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Abstract. A reliable flood frequency analysis (FFA) requires
selection of an appropriate statistical distribution to model
historical streamflow data and, where streamflow data are not
available (ungauged sites), a regression-based regional flood
frequency analysis (RFFA) often correlates well with down-
stream channel discharge to drainage area relations. How-
ever, the predictive strength of the accepted RFFA relies on
an assumption of homogeneous watershed conditions. For
glacially conditioned fluvial systems, inherited glacial land-
forms, sediments, and variable land use can alter flow paths
and modify flow regimes. This study compares a multivari-
ate RFFA that considers 28 explanatory variables to charac-
terize variable watershed conditions (i.e., surficial geology,
climate, topography, and land use) to an accepted power-law
relationship between discharge and drainage area. Archived
gauge data from southern Ontario, Canada, are used to test
these ideas. Mathematical goodness-of-fit criteria best es-
timate flood discharge for a broad range of flood recur-
rence intervals, i.e., 1.25, 2, 5, 10, 25, 50, and 100 years.
The log-normal, Gumbel, log-Pearson type III, and gener-
alized extreme value distributions are found most appropri-
ate in 42.5%, 31.9 %, 21.7 %, and 3.9 % of cases, respec-
tively, suggesting that systematic model selection criteria are
required for FFA in heterogeneous landscapes. Multivari-
ate regression of estimated flood quantiles with backward
elimination of explanatory variables using principal compo-
nent and discriminant analyses reveal that precipitation pro-
vides a greater predictive relationship for more frequent flood
events, whereas surficial geology demonstrates more predic-
tive ability for high-magnitude, less-frequent flood events.
In this study, all seven flood quantiles identify a statisti-
cally significant two-predictor model that incorporates up-

stream drainage area and the percentage of naturalized land-
scape with 5% improvement in predictive power over the
commonly used single-variable drainage area model (p <
2.2 x 10716). Leave-one-out model testing and an analysis
of variance (ANOVA) further support the parsimonious two-
predictor model when estimating flood discharge in this low-
relief landscape with pronounced glacial legacy effects and
heterogeneous land use.

1 Introduction

A reliable assessment of flood frequency and flood magni-
tude over space and time is critical for urban planning and
infrastructure engineering that depends on flood probability
(Basso et al., 2016). Flood magnitude, frequency, and dura-
tion are primary drivers of channel erosion and stream mor-
phology (Taniguchi and Biggs, 2015) as a self-shaping al-
luvial channel entrains and transports sediment to adjust its
dimensions, planform pattern, bed characteristics, and gradi-
ent in response to varying flow levels (Church and Ferguson,
2015). So reliable estimates of flood frequency are important
for understanding geomorphic channel change.

A regional flood frequency analysis (RFFA) can be very
important in determining the probability of extreme flood
events where streamflow data are not readily available (Ahn
and Palmer, 2016) by transferring observed hydrological in-
formation from a group of gauged sites to comparative un-
gauged sites as a representation of flow statistics using hydro-
logical variables (Odry and Arnaud, 2017). A common ap-
proach to RFFA consolidates data samples from many mea-
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suring sites and uses ordinary least-squares (OLS) regres-
sion to identify a relationship between mean annual floods of
multiple basins and some basin characteristic (e.g., drainage
area). As the source area for channel discharge, drainage area
is a widely used proxy for channel discharge (Galster et al.,
2006; Knighton, 1999). It has become an accepted practice to
model discharge using a single-variable power-law relation-
ship between discharge (Q) and drainage area (Aq) of the
form

0 =aAl, (1)

where Aq is the upstream drainage area and the coefficient «
and exponent § are empirically derived by statistical regres-
sion (Dunne and Leopold, 1978; Knighton, 1999; Phillips
and Desloges, 2014). This scaling relationship can be rewrit-
ten as

log Q =loga + Blog Aq. 2)

The reliability of this single-variable predictive relationship,
however, relies on the relative regional homogeneity of the
landscape, with similar basin conditions and climate (Ahn
and Palmer, 2016; Hosking and Wallis, 1993; Phillips and
Desloges, 2014).

