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Abstract. Data assimilation (DA) of remotely sensed leaf
area index (LAI) can help to improve land surface model es-
timates of energy, water, and carbon variables. So far, most
studies have used bias-blind LAI DA approaches, i.e. without
correcting for biases between model forecasts and observa-
tions. This might hamper the performance of the DA algo-
rithms in the case of large biases in observations or simula-
tions or both. We perform bias-blind and bias-aware DA of
Copernicus Global Land Service LAI into the Noah-MP land
surface model forced by the ERA5 reanalysis over Europe in
the 2002–2019 period, and we evaluate how the choice of
bias correction affects estimates of gross primary productiv-
ity (GPP), evapotranspiration (ET), runoff, and soil moisture.

In areas with a large LAI bias, the bias-blind LAI DA leads
to a reduced bias between observed and modelled LAI, an
improved agreement of GPP, ET, and runoff estimates with
independent products, but a worse agreement of soil moisture
estimates with the European Space Agency Climate Change
Initiative (ESA CCI) soil moisture product. While compar-
isons to in situ soil moisture in areas with weak bias indicate
an improvement of the representation of soil moisture clima-
tology, bias-blind LAI DA can lead to unrealistic shifts in
soil moisture climatology in areas with strong bias. For ex-
ample, when the assimilated LAI data in irrigated areas are
much higher than those simulated without any irrigation ac-
tivated, LAI will be increased and soil moisture will be de-
pleted. Furthermore, the bias-blind LAI DA produces a pro-
nounced sawtooth pattern due to model drift between DA up-
dates, because each update pushes the Noah-MP leaf model

to an unstable state. This model drift also propagates to short-
term estimates of GPP and ET and to internal DA diagnostics
that indicate a suboptimal DA system performance.

The bias-aware approaches based on a priori rescaling of
LAI observations to the model climatology avoid the neg-
ative effects of the bias-blind assimilation. They retain the
improvements in GPP anomalies from the bias-blind DA
but forego improvements in the root mean square devia-
tions (RMSDs) of GPP, ET, and runoff. As an alternative
to rescaling, we discuss the implications of our results for
model calibration or joint parameter and state update DA,
which has the potential to combine bias reduction with opti-
mal DA system performance.

1 Introduction

Vegetation plays a major role in climatic interactions be-
tween the land surface and the atmosphere. Via transpira-
tion and photosynthesis, it contributes to the exchange of
energy, water, and carbon at the surface, and it links the
moisture in the deeper soil layers to the atmosphere (Bo-
nan, 2019). On short timescales, these exchanges can im-
pact precipitation and atmospheric circulation (Betts et al.,
1996; Miralles et al., 2016). On longer timescales, the net up-
take of CO2 by vegetation (Friedlingstein et al., 2022) might
be decreased due to climate change, contributing to rising
CO2 levels (Green et al., 2019; Walker et al., 2021). Land
surface models (LSMs) are often used to estimate these ex-
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change fluxes as part of earth system models or as the land
component in numerical weather prediction (NWP) systems
(e.g. Balsamo et al., 2009; Lawrence et al., 2019; Skamarock
et al., 2021). An accurate description of vegetation in LSMs
can therefore improve estimates of evapotranspiration (ET)
in NWP (Boussetta et al., 2013), or it can be used to esti-
mate how vegetation will develop under a changed climate
(Laanaia et al., 2016) and how this affects the land carbon
sink (Tharammal et al., 2019a, b; Green et al., 2019).

However, the dynamic simulation of vegetation in global
LSMs is still in its infancy and has large uncertainties, espe-
cially in dry climates (Fox et al., 2018; Mahmud et al., 2021).
Satellite-based vegetation data assimilation (DA) can be used
to reduce the uncertainties of the vegetation-related LSM es-
timates. Satellite-derived leaf area index (LAI) is commonly
used for DA, because it can be derived from optical sensors
fairly accurately (Fang et al., 2019) and is also available as
a model state variable in several land surface models with
a dynamic vegetation component. Satellite LAI has, for ex-
ample, been assimilated into the Interactions between Soil
Biosphere Atmosphere (ISBA) LSM (Sabater et al., 2008;
Barbu et al., 2014; Fairbairn et al., 2017; Albergel et al.,
2017; Mucia et al., 2020), the Noah LSM with multiparame-
terisation options (Noah-MP; e.g. Kumar et al., 2019b, 2021;
Rahman et al., 2022b; Nie et al., 2022), the Community Land
Model (CLM; e.g. Fox et al., 2018; Ling et al., 2019), and the
Carbon-Tiled ECMWF Scheme for Surface Exchange over
Land (CTESSEL; e.g. Jarlan et al., 2008). Alternatives are,
for example, to use microwave brightness temperatures to si-
multaneously update the soil moisture and LAI (Sawada and
Koike, 2014; Sawada et al., 2015) or to use microwave vege-
tation optical depth (VOD) retrievals to update LAI (Kumar
et al., 2020, 2021).

The most commonly used methods for assimilating LAI
into LSMs are based on the Kalman filter. A fundamental
assumption of these methods is that modelled and observed
LAI are unbiased. Yet, in reality, biases nearly always exist.
This includes biases of both model estimates and observa-
tions with respect to the unknown true value and the bias
between the model estimates and observations themselves. If
the observations are closer to the true value than the model
estimates, a “bias-blind” DA (Dee, 2005) is able to correct
the model bias to some extent, because it pulls the model
closer towards the observations and hence the true values.
This comes at the risk of introducing unintended negative
side effects. For example, it is possible that other processes
(e.g. transpiration) are only represented well for a biased
model climatology. Large updates in a subset of the model
state might therefore propagate to other model components,
which can negatively affect estimates of state variables and
fluxes of these processes (De Lannoy et al., 2007b; Crow
et al., 2020). Furthermore, if the model equilibrium state is
far away from the observations, the updates towards the ob-
servations might not persist for long. Instead, the model drifts
back towards its original state, leading to a sawtooth-like pat-

tern in the resulting time series and potentially also to unre-
alistic water, carbon, and energy flux estimates (Dee, 2005;
De Lannoy et al., 2007b). Changes in observation frequency
or periodically missing data may then also introduce spurious
trends into the analysis (Dee, 2005).

Most LAI assimilation studies so far have used bias-blind
approaches, i.e. they did not apply any bias correction meth-
ods to account for existing biases between modelled LAI and
observed LAI. This is often justified by the argument that
the bias is caused by model deficiencies (e.g. Fairbairn et al.,
2017; Fox et al., 2018; Albergel et al., 2020). Nonetheless,
there are indications that the presence of bias affects the per-
formance of LAI assimilation. Albergel et al. (2017, 2020)
noticed systematic drifts towards the previous model esti-
mate on days without observations. Kumar et al. (2019b)
and Mocko et al. (2021) also found model drifts leading to
sawtooth patterns in analysed LAI when using the Noah-MP
LSM with dynamic vegetation.

Various techniques have been used to limit the negative
effects listed above. Albergel et al. (2017, 2020) and Mucia
et al. (2021) additionally assimilated surface soil moisture
retrievals. This additional constraint can help to prevent neg-
ative side effects of the LAI DA on the model hydrology, but
only in regions and periods where sufficient soil moisture ob-
servations are available. Kumar et al. (2019b), Mocko et al.
(2021) and Rahman et al. (2022b) interpolated their assimi-
lated LAI product to daily values to prevent issues due to dif-
ferent observation frequencies and to limit the drift towards
the original equilibrium state. Fox et al. (2018) adaptively in-
flated the model error in the case of large bias between mod-
elled LAI and the observations. The latter two techniques
force the analysis to stay close to the observations, which
begs the question of whether it might be more suitable to use
a direct insertion approach or to prescribe the observed LAI
instead of modelling it dynamically, as for example done by
Maertens et al. (2021) and Huang et al. (2022).

Bias-aware data assimilation is another possible avenue to
handle bias between models and observations. This includes
a priori rescaling approaches, which map the observations
into the model space based on a priori estimates of model and
observation statistics (e.g. Reichle and Koster, 2004; Jarlan
et al., 2008; Khaki et al., 2020), or online approaches which
adaptively estimate dynamic bias corrections (e.g. Derber
and Wu, 1998; Dee, 2005; De Lannoy et al., 2007a). Only a
few studies have considered bias-aware approaches based on
rescaling for LAI DA (Jarlan et al., 2008; Khaki et al., 2020).
However, so far, no study has directly compared bias-blind
and bias-aware LAI DA.

In this article, we compare bias-blind LAI DA with bias-
aware LAI DA using two a priori rescaling techniques com-
monly used for satellite DA. More specifically, we assimilate
Copernicus Global Land Service (CGLS) LAI (Smets et al.,
2019) into the Noah-MP model (Niu et al., 2011) forced with
the fifth-generation European Center for Medium-Range
Weather Forecasts (ECMWF) Reanalysis (ERA5; Hersbach
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et al., 2020) reanalysis over Europe, and we quantify the ef-
fects of bias-blind and bias-aware DA on vegetation and sur-
face water flux and state estimates.

A detailed description of the model, data, and rescaling
approaches used can be found in Sect. 2. Section 3 shows the
impacts of the bias-blind DA on the vegetation and hydrol-
ogy model estimates, evaluates the results using independent
reference datasets, and compares the model simulations to in
situ data from Majadas, Spain. Additionally, we provide an
analysis of the sawtooth pattern in the bias-blind DA and of
internal DA diagnostics. We discuss the implications of our
results for LAI DA design and model calibration in Sect. 4.
A summary of our main conclusions is given in Sect. 5.

