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Abstract. The filling of the Grand Ethiopian Renaissance
Dam (GERD) started in 2020, posing additional challenges
for downstream water management in the Blue Nile River
in the Republic of the Sudan, which is already struggling
to cope with the effects of climate change. This is also the
case for many transboundary rivers that are affected by a lack
of cooperation and transparency during the filling and op-
eration of new dams. Without information about water sup-
ply from neighboring countries, it is risky to manage down-
stream dams as usual, but operational information is needed
to apply modifications. This study aims to develop a novel
approach/framework that utilizes hydrological modeling in
conjunction with remote-sensing data to retrieve reservoir
filling strategies under limited-data-availability conditions.
Firstly, five rainfall products (i.e., ARC2, CHIRPS, ERA5,
GPCC, and PERSIANN-CDR; see Sect. 2.3 for more infor-
mation) were evaluated against historical measured rainfall
at 10 stations. Secondly, to account for input uncertainty,
the three best-performing rainfall products were forced in
the conceptual hydrological model HBV-light with poten-
tial evapotranspiration and temperature data from ERA5.
The model was calibrated during the period from 2006 to
2019 and validated during the period from 1991 to 1996.
Thirdly, the parameter sets that obtained very good perfor-
mance (Nash–Sutcliffe efficiency, NSE, greater than 0.75)
were utilized to predict the inflow of GERD during the
operation period (2020–2022). Then, from the water bal-
ance of GERD, the daily storage was estimated and com-
pared with the storage derived from Landsat and Sentinel

imageries to evaluate the performance of the selected rain-
fall products and the reliability of the framework. Finally,
3 years of GERD filling strategies was retrieved using the
best-performing simulation of CHIRPS with an RMSE of
1.7 × 109 and 1.52×109m3 and an NSE of 0.77 and 0.86
when compared with Landsat- and Sentinel-derived reservoir
storage, respectively. It was found that GERD stored 14 %
of the monthly inflow of July 2020; 41 % of July 2021; and
37 % and 32 % of July and August 2022, respectively. Annu-
ally, GERD retained 5.2 % and 7.4 % of the annual inflow in
the first two filling phases and between 12.9 % and 13.7 % in
the third phase. The results also revealed that the retrieval of
filling strategies is more influenced by input uncertainty than
parameter uncertainty. The retrieved daily change in GERD
storage with the measured outflow to the Republic of the Su-
dan allowed further interpretation of the downstream impacts
of GERD. The findings of this study provide systematic steps
to retrieve filling strategies, which can serve as a base for fu-
ture development in the field, especially for data-scarce re-
gions. Locally, the analysis contributes significantly to the
future water management of the Roseires and Sennar dams
in the Republic of the Sudan.

1 Introduction

The optimal management of water resources is challenging
as we increasingly experience the impacts of climate change
and increasing water demand due to population growth
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(Stakhiv, 2011). Transboundary rivers pose even greater
challenges to water management, for example, when struc-
tures such as dams are built by upstream countries, as up-
stream changes impact the downstream flow regime (Biswas,
2008) and mean water availability during the filling phase.
The absence of collaboration has disastrous impacts in these
regions, as collaboration increases water revenue and reduces
the risk of extreme events (Basheer et al., 2018; Wheeler
et al., 2018). There is, however, the possibility of conflict-
ing dynamics in many transboundary basins due to the dif-
ferent policies and strategies between neighboring countries
(Warner and Zawahri, 2012). As a result, a lack of trans-
parency on the filling/operation of dams and other infrastruc-
ture is often witnessed.

The Blue Nile River is an example of a transboundary river
in which infrastructure influences downstream dynamics. A
current challenge faced by the Ministry of Irrigation and Wa-
ter Resources (MoIWR) of the Republic of the Sudan (here-
after Sudan) is the management of the Nile River. Around
two-thirds of Nile water is supplied by the Blue Nile River
(Dumont, 1986). This river originates in Lake Tana, Ethiopia,
and subsequently flows northward to meet the White Nile
River (which originates in Lake Victoria, Uganda), where
the main Nile River starts in Khartoum, the capital of Sudan
(as shown in Fig. 1a). In April 2011, the Ethiopian govern-
ment started the construction of the Grand Ethiopian Renais-
sance Dam (GERD) in the Upper Blue Nile (UBN) basin,
around 15 km east of the Ethiopian–Sudanese border. The
dam, when completed, will be the largest hydropower dam
in Africa with a storage capacity of 74×109m3 (with vol-
umes expressed as BCM, billion cubic meters, hereafter) and
a power capacity of 5150 MW (Ezega News, 2019). It was
constructed without an agreement with downstream coun-
tries (i.e., Sudan and Egypt), which caused hydro-political
tension between Sudan, Egypt, and Ethiopia (Gebrehiwet,
2020). Moreover, water management in Sudan is very closely
tied to reservoirs. The Roseires Dam, for example, plays a
significant role in managing drinking water as well as irri-
gation water for downstream projects and is closely coor-
dinated with the Sennar Dam downstream (Alrajoula et al.,
2016) (see Fig. 1b). Around 35 % of the Sudanese allocation
of Nile water is consumed by the Gezira Scheme, which is
supplied by the Sennar Dam (Adam et al., 2003). The Gezira
Scheme, with a total area of 8800 km2, is regarded as one
of the largest irrigation schemes in the world under a sin-
gle management structure (Ahmed et al., 2006). Therefore, it
plays a considerable role in the socio-economy of Sudan.

The construction of GERD, in combination with the low
level of coordination between Ethiopia and Sudan, poses a
threat to water management in Sudan. For instance, floods
are frequently experienced in Khartoum State, where 16 %
of the population lives (World Population Review, 2022). In
the past 35 years, flood events have been observed, on av-
erage, every 5 years. The latest flood in 2020 was unprece-
dented, and water levels exceeded all previous events (NASA

Earth Observatory, 2020). In the same year, the filling of
GERD started without sharing information with Sudan and
Egypt. As shown in Fig. 1b, Roseries Dam is located only
around 120 km downstream of GERD. Without knowledge
of GERD operational strategies, management of the Roseires
Dam is a considerable challenge. Thus, knowledge of oper-
ational strategies is essential for flow prediction and water
management in downstream areas.

It is clear that the operation of the dams along the Blue
Nile River has significant implications for food security,
flood protection, water availability, and hydropower gen-
eration downstream in the main Nile River. Nonetheless,
Ethiopia has yet to share information on GERD filling,
thereby hindering water management in Sudan. Thus, obtain-
ing filling/operation information using alternative means is
urgently needed to support the operation of both the Roseires
and Sennar dams. Different approaches exist to understand
dam operation and reservoir water storage. One approach
relies on satellite remote sensing and radar altimetry. At a
global scale, satellite-derived water heights and extents have
been used to reconstruct storage dynamics (Hou et al., 2022).
Vu et al. (2022) revealed reservoir filling strategies and op-
erating rules of 10 dams along the Upper Mekong River us-
ing Landsat images and radar altimetry. Another approach is
using a process-based hydrological model to simulate water
inflow, storage, and release. Eldardiry and Hossain (2019)
predicted reservoir operating rules of High Aswan Dam in
the lower Nile River basin using satellite hydrometeorolog-
ical observations and a macroscale hydrologic model. Fur-
thermore, Wannasin et al. (2021) simulated the daily storage
of two reservoirs using a distributed hydrological model and
a reservoir operation module.

In this study, we aim to develop a novel approach to
infer reservoir management strategies under limited-data-
availability conditions. In our approach, two techniques, hy-
drological modeling and Earth observation, are combined to
retrieve reliable reservoir records. Then, we reconstruct man-
agement strategies based on further analysis of the retrieved
records. The merits of this approach include (1) facilitating
proactive flow forecasting for real-time operations; (2) gen-
erating refined and more consistent reservoir data, thereby
supporting hydrological analyses at various temporal scales;
and (3) permitting the assessment of the influence of differ-
ent input uncertainties on the inference of the management
strategies.

As part of this study, we will analyze the implications of
input data and parameter uncertainty in inferring the filling
strategies. As a case study, the research will be conducted
using the UBN basin in order to understand the filling stages
of GERD and its impact on downstream discharge. Specifi-
cally, the study will quantify the volume of water stored be-
hind GERD based on known outgoing flow to Sudan as well
as the daily reservoir storage change. The output of this study
intends to provide information to support the management of
the Lower Blue Nile in Sudan. Nonetheless, the work does
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Figure 1. Study area overview: (a) the geographical location of the Blue Nile Basin showing the upper and lower parts; (b) a digital elevation
model (Shuttle Radar Topography Mission, SRTM, 30 m) map of the Blue Nile Basin and the location of the Gezira Scheme, dams, and
the Eldiem streamflow station; and (c) the Upper Blue Nile subbasins with the location of rainfall gauge stations. Basin boundaries and the
drainage network were obtained from the HydroSHEDS dataset (Lehner et al., 2008), and national boundaries were based on the Database
of Global Administrative Areas (Hijmans et al., 2012). The name and coordinates of each rainfall gauge station are given in Table 3.

not attempt to use the findings to optimize current manage-
ment practices, as this would go beyond the goal of this study.
Therefore, we will aim to answer the following questions:

1. How can hydrological modeling and remote sensing
be leveraged to effectively infer GERD management
strategies?

2. What is the implication of rainfall selection and param-
eter uncertainty on the inference of GERD management
strategies?

