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Abstract. An airborne gamma-ray remote-sensing technique
provides a strong potential to estimate a reliable snow wa-
ter equivalent (SWE) in forested environments where typi-
cal remote-sensing techniques have large uncertainties. This
study explores the utility of assimilating the temporally (up
to four measurements during a winter period) and spatially
sparse airborne gamma SWE observations into a land sur-
face model (LSM) to improve SWE estimates in forested ar-
eas in the northeastern US. Here, we demonstrate that the
airborne gamma SWE observations add value to the SWE
estimates from the Noah LSM with multiple parameteriza-
tion options (Noah-MP) via assimilation despite the limited
number of measurements. Improvements are witnessed dur-
ing the snow accumulation period, while reduced skills are
seen during the snowmelt period. The efficacy of the gamma
data is greater for areas with lower vegetation cover fraction
and topographic heterogeneity ranges, and it is still effec-
tive at reducing the SWE estimation errors for areas with
higher topographic heterogeneity. The gamma SWE data as-
similation (DA) also shows a potential to extend the impact
of flight-line-based measurements to adjacent areas without
observations by employing a localization approach. The lo-
calized DA reduces the modeled SWE estimation errors for
adjacent grid cells up to 32 km distance from the flight lines.
The enhanced performance of the gamma SWE DA is ev-
ident when the results are compared to those from assim-
ilating the existing satellite-based SWE retrievals from the
Advanced Microwave Scanning Radiometer 2 (AMSR2) for
the same locations and time periods. Although there is still
room for improvement, particularly for the melting period,

this study shows that the gamma SWE DA is a promising
method to improve the SWE estimates in forested areas.

1 Introduction

Seasonal snowpack is an important freshwater resource in
snow-dominated regions, and thus accurate estimation of
snow water equivalent (SWE) has been a pressing issue
for managing water supply and forecasting snowmelt-driven
flood events in a changing climate (Barnett et al., 2005;
Cho et al., 2021; Musselman et al., 2021; Sturm et al.,
2017). Due to its large variability, spatiotemporally contin-
uous estimates of SWE cannot be generated by the exist-
ing in situ measurement network alone (e.g., Dozier, 2011).
Large-scale distributions of SWE can be obtained from satel-
lite remote-sensing techniques such as passive microwave
sensors (Derksen et al., 2005; Vuyovich et al., 2014); how-
ever, these are subject to errors resulting from retrieval al-
gorithm limitations and uncertainties in certain conditions
(Kang et al., 2014). Spatiotemporally continuous snow es-
timates at large scales can be generated by land surface mod-
eling, which however suffer from large uncertainties asso-
ciated with model physics, parameterizations, and meteoro-
logical boundary conditions (Broxton et al., 2016b; Cho et
al., 2022; Kim et al., 2021; Raleigh et al., 2015; Yoon et al.,
2019). Given the limitations of each method, data assimila-
tion (DA) has been considered a promising alternative to im-
prove the SWE estimation skill as it systematically merges
remote-sensing observations with land surface model (LSM)
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predictions (e.g., Durand et al., 2009; Forman et al., 2012;
Kwon et al., 2019; Liu et al., 2013; Zhang et al., 2014).

Given the sensitivity to snow properties and long records
of observations, passive microwave brightness temperature
(TB) observations have been used to retrieve SWE or snow
depth (e.g., Chang et al., 1990; Derksen et al., 2010; Fos-
ter et al., 2005; Kelly et al., 2003; Kelly, 2009) and used
within DA frameworks for the assimilation of TB (e.g., Du-
rand and Margulis, 2006, 2007; Durand et al., 2009; Kwon
et al., 2015, 2017; Larue et al., 2018a, b) and TB-based re-
trievals of SWE or snow depth (e.g., Dziubanski and Franz,
2016; Kumar et al., 2014). However, as mentioned above,
TB-based approaches are considered suboptimal for the fol-
lowing surface conditions: (1) deep snow, (2) wet snow, and
(3) dense forest. Previous studies (e.g., Derksen et al., 2010;
Kwon et al., 2019; Lemmetyinen et al., 2015) found that the
TB signal, especially at high frequency (e.g., 36.5 GHz), sat-
urates in deep snowpacks (i.e., when SWE is greater than
100 to 200 mm), which hampers microwave TB-based SWE
estimations. In the presence of wet snow, the TB sensitivity
to SWE decreases because the liquid water of the snowpack
dominates the TB signal due to the high emissivity of liquid
water (Clifford, 2010; Walker and Goodison, 1993). Thus,
the quality of the TB-based SWE estimates is degraded un-
der wet snow conditions (Kwon et al., 2019). The TB sensi-
tivity to SWE also diminishes in forested areas (Roy et al.,
2012) because the forest canopy blocks the microwave TB
emission from the snowpack and emits its own TB signal
(Foster et al., 1991), which adds considerable uncertainties
in the TB-based SWE estimates in forested areas (e.g., Kwon
et al., 2016; Vuyovich et al., 2014). Vuyovich et al. (2014)
showed specifically in the New England area that passive
microwave retrievals underestimate SWE, though algorithms
that account for the forest fraction show improved perfor-
mance. Although many enhancements have been proposed
for the use of TB observations in estimating SWE, there are
still significant limitations to overcome.

Recently, airborne remote-sensing approaches such as
light detection and ranging (lidar) that have the potential
to overcome existing challenges have been used within DA
schemes to improve snow depth or SWE (e.g., Hedrick et
al., 2018; Smyth et al., 2019, 2020). Hedrick et al. (2018)
focused on enhancing snow depth estimations over the
Tuolumne River basin in California by directly inserting the
NASA Airborne Snow Observatory (ASO) lidar snow data
into the iSnobal model (Mark et al., 1999). They found that
agreement between the lidar snow depth and the updated
modeled snow depth was improved as compared to the orig-
inal modeled snow depth. Smyth et al. (2020) attempted to
assimilate the ASO lidar snow depth observations into the
Flexible Snow Model to improve snow density and SWE esti-
mations. They showed that DA reduced snow density bias by
over 40 % and SWE bias by over 70 % across eight climate
zones in the western US and in both wet and dry years. How-
ever, the impacts of known limitations such as forest cover

and wet snow (in the melting period) within a DA frame-
work have not been widely examined, which were empha-
sized to be conducted in future research. Furthermore, most
previous studies have mainly focused on the western US en-
vironments (e.g., mountainous regions), with limited inves-
tigations in other regions such as temperate forest environ-
ments over the northeastern US.

