 8), suggesting
that redox potential has not declined to sulfate-reducing con-
ditions at a sufficient number of sites for this relationship
to be prevalent in the dataset. Likewise, the SR and GBR
models detect only weak relationships between groundwater
age and HCOj3 or pH, suggesting that the concentrations of
these variables are not exclusively controlled by previously
reported relationships between organic matter oxidation, al-
kalinity and acidity (Scott and Morgan, 1990; Sverdrup et al.,
2019).

https://doi.org/10.5194/hess-27-4295-2023



C. Tschritter et al.: Estimation of groundwater age distributions from hydrochemistry

10
Age percentile - SR

10 33 50 66 %0
08

06 - =

04 . - F

Ensemble Median Weight, Unchained SR

0.0

s ¢ =2 ~ 3 ©°© & & £ 3
o [
T
10
-3 Age percentile - GBR
o 10 3 50 66 %0
3
€08
©
=
g
=]
2 06
=)
g
=
504
= -
2
v - -
S 02 - - T
£ - - -
@ - d - -
] - -
] - _ T _ 1] +
s - , - _ n _ld ~ |
00 == == = ~ = =
8 g2 2 * 8 o 2 2 £ g
] &

4309

PO4-P
NO3N
NH3N
PHLAB
Do
ECLab
d1so
dD

PO4-p
NO3N
NH3N

PHLAB

DO

Figure 8. Ensemble median variable weights (scaled from O to 1) from unchained SR and GBR models, for selected percentiles in the age
distribution (10th, 33rd, 50th in red, 66th and 90th, shown from left to right for each variable). Error bars represent the ensemble median

absolute deviation.

The results of this study can only at best provide semi-
quantitative insights into the geochemical kinetics of organic
matter oxidation in the Heretaunga Plains aquifer system,
based on the rate of decline in redox potential as indicated by
changing concentrations of the above-listed redox-sensitive
parameters. Evaluation of the concentrations of DO, NO3-
N, Fe and Mn indicates that the oxidative capacity of the
Heretaunga Plains groundwater is dominated by DO (see
Scott and Morgan, 1990). As noted above, the models in
this study indicate that a 10 % increase in DO concentration
corresponds to a median decrease of approximately 1% in
the estimated groundwater age. Noting that different types of
organic matter may oxidise at different rates (Westrich and
Berner, 1984), for simplicity we assume that all organic mat-
ter in the study area is equally reactive (Middelburg, 1989)
and that its oxidation is described by first-order kinetics
(Tarutis, 1993), such as In[DO;] = (In[DO;~¢] — kt) (Lang-
muir, 1997). As an indicative result only, making the assump-
tion that initial DO and organic matter concentrations were
8mgL~! and within the range 3-8 mgL~!, respectively,
across all sites, the models developed in this study indicate
an average rate constant of logk(1/y) = —0.6, which is com-
parable to the values reported by Westrich and Berner (1984)
and Middelburg (1989), albeit for marine sediments instead
of for aquifers. Greater insight into the rate of organic matter
oxidation in the Heretaunga Plains could be gained if future
studies make measurements of the concentrations and reac-
tivities of dissolved and solid-phase organic matter.
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4.2.2 Water-rock interaction

Aside from reductive dissolution of iron and manganese ox-
ides discussed in the previous section, water—rock interac-
tion is expected to increase the dissolved concentrations of
mineral-forming elements such as Ca, Mg, Na, K or SiO,
(Sverdrup et al., 2019). These five hydrochemical parame-
ters have low median weightings in the SR and GBR models
developed in this study (Fig. 8), suggesting that they are not
important predictors of groundwater age at the majority of
sites. However, these same five parameters were retained in
close to half of all models across all percentiles, suggesting
that they are important predictors of age for at least some
sites.