3. What is the impact of GERD reservoir filling on the
flow to Sudan during the first three filling phases (2020–
2022)?

The outline of the study is as follows: the study area and
data are briefly described in Sect. 2; the methodology, includ-
ing the evaluation of selected rainfall products, the use of hy-
drological modeling, and the inference of reservoir storage,
is detailed in Sect. 3; in Sect. 4, the results of the study are
presented; the results are discussed in Sect. 5; and, finally,
the work is summarized in Sect. 6.

2 Study area and data

2.1 Upper Blue Nile basin

The Blue Nile River basin has a drainage area of 310 000 km2

that is shared between Ethiopia (64 %) and Sudan (36 %).
The water is supplied from Lake Tana, in the northwest-
ern Ethiopian Highlands at 1780 m a.s.l, and flows clock-
wise through the eastern mountainous side of the basin to

the western lower-altitude side. A few kilometers after the
Ethiopian–Sudanese border, the water is measured at the out-
let of the UBN basin at Eldiem station (481 m a.s.l). After-
ward, the water is drained from the Lower Blue Nile (LBN)
basin through the Blue Nile River and its tributaries, the Din-
der River and the Rahad River, to the main Nile River (as
shown in Fig. 1b).

The UBN basin, which covers an area of around
176 000 km2, is the region of interest for this study. The basin
is subdivided into 14 subbasins, as shown in Fig. 1c. The
rainfall in the UBN basin ranges from 1000 mm yr−1 near the
Ethiopian–Sudanese border to 2200 mm yr−1 in the Didessa
and Dabus subbasins, reflecting the high spatial variability in
the precipitation associated with topographical features (i.e.,
so-called water towers) that is typical of much of East Africa
(Wamucii et al., 2021). There is a high but spatially variable
mean potential evapotranspiration that varies between 1000
and 1800 mm yr−1 (Conway, 2000). The typical annual air
temperature in the basin ranges from 13 to 26 ◦C (Tekleab
et al., 2013). The discharge regime of the Blue Nile River is
highly seasonal, with more than 80 % of its annual discharge
occurring between July and October and only 4 % between
January and April (Kim and Kaluarachchi, 2009; Sutcliffe
and Parks, 1999).

Four main land uses dominate in the UBN basin – crop-
land (54.74 %), open forest (23.62 %), shrubland (8.29 %),
and closed forest (7.94 %); the remaining land uses cover
only 5.41 % of the total area based on the Copernicus Global
Land Service (Buchhorn et al., 2020). The large basin is com-
posed of heterogeneous soil types. According to the Soil-
Grids dataset (Hengl et al., 2017), the most common types
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Table 1. Main characteristics of the available ground measure-
ments.

Data type Temporal No. of Available
resolution stations years

Discharge Daily 1 1990–2022
Rainfall Monthly 8 1984–2005
Rainfall Monthly 2 (stations 6 and 7)∗ 1993–1999

∗ See Fig. 1c.

are Leptosols, Luvisols, Vertisols, and Nitisols, which col-
lectively occupy 96 % of the area.

2.2 Ground measurements

The scarcity of ground measurements in terms of availability
and accessibility is a challenge and motivation for this study.
Streamflow stations are scattered in the basin and cover many
subbasins, but their data are not publicly available. Down-
stream of GERD, after the border, Sudan has been measur-
ing the incoming water at Eldiem station since the 1960s
(Fig. 1b). These data were obtained from the MoIWR for
the period from 1990 to 2022 with a daily time step. Con-
sequently, the calibration and validation of the hydrologi-
cal model will be based on these measurements, as will be
detailed later. It is worth mentioning that the discharge at
Eldiem station is estimated from measured water levels us-
ing rating curves. From 2012 onwards, Eldiem station is in-
fluenced by the backwater effect of the Roseires Dam dur-
ing filling months (June–October). During these months, the
MoIWR estimates the discharge from the water balance of
the Roseires Dam.

Despite the availability of more than 1200 meteorolog-
ical stations in Ethiopia, the existing stations within the
UBN basin are not sufficient to cover the spatial variability
in rainfall. Additionally, the measured rainfall data are not
freely available from the National Meteorological Agency of
Ethiopia. However, historical monthly rainfall measurements
at 10 stations were obtained from the National Meteorologi-
cal Agency of Ethiopia, as indicated in Fig. 1c and Table 1.
Therefore, rainfall measurements will be used to validate the
satellite and reanalysis rainfall products available for this re-
gion, as remote-sensing products cover the entire basin and
recent data are available.

2.3 Input data

Due to the unavailability of the required observed input data,
remote-sensing products will be used in this study. These
products include meteorological forcing data (precipitation,
potential evapotranspiration, and temperature) and satellite
imagery (Landsat and Sentinel). The spatial resolution and
references of the selected datasets are summarized in Table 2

and will be utilized for different purposes, as detailed in the
following sections.

In this study, the quality of five rainfall products will be
tested: the African Rainfall Climatology, version 2 (ARC2);
the Climate Hazards Group InfraRed Precipitation with Sta-
tion, version 2 (CHIRPS); the fifth-generation ECMWF at-
mospheric reanalysis (ERA5); the Global Precipitation Cli-
matology Centre Full Data Reanalysis, version 7 (GPCC);
and the Precipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks – Climate Data
Record (PERSIANN-CDR). The potential evaporation and
temperature data are retrieved from ERA5.

3 Methodology

3.1 Evaluation of selected rainfall products

As rainfall products will be used as forcing data, it is im-
portant to understand how these data perform in comparison
with the available ground measurements. The selection of a
representative product is likely to be crucial for minimizing
model output uncertainty. In this step, the available monthly
rainfall observations at the sites shown in Fig. 1c were used
to investigate the performance of the five mentioned rainfall
products using a point-to-pixel approach (see Fig. 2). The
approach compares the time series of observed rainfall to
the gridded products assuming that grid-cell values are repre-
sented by the corresponding rain gauge measurements (e.g.,
Thiemig et al., 2012; Basheer and Elagib, 2019; McNamara
et al., 2021). This approach is useful for data-scarce regions.

A statistical validation using six performance metrics
(three linear fit metrics – coefficient of determination, R2; in-
tercept; and slope – and three error metrics – mean absolute
error, MAE; mean bias error, MBE; and root-mean-square er-
ror, RMSE) was carried out using the equations in Table B1
in the Appendix. Additionally, to draw general conclusions,
the products were ranked based on the calculation of the uni-
fied metric (UM; Eq. 1) and the overall unified metric (OUM;
Eq. 2) (Elagib and Mansell, 2000). The UM indicates the
ranking of each product at each station, while the OUM is the
sum of the UM values for each product at all stations. Firstly,
each product is ranked per station for each metric. Secondly,
the performance rankings are summed up per product, with
a low value indicating good performance and a high value
indicating poor performance relative to each other.

UMp,i =

K∑
m=1

Rp,m,i (1)

OUMp =

L∑
i=1

UMp,i (2)

Here, Rp,m,i is the rank of the product p based on the per-
formance metric m at station i; OUMp is the overall unified
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Table 2. Summary of the remote-sensing products used as input in the hydrological modeling over the Upper Blue Nile (UBN) basin.

Input Dataset Spatial Reference
resolution

Satellite imagery Landsat 30 m USGS (2021)
Sentinel 10 m Drusch et al. (2012)

Potential evapotranspiration ERA5 0.25◦ Hersbach et al. (2019)
Temperature ERA5 0.25◦ Hersbach et al. (2019)
Precipitation ARC 2.0 0.1◦ Novella and Thiaw (2013)

CHIRPS 0.05◦ Funk et al. (2014)
ERA5 0.25◦ Hersbach et al. (2019)
GPCC 1.0◦ Ziese et al. (2020)
PERSIANN-CDR 0.25◦ Ashouri et al. (2015)

Figure 2. Flowchart representing the research methodology. Steps are shown in chronological order, and the execution is carried out from
left to right. For rainfall product validation, five products are selected: ARC 2.0, CHIRPS 2.0, ERA5, GPCC, and PERSIANN-CDR. For
storage validation, observed storage is computed by converting the water surface area observed by Landsat/Sentinel to water volume using
the elevation–area–storage relationship of the GERD reservoir.

metric of the rainfall product p; and K and L are the num-
ber of considered performance metrics and rainfall stations,
respectively. UM ranges from K = 6 to K× No. of rainfall
products= 30. While the minimum OUM value is 60 (K×L)
and the maximum value is 300 (K×L× No. of rainfall prod-
ucts).