As a historically well-established remote-sensing tech-
nique, the airborne gamma radiation technique provides an
opportunity to estimate reliable SWE, because the gamma
approach uses the attenuation of the terrestrial gamma-ray
emission by water in the snowpack (any phase) with min-
imal effects by wet snow and dense forest (Carroll, 2001;
Carroll and Vose, 1984; Goodison et al., 1984; Tuttle et al.,
2018). Since the early 1980s, airborne gamma radiation snow
surveys operated by the National Oceanic and Atmospheric
Administration (NOAA) Office of Water Prediction (OWP,
formerly by the National Operational Hydrologic Remote
Sensing Center – NOHRSC) have provided SWE observa-
tions to regional NOAA National Weather Service (NWS)
River Forecast Centers (RFCs) and other agencies across the
United States and southern Canada to support operational
flood forecasting system and water supply outlooks (Carroll,
2001; Peck et al., 1980). Recently, Cho et al. (2020b) found
that the long-term gamma SWE observations have a remark-
able agreement with ground-based gridded SWE products,
particularly in forest regions (R values= 0.73 and 0.72 and
bias= 0.0 and −1.3 cm for mixed forest and deciduous for-
est, respectively), implying that the gamma-based SWE ob-
servations have the potential to be used in a DA frame-
work to improve modeled SWE estimates. While the air-
borne gamma SWE products along with in situ snow depth
and SWE and satellite-based snow cover areas are currently
assimilated into the NWS SNOw Data Assimilation Sys-
tem (SNODAS) to provide the near-real-time, high-spatial-
resolution (1 km2 gridded) SWE information (Barrett, 2003),
how much the gamma radiation SWE retrievals help improve
the modeled SWE estimates is not well quantified, particu-
larly in a forested region.

The objective of this study is to evaluate the potential of
the airborne gamma SWE retrievals within a DA framework
to enhance SWE estimates in a temperate forest environment
in the northeastern US. More specifically, we aim to answer
three research questions. (1) How much is the modeled SWE
improved by assimilating the airborne gamma SWE into a
model? (2) Do land surface characteristics such as forest den-
sity, slope, and elevation affect the assimilation performance?
(3) Can the spatial sparseness of the gamma SWE observa-
tions be overcome by employing the localized DA approach?
In this study, the Noah LSM with multi-parameterization
options (Noah-MP) is used to assimilate the long-term air-
borne gamma radiation SWE observations with the ensem-
ble Kalman filter (EnKF) scheme within the NASA Land In-
formation System (LIS). This paper is organized as follows.
Section 2 provides the study area with general land cover
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characteristics. Section 3 describes the datasets including the
airborne gamma radiation survey, reference SWE data, tree
cover fraction, and topographic feature variables. The de-
scription of the Noah-MP model with an assimilation scheme
is included in Sect. 4. Section 5 presents evaluation results
of DA SWE performances with a discussion of the similari-
ties, differences, and new findings in the results with respect
to previous studies. Conclusions and future perspectives are
given in Sect. 6.

2 Study area

The study area comprises parts of the northeastern United
States, including New Hampshire and Maine with heavily
forested regions which remain a challenging region in the
snow remote-sensing and modeling communities. The dom-
inant seasonal snow class in this region is montane forest
(Fig. 1a; Sturm and Liston, 2021). Land cover types are
mainly deciduous broadleaf forest and mixed forest. Frac-
tional tree cover over the study area ranges from 70 % to
100 % based on the Vegetation Continuous Field (VCF) map
from the NASA Making Earth System Data Records for Use
in Research Environments (Hansen and Song, 2018; Fig. 1b).
The NOAA OWP airborne gamma snow surveys occur al-
most every year over the designated flight lines (yellow lines
in Fig. 1b).

3 Data

3.1 NOAA airborne gamma snow survey

The operational airborne gamma radiation snow and soil
moisture survey operated by the NOAA’s OWP has been con-
ducted to observe near-real-time areal SWE (Carroll, 2001)
throughout the United States and the Canadian provinces
since 1979. The gamma SWE observations have been used
by the NWS Hydrologic Services Program for spring flood
forecasts and water supply outlook. The key principle of
the gamma SWE technique is the attenuation of the natural
gamma-ray signal due to the snowpack (Carroll, 2001; Peck
et al., 1980). The gamma SWE values are estimated using the
difference in the rates of gamma radioisotopes (40K0, 208Tl0,
and gross count, GC0) between bare and snow-covered land
surfaces (Cho et al., 2020a). The gamma-ray signals for des-
ignated flight lines are measured in the fall prior to freez-
ing onset and are then revisited in the winter. A gamma ra-
diation detector equipped on a low-flying aircraft observes
the gamma-ray particles. This detector measures terrestrial
gamma radiation naturally emitted from trace elements of the
three radioisotopes in the upper 20 cm of the soil. The op-
erational approach assumes that the gamma rates over bare
ground from the fall survey remain constant during the win-
ter surveys. A typical gamma flight footprint covers approxi-
mately 5 km2 (300 m wide and 16 km long). The final gamma

SWE value is generated as an area-mean value for each flight
path. The airborne gamma SWE values are estimated using
the equations below:
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where 40K, 208Tl, and GC are uncollided gamma count rates
in the top 20 cm of the soil, and SM(40K), SM(208Tl),
and SM(GC) are the corresponding soil moisture values by
weight (%). Subscripts “b” and “s” indicate bare and snow-
covered grounds, respectively. The airborne gamma SWE
(SWEgamma; g cm−2) is a value weighted by multiplying the
three independent SWE estimates by the weighting coeffi-
cients 0.346, 0.518, and 0.136 and summing the three calcu-
lated values as below (Carroll, 2001).