To estimate how often a specified flood event (or chan-
nel discharge) will occur, flood frequency analysis (FFA) is
widely used (Farooq et al., 2018). Most often, an FFA uses
the occurrence of extreme flood events to estimate the re-
turn period, 7', of flood quantiles, Q(7T), using a fixed proba-
bility model based on long-term, historical flow data from
a gauge station (Di Baldassarre et al., 2009). This proba-
bilistic approach “fits” the site-specific data to a statistical
distribution to predict the likelihood of future flood events.
To provide flexibility of fit, statistical probability distribu-
tions require two to four parameters (Zhang et al., 2020). The
choice of the probabilistic model that best represents the ob-
served data and the estimation of a distribution’s parameters
affects the reliability of flood prediction (Cunnane, 1973; Fa-
rooq et al., 2018; Laio et al., 2009). Poor model application
and fit can lead to unreliable estimates (Basso et al., 2016).
The generalized extreme value (GEV) distribution, Gumbel
maximum or extreme value type I (EV1) distribution, log-
normal (LN) distribution, and log-Pearson type II (LP3)
distribution have traditionally been recommended to charac-
terize flood probability based on goodness of fit (Onen and
Bagatur, 2017; Laio et al., 2009). The LP3 and GEV distri-
butions use three parameters, i.e., location, scale, and shape,
and the EV1 and LN distributions use two parameters, i.e.,
location and scale, to fit data distributions (see Appendix A).
In Canada, it is recommended that FFA studies draw from
the Normal, GEV, and Pearson distribution families. Distri-
bution fitting with more than three parameters is not recom-
mended due to the limited record lengths of Canadian gauge
stations (Natural Resources Canada, 2019). For regions with
diverse flood characteristics, multiple distributions may ap-
ply for different catchments requiring site-specific selections
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(Zhang et al., 2020). Since 1967, Guidelines for Determining
Flood Flow Frequency, Bulletin 17C of the US Geological
Survey (USGS), recommends the use of the LP3 distribution
as an appropriate statistical distribution to characterize the
probabilities of annual flood series (USGS, 2019), but the re-
cent HEC-SSP statistical software package (version 2.2) in-
cludes the ability to perform two goodness-of-fit tests for up
to 19 statistical distributions (Hydrologic Engineering Cen-
ter, 2019). Recent research indicates that estimation of flood
frequency and magnitude improves with the application of a
systematic and objective model selection criteria when fitting
observed flow data to a statistical probabilistic curve (Di Bal-
dassarre et al., 2009).

Research suggests that the spatial variability of basin at-
tributes (i.e., topographic relief, climate, vegetation, and land
use) and sub-surface characteristics which influence hydro-
logical and fluvial function are controlling factors of a flu-
vial system’s drainage efficiency and are relevant to the flow
response in a catchment (Di Lazzaro et al., 2015; Fryirs and
Brierley, 2012; Galster et al., 2006; Oudin et al., 2008). Ad-
ditionally, landscape modifications that decrease infiltration
will impose changes to river hydrology (Ashmore, 2015;
Ghunowa et al., 2021; Taniguchi and Biggs, 2015; Winter,
2001) with a downstream cascading effect on flow regime
(Royall, 2013). Human occupation, landscape manipulation,
and the generation of impervious surfaces associated with ur-
banization have the most profound impact on hydrogeomor-
phic responses, particularly in smaller watersheds (Paster-
nack, 2013; Royall, 2013). Moreover, a fluvial system’s re-
sponse to human-induced land use change (or its sensitivity
to change) will vary, depending on basin attributes (i.e., con-
figuration, geomorphology, and sediment retention) (Roy-
all, 2013). For this reason, the spatial heterogeneity across
a landscape will likely produce a variation in flood re-
sponse that may best be captured using a multivariate RFFA
approach that considers parameterization of relevant basin
characteristics (i.e., topographic relief, land use, vegetation,
and sub-surface geology) as a set of explanatory variables to
estimate flood discharge (Ahn and Palmer, 2016).

Recent works have highlighted the impact of geomor-
phic spatial heterogeneity on the basin hydrological response
(Ahn and Palmer, 2016; Di Lazzaro et al., 2015; Taniguchi
and Biggs, 2015). However, many rapid geomorphic studies
have relied on just catchment area as the leading attribute for
estimating channel forming discharge (Ashmore et al., 2023).
This study seeks to explore additional explanatory hydrolog-
ical and land use controls that improve the predictive strength
of this relationship in a heterogeneous landscape. This multi-
variate approach uses exploratory statistical analysis to better
understand the link between intra-catchment variability and
hydrological function. This study explores the following:

1. An FFA is completed to model reliable estimations of

discharge for a broad range of flood recurrence intervals
(ie., Q1.5 02, Os, Q10 @25, Os0, and Q100). Model
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selection is determined by applying systematic and ob-
jective model selection criteria to optimize model fit to
long term site-specific flow data (> 10 years). A test
sample of 207 individual gauge sites within a glacially
conditioned regional setting is used.