Based on this analysis, the first three highest-ranked rain-
fall products will be selected to analyze the influence of
the uncertainty in the rainfall product on retrieving reservoir
storage strategies. This is due to the fact that precipitation
changes can dominate reservoir volume changes (Hou et al.,
2022). It is important to note that the rank of the rainfall prod-
ucts might differ if the analysis was based on the daily time
step that is used in our hydrological model simulations.

3.2 Hydrological modeling

From 57 previous studies in the literature between 2007 and
2022, 26 hydrological models have been implemented in the
Upper Blue Nile basin (see Table C1). The Soil and Wa-
ter Assessment Tool (SWAT) and the Hydrologiska Byråns
Vattenbalansavdelning (HBV) are the most commonly used
models, utilized in 23 and 11 studies, respectively. Both mod-

els performed well with respect to simulating the runoff at the
outlet of the UBN basin (Betrie et al., 2009; Teklesadik et al.,
2017). Bizuneh et al. (2021) compared the models’ perfor-
mance in the UBN basin and concluded that SWAT showed
better performance in the three studied watersheds. However,
the HBV conceptual model will be used in this work due to
its lower demand for input data compared with the SWAT
model as well as the limited number of parameters. HBV
is a widely used conceptual hydrological model developed
by Bergström (1995), although several different implemen-
tations have been used (Jansen et al., 2021). In this study,
a lumped representation of the original HBV model will be
used, namely HBV-light (Seibert and Vis, 2012). The lumped
model simulates daily discharge using daily average precipi-
tation, temperature, and potential evapotranspiration over the
basin as input (Seibert, 1996). In addition to its flexibility and
computational efficiency, HBV has been successfully applied
in the UBN basin (e.g., Uhlenbrook et al., 2010).

HBV-light will be calibrated for a period of 14 years
(70 %), from 2006 to 2019, and afterward validated for
6 years (30 %), from 1991 to 1996 (see Fig. 2). The selection
of the years was due to a considerable gap in the measure-
ments from 1997 to 2000. Although the climate might show
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non-stationarity, we still consider the optimized parameters
robust enough to draw conclusions for two reasons. First, the
calibration and validation periods extend over a long dura-
tion. Second, as noted by Melsen et al. (2018), parameter
sets are not typically the dominating source of uncertainty
when considering long-term changes simulated with hydro-
logical models such as HBV, which was also employed in this
study. Additionally, as a warm-up year, 1 year before each pe-
riod (i.e., 2005 and 1990) will be used to avoid the effect of
the initial values. Furthermore, to account for parameter un-
certainty, the generalized likelihood uncertainty estimation
(GLUE) method will be adopted (Beven and Freer, 2001).
The GLUE method was employed because it is simple and
commonly used in hydrology. In hydrological models, the
Nash–Sutcliffe efficiency (NSE), proposed by Nash and Sut-
cliffe (1970), is widely used as the objective function (Setegn
et al., 2010). Therefore, different parameter sets will be se-
lected based on the NSE exceeding a threshold value of 0.75,
which is classified as very good performance according to
Moriasi et al. (2007). Moreover, to evaluate the performance
of the hydrological model, the Moriasi et al. (2007) classifi-
cation will be used.

3.3 Retrieving GERD filling strategies

3.3.1 Reservoir area and storage from satellite
observations

As observations of GERD filling are currently not available,
the quantification of the reservoir storage using satellite im-
agery will allow researchers to validate the ability of the
hydrological modeling to retrieve the filling strategies (see
Fig. 2). This can also provide insights into the sensitivity of
storage estimation to the selection of rainfall products.

On the one hand, to derive reservoir storage from Land-
sat images, The Landsat Collection 2 Level-2 product was
obtained. Landsat was selected due to its high spatial resolu-
tion (30 m) as well as its reasonable revisit time (16 d). Ad-
ditionally, to increase the temporal resolution up to 8 d, im-
ages from multiple satellites (i.e., Landsat 7, 8, and 9) were
used (the steps are shown in Fig. A1a). Different indices al-
low the estimation of the water surface area (WSA); in this
study, the normalized difference water index (NDWI), based
on Eq. (3), was selected. Hence, three bands are needed from
Landsat: the green (GRN), near-infrared (NIR), and quality
assessment bands.

NDWI=
GRN−NIR
GRN+NIR

(3)

Firstly, the images over the GERD reservoir were obtained
from the three satellites. However, Landsat 7 images contain
missing data stripes caused by the scan line corrector (SLC)
failure (Scaramuzza and Barsi, 2005). The missing data were
filled using the “Fill nodata” tool in Quantum GIS (QGIS,
2009). Then, as the GERD reservoir is covered by two tiles,

the tiles were mosaicked and clipped over the reservoir ex-
tent. Based on the NDWI maps, the algorithm of Vu et al.
(2022) was used to estimate the WSA. This algorithm is
an improvement on the algorithm introduced by Gao et al.
(2012) and modified by Zhang et al. (2014) to allow for the
use of Landsat Collection 1 data. The algorithm improves the
estimation of the images with clouds by using cloudless im-
ages and removing clouds, cloud shadows, and no-data pix-
els. The improvement is two-fold: the selection of cloudless
images and the identification of additional water zones. From
2022 onwards, only Collection 2 structures will be used for
new Landsat data. Therefore, the algorithm was adapted for
the processing of all new Landsat acquisitions.

On the other hand, the computation of WSA from
Sentinel-2 imagery was performed using the PyGEE-
SWToolbox (Owusu et al., 2022). This open-source toolbox
was observed to be a user-friendly, adaptable, and depend-
able method for quantifying WSA. The software provides a
graphical user interface for obtaining WSA time-series data
from diverse satellite imagery datasets, including Sentinel-2.
Consequently, by utilizing NDWI calculations and a prede-
termined threshold value of zero, we can accurately detect
and classify pixels as waterbodies (i.e., NDWI> 0). Detailed
steps can be seen in Fig. A1b.

Finally, to convert the estimated WSA to storage, an area–
storage relationship is required. For this, the elevation–area–
storage relationship of the reservoir was produced from the
Shuttle Radar Topography Mission (SRTM) digital elevation
model (Farr et al., 2007) using the Python code written by
Vu et al. (2022). Finally, dates with suspicious values were
checked manually and erroneous values were removed. The
unrealistic values were found to occur mainly when the im-
ages were completely covered with clouds.

3.3.2 Reservoir storage from hydrological modeling

In July 2020, GERD started filling; thus, the assumption that
the observed flow to Sudan (at Eldiem) is equal to the incom-
ing flow to GERD is no longer valid. Accordingly, to predict
the unknown inflow to GERD after 2020, calibrated hydro-
logical models will be utilized. HBV-light will be run for the
period from 2020 to 2022 using the optimized parameter sets
(see Fig. 2). Thereafter, the observed and simulated discharge
will be used together to estimate the water storage volume at
the reservoir with the following equations:

Qout =Qin−
dS
dt
−E, (4)

dS
dt
= θ ·Qin−E, (5)

θ = 1−
Qout

Qin
. (6)

Here, Qin and Qout are the daily inflow to and outflow from
the dam, respectively; dS

dt is the daily change in reservoir stor-
age volume; E is the evaporated volume of water from the
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reservoir; and θ is the fraction of the inflow volume retained
by the reservoir, which ranges between 0 and 1. The last two
equations (i.e., Eqs. 5 and 6) are used to estimate the daily
storage that, when accumulated, gives the total stored water
in the reservoir. The daily inflow Qin will be estimated from
the hydrological modeling, whereas the daily outflow Qout
will be based on discharge measurements at Eldiem station.
To calculateE for each time step, the estimated daily average
evaporation per month obtained from Khairy et al. (2019) is
multiplied by the reservoir surface area at that time step. The
area is estimated from the storage using the acquired area–
storage relationship.

4 Results

4.1 Performance of the rainfall products

The performance of the five selected rainfall products based
on 10 rain gauge stations was estimated and is illustrated in
a boxplot for each performance metric (see Fig. 3). From
the boxplots, it can be revealed that CHIRPS has the most
accurate estimates, as it is the closest product to the op-
timal values (horizontal dashed red lines) in most of the
evaluated metrics. CHIRPS has a high mean R2 of 0.89, a
mean slope of 0.96, and a relatively low mean intercept of
10 mm. CHIRPS has the lowest values for the error met-
rics: 36.66 mm for the RMSE, 5.31 mm for the MBE, and
23.7 mm for the MAE. Moreover, GPCC and ARC2 exhib-
ited the best mean slope and intercept, respectively. On the
other hand, ERA5 shows the highest overestimation (mean
slope of 1.28) and the highest error values. Additionally, it is
also clear that ARC2 consistently underestimates the rainfall
at all locations (negative MBE values). The performance of
the rainfall products also varied spatially at the different sta-
tions. The spatial distribution of the calculated metrics (see
Fig. B1) demonstrated consistent performance of CHIRPS
over the spatial extent and high spatial variation in ERA5.
For further demonstration of the metrics’ values and spatial
distribution, the reader is referred to Figs. B1 and B2 in the
Appendix.