SWEgamma = 0.346 ·SWE
(

40K
)

+ 0.518 ·SWE
(

208Tl
)
+ 0.136 ·SWE(GC) (4)

The final SWE value is reported in the Standard
Hydrometeorological Exchange Format (SHEF) product
through the NOHRSC website (https://www.nohrsc.noaa.
gov/snowsurvey/, last access: 1 September 2023) (Carroll,
2001). In this study for dense forest environments, 1508
airborne gamma SWE observations covering 79 flight lines
flown over densely forested environments in the northeastern
United States are used from January 1985 to May 2017.

3.2 University of Arizona (UA) SWE

The UA SWE is the ground-observation-based 4 km grid-
ded SWE product developed by consistently assimilating
the snow telemetry (SNOTEL) SWE and NWS Coopera-
tive Observer Program (COOP) snow depth measurements
(which were first converted to SWE using a newly developed
snow density parameterization) with Parameter-elevation Re-
gressions on Independent Slopes Model (PRISM) tempera-
ture and precipitation data over the continental United States
(Broxton et al., 2016a; Dawson et al., 2017; Zeng et al.,
2018). In this study, the UA SWE is used as reference data to
evaluate and compare the open-loop and assimilation results
from the Noah-MP simulations. The accuracy and robustness
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Figure 1. (a) Sturm and Liston’s new seasonal snow classification (Sturm and Liston, 2021) and (b) tree cover fraction (Hansen and Song,
2018) maps of the study area over the northeastern United States with the NOAA airborne gamma flight lines.

of the UA SWE product have been proven by examinations of
point-to-point and pixel-to-pixel interpolations (Broxton et
al., 2016a, b) as well as evaluations against independent ASO
lidar-based SWE and gamma radiation SWE measurements
(Cho et al., 2020b; Dawson et al., 2018). Cho et al. (2020b)
demonstrated that the UA SWE product strongly agreed with
the airborne gamma SWE regardless of land cover type and
snow classification over the continental US. This product has
been used as a reference SWE for multiple purposes such
as quantifying uncertainties in land-surface-modeled SWE
(Kim et al., 2021; Zhang et al., 2022), characterizing extreme
events (Welty and Zeng, 2021), and estimating extreme val-
ues for infrastructure design (Cho and Jacobs, 2020). The
daily UA SWE product (version 1) from October 1984 to
December 2017 is used in this study, which is publicly avail-
able from the National Snow and Ice Data Center web-
site (https://nsidc.org/data/nsidc-0719, last access: 1 Septem-
ber 2023).

3.3 Advanced Microwave Scanning Radiometer 2
(AMSR2) passive microwave SWE

For comparison purposes, the existing satellite-based SWE
retrievals from the AMSR2 were also assimilated into this
study. The AMSR2 passive microwave sensor is the follow-
on instrument to the Advanced Microwave Scanning Ra-
diometer for Earth Observing System on board the Aqua
satellite (AMSR-E; Imaoka et al., 2010). AMSR2 on board
the Global Change Observation Mission – Water (GCOM-
W1) satellite has measured daily scans at 01:30 and 13:30
local time at a 1–2 d revisit frequency since May 2012. The
AMSR2 SWE product is calculated by using snow depth es-
timated from an empirical relationship between snow depth
and TB observations at 18.7 and 36.5 GHz along with higher

and lower frequencies and snow density values for each snow
class from Sturm’s snow classification system (Kelly, 2009;
Sturm et al., 2010). The L3 AMSR2 SWE products with
the 10 km spatial grid were obtained from the JAXA Globe
Portal System GCOM-W1 data-providing service (https://
gportal.jaxa.jp/, last access: 1 September 2023). In this study,
the AMSR2 data at a descending overpass (01:30) were only
used to minimize the wet snow effect.

3.4 Tree cover fraction and topographic features

In this study, we used tree cover fraction (TCF) and topo-
graphic feature datasets to compare DA performance by the
degrees of them. The NASA Making Earth System Data
Records for Use in Research Environments (MEaSUREs)
Vegetation Continuous Fields (VCF5KYR; version 1) pro-
vide annual global fractional vegetation cover maps with
three layers, i.e., percent tree cover, percent bare ground,
and percent non-tree vegetation, at 0.05◦ spatial resolution
from 1982 to 2016 (Hansen and Song, 2018). Among them,
the percent tree cover was used. To account for the interan-
nual variations in the fractional tree cover, annual TCF val-
ues were obtained for each gamma line. The elevation data
(0.0083◦ grid) used in this study were an aggregated map
using the Shuttle Radar Topography Mission (SRTM) 90 m
resolution elevation data (Farr et al., 2007). The slope and el-
evation range maps with the same spatial grid were obtained
using the “raster” R package (“terrain function” in this pack-
age; Wilson et al., 2007). The elevation range, referred to as
“topographic heterogeneity” in this paper, was calculated as
the difference between the minimum and maximum elevation
values in a given grid and its surrounding eight grids (total of
nine grids). The three topographic features were computed

Hydrol. Earth Syst. Sci., 27, 4039–4056, 2023 https://doi.org/10.5194/hess-27-4039-2023

https://nsidc.org/data/nsidc-0719
https://gportal.jaxa.jp/
https://gportal.jaxa.jp/


E. Cho et al.: Assimilation of airborne gamma observations 4043

by the areal-weighted average for each gamma flight foot-
print.