2 Data and methods

2.1 Land surface model

We used version 4.0.1 of the Noah-MP LSM (Niu et al.,
2011; Yang et al., 2011) with dynamic vegetation as imple-
mented in the NASA Land Information System (LIS; Ku-
mar et al., 2006; Peters-Lidard et al., 2007)). The Noah-MP
LSM is based on the Noah LSM, which is widely used for
land surface modelling and DA on a regional to global scale
(e.g. Rodell et al., 2004; Kumar et al., 2014, 2019a; Maertens
et al., 2021). Noah-MP includes a multitude of optional im-
provements for snow, water, and vegetation modelling. It has
already been used to update LAI using optical satellite im-
agery (Kumar et al., 2019b; Erlingis et al., 2021; Rahman
et al., 2022b) and microwave vegetation optical depth (Ku-
mar et al., 2020, 2021).

The dynamic vegetation model of Noah-MP is based on
the vegetation model in the Biosphere–Atmosphere Trans-
fer Scheme (BATS) model (Dickinson et al., 1998). In this
model, gross primary productivity (GPP) is allocated to
the four vegetation carbon pools (leaves, non-woody stems,
wood, and fine roots) in each simulation step. LAI is calcu-
lated from leaf carbon mass by multiplying with a vegetation-
type-dependent specific leaf area. It can feed back to other
model state variables and fluxes via its effect on photosynthe-
sis, evapotranspiration (ET), precipitation interception, and
runoff. Changes in LAI can therefore also induce changes in
the model hydrology. A more detailed overview of the dy-
namic leaf model in Noah-MP is given in Appendix A.

Maps of soil texture and land cover, and multiple pa-
rameters based on these, are required as input to the
model and were taken from the NCCS Dataportal (https://
portal.nccs.nasa.gov/lisdata_pub/data/PARAMETERS/, last
access: 3 November 2023; Tian et al., 2008). We used
the STATSGO-FAO (State Soil Geography – Food Agricul-
tural Organisation) soil texture map produced by the Na-
tional Center for Atmospheric Research (NCAR). For veg-
etation, we used the IGBP-NCEP (International Geosphere-
Biosphere Programme – National Centers for Environmen-

tal Prediction) land cover map based on Friedl et al. (2002).
This map classifies some pixels in France, Spain, Ireland and
Germany as evergreen broadleaf forests, which the model in-
terprets as tropical rainforests. We therefore replaced these
pixels with the land cover class from the University of Mary-
land (UMD) land cover map (Hansen et al., 2000). The soil
texture and land cover maps are available on a 0.01◦ regu-
lar grid and were upscaled to a 0.25◦ grid using the largest
fraction within a model grid cell.

As forcing, Noah-MP requires the lowest-level atmo-
spheric model (about 10 m a.g.l. – above ground level) air
temperature, wind speed, specific humidity and pressure, the
downwelling fluxes of short-wave and long-wave radiations,
as well as precipitation (partitioned into solid and liquid
phases). We used data from ERA5, the latest ECMWF re-
analysis, for this purpose. The ERA5 forcings have an origi-
nal resolution of 31 km and were mapped to a 0.25◦ regular
grid. The initial model state was obtained from a 30-year de-
terministic spin-up run, cycling three times with the forcing
data from 2000 to 2010, followed by 2 years of ensemble
spin-up from 2000 to 2002.

The model domain in this study covers Europe as well as
parts of northern Africa and the Middle East on a regular grid
with 0.25◦ resolution (ranging from 29.875◦N, −11.375◦E
to 71.625◦N, 40.125◦E). It includes a wide range of cli-
mates and vegetation types, from tundra and boreal forests in
Scandinavia to the Sahara Desert. We performed the model
simulations from 2002 through 2019, using a 15 min sim-
ulation time step and outputting daily averages centred at
00:00 UTC.

2.2 LAI observations

We assimilated the Copernicus Global Land Service (CGLS)
satellite LAI product version 2 derived from the Project
for On-Board Autonomy – Vegetation (PROBA-V) and the
Satellite Pour l’Observation de la Terre – Vegetation (SPOT-
VGT) (Verger et al., 2014). This product has been used for
LAI DA before, e.g. by Barbu et al. (2014), Albergel et al.
(2017), and Mucia et al. (2020). The 1 km resolution CGLS
LAI product is provided as one image every 10 d composed
from an adaptive window of 15 to 60 d, depending on the
availability of valid measurements (Smets et al., 2019). We
masked out gap-filled values and upscaled the data to 0.25◦

resolution by averaging over all observations within one
model grid cell. In contrast to Kumar et al. (2019b), we did
not interpolate LAI to daily values. In this way, we (i) did not
introduce observation error autocorrelations, (ii) allowed our
results to be generalizable to LAI datasets (or proxy datasets
as used in Kumar et al., 2020; Mucia et al., 2021) with less
frequent observations or changes in observation frequency,
and (iii) could investigate whether the filter efficiently inter-
polates and operates as intended (or assumed). We assimi-
lated the aggregated data every 10 d at 00:00 UTC where and
when they were available.
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2.3 Data assimilation

We used a one-dimensional ensemble Kalman filter (EnKF;
Evensen, 2003) for assimilating the CGLS LAI observations
into the Noah-MP LSM. The EnKF is a two-step procedure.
First, the model simulates the land surface state xf(t) at the
next assimilation time step t (forecast). Then, the model state
is updated to agree better with the observations y(t), result-
ing in the analysis xa(t). The magnitude of the update (incre-
ment) depends on the innovations (observation minus fore-
cast) and the relative sizes of the forecast and observation
error variances. In a properly configured DA system, the nor-
malised innovations (innovations divided by the total error
standard deviation) should be temporally uncorrelated and
follow a standard normal distribution, i.e. the innovation se-
quence should be a white noise sequence with zero mean and
unit standard deviation (Desroziers et al., 2005). Following
prior work on LAI DA with Noah-MP (Kumar et al., 2019b;
Mocko et al., 2021; Rahman et al., 2022b, a), we used the
EnKF to update the model LAI, i.e. the state vector consisted
only of LAI. For the reasons discussed in Sect. 4.4, we chose
not to add soil moisture to the updated state vector.

In the EnKF, the forecast error is estimated based on an
ensemble of model simulations. We used 24 ensemble mem-
bers, one of which was driven by the original forcing data,
while the others were driven by perturbed radiation and pre-
cipitation forcing data. Additionally, we applied normally
distributed perturbations to the model LAI state variable with
a mean of zero and a standard deviation of 0.01 m2 m−2 every
3 h for the 23 perturbed ensemble members. The unperturbed
ensemble member was used to correct for perturbation bi-
ases due to nonlinear processes using the method described
by Ryu et al. (2009). All of the perturbation specifications
and the observation error standard deviation of 0.05 m2 m−2

were set following Kumar et al. (2019b).
To remove systematic differences between the modelled

and observed LAI, we implemented either of two a pri-
ori rescaling methods: climatological cumulative distribution
function (CDF) matching and a seasonal rescaling of the first
and second moments. CDF matching is commonly used for
soil moisture DA when the various seasons are not distin-
guished (e.g. Reichle and Koster, 2004; Drusch et al., 2005;
Draper et al., 2012; Parrens et al., 2014; Barbu et al., 2014).
It attempts to correct the biases in all statistical moments by
nonlinearly transforming the observation data such that the
empirical CDF of the rescaled LAI data matches the em-
pirical CDF of the modelled data. To estimate the empiri-
cal CDFs for each grid cell individually in a robust way, we
opted to bin the data between the 2nd and 98th percentiles.
We then estimated the CDF by linearly interpolating the per-
centile values between the bin edges. For values outside the
interval [2, 98], the lines for the first and last bin were extrap-
olated to 0 and 100, respectively. The resulting curve was dis-
cretised into 100 equally spaced bins over the full data range
for use in the numerical rescaling procedure. When using

CDF matching for rescaling, the observation error standard
deviations are also rescaled for each grid cell individually by
multiplying with the ratio of the modelled and observed LAI
standard deviations.

The seasonal rescaling method is an adaption of the ad-
ditive seasonal mean correction scheme commonly used for
brightness temperature DA (De Lannoy and Reichle, 2016;
Lievens et al., 2017; Girotto et al., 2019; Bechtold et al.,
2020). Similar to LAI, brightness temperatures also have a
strong seasonal component. The additive rescaling only cor-
rects biases in the first moment (mean). This is valid if the
difference in anomaly variance between the model and ob-
servations is related to different error levels, i.e. the signal
variances are similar (Yilmaz and Crow, 2013). In our case,
differences in anomaly variance are strongly driven by dif-
ferences in the dynamic range of observations and model es-
timates. We assume that the differences in the dynamic range
also result in differences in error levels and are therefore ad-
ditionally corrected for the ratio of the standard deviations of
the model and observations.

For the seasonal rescaling, we calculated the rescaled ob-
servation values LAI′o at each time t via

LAI′o(t)= µm(doy(t))+
σm

σo
· (LAIo(t)−µo(doy(t))) , (1)

with µ∗(doy(t)) the mean modelled (m) or observed (o) LAI
value for the given day of year and σ∗ the standard deviation
of the modelled or observed LAI time series at individual
grid cells. The latter is mainly indicative of the magnitude of
the seasonal variations. The mean seasonal cycle of modelled
and observed LAI was estimated through a three-step proce-
dure as implemented in the Python package pytesmo (Paulik
et al., 2022), i.e. (i) apply smoothing with a 5 d moving win-
dow, (ii) average the values over the days of year across mul-
tiple years (doy), and (iii) smooth the obtained seasonal cycle
using a window of 31 d. When using the seasonal rescaling,
we also rescale the observation error standard deviation for
each grid cell individually by multiplying with σm/σo.