Furthermore, the UM in Table 3 emphasizes the accu-
racy of CHIRPS (i.e., has the lowest values) at almost all
stations, unlike ERA5, which was the least accurate prod-
uct. Additionally, the calculation of the OUM showed that
the overall best-performing product is CHIRPS, followed
by PERSIANN-CDR, ARC2, GPCC, and ERA5. Therefore,
CHIRPS is expected to perform better with respect to simu-
lating the discharge in the river, estimating the water stored
behind the dam, and retrieving the filling strategies. How-
ever, the first three rainfall products were selected as forcing
data for the hydrological modeling to account for the input
uncertainty in retrieving the filling strategies.

4.2 Hydrological modeling using HBV-light

4.2.1 Model calibration and validation

The HBV-light model was forced by ERA5 temperature
and potential evapotranspiration estimates, and CHIRPS,
PERSIANN-CDR, and ARC2 rainfall data were provided to
account for input uncertainty. Initially, the parameter ranges
tested in the Gilgel Abay catchment in the UBN basin by
Uhlenbrook et al. (2010) were adopted. However, the model
performance was limited by the initial range of the maxi-
mum soil moisture (FC), which was 200 to 600 mm. There-
fore, a new range of 200 to 1000 mm was selected that was
sufficient to tackle this issue. HBV-light routines, parameter
symbols and descriptions, and parameter ranges are listed in
Table D1.

To account for parameter uncertainty, 10 000 random
parameter sets were generated by the Monte Carlo runs
of HBV-light based on the parameter ranges and assum-
ing a uniform distribution. After running the model during
the calibration period, 1756 model simulations achieved an
NSE> 0.75 when using CHIRPS, whereas only 269 and
244 simulations achieved this performance in the case of
PERSIANN-CDR and ARC2, respectively. In further anal-
ysis, we rely on the parameter set that resulted in the best
model performance (best simulation). However, we acknowl-
edge that other parameter sets with high performance may be
equally valid. Figure D1 shows the range of each parameter
for the very good simulations in comparison to the applied
parameter range (with narrower ranges indicating sensitiv-
ity). As a result, the simulated discharge was found to be sen-
sitive to FC, the shape coefficient BETA, and the regression
coefficients K1 and K2 when using the three rainfall prod-
ucts.

Figure 4a and b show the daily time series of simulated
(using CHIRPS) and observed discharge over the calibration
and validation periods, respectively (see Fig. D2a and b for
both PERSIANN-CDR and ARC2). The parameter set that
obtained the highest performance for each rainfall product
is indicated in Table D1. Looking at the best simulation, it
can be revealed that HBV-light was able to capture the intra-
annual seasonality in the three rainfall cases and in both pe-
riods, but it hardly captured the daily variation in discharge,
especially for high flows, as also noted by Uhlenbrook et al.
(2010). Accordingly, the models resulted in very good NSE
values (as shown in Table 4), but they dropped to satisfac-
tory (0.51) and unsatisfactory (−0.32 and −0.25) values for
CHIRPS, PERSIANN-CDR, and ARC2 during calibration
years, respectively, after removing the seasonality.

Table 4 also allows for a comparison of the behavior of the
model when utilizing the different rainfall products. Firstly,
the performance of the best simulations was represented by
the first three metrics (NSE; percentage bias, PBIAS; and
the ratio of RMSE to measured standard deviation, RSR),
the equations of which are given in Table B1. For all rain-
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Figure 3. Performance of the five selected rainfall products. Each box reflects the distribution over 10 stations (see Fig. 1c and Table 3).
The horizontal dashed red lines indicate the optimal values. Detailed calculations are illustrated in Fig. B2 and the equations are listed in
Table B1.

Table 3. Ranking of the satellite and reanalysis rainfall products for each station based on 10 selected rain gauge stations. UM is the unified
metric and OUM is the overall unified metric.

No. Station Longitude Latitude
Unified metric (UM)

CHIRPS GPCC ERA5 PERSIANN-CDR ARC 2.0

1 Mekelle 39.5 13.5 7 16 25 25 17
2 Gonder Airport 37.4 12.6 11 8 27 20 24
3 B-dar Synoptic 37.4 11.6 8 25 18 15 24
4 Kombolcha 39.7 11.1 9 19 28 16 18
5 Debre Markos 37.7 10.3 7 23 29 15 16
6 Mehal Meda 39.7 10.2 14 19 30 13 14
7 Shola Gebeya 39.4 9.2 8 15 29 16 22
8 Addis Ababa Bole 38.8 9.0 9 23 29 15 14
9 Jimma 36.8 7.7 8 27 20 13 22
10 Robe 40.0 7.1 11 24 26 15 14

OUM 92 199 261 163 185
Overall rank 1 4 5 2 3

fall products, the NSE and RSR values were found to be
very good in the calibration and validation runs, except for
PERSIANN-CDR during validation which presented good
values, thereby confirming the skillful predictive ability of
the HBV-light model. On the other hand, the PBIAS was
generally very good, but ARC2 and PERSIANN-CDR over-
estimated the discharge when applied from 1991 to 1996,
resulting in satisfactory and unsatisfactory performance, re-
spectively. Secondly, the P factor and R factor were used to
measure the uncertainty. The highest percentage of the ob-
servations bracketed by the 95PPU was found for CHIRPS
(78 % and 85 %), whereas the lowest percentages were found
for ARC2 during calibration (38 %) and PERSIANN-CDR
during validation (49 %). Additionally, the uncertainty range
of CHIRPS was found to be the widest (0.73 and 0.78) and

ARC2 the narrowest (0.35 and 0.39). Overall, from the anal-
ysis of model performance and uncertainty, it can be con-
cluded that CHIRPS is the best product for simulating the
discharge at the outlet of the UBN basin, followed by ARC2
and then PERSIANN-CDR.

4.2.2 Predicted inflow to GERD

Since 2020, the inflow to GERD has been unknown in Sudan
due to data-sharing challenges. Therefore, the main purpose
of the HBV-light model in this study was the prediction of
inflow to GERD. The selected parameter sets in the last step
were run from 2020 to 2022. Figure 4c illustrates the daily
inflow (from HBV-light using CHIRPS) and outflow (from
Eldiem station) of GERD (see Fig. D2c for both PERSIANN-
CDR and ARC2). It is important to note that PERSIANN-
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Figure 4. Temporal dynamics of daily simulated and observed discharge at the Upper Blue Nile basin outlet. Simulations forced with
CHIRPS rainfall are shown during (a) the calibration period, (b) the validation period, and (c) the operation period. The best simulation was
based on the parameter sets that achieved the highest NSE value during calibration. The 95 % prediction uncertainty (95PPU) represents the
95th percentile of all very good simulations (NSE> 0.75) obtained by random generation of the parameter sets. The vertical gray shaded
areas in the operation period roughly indicate the days on which the dam is filling. MCM stands for million cubic meters (106m3).

Table 4. The statistical summary of HBV-light simulations. The P factor measures the proportion of observations falling within the uncer-
tainty range, while the R factor characterizes the extent of uncertainty relative to the variation in the measurements.

Product NSE RSR PBIAS (%) P factor (%) R factor

Calibration (2006–2019)

CHIRPS 0.90 (very good) 0.32 (very good) −3.61 (very good) 77.84 0.73
PERSIANN-CDR 0.80 (very good) 0.45 (very good) −5.06 (very good) 54.98 0.40
ARC2 0.79 (very good) 0.46 (very good) 1.53 (very good) 37.65 0.35

Validation (1991–1996)

CHIRPS 0.91 (very good) 0.3 (very good) 4.64 (very good) 85.13 0.78
PERSIANN-CDR 0.74 (good) 0.52 (good) 32.20 (unsatisfactory) 49.18 0.50
ARC2 0.81 (very good) 0.44 (very good) 22.88 (satisfactory) 58.02 0.39

The classification according to Moriasi et al. (2007) is as follows: very good (0.75<NSE≤ 1.0; 0≤RSR≤ 0.5; PBIAS<±10); good
(0.65<NSE≤ 0.75; 0.5<RSR≤ 0.6; ±10≤PBIAS<±15); satisfactory (0.50<NSE≤ 0.65; 0.6<RSR≤ 0.7; ±15≤PBIAS<±25);
unsatisfactory (NSE≤ 0.5; RSR> 0.7; PBIAS≥±25).

CDR data were available up to June 2022 (before the third
filling phase).