4 Model and methods

4.1 Noah-MP

Noah-MP (v3.6; Niu et al., 2011; Yang et al., 2011) was
employed to simulate snow variables such as SWE and
snow depth. Noah-MP was developed based on the origi-
nal Noah LSM (Ek et al., 2003) with improved represen-
tations of biophysical and hydrological processes. A grid
cell in Noah-MP consists of one vegetation canopy layer,
up to three layers (depending on the whole snow depth) of
snowpack, four soil layers (with thicknesses of 0.1, 0.3, 0.6,
and 1.0 m from top to bottom), and an unconfined aquifer
layer. Regarding snow processes, intercepted snow exists
in Noah-MP as solid and liquid phases on the vegetation
canopy, and melting–refreezing of intercepted snow, dew–
evaporation, and frost–sublimation on the vegetation canopy
are explicitly represented in the model. Snow depth and
SWE are simulated by considering snow layer compaction
by the weight of the overlying snow layers, snow meta-
morphisms (destructive and melt), and snowmelt–refreeze
processes. The physical parameterization scheme options
used in the current study are listed here: (1) dynamic veg-
etation for the vegetation option; (2) the Noah-type soil
moisture factor for stomatal resistance (Chen and Dudhia,
2001); (3) the Ball–Berry canopy stomatal resistance scheme
(Ball et al., 1987); (4) the TOPography-based hydrologi-
cal MODEL (TOPMODEL)-based runoff scheme; (5) the
simple groundwater scheme (SIMGM; Niu et al., 2007);
(6) general Monin–Obukhov similarity theory (M–O; Brut-
saert, 1982) for surface-layer drag coefficients; (7) the NY06
scheme (Niu and Yang, 2006) for supercooled liquid water
(or ice fraction) in frozen soil; (8) the NY06 scheme (Niu and
Yang, 2006) for frozen soil permeability; (9) the modified
two-stream radiation transfer scheme (Yang and Friedl, 2003,
Niu and Yang, 2004); (10) the Biosphere-Atmosphere Trans-
fer Scheme (BATS) for snow albedo (Yang and Dickinson,
1996); (11) the Jordan91 scheme (Jordan, 1991) for parti-
tioning precipitation into rainfall and snowfall; (12) the orig-
inal Noah scheme for lower-boundary conditions of soil tem-
perature; and (13) the semi-implicit snow and soil tempera-
ture time schemes. An ensemble of model initial conditions
was constructed through a two-step spinup procedure. First,
a single-member model simulation was run for 40 years from
1 January 1980 to 1 January 2020, driven by NASA Modern-
Era Retrospective analysis for Research and Applications,
version 2 (MERRA-2; Gelaro et al., 2017) forcing. Then, us-
ing a restart file generated in the first step, an additional 3-
year spinup from 1 January 1981 to 1 March 1984 was con-
ducted using 20 ensemble members to generate model un-
certainty metrics for the DA. The open-loop (OL; without as-

similation) and DA experiments were run from 1 March 1984
to 1 October 2017 using the 20-member ensemble initial con-
ditions. A model simulation time step of 15 min was used,
and daily mean outputs were evaluated.

4.2 Assimilation scheme

Data assimilation experiments were conducted within the
NASA LIS (Kumar et al., 2006, 2008; Peters-Lidard et
al., 2007). The EnKF scheme was applied (Reichle et al.,
2002) to assimilate airborne gamma-radiation-based SWE
retrievals into Noah-MP. In the EnKF scheme, model uncer-
tainty is implicitly represented by the ensemble spread, and
an ensemble size of 20 was used in this study. The ensemble
spread was generated by perturbing meteorological forcing
fields and prognostic model state variables with the assump-
tion of a Gaussian distribution. Perturbation parameters ap-
plied during the OL and DA runs are presented in Table 1
and are suggested by Kwon et al. (2021) based on Forman et
al. (2012), Kumar et al. (2009, 2014, 2016), and Reichle et
al. (2008). When observations (i.e., airborne gamma SWE)
are available, EnKF updates forecasted model state variables
using the following equation:

M+i =M−i +K
(
Obs−HM−i

)
, (5)

where M+i is the updated (after assimilation) model state
(i.e., SWE), M−i is the forecasted (before assimilation)
model state (i.e., SWE), Obs is the gamma SWE retrievals,
H is the observation operator (H = 1 in this study), i denotes
the ensemble member, and K is the Kalman gain given by

K = Cov
(
M−i ,HM−i

){
Cov

(
HM−i ,HM−i

)
+R

}−1
, (6)

where Cov
(
M−i ,HM−i

)
= Cov

(
HM−i ,HM−i

)
is the co-

variance of the model-forecasted SWE and R is the covari-
ance of the observation error. The gamma SWE retrieval er-
ror standard deviation of 23 mm was assumed based on real-
istic error values from previous studies such as Carroll and
Vose (1984). Note that assimilation of gamma SWE updates
only modeled SWE, and the amount of the SWE update is
added to the ice content of the bottom snow layer. Then, snow
layer variables such as thickness, snow ice and liquid water
content, and the SWE of each snow layer are adjusted using
the same methods as used in Noah-MP’s snow layer com-
paction, combination, and subdivision procedures.

4.3 DA localization

Due to its sparsity in space, the airborne gamma-radiation-
based SWE observations can be limited to use within the
DA system. To quantify whether the spatially sparse gamma
SWE observations can improve the SWE estimates in the sur-
rounding areas, where the observations are not available, we
apply a distance-based localization method to the assimila-
tion procedure. The localization is applied in the assimilation
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Table 1. Perturbation parameters applied to model prognostic state variables and atmospheric forcing fields during the OL and DA runs.