We performed four model runs in total. The first was an
open loop (OL) run without any data assimilation (but apply-
ing the same perturbations). The others were one bias-blind
and two bias-aware LAI DA runs, i.e. runs with

– no bias correction (bias-blind)

– CDF matching for bias correction (CDF-matched)

– seasonal bias correction (seasonally scaled).

2.4 Evaluation metrics

To evaluate the performance of the OL and DA simulations,
we calculated the root mean square deviation (RMSD), linear
correlation (R), and linear anomaly correlation (Ranom) with
independent reference datasets.

RMSD is a common measure for the overall disagreement
between two datasets. It consists of a bias component due
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to bias in the first and second moments (mean and variance
bias) and a correlation component due to the disagreement
between the temporal patterns (Gruber et al., 2020). When
applied to time series with strong seasonal cycles, as is the
case for most variables we evaluate, it is dominated by the
mean bias and the bias in the representation of the seasonal
cycle. It is therefore mainly indicative of the systematic dis-
agreement between modelled and reference data.

The linear correlation R is not affected by mean or vari-
ance bias, but in the case of a strong seasonal cycle, it is also
dominated by bias in the representation of the seasonal cycle.
It therefore quantifies how well the shapes of the seasonal cy-
cles (e.g. peak location, phase shift) of two datasets match.

For assessing the agreement in the intra- and inter-annual
temporal variations, we used the linear anomaly correlation
(Ranom). The anomalies are calculated by subtracting the
long-term mean seasonal cycle for the 2003–2019 period
from the original data for each grid cell. The mean seasonal
cycle is calculated the same way as the seasonal cycle used
for the seasonal observation rescaling (see Sect. 2.3).

To make the metric improvements comparable between
different variables and metrics, we calculated the normalised
information contributions (NICs; Kumar et al., 2009, 2014)
for the three metrics:

NIC RMSD=
RMSDOL−RMSDDA

RMSDOL
(2)

NICR =
RDA−ROL

1−ROL
(3)

NICRanom =
Ranom,DA−Ranom,OL

1−Ranom,OL
. (4)

Positive NIC values indicate an improvement compared to
the OL run (up to a maximum of 1); negative NIC values
indicate a deterioration compared to the OL run.

2.5 Reference data

We used a range of reference data for assessing the impacts
of the different DA methods on different simulated variables.
The vegetation and carbon cycle representations were eval-
uated via GPP, whereas the hydrological component was
evaluated via evapotranspiration (ET), soil moisture (SM),
and runoff, either using in situ data or as spatially gridded
satellite-based products.

We mapped all reference data to the model grid (0.25◦) by
averaging (for gridded datasets) or nearest-neighbour match-
ing (for in situ data). Where available, evaluations were per-
formed using the daily model output. Otherwise, we aver-
aged the model output according to the temporal resolution
of the reference product. In the bias-blind DA, some vari-
ables contained strong trends in the first DA year (2002)
caused by the induced climatology changes. We therefore
limited the evaluation to 2003–2019.

2.5.1 FluxSat GPP

FluxSat (Joiner and Yoshida, 2021) provides global daily
estimates of GPP retrieved from the Moderate Resolution
Imaging Spectroradiometer (MODIS). The retrieval is based
on an empirical light use efficiency model that estimates GPP
via an artificial neural network (ANN) approach. The ANN
was trained using in situ estimates of GPP from eddy co-
variance towers (FLUXNET). FluxSat agrees well with in-
dependent eddy covariance tower measurements (Joiner and
Yoshida, 2020) and has been shown to outperform other GPP
retrieval approaches (Joiner et al., 2018). Since the GPP es-
timates of FluxSat are based on data from optical sensors
(although different sensors from the ones used in our study),
they might not be fully independent of the assimilated LAI
observations, and, in particular, correlation metrics might
overestimate the DA skill improvements.

2.5.2 SIF

Sun-induced fluorescence (SIF) is a direct measure of pho-
tosynthetic activity and is mostly linearly correlated to GPP
(Frankenberg et al., 2011) and ET (Maes et al., 2020). It is
commonly used to evaluate improvements in the represen-
tation of GPP due to LAI data assimilation (Leroux et al.,
2018; Kumar et al., 2019b; Albergel et al., 2020). We used a
fused dataset from the SCanning Imaging Absorption Spec-
troMeter for Atmospheric CHartographY (SCIAMACHY)
and the Global Ozone Monitoring Experiment-2 (GOME-2)
(Wen et al., 2021) which provides monthly global SIF esti-
mates at 0.05◦ resolution. Hence, the comparison with OL
and DA runs was performed on monthly averages of mod-
elled GPP. In contrast to FluxSat GPP, SIF is independent
of the assimilated LAI observations since it uses a differ-
ent retrieval approach. Under extreme conditions, the lin-
ear relationship of SIF and GPP can break down (Martini
et al., 2022). Therefore, similarly to FluxSat GPP, evalua-
tions against SIF should be analysed carefully. Since we do
not explicitly model SIF, only use it as a GPP proxy, we eval-
uated it only in terms of R and Ranom.

2.5.3 GLEAM ET

The Global Land Evaporation Amsterdam Model v3
(GLEAM; Martens et al., 2017; Miralles et al., 2011) ET
dataset is a gridded ET product based on a land surface model
and satellite observations. It has been evaluated against other
products in various benchmarking activities (Greve et al.,
2014; Martens et al., 2016, 2017, 2018), and it has been used
for assessing DA systems (e.g. Albergel et al., 2019; Bonan
et al., 2020; Kumar et al., 2019b; Rahman et al., 2022b, a).
We used version 3.6b, as it provides data in our evaluation
period (2003–2019) and does not rely on using either a re-
analysis as forcing data or optical data for dynamic inputs. It
is thus largely independent of the assimilated CGLS LAI and
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of the Noah-MP-modelled ET, but inevitably suffers from
model assumptions and input errors.

GLEAM calculates ET as a combination of potential evap-
oration (based on the Priestley–Taylor equation), stress, and
interception (based on the Gash model). Water stress is based
on a soil moisture model included in GLEAM and an ad-
ditional scaling based on observations of vegetation optical
depth, a proxy for vegetation water content.

Since the soil moisture model does not include irrigation
explicitly, it will provide biased estimates over strongly ir-
rigated areas (Chen et al., 2021; Shah et al., 2019). Evalua-
tions of absolute values (e.g. via RMSD) over irrigated areas
should therefore be analysed carefully, as they might show
decreased performance stemming from an actually improved
representation of irrigation (as for example in Thiery et al.,
2017), even if satellite-based soil moisture anomalies were
assimilated and might partly compensate for missed irriga-
tion.

2.5.4 ESA CCI soil moisture

The European Space Agency (ESA) Climate Change Initia-
tive (CCI) soil moisture (SM) v07.1 (Dorigo et al., 2017)
dataset is a merged product combining soil moisture re-
trievals from a multitude of satellites. We use the COM-
BINED product, which includes soil moisture from pas-
sive satellites retrieved with the Land Parameter Retrieval
Model (LPRM; Owe et al., 2008) and soil saturation from
active satellites retrieved with the TU Wien change detection
method (Wagner et al., 1999; Naeimi et al., 2009).

The merging is based on a variance-weighted average,
with error variances obtained from a triple collocation er-
ror characterisation (Gruber et al., 2019). Recent releases
also include a homogenisation of breaks that may be in-
troduced during the merging (Preimesberger et al., 2020).
The merging process also uses soil moisture estimates from
the Global Land Data Assimilation System (GLDAS; Rodell
et al., 2004) as a scaling reference, and the climatology of
the final product is therefore the climatology of GLDAS. As
such, we performed comparisons to ESA CCI SM only in
terms of anomaly correlations with the uppermost soil mois-
ture layer simulated by Noah-MP (0–10 cm).

2.5.5 ISMN soil moisture

The International Soil Moisture Network (ISMN; Dorigo
et al., 2021, 2011, 2013) provides in situ soil moisture data
from over 70 soil moisture sensor networks around the globe.
We calculated daily averages of in situ soil moisture data for
depths of 0 cm to 10 cm (SM1) and 10 to 40 cm (SM2) from
all networks providing station data within our modelling do-
main (see Table C1). Only data with quality flag of “good”
were used, and we discarded stations with less than 1000 d
of valid data within our evaluation period. Metrics were com-
puted based on a nearest-neighbour matching between ISMN

stations and model grid coordinates. In the case of multiple
stations per model grid cell, we averaged the metrics of these
stations to obtain a single value per model grid cell. Since
soil moisture climatology and absolute values strongly de-
pend on sub-grid scale factors like slope and soil texture, we
only compared the in situ values in terms of the anomaly
correlation Ranom. Additionally, we restricted the compari-
son to ISMN stations that have been shown to be representa-
tive at the 0.25◦ resolution with a triple collocation analysis
involving ISMN, ERA5-Land layer 1 SM, and ESA CCI SM
(Dorigo et al., 2021, Fig. 7).

2.5.6 GRDC runoff

To evaluate the effects of the assimilation on modelled
runoff, we used monthly river discharge station data from
the Global Runoff Data Centre (GRDC; Koblenz, Germany).
The station basins were derived from the provided watershed
boundaries (GRDC, 2011).