2. The widely used single-variable RFFA (Eq. 1) is de-
rived to characterize the relationship between discharge
(Q) and site-specific drainage area (Aq) for the test re-
gion using optimized estimates of a broad range of flood
quantiles to test the predictive power of a single hydro-
logical variable in a spatially heterogeneous landscape.

3. A multivariate, regression-based RFFA is presented that
considers the spatially variability of hydrological con-
trols in the context of inherited glacial landforms, sed-
iments, and land use. To achieve this goal, 28 predic-
tor variables are explored representing basin character-
istics (i.e., topographic relief, climate, land use, veg-
etation, and sub-surface geology). A backward elim-
ination approach is employed (i.e., discriminant and
principal component analyses, and regression diagnos-
tics) to identify the most parsimonious discharge mod-
els for recurrence intervals of 1.25, 2, 5, 10, 25, 50, and
100 years.

4. The predictive power of a multivariate derived RFFA
that considers multiple basin hydrological controls is
compared with a generally accepted single-variable
RFFA in a spatially heterogeneous setting.

2 Regional setting

This flood frequency study focuses on a test region of penin-
sular southern Ontario, Canada (Fig. 1), that is bounded by
the Canadian Shield to the north, the three lower Great Lakes
— Huron, Erie, and Ontario — to the southwest, and the Ot-
tawa and St. Lawrence rivers to the east. Located within the
North American Great Lakes watershed, it is a region of
modest relief, with elevation ranging from 544 ma.s.l. near
Lake Huron draining by way of the St. Lawrence River low-
lands at less than 70 m to the Atlantic Ocean (Larson and
Schaetzl, 2001). Convective, synoptic, and tropical systems
that influence the humid, continental climate of the region
are enhanced by local, regional, and topographic conditions
(Paixao et al., 2011). Moisture and temperature associated
with the Great Lakes influence inland precipitation for up to
50km. Consequently, the mean annual precipitation varies
regionally from 800 to 1200 mm (Paixao et al., 2011). Dur-
ing winter months, precipitation typically accumulates in the
form of snow, generating spring snowmelt floods that dom-
inate river flow regimes (Javelle et al., 2003). The surficial
geology of the region, and the hydrological controls exerted
by the parent materials, are the product of the region’s glacial
history (Chapman and Putman, 1984). Recurring continental
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glaciations over the past ~ 2 million years have topograph-
ically influenced the fluvial drainage networks of southern
Ontario (Desloges et al., 2020; Fulton et al., 1986).

Deglaciation, approximately 12—13 000 years ago, has left
pronounced glacial legacy effects with complex sequences of
sub-glacial, ice-contact, and proglacial sediments deposited
during the final retreat of the Laurentide Ice Sheet (Larson
and Schaetzl, 2001; Phillips and Desloges, 2014, 2015). The
most common physiographic features include sheets of till,
finer glaciolacustrine plains of sand or clay, glaciofluvial out-
wash deposits of sand, gravel, silts and clays, and a configu-
ration of moraines (Thayer et al., 2016). Two significant post-
glacial geomorphic features are the Niagara Escarpment and
the Oak Ridges Moraine (Fig. 1). The Niagara Escarpment is
a Paleozoic limestone bedrock ridge resulting from differen-
tial glacial erosion and weathering of harder and softer rock
that arches from the region between lakes Ontario and Erie,
bypassing Lake Ontario and extending northward to Geor-
gian Bay (Chapman and Putman, 1984; Phillips and Deslo-
ges, 2014).

Several pre-glacial rivers have carved deep valleys into
the Niagara Escarpment; however, Late Pleistocene glacia-
tions have infilled these valleys with varying thicknesses of
till (Chapman and Putman, 1984) directing catchment flow
mostly away from the escarpment crest. The Oak Ridges
Moraine is a stratified kame moraine of glacial drift that ex-
tends from the Niagara Escarpment 160 km eastward across
south-central Ontario (Phillips and Desloges, 2014). This
massive ridge forms a drainage divide, separating catchments
flowing north to Georgian Bay/Lake Huron and south to Lake
Ontario. Glacial sediments typically blanket the study area at
a thickness of 50 m, and up to 350 m in some places (Larson
and Schaetzl, 2001). In many areas, where stratified lime-
stones and shales of the Palaeozoic age lie beneath the thick
glacial overburden, fertile soils rich in calcium carbonate and
clay are produced (Desloges et al., 2020; Phillips and Deslo-
ges, 2014, 2015). These fertile soils support southern On-
tario’s widespread agricultural development (Donnan, 2008).