We infer that the concentrations of Ca, Mg, Na, K and
SiO, are retained in the SR and GBR models primarily
as a means of differentiating rainfall-recharged groundwa-
ters from river-recharged groundwaters, which then allows
the algorithms to apply appropriate age estimations depend-
ing on the relevant recharge source. As noted in Sect. 2.3,
river-recharged groundwaters typically have slightly lower
concentrations of Ca, Mg, Na, K and/or SiO; compared to
rainfall-recharged groundwaters, which results from the rel-
atively faster accumulation of these substances during the
passage of water through the soil zone, likely due to mineral
dissolution (e.g. of carbonates), ion exchange and evapora-
tion (Morgenstern et al., 2018). This inference is supported
by the fact that the age estimates for the subset of rainfall-
recharged sites are generally more sensitive to the concentra-
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tions of Ca, Mg, Na, K and SiO» used as input to the models.
This inference would be usefully tested through future inves-
tigations that evaluate the respective roles of silicate mineral
weathering, ion exchange and evaporation during the passage
of recharge through the soil zone in the Heretaunga Plains.

4.2.3 Human impacts

The SR and GBR models do not identify strong relation-
ships between groundwater age and any of the commonly
analysed indicators of human impact on groundwater quality.
In New Zealand, human impacts on groundwater quality are
most readily identified by elevated concentrations of NOs3-
N, sometimes co-occurring with elevated concentrations of
Na, K, Mg and/or CI (Daughney et al., 2012; Morgenstern
and Daughney, 2012). That NO3-N is not a strong predic-
tor of groundwater age in the Heretaunga Plains likely re-
flects that many of the sites are recharged from rivers, which
have lower NO3-N concentrations compared to groundwa-
ters that are recharged from rainfall (Sect. 2.2), and/or that
the degree of impact evident in the recharge water has not
changed substantially over time. Elevated concentrations of
PO4-P in New Zealand groundwater can arise from dairy-
ing land use, especially over gravel or sand aquifers (Mc-
Dowell et al., 2015), but such land use is not common in
the Heretaunga Plains (Smith et al., 2020), and hence PO4-P
concentrations are instead inferred to reflect geogenic origin
(Sect. 4.2.1). Concentrations of pesticides, emerging contam-
inants or microbial pathogens can also reveal human impact
on groundwater quality but were not analysed in this study.

4.2.4 Temperature

The SR and GBR models reveal a strong inverse relation-
ship between T and estimated groundwater age; i.e. as T
increases, the modelled groundwater age decreases. Particu-
larly for the higher age percentiles, 7' is among the variables
with the highest median weightings across the model ensem-
bles (Fig. 8). The available data from this study do not permit
elucidation of the cause(s) of the strong inverse relationship
between T and estimated groundwater age, but the follow-
ing paragraphs present two concepts that could be explored
through further investigations.

One possibility is that an increase in temperature causes an
increase in geochemical reaction rates, such that groundwa-
ters interpreted to be younger based on the models developed
in this study are also seen to be warmer. The relationship be-
tween T, reaction rates and estimated groundwater age can
be semi-quantitatively evaluated using the Arrhenius expres-
sion (Eq. 4):

dlogk E,

= , 4
dT ~ 2.303RT2 @)

where k is the rate constant, E, is the activation energy, R
is the gas constant and T is expressed in the kelvin scale.
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For the comparison of reaction rates k| and k; at two tem-
peratures 77 and 7>, the above expression can be arranged
(Langmuir, 1997) as Eq. (3):