The comparison of modelled total (surface+ subsurface)
runoff to station river discharge followed the approach of
Koster et al. (2014, 2018), who compared river discharge
with one basin-averaged runoff every 10 d. We restricted the
analysis to 271 stations in Europe with a record of more than
10 years and a basin area between 625 and 100 000 km2. The
lower bound follows Kumar et al. (2014), while the upper
bound was increased compared to Kumar et al. (2014) and
Koster et al. (2018) in order to include more available sta-
tions in southern Europe (mainly Spain). We account for the
larger area by using monthly averages instead of the average
every 10 d that were used by Koster et al. (2018). Basins with
a Pearson correlation of less than 0.4 with respect to the OL
run were excluded so that the evaluation was not hampered
by basins that are likely to be strongly affected by unmod-
elled processes (e.g. damming or irrigation).

2.5.7 Site data from Majadas

The ecosystem research site Majadas de Tiétar (Casals et al.,
2009) is located in the center of the Iberian Peninsula at
39◦56′25′′ N 5◦46′29′′W and categorised as a semi-arid sa-
vanna type ecosystem (El-Madany et al., 2018) with a canopy
height of 8.7±1.25 m and a fractional canopy cover of 23.0±
5.3 % (Bogdanovich et al., 2021). In the land cover map used
in the model, the grid cell containing the research site is clas-
sified as “savanna”. The accumulated annual precipitation at
the site is about 650 mm, with large inter-annual variabil-
ity. The mean LAI at the site changes strongly throughout
the year, between 0.55–2.15 m2 m−2, with the lowest values
occurring during summer and the highest values during late
spring. The soil is an Abruptic Luvisol with a sandy upper
layer (Nair et al., 2019). In the model, the grid cell containing
the research site uses parameters for a loamy sand texture.

The research site consists of three eddy covariance tow-
ers with non-overlapping footprint climatologies and similar
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instrumental setups (El-Madany et al., 2021). For this anal-
ysis, the data from the tower with the FLUXNET ID ES-
LM1 are used. A detailed description of the instrumental
setup and data processing can be found in El-Madany et al.
(2018, 2021). In short, the soil moisture data are collected
with four profile probes (enviroSCAN, Sentek) measuring
at 10, 20, 30, 50, and 100 cm plus an ML3 (Delta-T) sen-
sor at 5 cm below the ground surface, but in close (unspeci-
fied) vicinity to the aforementioned profile probes. The soil
moisture data were further aggregated to depth levels repre-
senting the Noah-MP soil moisture layers for each of the four
profiles.

Eddy covariance data were collected at 20 Hz with a R3-
50 (Gill) and a LI-7200 CO2 and H2O gas analyser (Licor
Bioscience) at 15 m above the ground. Raw data were pro-
cessed with EddyPro (Fratini and Mauder, 2014) to calcu-
late fluxes of ET and CO2 at half-hourly intervals. Subse-
quently, u∗-threshold estimation, gap filling, and flux parti-
tioning were applied using REddyProc (Wutzler et al., 2018).
The resulting continuous time series of ET and GPP were
aggregated together with other meteorological parameters to
hourly timestamps, from which daily averages were com-
puted.

2.6 Analysis of Noah-MP equilibrium LAI

As will be seen later, each update step in the bias-blind DA
is followed by a strong drift of the model LAI towards the
earlier forecast values, i.e. the bias-blind DA system quickly
“forgets” systematic corrections made in earlier steps. This
indicates that there is a stable equilibrium LAI (i.e. a model-
based “attractor”) whose value is not modified by the bias-
blind LAI DA. To make full use of the information contained
in the observations, a bias-blind DA system should also mod-
ify this equilibrium LAI value to have more persistent DA
updates.

An analysis of the Noah-MP leaf growth model (Ap-
pendix A) shows that the main factors influencing the equi-
librium LAI value are (i) root zone soil moisture, repre-
sented via the soil moisture factor β, and (ii) leaf parameters,
e.g. specific leaf area (SLA, leaf mass per area). Including β
or SLA in the DA state vector could thus help to obtain more
persistent updates.

We therefore analysed how sensitive the equilibrium LAI
is to these variables using a climatological approximation of
the Noah-MP leaf model (shown in Appendix B). The result
of this analysis is presented in Sect. 2.6 for two example sites
with constrasting bias between Noah-MP and CGLS: (i) the
Majadas site in Spain, where observed LAI is much lower
than modelled LAI, and (ii) the Nile delta, where observed
LAI is much higher than modelled LAI.

2.7 Evaluation of short-term DA effects

To evaluate how biased updates affect the short-term model
performance, we analyse day-to-day differences of model
states and fluxes. In the OL, the day-to-day differences are
driven by day-to-day variations in the forcing. If averaged
over larger areas or multiple years, this corresponds mainly
to the fluctuations caused by the (long-term mean) seasonal
cycle. For LAI, GPP, and ET, which are high in summer and
low in winter, we therefore expect positive day-to-day differ-
ences in spring, corresponding to leaf growth and increases
in GPP and ET, and negative day-to-day differences in au-
tumn, corresponding to leaf shedding and decreases in GPP
and ET.

Large update steps in the bias-blind DA can induce model
instabilities. In this case, the subsequent day-to-day differ-
ences are strongly impacted by the unstable artificial re-
sponse to the update step instead of reacting to the physical
forcing input.

To detect if such model instabilities occur, and to what ex-
tent they propagate to flux estimates of the model, we eval-
uated differences in the estimates between day 2 and day 1
after assimilation as well between day 1 and day 2 before as-
similation (the latter can also be interpreted as approximately
day 9 minus day 8 after after assimilation). A comparison of
these also gives an indication of how long the DA-induced
effects persist. For each pixel and month, we calculated the
median of these day-to-day differences over all years from
2003 to 2019 and normalised it with the monthly standard de-
viation of the variable values over the same multi-year time
range (as a measure of the local within-month variation).

3 Results

3.1 Mean impact of bias-blind DA

Figure 1 compares mean values of OL and bias-blind DA re-
sults (relative to mean OL values) for different variables for
the months of April through October across 17 years (2002–
2019). The bias-blind DA decreases growing-season LAI
over large parts of the domain or has a neutral impact. It only
increases in the Alps and the Scandinavian Mountains. The
regions with a large change in mean LAI are mostly semi-
arid and include the Iberian Peninsula, northern Africa, the
Middle East, Turkey, and Ukraine, where modelled LAI is
much higher than observed LAI, and modelled LAI is there-
fore strongly decreased by the bias-blind DA. In contrast,
LAI increases in the Nile delta, because the lack of irriga-
tion forcing limits the model’s ability to grow vegetation.

Differences in mean GPP show similar patterns, but with
a weaker impact overall, especially in central and eastern
Europe. One exception is the Nile delta, where growing-
season GPP decreases while LAI increases. Relative differ-
ences in mean ET are much lower (note the different colour
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Figure 1. Relative differences between temporal mean values of the OL run and the bias-blind DA run for (a) LAI, (b) GPP, (c) ET, (d) SM1
(0–10 cm), (e) SM2 (10–40 cm), and (f) runoff for the months of April through October 2002–2019. Note the different colour bar ranges.
The red circles mark the example locations studied in this work, i.e. Majadas in Spain and the Nile delta region in Egypt.

bar range), but with similar large-scale patterns to those for
GPP. On the Iberian Peninsula, the patterns differ slightly:
the largest relative differences are in the western part, mainly
over the Duero and Tajo basins. Over Scandinavia, ET in-
creases, except for the northernmost parts.

ET links the vegetation model to the hydrology model;
consequently, the LAI assimilation also affects soil moisture
and runoff. A reduction in LAI and hence transpiration leads
to a reduction in soil moisture depletion. The effect is larger
on deeper soil moisture layers than on surface soil moisture
since the deeper layers are more strongly coupled with tran-
spiration. In regions where LAI is strongly reduced by the
DA, the relative increase in mean SM2 is about 20 %. For
runoff, the relative increase even reaches 100 %. In contrast,
in the Nile delta, the increase in LAI leads to a reduction in
soil moisture via transpiration. In the Alps and Scandinavia,
soil moisture is not affected systematically, since the water
balance is dominated by runoff, and transpiration changes
therefore have a lower impact.

3.2 Evaluation of the impacts of DA on GPP

The impacts of bias-blind LAI DA and bias-aware LAI DA
on GPP are shown in Figs. 2 and 3, respectively. Bias-blind
LAI DA strongly improves GPP estimates in terms of RMSD
and R with FluxSat GPP and SIF (only R) over most of the
domain, except in regions where the LAI bias is very large.

In these regions, R with SIF degrades almost everywhere,
and GPP RMSD and R with FluxSat degrades for some grid
cells. The GPP Ranom with FluxSat improves in most areas,
especially in those with large LAI biases. Similarly, the high-
est improvements in Ranom with SIF are found in areas with
large LAI biases, excluding the Iberian Peninsula.

In the scaled LAI DA runs, the improvements in Ranom
are similar, but the improvements in RMSD and R are lower,
as summarised in Fig. 3c and f. The CDF-matched DA im-
proves GPP Ranom with FluxSat over most regions, but not as
strongly as the bias-blind DA (Fig. 3a) does. The seasonally
scaled DA has largest improvements in regions with large
LAI bias, where it outperforms the CDF-matched DA, and
has a low impact over the rest of the domain (Fig. 3b). For
SIF, the patterns of NIC Ranom are similar for all three runs
(Fig. 3d and e).

3.3 Evaluation of the impacts of DA on hydrological
variables

The impacts of bias-blind LAI DA and bias-aware LAI DA
on hydrological ET and runoff fluxes are presented in Figs. 4
and 5, respectively.