Firstly, for the three rainfall products, it is obvious that
the inflows were greater than the outflow during filling dates
(vertical gray shaded areas), indicating the occurrence of
reservoir filling. However, the filling periods were better cap-
tured by CHIRPS, followed by PERSIANN-CDR and ARC2

which gave longer filling periods (longer periods where in-
flow was greater than outflow). Moreover, PERSIANN-CDR
demonstrated two filling phases in July and August of the
first year.

Secondly, during no-fill dates, water passes through the
dam; therefore, it is expected that inflow is equal to the out-
flow. However, due to model, parameter, and data uncer-
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tainties, this is difficult to ascertain; thus, outflow should
be within the uncertainty range. The 95PPU range was only
able to bracket the discharge during no-fill dates for CHIRPS
runs. In the case of PERSIANN-CDR, the inflow was signif-
icantly lower than the outflow, falsely indicating a release
from the reservoir (no emptying of the reservoir occurred
during this period). Lastly, ARC2 showed very high inflows
from June to October, suggesting a large storage amount.

Overall, based on the analysis during the filling period,
CHIRPS was efficient with respect to reproducing the hy-
drological properties of the system after 2020, whereas
PERSIANN-CDR and ARC2 missed important features (i.e.,
filling dates).

4.3 Reservoir storage estimation

4.3.1 Elevation–area–storage (E–A–S) relationship

The elevation–area–storage (E–A–S) relationship is essential
in this work for two reasons: (1) converting the WSA values
observed by satellite imageries to storage values and (2) es-
timating the WSA corresponding to daily modeled GERD
storage and, hence, calculating the total daily evaporation
from the reservoir. Therefore, the E–A–S relationship was
derived from the SRTM, starting with estimating the area cor-
responding to each water level (E–A relationship) at 1 m in-
crements. Next, the reservoir volume corresponding to each
water level was calculated using trapezoidal approximation
(Gao et al., 2012; Bonnema and Hossain, 2019). The ob-
tained E–A, A–S, and E–S relationships were fitted with a
fifth-degree polynomial, as illustrated in Fig. 5. Further de-
tailed information about the approximation can be found in
the study by Vu et al. (2022).

On behalf of 10 Nile Basin countries, the Nile Basin Initia-
tive (NBI) has been commissioned to conduct studies in the
region. The Eastern Nile Technical Regional Office of the
NBI produced the E–A–S relationship for the GERD reser-
voir, and it was published in Wheeler et al. (2016). When
comparing the relationships derived from the digital eleva-
tion model (DEM) with the NBI, there is agreement with re-
spect to the E–A relationship (see Fig. 5a). However, the NBI
underestimates the storage corresponding to the water levels
and surface areas (see Fig. 5b and c).

To validate the relationship, the intersected dotted gray
lines in Fig. 5 demonstrate the characteristics of GERD re-
ported by the International Panel of Experts (IPoE; IPoE,
2013). The most important for this study is the A–S re-
lationship, especially for areas less than 1000 km2 in size,
as GERD recently started to fill. For this range, the DEM-
derived relationship intersects with the values reported by the
IPoE, indicating better estimation than the NBI (see Fig. 5b).
Moreover, SRTM data have commonly been applied to ob-
tain the E–A–S relationship of GERD (Kansara et al., 2021;
Chen et al., 2021; Salama et al., 2022). For this reason, the

following analysis will be based on the DEM-derived rela-
tionship.

4.3.2 Satellite-derived reservoir area and storage

The water surface area (WSA) of the GERD reservoir was es-
timated using Landsat and Sentinel images (steps are shown
in Fig. A1). The results (i.e., reservoir area and storage) were
more or less similar. Therefore, we will focus on discussing
Landsat results and refer to Sentinel when necessary.

WSA estimation from Landsat images was based on the al-
gorithm modified by Vu et al. (2022). This algorithm uses the
cloudless images (i.e., images with less than 20 % clouds) to
create an expanded mask as well as a zone mask to correct the
disturbed images. A total of 133 Landsat images are available
from January 2020 to September 2022, 70 images (53 %) of
which are classified as cloudless. Figure 6a presents the WSA
time series and reveals a significant increase in the WSA after
improvement (green points) when compared with the WSA
before improvement (light orange points). Additionally, the
abrupt changes in the reservoir area are observed less after
improvement, showing an important enhancement due to the
algorithm. However, the WSA was underestimated in some
images due to high cloud coverage.

As can be seen in Fig. 6a and b, there are missing data dur-
ing the wetting season (between June and September) of the
3 years, due to high cloud coverage. The first observed stor-
age after the filling was on 19 August 2020 with a volume of
3.82 BCM; this value gradually decreased to 2.97 BCM on
11 June 2021. After the second phase, the storage jumped to
8.76 BCM (increased by 5.8 BCM) and gradually decrease
until 2 March 2022 when a sudden decrease occurred. The
water stored decreased from 8.06 BCM to reach 5.77 BCM
by 3 April 2022. This decrease can be attributed to the an-
nounced 375 MW of electricity generation that began on 20
February 2022 according to Africa News (2022). In the third
phase, storage increased by 17 BCM reaching 23.1 BCM.

Furthermore, the increase in the WSA due to filling was
well captured by Landsat (and Sentinel), as illustrated in
Fig. 7. The area was estimated to be 3.1 % of the WSA at the
full supply level (FSL; 1874 km2) before filling started and
dramatically increased to reach 12 %, 22 %, and 44 % during
the first three filling phases, respectively. This indicates that
a considerable amount of water was stored and, thus, the im-
portance of understanding the filling process for downstream
water management.

The utilized algorithm was not always accurate in deter-
mining the threshold value of the NDWI which, in turn, in-
fluenced the quantification of the area. Therefore, a visual
inspection of the threshold was done to improve the estima-
tion. Additionally, in fully cloudy images, the algorithm still
provided additional water, which is not true and needs to be
checked manually.
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Figure 5. Elevation–area–storage (E–A–S) relationship of GERD reservoir obtained from the SRTM DEM in comparison with the Nile Basin
Initiative relationship: (a) elevation–area relationship, (b) area–storage relationship, and (c) elevation–storage relationship. The DEM-derived
lines are the results of a fifth-degree polynomial fitting to the data points obtained at 1 m water level intervals.

Figure 6. Satellite-derived GERD reservoir information during the filling period from 2020 to 2022. Panel (a) shows the derived water
surface area, while panel (b) shows the derived storage volume of GERD using Landsat (green: before improvement; light orange: after
improvement) and Sentinel (blue) information. The WSA maps of the dates specified using the dotted cyan lines are illustrated in Fig. 7.
Note that not filling the gaps induced by the scan line failure of Landsat 7 produces NDWI= 0 in these gaps when using the algorithm of Vu
et al. (2022). Therefore, for negative NDWI thresholds (which were the case here), Landsat 7 overestimates the area and storage.

It is important to point out that open-access radar altimetry
datasets provide valuable information for this validation step.
Therefore, for further validation, we also considered radar
altimetry data from G-REALM (Birkett et al., 2011) using
the elevation–storage relationship shown in Fig. 5c. How-
ever, the storage volume derived from G-REALM showed
unrealistic behavior in the recession and only added a few

data points during the filling periods, which made us decide
to exclude this source from the validation.

4.3.3 Model-derived reservoir storage

The performance of storage volume quantification from
HBV-light and the uncertainty due to model parameters and
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Figure 7. Landsat-derived water surface areas of GERD, using the modified algorithm of Vu et al. (2022), showing reservoir development
through the first three filling phases from 2020 to 2022. The location of the zoomed area in the left panel is indicated by the rectangle (dotted
red line) in the right panel.

rainfall product selection are highlighted in Fig. 8. The very
high modeled storage due to the use of PERSIANN-CDR
and ARC2 only resulted in negative NSE values, whereas
CHIRPS was the only product that provided reliable reser-
voir storage, as suggested by Fig. 8a and b. Around 629 runs
of CHIRPS (out of 1756) have positive NSE values, 407 of
which have NSE> 0.5. Additionally, the long filling periods
suggested by ARC2 produced the highest RMSE values and
range (between 44 and 78 BCM). Comparing the other two
products, Fig. 8c displays a higher and narrower interquar-
tile range in the case of PERSIANN-CDR compared with
CHIRPS. The performance of the best simulation of each
rainfall product is exhibited in Table 5. Ultimately, the large
difference between the rainfall products compared with the
deviation caused by parameter uncertainty seen in Fig. 8 in-
fers that filling strategies are more influenced by input uncer-
tainty than parameter uncertainty.