kB[l .
og— = ———.
8 T 2303R| T T

In the application to the present study the above equation
is aggregated across all reaction types because there is no
available means of identifying specific types of reactions that
may be more important than others. On this basis, the above
equation suggests that the average E,, aggregated across
all reaction types, is approximately 25kcalmol~!, derived
from 771 = 15°C =288 K (the median across all samples),
T» =16.5°C (a 10 % increase above the median) = 289.5 K
and k1 /ky = 0.8 (because the models developed in this study
indicate that a 10% increase in 7 causes a median de-
crease of approximately 20 % in the estimated age). This
estimated value for E, is in the range expected for mineral
dissolution reactions (8-36kcalmol™') and ion exchange
(> 20 kcal mol~!) (Lasaga, 2018) and for organic matter de-
composition (ca. 20-30kcal mol~!) (Leifeld and von Liit-
zow, 2014). The correspondence between these previously
published values of E, and the estimate derived in this study
suggests that the effect of 7 on modelled groundwater age
may indeed be driven by increases in the rates of reactions
such as organic matter oxidation and water—rock interaction
as discussed above. Accordingly, we surmise that T is re-
tained in the models as an important modifier of the effects of
such reactions on hydrochemistry. However, further research
is required to rigorously test this possibility.

Another possibility is that 7 may affect the estimated
groundwater ages through hydrologic factors, rather than
through geochemical kinetics as described above. For exam-
ple, one possibility is that there is a significant difference
in the temperature of slower-moving groundwaters that are
recharged from rainfall compared to faster-moving ground-
waters that are recharged primarily from river seepage (see
Fig. 1). This hypothesis is not supported by the measured
values of 7, which show no significant differences aris-
ing from the inferred groundwater recharge source. More-
over, it is probable that river-recharged groundwaters, being
sourced from higher-altitude precipitation, would be cooler
than rainfall-recharged groundwaters, which would lead to a
relationship between temperature and age that is opposite to
observed in this study. However, this study is limited by a
relatively small number of samples, so further investigation
with collection of samples across a wider range of seasons
and recharge conditions would be beneficial to elucidate any
hydrological controls on the observed relationships between
T and groundwater age.
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4.3 Applications

4.3.1 Estimation of groundwater age distributions
without age tracer data

The SR and GBR models developed in this study can be
used to estimate the values for the nine specific percentiles
in the age distributions solely on the basis of groundwater
chemistry, i.e. for sites and samples for which age tracer data
are not available. To illustrate this application, we make use
of data collected through the Hawke’s Bay Regional Coun-
cil groundwater quality monitoring programme (Table S4).
These samples are collected using the same protocols and
analysed with very similar procedures for the same variables
as described in Sect. 3.1 and so are considered suitable for
use with the SR and GBR models developed in this study.
The only exception is for B, F, 82H and §'30, which are not
routinely measured by the regional council; however, these
four variables all have low influence in the SR and GBR
models (Fig. 8), and so we applied average values derived
from all other sites, which we conclude would have had little
influence for this application.

The spatial variations in groundwater age for sites with-
out available age tracer data are shown in (Fig. 5). In some
areas, the SR and GBR estimates provide infilling of mod-
elled age in between the locations where LPMs are currently
available. For example, the SR and GBR age estimates can
improve the understanding of the demarcation between the
zones of younger river-recharged groundwater in contrast to
older rainfall-recharged groundwaters (Fig. 1). The SR and
GBR models can also estimate groundwater age quite dis-
tant from the nearest sites having available LPMs, thereby
providing useful information for groundwater management
where such information was previously lacking.

The temporal variations in groundwater age can also be as-
sessed using the SR and GBR models at sites for which time-
series groundwater chemistry data are available (Fig. 9). Ap-
plication in this study suggests that the temporal shifts in the
groundwater age distribution at a single site can be substan-
tially larger than the ensemble MAD for a single sampling
date. This suggests that temporal or seasonal variations in
the groundwater age distribution can be reasonably large at
some sites. This inference is supported by the age tracer re-
sults for the few sites that had been sampled on more than
one occasion. For these sites, there were cases where the
LPM age distributions were inferred to vary temporally or
seasonally, based on observed shifts in the concentrations of
the age tracers; these sites also displayed temporally variable
hydrochemistry. Thus, it is reasonable to anticipate that sea-
sonal or longer-term variations in recharge and/or abstraction
on groundwater flows that are known to affect groundwater
age distributions (Engdahl et al., 2016; Toews et al., 2016;
Yang et al., 2018) may be indicated by temporal shifts in
groundwater chemistry. The SR and GBR models developed
in this study indicate such shifts in groundwater age distribu-
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tion. Moreover, different percentiles in the age distribution at
a single site can display quite different temporal patterns, as
shown by a relatively constant 50th percentile but more vari-
able 10th percentile at Site 413 (map ID 20) or the opposite
pattern at Site 611 (map ID 77) (Fig. 9).