The ET shows mixed results in terms of RMSD, R, and
Ranom with GLEAM ET (Fig. 4a–c). The bias-blind DA im-
proves the RMSD, R, and Ranom over most of Turkey and the
eastern Iberian Peninsula, but degrades it over the western
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Figure 2. Maps of GPP NICs for the bias-blind DA for (a) RMSD with FluxSat, (b) R with FluxSat, (c) Ranom with FluxSat, (d) R with SIF,
and (e) Ranom with SIF.

Figure 3. (a–c) Maps of NIC Ranom with FluxSat GPP for (a) the CDF-matched DA and (b) the seasonally scaled DA, and (c) box plots
of NICs for RMSD, R, and Ranom with FluxSat GPP for all three DA runs. (d–f) Maps of NIC Ranom with SIF for (d) the CDF-matched
DA and (e) the seasonally scaled DA, and (f) box plots of NICs for R and Ranom with SIF for all three DA runs. The upper limits of the
box plots showing NIC R for the bias-blind DA (around 0.8 for FluxSat, 0.7 for SIF) have been cut to facilitate a better comparison with the
bias-aware runs.

Iberian Peninsula and eastern Turkey. In central and eastern
Europe, the RMSD improves over most agricultural regions,
but R mostly degrades over these regions. In northern Eu-
rope, both the RMSD andR degrade compared to the OL run.
The runoff estimates mainly improve in terms of RMSD, R,
and Ranom with GRDC station data, especially in Spain and
central Europe, but there is a negative impact in the Alps and
Scandinavia (Fig. 4c–e). The rescaling techniques decrease
both positive and negative DA impacts on ET and runoff, re-
sulting in very low NICs (Fig. 5a and b).

Finally, the DA results are evaluated in terms of surface
(0–10 cm) and deeper (10–40 cm) soil moisture against in
situ data and the ESA CCI SM in Fig. 6. The bias-blind DA
leads to small improvements in deeper layer soil moisture in
both R and Ranom, but none of the included ISMN stations
are in the areas with large biases. The bias-aware DA does
not affect metrics with ISMN significantly.

The comparison with the satellite-based ESA CCI SM
presents a spatially more complete picture, with Ranom de-
creasing in regions with large LAI bias (Fig. 6d). Ranom also
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.

Figure 4. (a–c) Maps of ET NICs for the bias-blind DA for (a) RMSD with GLEAM, (b) R with GLEAM, and (c) Ranom with GLEAM.
(d–f) Maps of runoff NICs for the bias-blind DA for (d) RMSD with GRDC, (e) R with GRDC, and (f) Ranom with GRDC. Note the different
colour bar ranges compared to Fig. 2

Figure 5. Box plots of RMSD, R, and Ranom NICs for all three DA runs with (a) GLEAM ET and (b) GRDC runoff.

decreases over several mountain ranges and in Scandinavia
but increases over agricultural areas in central Europe. The
median NIC (Fig. 6e) is small for all experiments, with a
smaller NIC spread for the rescaled DA runs.

3.4 Example I: Majadas site

To interpret the strong relative differences found in the previ-
ous section, we confront time series of multiple model vari-
ables with in situ data for the Majadas site in Fig. 7. We
chose the years 2015 through 2017 as an example because
of (1) the availability of in situ data, and (2) the considerable
inter-annual variability in OL and observed LAI.

The OL and CGLS LAI show some similar features in
their temporal patterns, but the timing and magnitude dis-
agree. Both show peaks in late spring or summer and reach
their minimum in early autumn, followed by a small in-
crease (Fig. 7a). They also agree that the peak in spring/-
summer 2016 is the highest among these 3 years. However,
the CGLS LAI reaches its maximum by the start of May

and then rapidly decreases, while the OL reaches its maxi-
mum later and decreases more slowly. Additionally, the OL
has a higher overall LAI and a lower inter-annual varia-
tion in the maximum peak than the CGLS LAI. The mag-
nitudes of the spring maxima and the summer minima also
match the observed maximum and minimum values better
(2.15 and 0.55 m2 m−2: lower and upper thick grey lines in
Fig. 7a, respectively). The large differences in summer lead
to pronounced sawtooth patterns in the bias-blind DA results,
showing that the model undergoes a strong drift back towards
the equilibrium state after each DA update.

The decrease in summer LAI in the DA also induces a de-
crease in summer GPP (Fig. 7b). This increases R with the in
situ flux tower measurements, but slightly decreases Ranom.
A better agreement can be seen in spring 2015, where ob-
served and analysed GPP decline faster than the OL, and in
spring 2017, where the OL GPP increases until mid May,
while DA and observations stay at the same level as in April.
The differences in overall magnitude between the in situ data
and the model might be caused by representativeness errors;
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Figure 6. (a) Map of NIC Ranom with ESA CCI SM for the bias-blind DA and (b) box plots of NIC Ranom with ESA CCI SM for all three
DA runs. (c–e) Maps of NIC Ranom with ISMN for the bias-blind DA for (c) SM1 (0–10 cm) Ranom and (d) SM2 (10–40 cm) Ranom, and
(e) box plots of NIC Ranom with ISMN for SM1 and SM2 and all three DA runs. (f–h) Maps of NIC R with ISMN for the the bias-blind DA
for (f) SM1 (0–10 cm) R and (g) SM2 (10–40 cm) R, and (h) box plots of NIC R with ISMN for SM1 and SM2 and all three DA runs. Note
the different colour bar range compared to Figs. 2 and 4.

for example, differences in the assumed canopy cover for the
savanna land cover class in the model and the canopy cover
at the Majadas site.

Transpiration strongly decreases in summer as a conse-
quence of the lower LAI (Fig. 7c), which leads to a lower
ET (Fig. 7d). For the latter, correlation with the in situ data
decreases, in agreement with the decreased correlation with
GLEAM ET in the western Iberian Peninsula seen in Fig. 4a,
while the anomaly correlation slightly increases.

Soil moisture also increases, with a larger effect in the
deeper layers (Fig. 7e–g). The first layer (0–10 cm) is only
slightly affected, but the deeper layers (layer 2= 10–40 cm,
layer 3= 40–100 cm, layer 4= 100–200 cm (not shown)) are
much wetter in summer and autumn, caused by a slower dry-
ing rate. These large changes are hard to compare across
scales since the soil moisture climatology depends strongly
on local factors like soil texture or topography (Dong and
Ochsner, 2018).

The changes in the model LAI also affect surface and sub-
surface runoff (Fig. 7h). The main difference in the example
grid cell is an increased subsurface runoff for the analysis in
winter 2016 and 2017.

Figure 8 shows that the two rescaling techniques studied
in this paper reduce the difference between OL and anal-
ysis LAI. In the CDF-matched DA, winter LAI is higher
than in the OL, while autumn LAI drops faster than in the
OL. This leads to differences in layer 2 soil moisture in au-
tumn, although they are not as strong as in the bias-blind
DA. The seasonally scaled DA follows the OL more closely.
The rescaled runs still contain the sawtooth pattern that was
present in Fig. 7a, but often with a less steep drift between
updates and with seasonally varying directions. Seasonal
rescaling is especially good at reducing the sawtooth pattern.

3.5 Example II: Nile delta

As another example, we examined the Nile delta, where ob-
served LAI strongly exceeds OL LAI, but summer GPP in
the DA results strongly decreases compared to the OL (see
Fig. 1). The low vegetation in the OL is caused by a lack
of irrigation in the model, which results in water limitations
on vegetation growth. Figure 9a shows that the bias-blind
DA strongly increases LAI, causing it to follow the observa-
tions more closely. However, it also strongly decreases SM2
(Fig. 9b), such that the wettest conditions in the bias-blind
DA are still drier than the driest conditions in the OL. As
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Figure 7. Time series of OL (black) and bias-blind DA (blue) results for (a) LAI, (b) GPP, (c) transpiration, (d) ET, (e) SM1 (0–10 cm),
(f) SM2 (10–40 cm), (g) SM3 (40–100 cm), and (h) total runoff (surface+ subsurface) for the model grid cell containing the Majadas site
(39.875, −5.875◦). Panel (a) also shows the assimilated LAI observations (blue dots) and the minimum and maximum observed LAI at the
site (grey lines). For the other panels, in situ data from the Majadas site are also shown (grey lines), if available, and the NICs for R and
Ranom (calculated based on the full period of data availability) are indicated in the panels.

a consequence, SM2 falls below the model wilting point in
summer, and the model disables photosynthesis due to wa-
ter stress (Fig. 9c). This decouples analysed LAI and GPP in
summer and explains the decrease in April to October GPP
seen in Fig. 1. Instead of correcting the root cause of the
LAI underestimation, the bias-blind DA worsens the prob-
lem here.

3.6 Analysis of equilibrium LAI

We assessed the dependency of the equilibrium LAI value on
the model root-zone soil moisture (via the relative amount of
plant-available water β) and on model parameters (using the
specific leaf area, SLA, as an example parameter) for the two
example sites discussed above.

Figure 10 shows how the equilibrium LAI changes when
we change β or SLA while keeping everything else constant.
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Figure 8. Time series of (a) LAI and (b) SM2 (10–40 cm) for all DA runs for the Majadas grid cell. Panel (a) includes the (potentially
rescaled) observations that were assimilated in each run (coloured dots; dot colours correspond to line colours).

Figure 9. Time series of (a) LAI, (b) SM2 (10–40 cm), and (c) GPP for all DA runs for the Nile delta example grid cell (31.125, 30.875◦).
Panel (a) includes the (potentially rescaled) observations that were assimilated in each run (coloured dots; dot colours correspond to line
colours).