Variable Perturbation types SD AR(1) Cross-correlations

Model prognostic state variables SWE SD

SWE M 0.01 3 h – 0.9
Snow depth (SD) M 0.02 3 h 0.9 –
Atmospheric forcing fields SW LW P

Shortwave radiation (SW) M 0.3 1 d – −0.5 −0.8
Longwave radiation (LW) A 50 W m−2 1 d −0.5 – 0.5
Precipitation (P ) M 0.5 1 d −0.8 0.5 –

M: multiplicative; A: additive; AR(1): first-order autoregressive temporal correlation.

by weighting distances from the flight lines (up to a specified
localization distance; r) using the Gaussian decay-based lo-
calization method as follows:

W = exp

{
−d2

2 ·
(

r
2

)2
}

, (7)

where d is the distance between the updated grid cells (i.e.,
flight lines) and grid cells without observations within a spec-
ified localization radius r . The magnitude of the SWE DA
adjustment for a grid cell from the assimilation is calculated
using the localization weight (W ), which is calculated based
on the distance (d) from the updated grid cells overlapped
by the flight line. If a grid cell is affected by multiple flight
lines, an average of the updates is added to the prior SWE
estimates of the grid cell. We apply a localization function
with six different distances (e.g., 4, 8, 16, 24, 32, and 48 km
from the lines). For an evaluation of the DA SWE with a
given localization weight, the areal mean DA SWE time se-
ries are obtained for an effective area buffered by a specified
distance around the gamma flight line. The areal mean OL
and UA SWE time series are also obtained in the same way
to compare with the corresponding OL and UA SWE values.

5 Results and discussion

5.1 Comparison between DA and OL SWE with
airborne gamma SWE

To examine the updated SWE performance over the gamma
lines by assimilating airborne gamma observations into
Noah-MP, statistical metrics were compared between OL and
DA SWE using UA SWE (Fig. 2). The values of the 1 : 1
slope were closer to 1 (the median slopes of OL and DA were
1.45 and 0.91, respectively) and RMSD values decreased by
DA, even though negative biases were found. The absolute
SWE bias was higher in the DA as compared to the OL sim-
ulation (Fig. 2). However, this was a consequence of the fact
that in correcting the overestimated SWE during the accumu-
lation season, the DA introduced a greater underestimation
during the melt season (Figs. 3 and 4). The OL SWE largely

Figure 2. Comparison of statistics between the open-loop (OL)
SWE and data-assimilated (DA) Noah-MP SWE estimates by us-
ing airborne gamma radiation SWE observations with the Univer-
sity of Arizona SWE from 1985 to 2017: (a) slope from the 1 : 1
plot, (b) bias, and (c) RMSD from a linear relationship between the
estimated SWE and UA SWE.

deviated from the 1 : 1 linear relationship during the snow
accumulation season (i.e., January, February, and March) and
early in the snowmelt season (i.e., April). Figure 3 shows that
the deviation was significantly reduced through the assimi-
lation of the gamma SWE retrievals even though a reduced
R value was obtained.

A promising aspect is that the assimilation of the tempo-
rally sparse (i.e., only one or two data points at the end of
the snow accumulation period and/or early in the snowmelt
period) airborne gamma SWE retrievals improved the model
estimates of SWE, which was particularly noticeable in some
lines and years, such as the gamma line SJ150 in WY1991
(Fig. 4). For comparison purposes, results of assimilating the
AMSR2 SWE retrievals were also plotted (green solid line
in Fig. 4). The AMSR2 SWE largely deviated (was under-
estimated) from the UA SWE in densely forested areas, and
assimilating the AMSR2 SWE data led to degradation of the
SWE estimates. This further emphasizes the effectiveness
of the gamma SWE data in improving the model estimates

Hydrol. Earth Syst. Sci., 27, 4039–4056, 2023 https://doi.org/10.5194/hess-27-4039-2023



E. Cho et al.: Assimilation of airborne gamma observations 4045

Figure 3. Examples of scatterplots of two gamma flight lines (SJ150 and SJ203) between the Noah-MP SWE estimates (from the OL and
DA experiments; y axis) and the daily University of Arizona SWE (x axis) from October 1985 to May 2017 (total of 33 water years). The
R value, slope, bias, RMSD, and number of data points (N ) in the linear relationship are presented in the figures.

of SWE via assimilation in forested areas, even with fewer
available data compared to the AMSR2 SWE. However, the
assimilation of the airborne gamma SWE measurements was
not able to improve the snow ablation timing due to sparse
gamma data during the spring in combination with the overall
poor model performance during the melt season. As shown in
Fig. 4, compared to the UA SWE, Noah-MP simulated earlier
snow melt-out despite the overestimated snow accumulation,
which may be attributed to the Noah-MP model structure
and physics (e.g., simplified representations of snow layers),
parameterization schemes, and/or atmospheric forcing. Also,
the peak SWE cannot be corrected if a single gamma SWE
flight exists only after the accumulation period. The avail-
ability of more frequent gamma observations during both
the accumulation and melt seasons could lead to further im-

provements in estimating SWE in the ablation period, while
the model and forcings need to be enhanced.

5.2 Effect of land surface characteristics on
assimilation performance

To examine the effects of land surface characteristics on the
DA performances as compared to the OL, the performances
of the gamma SWE DA, presented as differences (i.e., DA
minus OL) in the linear regression slope, bias, and RMSD,
with the UA SWE were compared using four physical fea-
tures: TCF, slope, elevation range (i.e., topographic hetero-
geneity), and elevation (Fig. 5). Two groups of each land sur-
face characteristic were determined by dividing the gamma
flight lines into two (i.e., low and high) groups of equal num-
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Figure 4. Examples of daily SWE time series of three gamma lines (SJ150, NH106, and NH109) with latitude (“Lat”), longitude (“Lon”),
elevation (“Elev”), and tree cover fraction (“TCF”). for individual years including the OL and gamma-data-assimilated (DA_Gamma) Noah-
MP SWE estimates along with the passive microwave SWE data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) and
AMSR2 data-assimilated SWE (DA AMSR2).

bers of the flight lines. For TCF, DA SWE in a group with
low TCF (less than 85 %) has a lower bias and a lower RMSD
than OL SWE, while the DA led to a marginal improvement
in the high TCF. Considering that the TCF values in the low
group range from 31 % to 84 % (mean: 62 %), DA using air-
borne gamma SWE improved SWE over densely forested re-
gions.

Differences in the DA performance between the low and
high groups were observed for all surface characteristics.