We acknowledge that the SR and GBR models devel-
oped in this study were based primarily on samples col-
lected in the period April to June and the years 2014-2019
(Sect. 3.1); hence caution must be exercised for their applica-
tion to other seasons or time periods. We also acknowledge
that the metamodels described in this paper are specific to the
training region. While the same metamodelling approaches
may be used elsewhere where there are sufficient ground-
water chemistry data, the same metamodel hyperparameters
are unlikely to apply in other regions (Doherty and Moore,
2021). Therefore, age tracer training datasets would be re-
quired also for other regions. However, within a single hy-
drogeological setting, the metamodelling approach enables
a space-for-time substitution while preserving the key pro-
cesses that relate groundwater chemistry to groundwater age.
We therefore conclude that the SR and GBR models can offer
useful insights into spatial and temporal patterns in ground-
water age distribution based on chemistry and therefore as-
sist sustainable groundwater management if age tracer data
are not available.

4.3.2 Constraining LPMs

The approach taken in this study is to treat the LPM-based
age distribution as a reference, which the SR and GBR mod-
els are subsequently developed to reproduce. The SR and
GBR models are therefore acting to generalise the relation-
ships between chemistry and the LPM age percentiles based
on a set of independent samples from a range of sites. That
the SR and GBR models perform well across the Heretaunga
Plains dataset indicates that there are generalisable relation-
ships between groundwater chemistry and LPM age. Thus,
samples for which the SR and GBR models perform poorly
may indicate that the LPM age distribution is in fact in error
and could be better constrained if outputs from the SR and
GBR models were taken into account.

The SR and GBR models may assist the choice of mix-
ing model to be used when fitting an LPM to age tracer data.
In the absence of any other information, the general prac-
tice is to select the simplest LPM mixing model that pro-
vides an adequate fit to the available age tracer data, in accor-
dance with the principle of parsimony. Thus, an EPM (hav-
ing just two optimisable parameters) is typically the mixing
model applied for sites that have been sampled for age tracers
on only one occasion because a more complex BMM (with
five optimisable parameters) would be under-constrained and
therefore unjustifiably complex. However, the age distribu-
tion inferred from groundwater chemistry may indicate sites
for which a BMM is more appropriate, even if the available
age tracer data can be adequately fitted by an EPM. This case
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Figure 9. Temporal patterns in the estimated values for selected age percentiles at two sites based on SR models (a, ¢) and GBR models (b, d).
Points and error bars represent the median and MAD for the relevant 40-member model ensemble, respectively. Map IDs in brackets link to

the location of the sites on the map in Fig. 5.

is illustrated for Site 1940 (map ID 75), which has only been
sampled for age tracers on one occasion but for which the
SR and GBR models imply a more complex age distribution
more consistent with a BMM than an EPM (Fig. 6). While
we recommend that the fitting of the LPM should be based on
the age tracer data, we suggest that the SR and GBR models
can usefully guide which lumped parameter mixing model(s)
may be appropriate.