For both of the sites shown (Majadas, the Nile delta), we
chose the month where the mean difference between OL and
observations is largest (June for Majadas, July for the Nile
delta). We approximated the GPP–LAI relationship for these
sites and months based on Eq. (B1).

For both of the cases considered, the mean OL condi-
tions are close to the estimated equilibrium LAI, validating
the approximations we used in the derivation of the method
(Sect. 2.6). For Majadas, the mean June conditions of the sea-
sonally scaled DA are very close to the OL, while the bias-
blind DA shows a strongly reduced LAI and an increased

β, consistent with Fig. 8. The CDF-matched DA is between
the OL and bias-blind DA. Both the bias-blind and CDF-
matched DA are further from the estimated equilibrium LAI
than the seasonally scaled DA, i.e. they are not in a stable
state. To obtain a stable state but at the same time reduce
LAI towards the CGLS LAI observations, β would have to
be reduced to about 0.3 or, alternatively, SLA would have to
be reduced to 30.

For the Nile delta pixel, both bias-aware DA runs are very
close to the OL, while the bias-blind DA shows a strongly re-
duced β, consistent with summer conditions in Fig. 9. In this
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Figure 10. Estimates of the rate of change in LAI (dLAI/dt) for the Noah-MP LAI and equilibrium LAI for the Majadas pixel in June (a, b)
and the Nile delta pixel in July (c, d) as a function of the relative amount of plant-available water β (a, c) and specific leaf area (SLA, b, d).
Additionally, the mean conditions for the OL and the DA runs are shown as symbols (dots, crosses), and the mean assimilated CGLS LAI is
shown as a red line.

Figure 11. Normalised monthly median day-to-day forecast differences for (a) LAI, (b) GPP, and (c) ET. The differences are computed as
the forecast value at 2 d after observations minus that at 1 d after observations (“1 d after DA”, solid lines) and the forecast value at 1 d before
observations minus that at 2 d before observations, corresponding to approximately 9 d after observations minus 8 d after observations (“9 d
after DA”, dashed lines) for the OL (black), the bias-blind DA (blue), the CDF-matched DA (orange), and the seasonally scaled DA (green).
The median was calculated from all grid cells for which the relative LAI difference between OL and bias-blind DA (see Fig. 1a) is below
−25 %. For each grid cell and month, the median was normalised with the monthly standard deviation of the variable for this grid cell. The
graph shows the median results across 17 years (2003–2019).

pixel, the equilibrium LAI shows a much higher sensitivity
to β; a small increase in β leads to a large increase in LAI.
Conversely, the sensitivity to SLA is low. To obtain a stable
state close to the observed LAI, β would have to be increased
to 0.5, while SLA would have to be increased to values larger
than 150.

3.7 Evaluation of short-term DA effects

Figure 11 shows the monthly median day-to-day forecast dif-
ferences for all simulation runs performed for LAI, GPP, and
ET. The OL shows a seasonal cycle with high values in spring
and low values in summer, as expected (corresponding to the
derivative of the seasonal cycle of variable values). The bias-
aware DA runs closely follow the OL seasonal cycle.

The bias-blind DA also shows the same seasonal cycle, but
it has an offset compared to the OL. For LAI, this offset is of
the same size as the magnitude of the mean seasonal cycle,
so that the mean day-to-day differences in the bias-blind DA
in summer have the same magnitude as the day-to-day dif-
ferences in the OL in spring, even though a decrease in LAI
is expected physically. In fact, the day-to-day differences in
LAI in the bias-blind DA are always positive, meaning that
LAI is expected to increase in all seasons. This is caused by
the large DA update steps in the bias-blind DA, which pull
the model to an unstable state. As a consequence, model in-
stability instead of physical forcing input governs the short-
term temporal evolution of LAI in the model in between up-
date steps. Even 9 d after the DA update, right before the
next update step, day-to-day differences do not significantly
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change, indicating that the model instability can persist for
long time periods.

The instability effect also strongly affects GPP estimates
throughout all seasons and, to a lesser extent, ET estimates
in summer.

3.8 DA diagnostics

Figure 12 shows distributions of innovation statistics across
the modelling domain and shows that the innovation se-
quence is not standard normal for the bias-blind DA. As a
consequence of the higher LAI in the model, the normalised
innovation mean is strongly negative (Fig. 12a), and the ab-
solute values of the innovations are large (Fig. 12b). The au-
tocorrelation is also high (Fig. 12c) because subsequent up-
dates point in the same direction.

The rescaling improves the internal diagnostics of the DA
system. Although there is still a sawtooth pattern (Fig. 8),
the assumption of zero mean innovations is met, and rescal-
ing helps to reduce the innovation variance (Fig. 12b) and
the autocorrelation (Fig. 12c) compared to the bias-blind DA
run.

4 Discussion

4.1 General impacts of bias-blind and bias-aware DA

Our analysis shows that large biases between Noah-MP mod-
elled LAI and CGLS LAI exist. These include a bias in the
length of the growing season, which might be caused by pro-
cesses not included in the model (e.g. agriculture) or biased
forcing data, but also by a strong bias in the CGLS LAI mag-
nitude. It is most pronounced over dry areas in the south-
ern part of the modelling domain, in line with results from
Li et al. (2022), who also found an overestimation of LAI
by Noah-MP’s dynamic vegetation model with respect to
MODIS LAI in this area. Noah-MP is not unique in this re-
spect; studies with other LSMs have also found model defi-
ciencies in dry regions (Dahlin et al., 2015; MacBean et al.,
2015; Fox et al., 2018; Mahmud et al., 2021).

The bias-blind LAI DA therefore has a strong impact on
the vegetation model state and fluxes. Where the LAI bias
is large, the bias-blind DA induces strong changes in GPP
magnitude, which mostly reduce the RMSD with FluxSat, in
agreement with results found by Kumar et al. (2019b) and
Albergel et al. (2020) for similar GPP reference datasets.
The anomaly correlation improvement differs for FluxSat
and SIF, but both show a generally positive impact. The dif-
ference might be due to the dependence of both the assimi-
lated LAI observations and the FluxSat GPP retrievals on re-
flectances from optical satellite sensors, which might inflate
anomaly correlations.

The strong impacts of the bias-blind DA also propagate
to the model hydrology. Results for ET estimates are mixed:
RMSD and Ranom with GLEAM generally improve, espe-

cially over Turkey, the western Iberian Peninsula, and agri-
cultural regions, but R deteriorates over most of the do-
main. In contrast, runoff estimates improve compared to the
GRDC discharge data. The comparison to ISMN indicates
improvements in deeper layer soil moisture, but none of the
in situ sites considered are in the areas with a large bias. The
anomaly correlation with ESA CCI SM also improves over
agricultural regions but decreases over high-bias regions and
northeastern Europe. However, in northeastern Europe, the
Noah-MP model-only SM estimates outperform ESA CCI
SM when comparing to in situ sites (Heyvaert et al., 2023),
probably due to the lower signal-to-noise ratio of soil mois-
ture retrievals over dense vegetation (Gruber et al., 2019).

The large changes to the root-zone soil moisture climatol-
ogy are hard to assess directly because of the scale differ-
ence between the in situ data and model grid cells and the
lack of in situ sites in these areas. However, in strongly irri-
gated areas, the change in soil moisture climatology leads to
a decrease in soil moisture, even though the bad model per-
formance originates from an underestimation of soil mois-
ture due to the lack of an irrigation process in the model.
Joint updates of LAI and root-zone soil moisture, as done
in LDAS-Monde (Albergel et al., 2017), could alleviate this
problem caused by “missing” water to some extent, but they
require a good estimation of the coupling strength of LAI
and soil moisture. The strong effect on the model hydrology
might also be model specific, because the Noah-MP model
hydrology is more sensitive to vegetation than other LSMs
(Maertens et al., 2021).

Even though our results for RMSD improvements in GPP
and ET are similar to those from other studies (Kumar et al.,
2019b; Albergel et al., 2020), it is important to note that none
of the reference products we used are free of bias. This could
be due to assumptions and errors in the underlying satellite
data and retrieval algorithms in the case of satellite-based
data, or due to different spatial support in the case of in situ
data. Hence, whether the bias-blind DA leads to estimates
closer to the “truth” remains uncertain, and evaluations with
different reference products might come to different conclu-
sions. We therefore additionally investigated effects of the
DA on the model and on internal DA diagnostics.

4.2 Negative effects on the optimality of the DA system
when ignoring bias

An effect of “misusing” a Kalman filter for correcting bi-
ases instead of random errors is that DA updates are strongly
biased, leading to non-optimal DA diagnostics and a pro-
nounced sawtooth pattern. Such sawtooth patterns are com-
mon in filter DA (e.g. Mitchell et al., 2002; Dee, 2005; Fox
et al., 2018), but the strong preference for one direction and
the model drift between two update steps harms estimates of
other variables. GPP and ET are strongly reduced at the time
of the DA update, and the short-term model forecasts directly
after the DA update step show unphysical upward drifts.
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Figure 12. Spatial distributions of the temporal (a) mean, (b) standard deviation, and (c) autocorrelation of the innovations across all model
grid cells. In panels (a, b), values for means and standard deviations outside the plot ranges of the histograms have been added to the first
and last bin, respectively. In panel (c), the autocorrelation is computed for multiple lags of 10 d.

The sawtooth pattern also poses the danger of introducing
spurious trends in case the observation frequency changes
over time (Dee, 2005). For example, if the availability of
LAI observations at the Majadas site increased over time,
the model would be pulled more closely to the observations,
i.e. there would be lower LAI values in the later periods
than in the early period, leading to an apparent decrease in
LAI. Due to the strong impact of LAI changes on soil mois-
ture, this would also lead to a spurious wetting trend in the
deeper soil layers. Such artificial trends can seriously con-
found trends in the resulting dataset.