The 1 : 1 slope was improved by DA for both the low and
high ranges of all surface characteristics. DA led to larger
improvements in the 1 : 1 slope and RMSD for low TCF,
slope, elevation range, and elevation. With respect to the
bias, assimilation of the gamma SWE retrievals improved
the group-averaged performance for both the low and high
groups of the surface characteristics, with larger improve-
ment in low TCF and high slope, elevation range, and eleva-
tion. For individual physical characteristics, the added value
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Figure 5. Boxplots of differences in (a) slope from the 1 : 1 plot,
(b) bias, and (c) RMSD between the DA and OL cases (computed
as DA minus OL) with respect to TCF, slope (◦), elevation range
(m), and elevation (m). The two groups (low and high) were divided
into equal numbers of values. The bottom values are 50 % quantile
values for each characteristic.

of the gamma SWE data on the model SWE estimates via as-
similation was greater for the low-TCF range based on both
bias and RMSD. It is worth noting that the low TCF ranges
from 31 % to 84 %, and DA significantly improved the SWE,
even for the high TCF (i.e., greater than 85 %). This im-
plies that the gamma-based SWE estimates within DA frame-
works can be a promising alternative to traditional TB-based
approaches in forested areas. Comparable DA performance
patterns were also obtained for other land surface charac-
teristics. Although the gamma SWE DA exhibited smaller
RMSD improvements in areas with higher topographic het-
erogeneity than those with lower ranges, it was still effective
at reducing error statistics.

5.3 Localized DA performance

One of the limitations of the airborne gamma SWE observa-
tions is a limited spatial coverage, which is typically 5–7 km2

with a swath 300 m wide and 15–30 km long. It is necessary
to assess whether the spatially sparse airborne gamma SWE
observations can also improve the SWE estimates in areas
surrounding the gamma flights via assimilation. Here, the DA
experimental cases that employ a localization function with
different distances (e.g., 4, 8, 16, 24, 32, and 48 km from the
flight lines) are evaluated (Fig. 6). The OL and DA statis-
tics in the figure are calculated using domain-averaged time
series of OL and DA SWE over the effective surrounding
areas by localization distances with the corresponding UA
SWE. For the whole snow season that includes both accu-
mulation and melting periods, the boxplot of the 1 : 1 slope
shows that the localized DA SWE was improved as compared
to OL. The slopes of the DA SWE are closer to 1 than the
OL’s slopes. The bias and RMSD boxplots also show that
the DA SWE has lower errors than the OL SWE for all the
localization distances, expect for a bias at 48 km which is
too low (median: −23 mm). The OL’s RMSDs slightly in-
creased at distances up to 16 km (median: 72 mm) and de-
creased after that, while the DA’s RMSD values continually
decreased with increasing distances up to 48 km (median:
53 mm). When the statistics were calculated for the accu-
mulation and melting periods separately, lower RMSDs and
slopes closer to 1 of the localized DA SWE were found con-
sistently. As previously discussed, the efficacy of assimilat-
ing the airborne gamma SWE is greater during the accumu-
lation period, especially for bias and RMSD, than during the
melting period. In the melting period, improvements in the
RMSD and 1 : 1 slope with longer distances are achieved,
even though biases were consistently negative due to early
melting.

To compare the AMSR2 DA outputs to localized gamma
DA outputs, we chose the gamma DA outputs at the 16 km
localization distance which have similar effective spatial cov-
erages of DA around gamma flight lines (10 km AMSR2 res-
olution and 16 km localization; Fig. 7). Because the AMSR2
SWE was largely underestimated in the study domain (see
Fig. 4), assimilating the AMSR2 SWE measurements did
not improve the modeled SWE estimates. All error metrics
of the AMSR2 DA SWE were degraded (e.g., median bias:
−193 mm and RMSD: 202 mm) as compared to the OL (me-
dian bias: 38 mm and RMSD: 79 mm). The localized gamma
DA SWE performance is clearly improved based on the error
metrics (median bias: 4 mm and RMSD: 59 mm). The posi-
tive biases and high slopes of the OL SWE were improved,
and the RMSD also decreased by approximately 20 mm.

Overall, we found that the localized DA using the airborne
gamma SWE observations improved the model SWE up to
32 km distances, which is supported by the recent study that
a single gamma SWE observation spatially represents up to
50 km even in dense temperature forest environments (Cho
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Figure 6. Localized DA and OL Noah-MP SWE performances as compared to the UA SWE with different localization distances (e.g., 4, 8,
16, 24, 32, and 48 km) for the whole (accumulation and melting periods), accumulation, and melting periods, respectively.

et al., 2022). The study found that there was strong agree-
ment between the gamma SWE observations and in situ snow
course transects (R value: 0.78; RMSD: 53 mm) at distances
up to 50 km in the northeastern US. The results in this study
indicate that, even though the airborne gamma SWE mea-
surements exist with limited spatial coverages, the combined
use of the physical model and DA with the gamma SWE has
the potential to improve regional estimations of the SWE.

6 Discussion

We observed two issues associated with the Noah-MP SWE
estimates in the study domain: (1) Noah-MP considerably
overestimated SWE during the snow accumulation period,
while (2) it underestimated SWE (i.e., early snowmelt) dur-
ing the snow ablation period (see Fig. 4). The former is-

sue was mitigated through the assimilation of the gamma
SWE retrievals, whereas the latter issue was not. These issues
can be attributed to parameterization schemes and/or atmo-
spheric forcing employed in Noah-MP. Parameterization op-
tions for the precipitation-phase partitioning method, ground
surface albedo, surface-layer drag coefficient, and snow–soil
temperature time scheme can affect the snow simulations
(You et al., 2020).

To further analyze the issues, we conducted additional ex-
periments using different parameterization schemes and at-
mospheric forcing; i.e., the BATS scheme for partitioning
precipitation into rainfall and snowfall, the CLASS scheme
for snow albedo, the Chen97 scheme for the surface-layer
drag coefficient, the fully implicit snow and soil tempera-
ture time scheme, and the bias-corrected MERRA-2 forcing
were additionally tested. As shown in Fig. 8, the use of the
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Figure 7. Comparison of the SWE estimation performance between
the OL, gamma DA, and AMSR2 DA as compared to the UA SWE
at the 16 km localization distance for the mutual DA effective accu-
mulation periods.