More recent European settlement and regional expansion
have resulted in differentiated land use with extensive agri-
cultural land, natural and reforested areas, and clustered ur-
ban settlement (Chapman and Putman, 1984). The southern
Ontario region continues to accommodate an increasing pop-
ulation. Drawn by employment, most people settle in built-up
cities and surrounding areas, driving clustered regional ur-
banization that consumes surrounding rural lands. However,
a comparable demand to expand the total area of cropland has
also occurred to support larger farming operations (Donnan,
2008).

3 Methods and data collection

An overview of the methodology for this study is provided in
Fig. 2.
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Figure 1. Map identifying the study area (indicated in orange) and two significant post-glacial geomorphic features that influence drainage
networks of southern Ontario (i.e., the Niagara Escarpment and the Oak Ridges Moraine). The inset map (upper right) indicates the study
region within the Ontario portion of the Laurentian Great Lakes catchment relative to Canada.

3.1 Estimation of flood frequency

A Station Meta Data Index for 1188 Ontario georefer-
enced stream gauges from the HYDAT database of the
Water Survey of Canada (WSC) monitoring program is
accessible online at https://wateroffice.ec.gc.ca/mainmenu/
historical_data_index_e.html (last access: 11 August 2019)
(ECCC, 2019). The quality of gauge data depends on the se-
lected measurement techniques, computation methods, and
physical conditions at the monitoring sites (i.e., ice and other
influences). However, the WSC performs regular audits of
field activities and adheres to standard operating procedures
to improve data quality (ECCC, 2019). Gauge locations are
sorted by catchment and synthesized to identify gauges spe-
cific to the southern Ontario region.

Retention of station data is based on three criteria: (1) the
gauge station lies within the peninsular region of southern
Ontario, (2) the gauge station exists for a fluvial system with
known field survey data (i.e., Annable 1995, 1996; Phillips,
2014), and (3) streamflow data represent a minimum of
10 years of continuous (non-seasonal) year-round operation.
These criteria yield 207 gauge stations from the HYDAT
database with a minimum operation period of 10 years, an
average of 42.5 years (£1.7 years, median =42 years), and a
maximum operation period of 106 years. Two approaches are
commonly used for FFA: the annual maxima series (AMS)
and the partial duration series (PDS). The AMS approach
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uses the highest annual discharge from the recorded mean
daily discharge values at a gauge, ensuring statistical inde-
pendence of observations between years (USGS, 2019). Al-
though some research suggests that the instantaneous max-
imum discharge may command greater geomorphic signif-
icance (Phillips and Desloges, 2014), the mean daily dis-
charges provide a larger dataset with fewer gaps in the dis-
charge records. Alternatively, the PDS approach (or peak-
over-threshold) uses floods that exceed some base threshold
discharge (qg), regardless of the time distribution (USGS,
2019). The AMS approach has been shown to be more ef-
ficient than the PDS approach for floods Q(7') when 7' > 10
(Cunnane, 1973). This study uses the AMS of mean daily
discharge (m> s~!) for flood recurrence computations at each
gauge station. The MSClaio2008 R function, part of the
package nsRFA in R, is used to compare the LP3, EV1, GEV,
and LN distributions to the annual maximum discharge data.
No prior processing is implemented to fit the distributions.
Each flood dataset is fit to each of the four candidate mod-
els (i.e., GEV, EVI, LN, and LP3) in the form of probability
distributions with parameters estimated using the maximum
likelihood method. Model selection criteria, including the
Akaike information criterion (AIC), the Bayesian informa-
tion criterion (BIC), the Anderson—Darling criterion (ADC),
and the corrected Akaike information criterion (AICc) where
the sample size, n, is small with respect to the number of
estimated parameters, p, such that n/p < 40, are separately

https://doi.org/10.5194/hess-27-3977-2023
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Figure 2. Flowchart of FFA and comparison of a multivariate RFFA to a single-variable RFFA that uses a discharge to drainage area
relationship. The regression-based multivariate RFFA employs sub-basin characterization and backward elimination of explanatory variables
to determine the most parsimonious model to predict discharge over seven flood quantiles.