The sawtooth pattern has also been reported by other LAI
DA studies using Noah-MP (Kumar et al., 2019b; Mocko
et al., 2021). We showed that the Noah-MP leaf model struc-
ture has an equilibrium LAI (independent of the current
model state) to which the model tries to return after each up-
date step. Bias-blind LAI DA into LSMs with a similar model
structure might therefore suffer from the similar issues.

The sawtooth pattern can be reduced by interpolating the
observations or by applying time series smoothing meth-
ods to obtain pseudo-observations at a daily frequency. This
will keep the analysis closer to the observations and prevent
model drift over multiple days. However, in this case, di-
rect insertion approaches or using observed LAI directly as
a model parameter could achieve even better results than an
EnKF at a much lower computational cost.

4.3 Effects of bias-aware DA

Using rescaling techniques for a priori bias correction comes
at the cost of foregoing improvements in ET, runoff, and GPP.
However, the rescaling techniques retain improvements in
GPP anomaly correlation and limit the side effects of the LAI
DA on model hydrology. The CDF matching performs better
for GPP anomalies over central Europe and for ET over the
high-bias regions since it preserves more information on the
shape of the observed seasonal cycle of LAI. But, due to its
larger impact on ET compared to seasonal rescaling, it also
changes the soil moisture climatology in deeper layers and

leads to a decrease in anomaly correlation with in situ soil
moisture, especially for deeper layers. The seasonal rescal-
ing presents better performance for GPP anomalies over the
high-bias regions when using FluxSat GPP as reference, but
not with SIF, which may indicate an overestimation of skill,
as discussed above. Overall, the seasonal rescaling minimises
the effects of DA on the model hydrology.

Since the bias-aware DA only allows the DA to address
the random error components, filter diagnostics are more in
line with standard assumptions (Desroziers et al., 2005). This
facilitates a further reduction in the variance and autocorrela-
tion of the normalised innovations to obtain an optimal filter
configuration by tuning the model and observation perturba-
tions.

The limited DA impacts and more well-behaved filter
performance could be especially helpful when assimilating
multiple datasets, because contrasting biases could deterio-
rate the ability of the DA system to find a good compro-
mise between multiple observations and model predictions
(MacBean et al., 2016). This might, for example, arise if vari-
ables that require more complex observation operators are
assimilated and the observation operator is calibrated to the
original model climatology.

4.4 Alternatives to the rescaling of observations

The bias-aware DA uses observation rescaling methods to
reduce the effects of biased updates like drifts and sawtooth
patterns, but it leads to lower improvements than the bias-
blind DA because it leads to LAI estimates in the model cli-
matology. To obtain LAI estimates within the range of the
observational LAI climatology while keeping the model in
a stable state, additional model state variables or parameters
have to be updated or calibrated, or an observation or fore-
cast bias could be estimated separately (and removed from
the innovations) (De Lannoy et al., 2007a, b).

The calibration of model parameters is the best option if
the bias is due to uncertainty in the model parameters. It has
been successful at improving vegetation models in previous
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studies (MacBean et al., 2015, 2016; Scholze et al., 2019;
Forkel et al., 2019; Kolassa et al., 2020; Mahmud et al.,
2021). Updates of the specific leaf area together with LAI
have already been used successfully by Xu et al. (2021) and
He et al. (2022). Based on Eq. (A1), changes in the leaf
turnover coefficient or the respiration coefficient might lead
to similar results.

The calibration can either be done prior to the DA simula-
tions or it can be incorporated into a joint parameter and state
update DA scheme. An EnKF (such as that used in this study)
can in principle be used for the joint updates by augmenting
the control vector to contain both state variables and param-
eters (Evensen, 2009). If the model predictions’ dependency
on the parameters is highly nonlinear, particle methods might
be more suitable (Frei and Künsch, 2013; van Leeuwen et al.,
2019). Hybrid methods that combine the EnKF with particle
methods could be used to obtain a DA system that performs
well both for state updates and parameter updates (Frei and
Künsch, 2013; van Leeuwen et al., 2019; De Lannoy et al.,
2022).

Instead, if the (short-term) bias is caused by erroneous
forcing data, e.g. a seasonal wet or dry bias in water-limited
areas, joint updates of LAI and RZSM (root-zone soil mois-
ture) are better suited to improving the analysis. This is
the approach chosen for (bias-blind) LAI DA in LDAS-
Monde (Albergel et al., 2017). With an EnKF, joint updates
are achieved via error cross-correlations between LAI and
RZSM (obtained from the ensemble). This means that RZSM
will only be updated in phases in which model LAI and
RZSM show a strong coupling.

A known source of bias in the Nile delta is the missing ir-
rigation input in the model. Additionally, we found a very
strong water limitation on vegetation growth and a strong
sensitivity of the equilibrium LAI to changes in RZSM, im-
plying a strong model coupling of LAI and RZSM. There-
fore, joint updates of LAI and RZSM are likely to improve
the LAI DA results here because RZSM is temporarily ad-
justed, but changes to soil parameters might also be neces-
sary to sustain the increased moisture values.

At the Majadas site, the sensitivity of the equilibrium LAI
to changes in RZSM is lower. Furthermore, Fig. 8 indicates
that in winter and spring, RZSM is largely dominated by soil
parameters and precipitation input. In these periods, changes
in LAI do not lead to changes in RZSM, and differences in
RZSM between the OL and the bias-blind DA vanish quickly.
Therefore, RZSM updates are unlikely to sustainably de-
crease RZSM during spring, which would be required to de-
crease LAI to a more stable state. This could make joint up-
dates of LAI and RZSM less efficient than in the Nile delta.
Parameter updates are likely most useful for improving the
LAI estimates at the Majadas site.

4.5 Potential model structural changes

The vegetation model in Noah-MP consists of two parts: a
photosynthesis model, which calculates how much carbon
is assimilated from the atmosphere in each time step, and
the dynamic vegetation model, which distributes the carbon
to different plant carbon pools and calculates losses due to
respiration and turnover. Previous studies found that the dy-
namic leaf model decreases performance compared to a pre-
scribed LAI (Ma et al., 2017; Erlingis et al., 2021; Huang
et al., 2022). Structural changes to the equations govern-
ing the leaf carbon assimilation might therefore improve the
agreement between modelled and observed LAI.

A promising candidate for structural changes is the leaf
carbon allocation function, which governs the fraction of
the photosynthesis carbon that is allocated to the leaves. In
Noah-MP v4.0.1, this function decreases from 1 at LAI= 0
to 0 at approximately LAI= 6 with a sigmoid-like shape. Al-
ternative formulations have been tested by Gim et al. (2017)
and Niu et al. (2020). They used sigmoidal functions with a
sharp decline around a threshold LAI. This would increase
the model drift towards the equilibrium (the threshold LAI)
and therefore likely worsen the instability in a bias-blind DA
setup. But, when treating this threshold as a model param-
eter, these formulations open up new possibilities for cal-
ibration and parameter data assimilation, since the thresh-
old LAI gives a more direct route to adapting the maximum
LAI reached in summer. Multi-pass schemes that update the
threshold based on observations, similar to Xu et al. (2021),
might be able to improve the persistence of observations and
alleviate the sawtooth pattern issue.

Another shortcoming of Noah-MP is its oversimplified
phenology scheme, which is solely based on a land-cover-
specific canopy temperature threshold, ignoring other drivers
of phenology like day length or water availability (e.g.
Dahlin et al., 2015, 2017) or cumulative temperature effects
that are often expressed via growing degree days (e.g. in
CLM, Lawrence et al., 2011). Especially in the southern part
of our modelling domain, where water partly limits vegeta-
tion growth (Hashimoto et al., 2019), more complex phenol-
ogy schemes might improve the realism of the vegetation
simulations. In the current scheme, the temperature thresh-
old is almost always exceeded, leading to unrealistically long
growing seasons. However, additional degrees of freedom in-
troduced by a more complex phenology scheme can also de-
teriorate model predictions (Lawrence et al., 2011).

5 Conclusions

So far, satellite LAI DA studies have mostly ignored biases
between observed and modelled LAI. In this study, we eval-
uated how the presence of bias in an LAI DA system can
impact the model hydrology and carbon uptake. Specifically,
we assimilated CGLS LAI into Noah-MP with an EnKF, and
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we evaluated a bias-blind DA and two rescaling techniques,
i.e. climatological CDF matching and seasonal rescaling of
the first two moments, to account for the biases in the DA
system.

The bias-blind DA is most effective at reducing the dis-
agreement between modelled and observed LAI, and leads to
the largest improvements in GPP and runoff. It is therefore
a suitable option for many applications, especially if large
bias reductions are intended, even though bias-blind Kalman
filtering is suboptimal. A temporal interpolation of the ob-
servation data, or even a direct insertion approach, could be
even more efficient for such a purpose. However, this ap-
proach does not necessarily improve other variables, e.g. if
the model simulates biased LAI in conjunction with unbi-
ased soil moisture. As an alternative, we recommend using
observation rescaling techniques for LAI DA with Noah-MP
if there are strong biases and if

– the focus is on not only vegetation or the carbon cy-
cle but also hydrological processes, because large LAI
changes can cause unphysical impacts on the model hy-
drology;

– multiple datasets with contrasting biases are assimi-
lated, since the bias-blind DA can strongly change the
model climatology;

– the DA aims at preparing the best analysis state for sub-
sequent short-term predictions, because the abrupt up-
date steps induce spurious short-term trends;

– datasets with changes in observation frequency are
used, because this can induce spurious long-term trends;

– an optimal DA system in terms of Desroziers’ metrics
(Desroziers et al., 2005) is desired, because bias-blind
DA violates basic assumptions of the Kalman filter.