BATS or CLASS snow albedo schemes does not make a sig-
nificant difference in the SWE estimates as compared to the
original OL results. Although the Chen97 or fully implicit
schemes are effective at delaying the snow removal date,
they add considerably more snow during the snow accumu-
lation period and do not help capture the snowmelt start date
(Fig. 8). Furthermore, the effectiveness of each parameteriza-
tion scheme varies with flight lines and time periods within
the study domain, as also emphasized by You et al. (2020).
Figure 8 shows that the use of the bias-corrected MERRA-2
forcing is effective at improving the SWE estimates during
the snow accumulation period but did not improve the issue
of rapid snowmelt. The combined use of the bias-corrected
MERRA-2 forcing and the fully implicit scheme leads to im-
proved snow removal timing but largely overestimated SWE
during the snow accumulation period. We originally used the
uncorrected MERRA-2 forcing to demonstrate the feasibil-
ity of the gamma SWE DA for improving the model esti-
mates of SWE, particularly in forested areas, using the atmo-
spheric forcing as is (i.e., without bias correction), which is a
typical case of operational prediction or monitoring systems.
Here, it is worth noting that assimilation of the gamma SWE
data provides similar SWE estimates to the case of using the
bias-corrected forcing with a semi-implicit scheme when the
gamma SWE observations are available during the snow ac-
cumulation period.

Many studies (e.g., Aoki et al., 2011; Augas et al., 2020;
Cheng et al., 2008; Jennings et al., 2018; Kwon and Koo,
2014; Lecomte et al., 2011; Livneh et al., 2010; Saha et al.,
2017; Suzuki and Zupanski, 2018) have emphasized the im-
portance of the number of snow layers for accurate estimates
of snowmelt timing because of its impact on the vertical snow
temperature gradient. Augas et al. (2020) demonstrated that
the accuracy of the SWE estimates increases with more snow

layers, and Lecomte et al. (2011) showed that the agreement
between the observed and modeled vertical snow tempera-
ture gradients is improved by adding more snow layers. The
minimum threshold of the number of snow layers suggested
by existing studies ranges from 3 to 20 depending on the
locations, periods, and model setups. Different precipitation
partitioning methods may lead to differences in the amount
of snowfall and the subsequent snowpack (Jennings et al.,
2018; Letcher et al., 2022; Suzuki and Zupanski, 2018; Xia
et al., 2017), even though there were no significant differ-
ences in SWE between the two schemes. We used the scheme
of Jordan (1991) in which total precipitation is fractionally
divided into rainfall and snowfall using two thresholds of
air temperature (i.e., there is no snowfall when Tair > 2.5 ◦C,
all precipitation is snow when Tair ≤ 0 ◦C, and there is frac-
tional snowfall when 0 ◦C < Tair ≤ 2.5 ◦C). However, Noah-
MP uses a spatially uniform threshold of Tair. Jennings et
al. (2018) found that rain–snow Tair thresholds exhibited sig-
nificant spatial variability across the Northern Hemisphere,
with the warmest thresholds in continental and mountain ar-
eas and the coolest thresholds in maritime areas and low-
lands. This implies that the high Tair threshold (i.e., 2.5 ◦C)
used in Noah-MP may lead to the overestimated snowfall
and subsequently the overestimated snow depth and SWE as
the study area is characterized by the maritime snow class.
Letcher et al. (2022) demonstrated that the use of cooler Tair
thresholds in Noah-MP can improve the estimates of peak
SWE in the northeastern US. To verify this, four Noah-MP
SWE simulations with the Jordan (1991) scheme and a single
threshold of 0 ◦C with two different meteorological forcings
(MERRA-2 and the North American Land Data Assimilation
System – NLDAS2) are compared to ground-based SWE ob-
servations from 1 October 2002 to 31 May 2003 at Hubbard
Brook, New Hampshire, which is within the study domain
(Fig. 9). This supports the previous finding that the overesti-
mated SWE with Jordan’s scheme was reduced with a single
threshold of 0 ◦C for both forcings. This also shows that the
use of regionally reliable meteorological forcings (e.g., pre-
cipitation) generates accurate SWE estimations. At the same
time, further improvement in the modeled SWE during the
melting season can be achieved by employing more sophisti-
cated snow models since the sophisticated snow models with
multiple layers of snowpack take into account meltwater in-
filtration and refreezing within the snowpack (Avanzi et al.,
2016; Terzago et al., 2020).

While the model parameter calibration is not conducted
here because it is outside the scope of the current study, we
acknowledge that the parameter calibration procedure could
further improve the model performance for regional appli-
cations. Cuntz et al. (2016) provided a sensitivity analysis
of the Noah-MP parameters, including both the adjustable
and hard-coded parameters that affect simulations of hy-
drological processes. Based on their analysis, some snow-
related Noah-MP hydrological simulations exhibit high sen-
sitivity to hard-coded parameters rather than tunable parame-
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Figure 8. Examples of SWE time series including (a) the additional OL experiments using different parameterization schemes related to snow
simulations such as the snow–soil temperature time scheme (semi-implicit vs. fully implicit), partitioning precipitation phase (Jordan91 vs.
BATS), ground surface albedo (BATS vs. CLASS), and surface-layer drag coefficient (Monin–Obukhov (M–O) similarity theory vs. Chen97
– original Noah), together with (b) DA runs forced by original vs. bias-corrected MERRA-2 forcings with each snow–soil temperature time
scheme, which is a parameterization option largely affecting snow simulations.

ters. For example, snowmelt-induced surface runoff is sensi-
tive to hard-coded snow-related parameters for surface resis-
tance, partitioning of incoming radiation into direct and dif-
fuse radiation, and snow thermal conductivity. Meanwhile,
the current DA framework does not perform assimilation if
one or more of the prior model ensemble members do not
have snow. Thus, the gamma SWE retrievals could not add
value to the SWE estimates during the snowmelt period. To
address this issue, a rule-based approach (e.g., Kwon et al.,
2019) that adds a thin snow layer when the model simulates

snow-free conditions but observations have snow can be ex-
plored in a future study.