applied to each candidate model to evaluate the model which
most closely fits the flood data, similar to the methods of oth-
ers (Di Baldassarre et al., 2009; Farooq et al., 2018; Laio et
al., 2009). These model selection criteria are shown to pro-
vide good operational strategy when applied to frequency
analysis of hydrological extremes by enabling a systematic
and objective mathematical test of model fit (Laio et al.,
2009). For each flood dataset, the MSClaio2008 function re-
turns the distribution that is most often selected by the se-
lection criteria. The selected optimal distribution for each
gauge dataset is used to model flood recurrence using the
cumulative probability. Flood quantiles for seven recurrence
intervals (RIs) of 1.25, 2, 5, 10, 25, 50, and 100 years (i.e.,
Q125, 02, Os, Q0. Q25, Os0, and Qo) are derived di-
rectly from individual gauge data and, therefore, reflect the
upstream conditions of the corresponding drainage basin.
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3.2 Selection of explanatory variables
3.2.1 Gauge station drainage area

Catchment basins of the study area are delineated based
on the hierarchical framework of the Ontario Watershed
Boundaries, published by the Ontario Ministry of Nat-
ural Resources and Forestry (OMNRF, 2020). The dig-
ital geospatial datasets are accurate to within 100m
and accessed online from https://data.ontario.ca/dataset/
ontario-watershed-boundaries (last access: 26 April 2021).
Basins are first identified according to tertiary level water-
sheds.

The site-specific drainage area for each gauge station is
evaluated based on Ontario’s hydrologically enforced provin-
cial digital elevation model (DEM; version 2.0.0) of the On-
tario Ministry of Natural Resources (OMNR, 2005) follow-
ing Phillips and Desloges (2014). Hydrological enforcement
ensures that drainage occurs in a down-slope direction, facil-
itating the construction of a flow accumulation raster neces-

Hydrol. Earth Syst. Sci., 27, 3977-3998, 2023
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sary to establish the upstream drainage area of each gauge
station.

3.2.2 Sub-basin attributes

To characterize the upstream hydrological, geomorphic, and
land use conditions affecting channel discharge, the 16 ter-
tiary level catchments of southern Ontario are subdivided
into 45 sub-basins demarcated by quaternary level bound-
aries. Georeferenced gauge stations are clustered within sub-
basin units to best represent the immediate upstream hydro-
logical conditions. Sub-basin attributes are selected to char-
acterize the drainage area conditions for each gauge station.
Using digital cell counts and zonal statistics from multiple
sources, sub-basin characteristic variables are extracted from
four geospatial raster datasets to represent topography, land
use, precipitation, and hydrological properties from a geo-
morphic perspective:

a. Ontario’s provincial DEM (version 2.0.0), a hydrologi-
cally enforced tiled raster dataset with a cell resolution
of 10 m and vertical accuracy of S m

b. the southern Ontario Land Resource Information
System (SOLRIS; version 3.0), accessed online at
https://geohub.lio.gov.on.ca/documents/lio::southern-
ontario-land-resource-information-system (last access:
27 January 2020), a comprehensive, digital landscape
level inventory published by the OMNRF(2019)
that identifies urban, rural, and natural features at a
15 m resolution derived from Landsat-8 OLI imagery
acquired from 2014 to 2017

c. the Canadian Climate Normals 1981-2010, accessed at
https://climate.weather.gc.ca/climate_normals/ (last ac-
cess: 10 August 2020), which are commonly used to as-
sess regional climate and adhere to the accepted stan-
dards of the World Meteorological Organization which
recommends 30-year records to eliminate year to year
variation (ECCC, 2020)

d. the revised Surficial Geology of Southern Ontario
(MRD 128 - Revised), accessed online at http:
/Iwww.geologyontario.mndm.gov.on.ca/mndmaccess/
mndm_dir.asp?type=pub&id=MRD128-REV (last
access: 3 February 2020) which provides a seamless,
standardized map of the geology, primary material,
genesis, and formation coverages for southern Ontario
(OGS, 2010).

For each predictor variable (i.e., attribute), a single output
value is produced and applied to the gauge(s) within a sub-
basin. Since many sub-basins contain more than one gauge
station, some gauges share the same topographic, land use,
climate, and geomorphic values but possess their own unique
drainage area value. All mapping and spatial analyses use a

Hydrol. Earth Syst. Sci., 27, 3977-3998, 2023

combination of standard GIS software and spreadsheet algo-
rithms. Maps are projected to the Universal Transverse Mer-
cator (UTM, Zone 17N), referenced to the North American
Datum of 1983.