The modeled daily fractions of retained inflow, reservoir
storage and area, and evaporated volume of water from HBV-
light using CHIRPS are shown in Fig. 9 (see Fig. D4 for
PERSIANN-CDR and ARC2). From the first row of the fig-
ure, it is clear that the duration of filling increases with time,
suggesting around 13, 20, and 25 d for the first three phases,
respectively. Looking at the storage retrieved from HBV-light

(shown in the second row of the figure), one can see the in-
crease in the uncertainty through time, which is due to the ac-
cumulation of discharge uncertainty with time. It is also im-
portant to note that the decrease witnessed by Landsat/Sen-
tinel in 2022, due to the hydropower generation, was not cap-
tured by the model, which does not include release/operation
terms, resulting in additional errors (i.e., lower RMSE can
be achieved if this release was included). Additionally, the
best simulation suggests that the dead storage (14.79 BCM)
was exceeded after the filling in 2022. The last two rows of
Fig. 9 exhibit the daily area of the reservoir and the evapo-
ration from the reservoir surface. Obviously, the evaporation
increases with time due to the surface area increase which
results in a slight gradual decrease in the storage.

4.4 Filling strategies and downstream discharge

4.4.1 GERD filling strategies

Figure 10 exemplifies GERD filling strategies retrieved from
CHIRPS, as the other two rainfall products provided insuf-
ficient results. The figure shows a time series of monthly θ
values and the percentage of reservoir filling. The θ values
of May and June 2020 are more than zero due to the low
flows in these months and the uncertainty in the model (see
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Figure 8. HBV-light performance with respect to retrieving the storage volume of GERD from 2020 to 2022. (a, b) The Nash–Sutcliffe
efficiency (NSE) and (c, d) the root-mean-square error (RMSE) between the satellite-observed storage (using Landsat) and the simulated
GERD reservoir storage (using HBV-light) are shown. Panel (b) is a zoom-in of panel (a) that shows NSE values between 0 and 1, while
panel (d) presents the RMSE values of all simulations with an NSE> 0. The x axis is the three tested rainfall products for input uncertainty,
while the whiskers demonstrate HBV-light parameter uncertainty. The performance against Sentinel is shown in Fig. D3.

Table 5. The performance of the HBV-light best simulation with respect to retrieving the storage volume of the GERD reservoir using the
satellite-derived storage volume as a reference.

Satellite rainfall product
Landsat Sentinel

NSE RMSE (BCM) NSE RMSE (BCM)

CHIRPS 0.77 1.70 0.86 1.52
PERSIANN-CDR −4.47 6.26 −2.27 −7.37
ARC2 −307.14 62.40 −206.52 −58.71

also θ in Fig. 9). According to the red line in Fig. 10, the
filling of the 3 years took place in July but continued un-
til August in the year 2022. The percentage of the retained
flow was found to be 14 % in July 2020; 41 % in July 2021;
and 37 % and 32 % in July and August 2022, respectively.
Besides the best simulation, the parameter sets that reached
an NSE> 0.8 with respect to retrieving the storage (Fig. 8b)
were able to capture the filling dates well. For other param-
eter sets, they suggest filling during other months (see green
areas in Fig. 10). Moreover, in terms of annual volume, vol-
umes equivalent to 5.2 % and 7.4 % of the total annual flow
were retained in the first 2 years, and between 12.9 % and
13.7 % was retained in the following year. Retaining more
than 10 % of the yearly flow in weeks is significant in terms
of volume, and it impacts downstream management. Due to
parameter uncertainty, the minimum and maximum retained
friction values based on the 407 parameter sets (i.e., with an
NSE> 0.5) are given in Fig. 10. As far as the percentage of
filling is concerned, HBV-light suggests that filling reached
5.3 % of the full storage capacity in the first year and then
rose considerably to reach 12.3 % and 22.6 % in 2021 and
2022, respectively.

4.4.2 The effect of GERD filling on the inflow to Sudan

With the filling strategies retrieved from the hydrological
modeling, the observed daily discharge flowing to Sudan can
be better interpreted. Figure 11 shows further analysis of
the filling phases of GERD. It is noted that the discharge in
the last 3 years showed unnatural behavior when compared
with the discharge before 2020 (see blue lines in Fig. 4). To
investigate the role of GERD in the observed hydrograph,
the difference in the inflow to Sudan after the construction
of GERD and without GERD was estimated and is demon-
strated in Fig. 11a. The filling of GERD altered the hydro-
graph of the water flowing to Sudan. The monthly discharge
to Sudan after 2020 showed a notable increase throughout the
year except in the filling months (i.e., July 2020–2022 and
August 2022), when the flow substantially decreased. This
increase was partly due to heavy rains in 2020 and partly
due to the operation of GERD. In terms of volume, the fill-
ing of the first 2 years did not influence the annual volume
flowing to Sudan, in contrast to 2022. However, the decrease
in the filling months influences the management of the Ro-
seires and Sennar dams with respect to storing and diverting
enough water to the Gezira Scheme and to meet other down-
stream demands.
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Figure 9. Temporal dynamics of inferred GERD filling strategies. The first 3 years of GERD filling strategies was retrieved from the HBV-
light lumped model using CHIRPS. The first row is the daily fraction of inflow volume retained by GERD. The second and third rows are the
daily water storage and the corresponding water surface area of the GERD reservoir, respectively. The last row is the daily evaporated volume
of water from the reservoir surface. The prediction uncertainty ranges indicate the 95, 60, 40, and 20 percentiles of the results obtained from
the 1756 simulations classified as very good.

Figure 10. GERD filling strategies. θ expresses the fraction of the monthly inflow volume retained by the dam. The three values θmax, θmin,
and θbest (i.e., maximum, minimum, and best simulation, respectively) are the fraction of the annual inflow volume retained. The range in
the values of the year 2022 is due to the unknown volume of November and December. The percentage of filling was calculated based on
the best simulation and the GERD full storage capacity of 74 BCM. The uncertainty ranges (95–20 PPU) are based on the 407 runs with
NSE> 0.5.
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Figure 11. The impact of GERD filling on flow to Sudan: (a) the monthly impact of GERD on the incoming flow to Sudan, calculated as
the difference between the inflow to Sudan with GERD and the inflow without GERD; (b) the rainfall time series retrieved from CHIRPS;
and (c) the daily change in storage of GERD reservoir and its implication for downstream daily discharge measured in Sudan. The change in
storage is defined as the difference between two consecutive daily storage volumes.

Moreover, there are abnormally high flows caused by
highly intense rainfall events, such as in August to Octo-
ber 2020 and May 2021 (see Fig. 11b and c). However, the
considerable rise in the water flow observed in March and
April 2022 occurred as a result of hydropower generation
that began in February 2022 (see GERD release in Fig. 6b).
Paying attention to the storage change in Fig. 11c, the rel-
atively low outflows during filling days are followed by a
sudden and steady increase in the outflow causing a linear
hydrograph. Additionally, Table 6 illustrates the start and
end dates of these changes and the magnitude of daily in-
crease. The results reveal that the outflow increments are sig-
nificant and decreased from around 77 MCM d−1 in 2020 to
40 MCM d−1 in 2022.

5 Discussion

The current work might be of interest for studies on un-
gauged basins. One of the remaining challenges in ungauged
basins is the need for more easily accessible data (Hra-
chowitz et al., 2013). The deficiencies in meteorological sta-
tions were replaced by a selection of a representative rain-
fall product based on the performance rankings adopted from
Elagib and Mansell (2000). The ranking was found to give
a first impression of the hydrological model performance to
quantify the discharge as well as retrieve the filling strategies.
Additionally, the calibration and validation of the hydrolog-
ical model based on pre-operation years allowed for suc-
cessful prediction of the inflow during post-operation years,
which was proved by the utilization of Earth observation.
Moreover, coupling the retrieved change in storage with the
measured outflow of the dam allowed for a greater under-

standing of the downstream impact of the filling process (Vu
et al., 2022).

The retrieved GERD storage results are dependent on
HBV-light performance, which is subject to various sources
of uncertainty, including observed discharge, meteorologi-
cal products, and model parameters and structures. Rain-
fall products were found to be a main source of uncertainty
with a high influence on the HBV-light results, followed by
model parameters (as discussed in Sect. 4.3.3). Although un-
certainty arising from potential evapotranspiration products
was not investigated, previous studies (Nonki et al., 2021;
Wang et al., 2022) have concluded that it is unlikely to have
a significant effect on HBV-light performance and simula-
tions. The selected model structure, HBV-light, is also likely
to impact the results. However, the limited data availability
restricts the opportunity to explore more complex structures.

The unforeseeable construction progress of GERD com-
plicates the predictability of the years required to completely
fill the dam. Nevertheless, some trends can be expected based
on the results of the current research. Retaining 20 % of the
average annual flow at the dam location (around 50 BCM) is
equivalent to storing 10 BCM yr−1. Therefore, given the cur-
rent stored water (Landsat: 23.1 BCM; Sentinel: 20 BCM)
and the retrieved friction of retained annual flow, GERD will
need at least 5 more years (8 years in total) to complete fill-
ing (up to the FSL) under average flow conditions. However,
a minimum of an additional 3 years will be needed under
wet conditions (6 years in total). During these years, it is im-
portant to reduce the risk of water diversions in Sudan by
the adaptive management of reservoir operations (Wheeler
et al., 2016). Other cooperative options for mitigating the ef-
fect of GERD on downstream flow are coupling the operation
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Table 6. Dates and volumes of the sudden changes in the downstream discharge after the completion of each GERD filling phase.