The CDF-matching technique preserves more information
from the signal and leads to larger improvements in GPP
and ET but worse estimates of deeper layer soil moisture.
The seasonal rescaling is more effective at removing bias
and limits DA updates to improve vegetation anomalies; it
performs best in terms of internal DA diagnostics. The bias-
aware LAI DA is suitable for providing physically consis-
tent short-term flux estimates for numerical weather predic-
tion models or soil moisture monitoring or for providing a
baseline to merge historical earth observation records from
multiple sensors into a long-term dataset without introduc-
ing artificial trends.

A drawback of the observation rescaling approaches is
that they result in estimates in the model climatology. If the
observation–forecast bias is due to erroneous precipitation
forcing or missing irrigation input, joint updates of LAI and
RZSM in a bias-blind system can be considered instead. This
might lead to large bias corrections while still retaining a sta-
ble model state even after large updates. However, if the bias

is not only caused by bias in the precipitation/irrigation, this
poses the risk of seriously degrading the soil moisture esti-
mates.

Alternatively, updates to model parameters, either via joint
parameter and state update DA or via a priori model calibra-
tion, can also lead to more stable and persistent updates and
LAI estimates in the observational climatology. This is es-
pecially desirable for research on the carbon cycle, where
absolute values of carbon fluxes are required. Parameters to
consider for calibration are parameters related to model leaf
growth, but potentially also photosynthesis or soil parame-
ters.

To gain the most benefit from LAI data assimilation into
Noah-MP, further research and improvement in the mod-
elling of the coupling mechanisms between the water and
carbon cycle is necessary.

Appendix A: Noah-MP dynamic leaf model

This section gives a short overview of the Noah-MP vegeta-
tion model, focusing on the interaction of LAI and soil mois-
ture. For a more detailed description, we refer the reader to
Niu et al. (2011).

Noah-MP calculates LAI from a prognostic leaf biomass
Cl and a vegetation-type specific leaf area per leaf mass (spe-
cific leaf area; SLA):

LAI= SLA ·Cl.

Leaf biomass is updated in each step via a mass balance
equation:

dCl

dt
=

1
SLA

d LAI
dt
= (1−FRAGR)

·
[
fl(LAI) ·GPP(LAI,β,Tc,F )−Rm (LAI,β,Tc)

]
−Dc (LAI,Tc)−Dd(LAI,β)− Tl(LAI), (A1)

with FRAGR the fraction of GPP minus maintenance res-
piration invested in growth respiration, Rm the maintenance
respiration,Dc the death rate due to cold stress,Dd the death
rate due to drought stress, Tl the turnover rate, F the atmo-
spheric forcings, and Tc the canopy temperature. fl is the leaf
carbon allocation fraction, which governs how much of the
total assimilated carbon (GPP) is allocated to the leaf pool
(the rest will be allocated to other carbon pools) and is given
by

fl(LAI)=
(

1−
LAI
10

)
· exp

(
0.01 ·LAI

(
1− e0.75·LAI

))
.

The dependence of vegetation growth on available soil
moisture is controlled via the soil moisture factor β, which
represents the relative amount of plant-available water in the
root zone:

β =
∑
i

1zi

zroot
min

(
1,
θi − θwilt

θfc− θwilt

)
,
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where θi is the volumetric soil moisture in layer i, θfc is the
field capacity, and θwilt is the wilting point.

The sink terms of Eq. (A1) are calculated in the following
way:

Rm (LAI,β,Tc)= 12× 10−6
·R25 ·FNF · 2

Tc−298.16
10 ·β ·LAI (A2)

Dc (LAI,Tc)= 10−6
·

LAI2

120 ·SLA2

· cc exp
(
−0.3max

(
0,Tc− Tc,min

))
(A3)

Dd(LAI,β)= 10−6
·

LAI
SLA
· cd · exp(−100β) (A4)

Tl(LAI)= 5× 10−7
· ct ·

LAI
SLA

, (A5)

with the land-cover-specific parameters R25 (maintenance
respiration at 25 ◦C), FNF (foliage nitrogen factor), cc (cold
stress coefficient), Tc,min (leaf freezing temperature), cd
(drought stress coefficient), and ct (turnover coefficent).

Appendix B: Climatological approximation of the
Noah-MP LAI equilibrium value as a function of soil
moisture and leaf parameters

The equilibrium LAI value (model-based “attractor”) is the
LAI value at which Eq. (A1) is zero. It is therefore an im-
plicit function of all the terms and variables on the right-
hand side of Eq. (A1). However, some of the terms on the
right-hand side of this equation strongly depend on the me-
teorological forcings (e.g. GPP). Evaluating the equilibrium
LAI as function of soil moisture and leaf parameters would
therefore require running the complete Noah-MP model with
a wide range of forcing conditions, which quickly becomes
computationally intractable. Therefore, we use a climatolog-
ical approximation of the term in Eq. (A1) to eliminate the
explicit dependence on the meteorological forcings.

We obtain a climatological approximation of GPP as a
function of LAI and β by assuming that GPP is proportional
to LAI, β, and a factor that depends solely on the forcings F
or constant parameters that do not include the leaf parame-
ters:

GPP(LAI,β)≈ LAI ·β ·α(F ). (B1)

The linear dependence on β is part of the Noah-MP model
physics, while the assumption of a linear dependence on LAI
is justified in the case that vegetation growth is not light lim-
ited. This is reasonable for the areas with a large bias in
the southern part of the domain, where vegetation growth is
mainly water limited. To find an approximation for α, we
perform a least-squares fit of Eq. (B1) using the daily mean
model output for GPP, LAI, and β for each calendar month.
This results in 12 separate approximations of GPP(LAI,β),
one for each calendar month. The fit for the month with
the highest discrepancy between Noah-MP OL and CGLS
is shown in Fig. B1.

For the other terms in Eq. (A1), we simply insert the mean
forcing value if required. The resulting defining equation for
the equilibrium LAI for month m is then

0= βm · (1−FRAGR) ·
[
fl
(
LAIeq,m

)
·αm ·LAIeq,m

−Rm,w
(
LAIeq,m,Tc,m

)]
−Dc

(
LAIeq,m,Tc,m

)
−Dd

(
LAIeq,m,β

)
− Tl

(
LAIeq,m

)
, (B2)

where Tc,m is the mean canopy temperature, βm the mean
plant-available water, and αm the GPP proportionality factor
from Eq. (B1) for month m. The solution can be obtained
numerically with common root-finding algorithms.
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Figure B1. Dependence of soil-moisture-normalised GPP (GPP/β) on LAI for the OL and DA runs, and the linear approximation obtained
via a least-squares fit for (a) Majadas in June and (b) the Nile delta in July.

Appendix C: Used ISMN networks

Table C1. ISMN networks used for evaluation.

Network name Country Stations Coverage References/acknowledgements

CALABRIA Italy 5 2001–2012 Brocca et al. (2011b)

CAMPANIA Italy 2 2000–2012 Brocca et al. (2011b)

COSMOS Switzerland 1 2008–2020 Zreda et al. (2008, 2012)

FMI Finland 27 2007–2022 Ikonen et al. (2016, 2018)

FR_ Aqui France 5 2012–2022 Al-Yaari et al. (2018), Wigneron et al. (2018)

GTK Finland 7 2001–2012 Raimo Sutinen

HOAL Austria 33 2013–2021 Blöschl et al. (2016), Vreugdenhil et al. (2013)

HOBE Denmark 32 2009-2019 Jensen and Refsgaard (2018), Bircher et al. (2012)

HYDROL-NET_PERUGIA Italy 2 2010–2016 Morbidelli et al. (2017)

IMA_CAN1 Italy 12 2011–2015 Biddoccu et al. (2016), Raffelli et al. (2017)

IPE Spain 2 2008–2020 Alday et al. (2020)

MOL-RAO Germany 2 2003–2020 Beyrich and Adam (2007)

NVE Norway 3 2012–2019 Norwegian Water Resources and Energy Directorate (NVE),
Fred Wenger

ORACLE France 6 1985–2013 Institut national de recherce en sciences et technologies pour
l’environment et l’agriculture France

REMEDHUS Spain 24 2005–2022 González-Zamora et al. (2019)

RSMN Romania 20 2014–2022 Romanian National Meteorological Administration, Andrei Dimandi,
Adelina Mihai

SMOSMANIA France 22 2007–2021 Calvet et al. (2007, 2016), Albergel et al. (2008)

STEMS Italy 4 2015–2022 Capello et al. (2019), Darouich et al. (2022)

SWEX_POLAND Poland 6 2000–2013 Marczewski et al. (2010)

TERENO Germany 5 2009–2021 Zacharias et al. (2011), Bogena et al. (2018, 2012), Bogena (2016)

UDC_SMOS Germany 11 2007–2011 Schlenz et al. (2012), Loew et al. (2009)

UMBRIA Italy 13 2002–2017 Brocca et al. (2011a, 2008, 2009)

UMSUOL Italy 1 2009–2017 Agenzia Regionale Prevenzione Ambiente – Servizio Idro-Meteo-
Clima (ARPA–SIMC) and Andrea Pasquali

WEGENERNET Austria 12 2007–2022 Fuchsberger et al. (2021), Kirchengast et al. (2014)

WSMN UK 8 2011–2016 Petropoulos and McCalmont (2017)
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