3.3 Comparison of single-variable RFFA to
multivariate RFFA

For each of the seven flood quantiles, a single-variable re-
lationship (Eq. 1) between discharge and drainage area is
obtained by statistical regression. Multivariate relationships
between the explanatory variables and each of the quantile
discharge datasets are assessed by applying OLS regression.
OLS assumes that the set of explanatory variables (i.e., basin
characteristics) and errors must be independent to avoid bias.
When characterizing natural systems, the potential exists for
some variables to correlate with other variables due to their
representation of related natural phenomena, often indicated
by high correlations between variables suggesting a duplica-
tion of information captured (Ahn and Palmer, 2016; Phillips
and Desloges, 2015). To identify the most parsimonious dis-
charge model for RIs of 1.25, 2, 5, 10, 25, 50, and 100 years,
regression models are developed using a backward elimina-
tion strategy (Fig. 3):

1. Discriminant analysis, similar to that of Ahn and
Palmer (2016), tests for variable independence and
identifies highly correlated variables. A principal com-
ponents analysis (PCA) explores the most important in-
fluences on channel discharge. PCA has been shown
to be an effective tool for variable reduction that pro-
vides a statistical basis to discard redundant variables
(King and Jackson, 1999). A simple Pearson correla-
tion and a Spearman correlation are applied to all pre-
dictor variables (criteria |7|0.6 > and |p| > 0.6). Pref-
erence is granted to predictors with a stronger theoreti-
cal association to channel discharge. Similarly, Ahn and
Palmer (2016) apply a criterion of || > 0.7 to eliminate
strongly correlated variables.

2. An iterative process of multivariate regression diagnos-
tics is applied, following others (Roman et al., 2012;
Sheather and Oostrom, 2009), to remove variables that
demonstrate little or no predictive power.

3. Models are evaluated for performance using an analysis
of variance (ANOVA) that compares the residual sum of
squares of the multivariate models to the single-variate
models, and leave-one-out cross validation (LOOCYV)
assesses the predictive capabilities of the models in
practice.
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Figure 3. Flowchart of discriminant analysis and backward elimination strategy employing tests for variable independence, multivariate

regression diagnostics, and model evaluation.

4 Regression model inputs
4.1 Flood quantiles as dependent variables

The model selection criteria determine that 42.5 % of the
207 hydrometric gauge records are most suited to an LN
distribution, 31.9% to an EV1 distribution, 21.7 % to an
LP3 distribution, and 3.9 % to a GEV distribution (Fig. 4).
Goodness-of-fit tests suggest that all four distributions are
potentially suitable for modelling flood extremes from
gauges in southern Ontario. For 74.4 % of the gauge records
tested, the selection criteria chose a two-parameter model
(i.e., LN or EV1) over a three-parameter model (i.e., LP3
or GEV). The two-parameter EV1 model is found to be five
times more likely to be selected as the optimal distribution
over its three-parameter parent model, GEV. The GEV dis-
tribution is only selected in a limited number of cases. In
general, there is no single “best fit” distribution type indi-
cated based on geographic location within a sub-basin unit
(Fig. 4).

The optimal probability distribution curve is used to esti-
mate the flood quantiles for RIs of 1.25, 2, 5, 10, 25, 50, and
100 years for each of the 207 gauge stations. These flood
quantiles are consistent with return periods explored in other
flood frequency analyses (Ahn and Palmer, 2016; Basso et
al., 2016; Hollis, 1975; Onen and Bagatur, 2017). A Shapiro—
Wilk analysis tests the null hypothesis that the flood quan-
tile datasets are normally distributed (Table 1). The dataset
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for each flood quantile does not meet the assumption of nor-
mality (p < 0.05) and the null hypothesis is rejected. A log-
arithmic transformation is applied to all flood quantile val-
ues. A subsequent Shapiro—Wilk test of the log-transformed
flood quantile datasets fails to reject the null hypothesis
(p > 0.05), suggesting that the log-transformed flood quan-
tiles are normally distributed.

4.2 Attributes as predictor variables

Twenty-eight attributes are selected (Table 2) to character-
ize the drainage area conditions representing the topography,
precipitation, land use, and hydrological properties from a
geomorphological perspective. The drainage area conditions
influence channel discharge (across all seven flood frequency
quantiles) in terms of the regional geomorphic, hydrological,
topographic, and land use properties within each sub-basin.
The upstream drainage area for each georeferenced gauge
station is extracted from the hydrologically enforced DEM.
A logarithmic transformation is applied to the drainage area
variable values to ensure normality (W = 0.994; p =0.522).
The geomorphic sub-basin attributes are represented by the
percentage of the dominant surficial material within the
geographic area of each sub-basin: glaciolacustrine clay,
glacial till, glaciofluvial/glaciolacustrine gravel, wetland, Pa-
leozoic or Precambrian bedrock, glaciofluvial/fluvial/glacio-
lacustrine sand, and glaciolacustrine/fluvial silt (Fig. 5a). The
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Figure 4. Map identifying the geographic locations of 207 gauge stations and the optimal statistical distribution selected to model the AMS
data. Sub-divisions of the tertiary level watershed boundaries are indicated. No sub-basin indicates a single “best fit”” distribution type.