Filling phase
Start End

Average daily increase (MCM)
Date Discharge (MCM) Date Discharge (MCM)

First phase (2020) 21 July 104.82 26 July 489.18 76.87
Second phase (2021) 21 July 100.40 4 August 805.36 50.35
Third phase (2022) 13 August 159.91 22 August 522.90 40.33

of GERD with solar and wind power (Sterl et al., 2021) and
applying a water sharing policy during drought conditions
(Wheeler et al., 2016; Yang and Block, 2021).

The operation of downstream dams (i.e., Roseires and Sen-
nar) depends on the management of GERD. Thus, the out-
comes of this approach provide information that can support
downstream dam operation. This study creates an opportu-
nity, for instance, to adjust the scheduling of the Roseires
Dam filling to coincide with agricultural needs in the upcom-
ing years, specifically during the filling phase. Upon examin-
ing Fig. 10, one could speculate that the fourth filling might
occur around July and August, encompassing approximately
40 % (potentially up to 50 %) of the monthly inflow. In addi-
tion, the findings of this study indicate that lower discharge
levels were observed during July and August, while higher
discharge rates were observed during other periods. This sug-
gests that additional water should be stored during GERD
non-filling periods to achieve the targeted monthly elevation
of the Roseires reservoir. A substantial increase in discharge
is noted during March–June and October–December. We
propose that effective management of Roseires and Sennar
should involve storing additional water during these months
to compensate for shortages during filling periods. Addition-
ally, for adaptive management of Sudanese reservoirs, the
existing model should be expanded to include the Lower
Blue Nile basin and used to evaluate alternative operation
scenarios for the Roseires and Sennar dams. This approach
will enable a comprehensive understanding of the implica-
tions of various management decisions and facilitate the de-
velopment of optimized reservoir management plans. More-
over, our method has the potential to predict upcoming reser-
voir management by integrating our developed hydrological
model with forthcoming discharge measurements, allowing
for the reconstruction of operational strategies.

It is worth mentioning the main advantages of the pro-
posed approach. Besides the approach discussed here, down-
stream analysis can also be based on satellite images using,
for example, the method proposed by Vu et al. (2022). How-
ever, relying on the latter approach for real-time operation
presents certain challenges. Firstly, given the current avail-
ability of free satellite data (such as Sentinel and Landsat),
it is not feasible to achieve daily time steps, in contrast to
the case of hydrological modeling. Secondly, waiting for a
few days to acquire satellite data can be problematic, particu-
larly during flood events such as those experienced in Sudan

in 2020. Moreover, hydrological modeling generally offers
the capability to simulate potential future scenarios, assess
their impacts, and explore alternative management strategies.
However, our proposed approach relies on outflow observa-
tions, which may not always be available or accessible. As
such, both satellite imagery and hydrological modeling have
their respective advantages and limitations. Furthermore, our
approach necessitates further research to validate its forecast-
ing skill (including reservoir filling and operational dynam-
ics).

Worldwide, there are 286 transboundary rivers covering
50 % of the global land surface (De Stefano et al., 2017;
Draper, 2007). Going a step forward, the novel methodology
described in this paper can be adopted on a global scale, espe-
cially for data-scarce regions and transboundary rivers. How-
ever, discharge observations and the selection of representa-
tive precipitation products are crucial. Global implementa-
tion will raise the following practical questions: “How should
the precipitation product be selected?” and “Should it be
the best product globally, a precipitation product per climate
zone, or a precipitation product per reservoir?”. Another im-
portant aspect is the reliability of the current methodology.
With the current error of around 1.7 BCM (or 1.52 BCM
as suggested by Sentinel), the reliability increases with the
increase in reservoir storage capacity. Thus, it is preferable
to adopt the methodology for dams with large storage ca-
pacities. Nonetheless, further improvements to the methodol-
ogy are needed to increase model efficiency and, thus, cover
small reservoirs. These improvements are (but are not limited
to) as follows:

– including more observations (e.g., soil moisture,
groundwater measurements) – with these additional
data, independent validation can be done which can help
to eliminate many of the high-performing discharge val-
ues due to the low performance of the corresponding
simulated water balance components such as ground-
water storage or evapotranspiration;

– validating both the precipitation and evapotranspira-
tion when using remote-sensing data to minimize the
uncertainty;

– utilizing actual evaporation measurements/a validated
product to improve the capture of day-to-day variation
in reservoir storage;
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– including a seepage term in the quantification of reser-
voir storage from reservoir water balance – new water
levels are reached during filling, initially requiring more
water than that obtained from the elevation–storage re-
lationship to reach a certain level;

– using a more spatially representative hydrological
model – daily variation in discharge can be better cap-
tured, but it requires extra information which may not
be available.

6 Conclusions

The work done in this paper demonstrates a novel approach
that utilizes hydrological modeling with limited ground mea-
surements to infer GERD filling strategies using a three-step
validation process. These steps are as follows: (1) validat-
ing precipitation products with rain gauges, (2) validating
simulated discharge with streamflow gauge, and (3) validat-
ing inferred storage with satellite-driven storage. Therefore,
the lack of information was compensated for by using avail-
able Earth observations. First, from the evaluation of five se-
lected rainfall products, CHIRPS was found to be the best-
performing product in time (monthly) and space when com-
pared with 10 rain gauge stations, followed by PERSIANN-
CDR, ARC2, GPCC, and ERA5. Second, considering the top
three products, HBV-light was calibrated and validated, re-
sulting in high performance when the model was forced by
CHIRPS, ARC2, and PERSIANN-CDR, respectively. Third,
during the operation period (2020 onwards), CHIRPS out-
performed PERSIANN-CDR and ARC2 with respect to cap-
turing the filling properties (dates and magnitudes). The re-
trieved 3 years of GERD storage was compared with Landsat
and Sentinel imagery, CHIRPS was the only product that pro-
duced positive NSE values and, thus, the lowest RMSE val-
ues. Subsequently, the selection of the rainfall product was
found to have more influence on inferring the GERD filling
strategies than parameter uncertainty. Additionally, the best
simulation of CHIRPS (i.e., the simulation with the highest
NSE value during calibration) was found to have an NSE
of 0.77 and 0.86 and an RMSE of 1.7 and 1.52 BCM when
compared with Landsat and Sentinel, respectively. This in-
ferred that the friction of the monthly retained inflow was
14 % for July 2020; 41 % for July 2021; and 37 % and 32 %
for July and August 2022, respectively. Moreover, GERD re-
tained 5.2 % and 7.4 % of the annual inflow to Sudan in 2020
and 2021, respectively; after the third phase, in 2022, the
reservoir retained between 12.9 % and 13.7 % of the annual
inflow, reaching around 22.6 % of the full storage capacity.
Furthermore, it was revealed that the first 3 years started to
impact the flow downstream. During filling months, the in-
flow to Sudan significantly decreased below average (2002–
2019), suggesting the need to adapt reservoir management of
the Roseires and Sennar dams to meet downstream demands.
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Appendix A: Satellite-based reservoir information

Figure A1. Procedure to derive GERD reservoir characteristics using Landsat (a) and Sentinel (b). Landsat water surface area (WSA) was
estimated based on the modified algorithm by Vu et al. (2022). A fixed NDWI threshold was employed to estimate the WSA for Sentinel
images using PyGEE-SWToolbox (Owusu et al., 2022).

Appendix B: Additional data on performance metrics

Table B1. Statistical performance metrics applied in the evaluation of the satellite rainfall products and/or the simulated discharge and
reservoir storage.