The SR and GBR models may also help to constrain the
LPM parameter values, in particular in the Northern Hemi-
sphere, where tritium age interpretations are still ambiguous.
Depending on groundwater age, and time and frequency of
age tracer sampling, for some sites, the age distribution pa-
rameters can robustly be constrained. These could be used for
training the metamodels, which could then be used to help
estimate the parameters for the sites where age tracers are
insufficient to constrain all model parameters. Specific appli-
cations could also be to use the metamodels to constrain the
second LPM parameter where only one age tracer measure-
ment in time is available and to demonstrate variable ages
in a well where lots of hydrochemistry data are available
(e.g. quarterly monitoring) but only few age tracer samples.
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4.3.3 Informing groundwater model-based
management decisions

The metamodels developed in this study are able to enhance
our understanding of groundwater age distributions across an
aquifer system, through extrapolation of age tracer data to
any site where there are groundwater chemistry data. This
can then provide greater insight into how the groundwater
system functions, in particular groundwater recharge rates,
the location of aquifer discharge areas and the provenance
of recharge sources. This information can also inform esti-
mates of groundwater travel times, how these travel times
may vary across an aquifer system and how this may affect
well source protection zone delineation. Estimates of age in-
formation can inform us of how an aquifer system may be
changing over time in response to changing climate and/or
abstraction pressures. In all of these ways, this information
helps inform a conceptualisation of a groundwater system
required for the construction of numerical models used to
support groundwater management decisions (Ferguson et al.,
2020).

The estimated ages derived from the metamodels can also
be used to provide history matching targets for numerical
models that are used to inform, and reduce the uncertainty as-
sociated with, groundwater management decisions (Sanford,
2011; Koh et al., 2018). Wilcox et al. (2021) discuss various
opportunities offered by such combinations of physics-based
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modelling with metamodelling to bridge the respective lim-
itations of data sparsity and the need for physics-based con-
straints to ensure reliability and viability.

5 Conclusions and future work

Overall, this study has shown that SR and GBR are useful ap-
proaches for codifying the relationships between hydrochem-
istry and groundwater age at the aquifer scale. This finding
is consistent with previous studies that have identified sta-
tistical or first-principle relationships between groundwater
chemistry and age (e.g. Daughney et al., 2012; Morgenstern
et al., 2012; Beyer et al., 2016, Sverdrup et al., 2019). The
key advance in this study is to extend these hydrochemistry—
age relationships to specific percentiles in the age distribu-
tion, thereby providing greater insights for groundwater man-
agement, such as the potential for occurrence of young or
old groundwater fractions that may be associated with spe-
cific types of contaminants. Both metamodel approaches are
shown to effectively estimate groundwater age distributions
that correspond with LPM age distributions, from hydro-
chemical analytes within the hydrogeological context of the
training region. As well as providing predictions of age dis-
tributions, which can directly inform system understanding
and management, the analysis presented here also provides
insight into the chemical pathways that are active in the study
region.

We identify three avenues for extension of this study.

Firstly, we note that the metamodels generated in this
study are likely to be specific to the study region. The SR and
GBR approaches could be extended to estimate groundwa-
ter age distributions from hydrochemistry in other aquifers,
or even at the national and international scales. Such work
would serve to identify the universality of, or limits to, trans-
ferability of the age—hydrochemistry relationships and the
models that encode them. A related opportunity is to inves-
tigate the utility of other datasets alongside hydrochemistry,
for example, well location, depth and elevation, which may
improve the elucidation of age—chemistry relationships iden-
tified in this study. A second opportunity for further work
is to apply the age—hydrochemistry relationships to improve
or calibrate kinetics models of water—rock interaction or bio-
geochemical processes (e.g. Sverdrup et al., 2019).

A third opportunity for further work is to apply the age—
hydrochemistry relationships in model-based groundwater
management decision support. Estimated groundwater ages
in combination with other geological information can in-
form groundwater system conceptualisations, such as the
spatial disposition and rates of groundwater recharge and dis-
charge. Groundwater age estimates can also be used as his-
tory matching constraints to inform and reduce the uncer-
tainty of groundwater related risk assessments (Wilcox et al.,
2021; Sandford, 2011). These could include, for example, the
security of groundwater supplies in a changing climate, the
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occurrence and transport of contaminants, and the modera-
tion of groundwater abstraction regimes.
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