Table 1. Results of Shapiro—Wilks normality tests for each flood quantile, with and without logarithmic transformation of data.

Test 1 (before transformation)

Test 2 (after logarithmic transformation)

Flood W stat p value Log-transformed W stat p value
quantile flood quantile

0125 0578 <22x10716 Log 0125 0.991 0.200
0, 0580 <22x10716 Log Q2 0.992 0.299
o 0595 <22x10716 Log Qs 0.991 0.194
010 0.604 <22x10716 Log Q19 0.990 0.135
075 0.635 <22x10716 Log Q»s 0.991 0.260
050 0634 <22x10710 Log Q5o 0.992 0.351
0100 0595 <22x10716 Log Q100 0.991 0.247

hydrological conditions are characterized by an interpolation
of Canadian climate normals (Fig. 5b).

Point information for mean annual precipitation, annual
number of precipitation days, mean annual rainfall, and an-
nual number of rainfall days from 65 observation stations is
converted to raster coverage using several interpolation tech-
niques. Inverse distance weighting IDW) and ordinary krig-
ing (OK) using a stable model and an exponential model
are compared. OK has been shown to produce accurate re-
sults when used to describe spatially heterogeneous natu-
ral phenomena (Bevan and Conolly, 2009) such as precipi-
tation. Cross validation suggests fitting an OK exponential
model for annual mean precipitation, annual mean rainfall,
and the annual number of rainfall days, and an OK stable

Hydrol. Earth Syst. Sci., 27, 3977-3998, 2023

model for the annual number of precipitation days. The topo-
graphic conditions of the sub-basins are extracted and quan-
tified from the hydrologically enforced DEM (Fig. 5c). Per-
cent land use is quantified using the SOLRIS categories for
each sub-basin (Fig. 5d). For this study, three land use cat-
egories are established: %Urban, %Cropland, and %Natu-
ralized area. %Urban regions combine all transportation and
built-up areas. %Cropland is defined by tilled agricultural ar-
eas. %Naturalized regions combine all tall-grass land cover,
mixed forests, cultivated tree plantations, swamps, wetlands,
and open water areas as indicated by the SOLRIS version 3.0
dataset.

https://doi.org/10.5194/hess-27-3977-2023
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Table 2. Twenty-eight variables representing geomorphic, hydrological, land use, and topographic variability between sub-basins.

No. Predictor variables Abbreviation File type Source
Geomorphic variables: dominant surficial material

1 Glaciolacustrine clay %Clay Raster dataset ~ OGS (2010)

2 Glacial till %Diamicton Raster dataset OGS (2010)

3 Glaciofluvial/glaciolacustrine gravel %Gravel Raster dataset OGS (2010)

4 Wetland 9%Organic Raster dataset OGS (2010)

5 Paleozoic or Precambrian bedrock 9%Bedrock Raster dataset OGS (2010)

6 Glaciofluvial/fluvial/glaciolacustrine sand ~ %Sand Raster dataset ~ OGS (2010)

7 Glaciolacustrine/fluvial silt 90 Silt Raster dataset OGS (2010)
Hydrological variables

8 Gauge drainage area logDrainage Raster dataset ~ OMNR (2005)
9 Mean precipitation Mean_Precip Point shapefile ~ECCC (2020)
10 Precipitation days Precip_Days Point shapefile ~ECCC (2020)
11 Mean rainfall Mean_Rainfall Point shapefile ~ECCC (2020)
12 Rainfall days Rainfall_Days Point shapefile ~ECCC (2020)
Land use variables

13 Urban land use 9% Urban Raster dataset ~ OMNREF (2019)
14 Tilled cropland 9%Cropland Raster dataset ~ OMNREF (2019)
15 Naturalized land use %Naturalized Raster dataset ~ OMNRF (2019)
Topographic variables