It is possible that the inherent uncertainties in the gamma
radiation method limit the potential improvements through
DA even though the airborne gamma radiation SWE was
beneficial to enhancing SWE estimations by assimilation into
Noah-MP land surface models. The potential sources of er-
ror in the gamma SWE retrievals have been explored in pre-
vious findings (Carroll and Carroll, 1989a, b; Glynn et al.,
1988; Offenbacher and Colbeck, 1991). An impact of forest
biomass on the accuracy of airborne gamma SWE measure-
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Figure 9. Comparison of SWE time series between four Noah-
MP simulations and the Soil Climate Analysis Network (SCAN)
ground-based observations at Hubbard Brook, New Hampshire,
from 1 October 2002 to 31 May 2003 (https://wcc.sc.egov.usda.gov/
nwcc/site?sitenum=2069, last access: 1 September 2023). The four
Noah-MP SWE simulations were generated with the Jordan (1991)
scheme, a single threshold of 0 ◦C, and two meteorological forcings
(MERRA-2, which is used for OL, and the North American Land
Data Assimilation System – NLDAS2), respectively.

ments has been examined over forested watersheds (Carroll
and Vose, 1984). Carroll and Vose (1984) showed that there
was 23 mm of RMSE between airborne gamma SWE and in
situ SWE for the moderate snowpack (20 to 470 mm of in
situ SWE) in the Lake Superior and Saint John basins, New
Brunswick, Canada. Spatial variability in elevations over the
gamma flight footprint can cause larger errors in SWE (Cho
et al., 2020b; Carroll and Carroll, 1989b; Cork and Loijens,
1980). Cho et al. (2020b) found that heterogeneous charac-
teristics (e.g., elevation range and slope) within a flight line
cause underestimations of gamma SWE as compared to UA
SWE. Cork and Loijens (1980) discussed how the measure-
ments of the attenuation of the gamma count rate over the
snowpack with its large spatial variability were systemati-
cally underestimated, leading to the SWE underestimation.
Because the results use the NOAA standard gamma radiation
SWE retrievals without manual corrections, the DA results
would be improved with the updated gamma SWE products
in regions by correcting the existing potential errors. Lastly,
the spatiotemporal sparseness of the airborne gamma SWE
observations due to the operational costs is an inherent issue
that may limit the widespread use of gamma SWE observa-
tions for DA work. However, as supported by our findings,
effective uses of the gamma SWE (e.g., localization func-
tion) can enhance the utility of the gamma SWE in the DA
framework.

7 Conclusion and future perspectives

In the snow hydrology community, DA has been used as
a promising approach to improve SWE estimation at a
large spatial scale by merging remote-sensing observations
with LSM predictions. In densely forested regions, how-

ever, most remote-sensing techniques have limited perfor-
mance of SWE due to attenuating and/or scattering radia-
tion signals by canopy (e.g., passive microwave TB and li-
dar), resulting in large uncertainty in DA outputs. The histor-
ically well-established, airborne gamma-radiation technique
has provided strong potential in wet snow and dense forest
conditions because the gamma approach uses an attenuation
difference in the terrestrial gamma-ray emission by water in
the snowpack (any phase) between snow-off and snow-on
conditions. In this study, the airborne gamma SWE obser-
vations are assimilated with the Noah-MP model’s SWE in
densely forested regions in the northeastern US. We found
that the assimilation of the airborne gamma SWE observa-
tions enhanced the model SWE estimates despite the limited
number of measurements (up to four SWE values during a
winter period). The added value of the gamma data on the
model SWE estimates was greater for the relatively lower-
TCF range. While the gamma-based DA SWE had relatively
lower improvement in areas with higher topographic hetero-
geneity, the DA SWE with reduced errors was found as com-
pared to the OL. We also found that the localized DA with
the gamma SWE observations with distances up to 32 km re-
duced the model SWE’s errors, indicating that the gamma
SWE has the potential to improve regional estimations of the
SWE and subsequently snowmelt runoff. Despite the accu-
racy of the gamma data on the DA framework, the improve-
ments were limited by the spatial and temporal sparseness
of the gamma measurements. With the enhanced physics in
LSMs and optimal uses of the gamma data using enhanced
DA or interpolation methods, future studies may achieve fur-
ther improvement of the modeled SWE for larger areas where
gamma flights do not exist.

Data availability. The original airborne gamma radiation SWE
data are available from the NOAA NWS NOHRSC website (https:
//www.nohrsc.noaa.gov/snowsurvey/historical.html, Carroll, 2001).
The reformatted airborne gamma SWE data (NetCDF format),
the R codes used to reformat them, and the SWE outputs from
the OL and DA runs are available at http://www.hydroshare.org/
resource/fc5c757899fb49a5869e597451120a33 (Cho et al., 2023).
The UA daily 4 km SWE data (version 1) and JAXA AMSR2
L3 Global Daily 10 km SWE data (version 1) are available
from the website (https://nsidc.org/data/nsidc-0719, Zeng et al.,
2018, and https://www.eorc.jaxa.jp/AMSR/datacatalog/land/#snd,
Kelly, 2009, respectively). The MERRA-2 forcing dataset is dis-
tributed by the NASA Goddard Global Modeling and Assimilation
Office (GMAO; https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
data_access/, Gelaro et al., 2017). To replicate the land surface
model simulation and data assimilation, users can use the NASA
Land Information System, which is freely available at https://github.
com/NASA-LIS/LISF (Kumar et al., 2006, 2008; Peters-Lidard et
al., 2007). The lis-config files used in this study are available at the
above repository.
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