Name Symbol/Formula Optimal value

Root-mean-square error RMSE=
√

1
N

∑N
i=1(Si −Oi)

2 0

Ratio of RMSE to measured standard deviation RSR= RMSE
σo

0
Mean bias error MBE= 1

N

∑N
i=1(Si −Oi) 0

Mean absolute error MAE= 1
N

∑N
i=1|Si −Oi | 0

Percentage bias PBIAS=
∑N
i=1(Si−Oi )∑N

i=1Oi
× 100 100

Nash–Sutcliffe efficiency NSE= 1−
∑N
i=1(Si−Oi )

2∑N
i=1(Oi−µo)

2 1

Coefficient of determination R2
=

( ∑N
i=1(Oi−µo)(Si−µs )√∑N
i=1(Oi−µo)

2(Si−µs )2

)2

1

Slope Slope=
(
∑N
i=1Oi ·Si )−

(
∑N
i=1Oi )(

∑N
i=1Si )

N

(
∑N
i=1O

2
i )−

(
∑N
i=1Oi )

2

N

1

Intercept Intercept= µs −Slope×µo 0

The parameters used in the table are as follows: O – observed value; S – gridded product or simulated value; N – number of samples; µo –
mean value of O; µs – mean value of S; σo – standard deviation value of O; σs – standard deviation value of S. The coefficient of
determination, intercept, and slope are computed using a linear fit.
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Figure B1. Spatial distribution of the statistical performance metrics over the Upper Blue Nile basin based on the point-to-pixel approach
at a monthly scale from 1984 to 2005. A total of 6 of the 10 stations are outside the UBN boundaries; however, all are included in the
analysis to strengthen the evaluation of the rainfall products over the region. The basins boundaries and drainage network are obtained from
the HydroSHEDS dataset (Lehner et al., 2008).
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Figure B2. Statistical performance metrics of five remote-sensing rainfall products evaluated at 10 stations (coordinates in Table 3).
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Appendix C: Hydrological models applied in the Upper
Blue Nile basin

Table C1. Hydrological models applied over the Upper Blue Nile basin from 57 studies in the literature.

No. Model name No. of studies References

1 SWAT 23 Betrie et al. (2009); Schmidt and Zemadim (2015); Wosenie (2015);
Lemann et al. (2016); Roth and Lemann (2016); Chakilu and Moges
(2017); Lemann et al. (2017); Polanco et al. (2017); Tegegne et al.
(2017); Teklesadik et al. (2017); Woldesenbet et al. (2017); Lemann
et al. (2018); Woldesenbet et al. (2018); Boru et al. (2019); Kessete
et al. (2019); Nigussie et al. (2019); Sultana et al. (2019); Teshome et al.
(2019); Adem et al. (2020); Sinshaw et al. (2020); Bizuneh et al. (2021);
Getachew et al. (2021); Mengistu et al. (2021)

2 HBV 11 Ymeti (2007); Wale et al. (2008); Uhlenbrook et al. (2010); Tamalew
and Kemal (2016); Gebre et al. (2015); Meresa and Gatachew (2015);
Teklesadik et al. (2017); Worqlul et al. (2017); Bihonegn et al. (2020);
Bizuneh et al. (2021); Wubneh et al. (2022a, b)

3 HEC-HMS 5 Gebre (2015); Gebre and Ludwig (2015); Agegn (2016); Zelelew and
Melesse (2018); Bihonegn et al. (2020)

4 PED 5 Enku et al. (2014); Zimale et al. (2016); Worqlul et al. (2017); Akale
et al. (2019); Bihonegn et al. (2020)

5 CREST 3 Lakew et al. (2017); Lakew (2020); Lakew and Moges (2021)

6 SWIM 2 Aich et al. (2014); Teklesadik et al. (2017)

7 GR4J 2 Meresa and Gatachew (2015); Tegegne et al. (2017)

8 Thornthwaite and Mather (1955) 2 Collick et al. (2009); Legesse (2009)

9 FLexB 1 Wosenie (2015)

10 LAPSUS_D 1 Getahun (2016)

11 mHM 1 Teklesadik et al. (2017)

12 VIC 1 Teklesadik et al. (2017)

13 WaterGAP3 1 Teklesadik et al. (2017)

14 CREST- SVAS 1 Lazin et al. (2020)

15 IHACRES 1 Tegegne et al. (2017)

16 JGrass-NewAge 1 Abera et al. (2017)

17 PCRaster 1 Tekleab et al. (2015)

18 Hydro-BEAM 1 Abd-El Moneim et al. (2017)

19 HBV-light-WEAP21 1 Asitatikie and Gebeyehu (2021)

20 GBHM 1 Abdel-Aziz (2014)

21 MCDE 1 Nigussie et al. (2019)

22 SAC-SMA 1 Ymeti (2007)

23 RIBASIM 1 Ghorab et al. (2013)

24 HMETS 1 Meresa and Gatachew (2015)

25 TOPMODEL 1 Deginet (2008)

26 HBV-RIBASIM 1 Booij et al. (2011)
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Appendix D: HBV-light simulations

Table D1. HBV-light parameters, selected parameter ranges for Monte Carlo simulations, and the optimized values of each selected satellite
rainfall product.

Parameter Description Unit
Range Optimized values

Minimum Maximum CHIRPS PERSIANN-CDR ARC2

Soil moisture routine

FC Maximum soil moisture mm 200 1000 992.26 938.10 974.28
LP Soil moisture threshold for evaporation reduction – 0.5 0.7 0.528 0.510 0.520
BETA Shape coefficient – 1 4 1.78 1.43 1.06

Groundwater and response routine

PERC Maximal flow from upper to lower groundwater box mm d−1 1.4 2.8 1.71 1.85 1.48
UZL Threshold for K0 outflow mm 10.2 25.6 22.13 14.78 22.09
K0 Recession coefficient d−1 0.05 0.2 0.188 0.073 0.119
K1 Recession coefficient d−1 0.01 0.2 0.130 0.119 0.086
K2 Recession coefficient d−1 0.006 0.05 0.041 0.049 0.049

Routing routine

MAXBAS Length of weighting function d 1.5 2.9 2.14 1.73 2.76

Figure D1. The standardized sensitive value ranges of HBV-light parameters for the simulations that were classified as very good (i.e.,
NSE> 0.75) when using ARC2, CHIRPS, and PERSIANN-CDR as forcing data.
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Figure D2. Temporal dynamics of daily simulated and observed discharge at the Upper Blue Nile basin outlet. Simulations forced with
PERSIANN-CDR (left column) and ARC2 (right column) are shown during the (a) calibration period, (b) validation period, and (c) op-
eration period. The best simulation was based on the parameter sets that achieved the highest NSE value during calibration. The 95 %
prediction uncertainty (95 PPU) represents the 95th percentile of all very good simulations (NSE> 0.75) obtained by random generation of
the parameter sets. The vertical gray shaded areas in the operation period roughly indicate the days on which the dam is filling.

Figure D3. The HBV-light performance with respect to retrieving the storage volume of GERD from 2020 to 2022 shown using (a, b) the
Nash–Sutcliffe efficiency (NSE) and (c, d) the root-mean-square error (RMSE) between the satellite-observed storage (using Sentinel) and
the simulated GERD reservoir storage (using HBV-light). Panel (b) is a zoom-in of panel (a) showing the NSE between 0 and 1, while
panel (d) presents the RMSE of all simulations with NSE> 0. The x axis presents the three tested rainfall products for input uncertainty,
while the whiskers demonstrate HBV-light parameter uncertainty.
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Figure D4. Temporal dynamics of inferred GERD filling strategies. The first 3 years of GERD filling strategies was retrieved from the HBV-
light lumped model using PERSIANN-CDR (left column) and ARC2 (right column). The first row is the daily fraction of inflow volume
retained by GERD. The second and third rows are the daily water storage and the corresponding water surface area of the GERD reservoir,
respectively. The last row is the daily evaporated volume of water from the reservoir surface. The prediction uncertainty ranges indicate the
95, 60, 40, and 20 percentiles of the results obtained from the simulations classified as very good (269 simulations for PERSIANN-CDR and
244 simulations for ARC2).

Data availability. The publicly available data used in this study
comprise the hydrological modeling forcing data (i.e., rainfall, tem-
perature, and potential evapotranspiration) and the satellite im-
agery. The Landsat Collection 2 Level-2 product was retrieved
from https://earthexplorer.usgs.gov/ (USGS, 2021). The CHIRPS,
PERSIANN-CDR, and ERA5 datasets were downloaded from the
Climate Engine Research App (Huntington et al., 2017). The
ARC2 data are available from http://ftp.cpc.ncep.noaa.gov/fews/
fewsdata/africa/arc2/geotiff/ (NOAA-CPC, 2017). Additionally, the
GPCC dataset can be downloaded from https://opendata.dwd.de/
climate_environment/GPCC/full_data_daily_v2020/ (DWD, 2020).
The rain gauge data are not publicly available, but they can be ob-
tained upon request from the Ethiopian National Meteorological
Agency website at http://www.ethiomet.gov.et/ (The National Me-
teorological Agency, 2016) (navigate to “Data Service” and then
select “Station Information”; a request form will appear once a sta-
tion has been selected). The hydrological data for the Nile system
are not publicly available due to governmental restrictions; however,
the flow data collected and maintained by the Nile Waters

Directorate of the Ministry of Irrigation and Water Resources,
Sudan, were made available for this study. As we cannot share these
data directly, we provide the successful HBV-light parameter sets
and runs (NSE> 0.75) as a best approximation of the observed flow
(https://doi.org/10.4211/hs.ed4530307dda435e9d3dcdb74da86a30)
in addition to the E–A–S relationship derived from the SRTM
DEM (Ali, 2023).
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