16 Gradient mean Gradient_Mean Raster dataset ~ OMNR (2005)
17 Gradient standard deviation Gradient_StDev Raster dataset ~ OMNR (2005)
18 Aspect mode Aspect_Mode Raster dataset ~ OMNR (2005)
19 Stream length Stream_Length Raster dataset ~ OMNR (2005)
20 Drainage density Drainage_Density  Raster dataset ~ OMNR (2005)
21 Sub-basin area WS_Area Raster dataset ~ OMNR (2005)
22 Sub-basin perimeter WS_Perimeter Raster dataset ~ OMNR (2005)
23 Sub-basin compactness WS_Compactness  Raster dataset ~ OMNR (2005)
24 Minimum elevation Min_Elevation Raster dataset OMNR (2005)
25 Maximum elevation Max_Elevation Raster dataset ~ OMNR (2005)
26 Elevation range Elev_Range Raster dataset ~ OMNR (2005)
27 Elevation mean Elev_Mean Raster dataset OMNR (2005)
28 Elevation standard deviation Elev_StDev Raster dataset ~ OMNR (2005)

3985

S Results
5.1 Single-variate regression RFFA

Regression of the logDrainage variable against each of the
seven flood quantile datasets (i.e., Q1.25, @2, Os, Q10, Q2s,
050, and Q1qp) establishes seven single-variable power re-
lationships (Table 3). Statistically significant relations (p <
0.001) for logDrainage area are indicated across all RIs with
a minor, but consistent, decrease in adjusted R? values as RI
increases indicating greater uncertainty in prediction as flood
magnitude increases. Research indicates that the Q> flood
quantile (bolded in Table 3) represents a flow magnitude and
frequency that is important to the maintenance of channel
morphology and, therefore, has been used in a discharge—
drainage area relation in numerous other studies of the south-
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ern Ontario region (Annable et al., 2011; Phillips and Deslo-
ges, 2014; Thayer et al., 2016; Vocal Ferencevic and Ash-
more, 2012).

Expressing the Q> results (bolded in Table 3) in a power-
law format (Eq. 1), the Q> model is found to be similar to the
findings of other southern Ontario models similarly derived
from annual maximum series datasets of the southern Ontario
region (Annable, 1995; Phillips and Desloges, 2014). The 0>
power relationship identified in this study indicates a slightly
lower estimate of Q> discharge for smaller drainage areas
(< 100 kmz) compared with the research of others (Fig. 6).
For larger drainage areas (> 100km?), this study predicts
similar discharge estimates compared with the relationship
described by Phillips and Desloges (2014) but greater dis-
charge estimates than those in Annable (1995). Neither of

Hydrol. Earth Syst. Sci., 27, 3977-3998, 2023
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Figure 5. Raster datasets illustrating (a) the dominant surficial material, (b) the mean annual precipitation, (c) the hydrologically enforced
DEM, and (d) the categorical land use for the peninsular region of southern Ontario.

Table 3. Single-variate RFFA models for each flood quantile. The Q» flood quantile (bolded) is compared to discharge—drainage area
relations of other studies in the southern Ontario region in Fig. 6.

Flood Single variable models (i.e., logDrainage)
quantile  Equation Residual ~ Adjusted
SE R?

0125 log Q1.25 = —0.858 4+ 0.945(log Drainage) 0.217 0.867
Q2 logQ, = —0.746 + 0.957 (logDrainage) 0.224 0.862
Os log Q5 = —0.549 4 0.945(log Drainage) 0.219 0.864
Q10 log Q19 = —0.384 +0.917(log Drainage) 0.233 0.842
0s5 log 075 = —0.223 4+ 0.906(log Drainage) 0.245 0.824
0s0 log Q50 = —0.084 +0.885(log Drainage) 0.278 0.776

Q100 log Q100 = —0.053 4 0.864(log Drainage) 0.321 0.713
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Figure 6. The single-variable discharge—drainage area relationship for the Q> flood quantile of this study (solid black line) compared with
the findings of others. The Q, relationship of Annable (1995) is indicated by the dashed black line. The Q, relationship of Phillips and

Desloges (2014) is given by the dotted black line.

those studies specified best-fit RFFA distributions, so the re-
lationship presented here is considered more robust.

5.2 Multivariate regression RFFA with parameterized
basin characteristics

5.2.1 Basin characterization parsimony

A PCA of the 28 explanatory variables produces seven com-
ponents with eigenvalues greater than 1.00 (eigenvalues for
Dim.1 through Dim.7 are 7.85, 5.48, 2.87, 2.25, 1.84, 1.09,
and 1.04, respectively) that explain 80.1 % of the total vari-
ability of the dataset. This suggests an absence of strong
inter-correlations among many of the 28 variables. The la-
tent root criterion (also known as the Kaiser or eigenvalue-
one criterion) suggests retaining and interpreting principal
components if the eigenvalue is greater than 1.00 (Kaiser,
1960). However, using the point where the first few eigen-
values depart from the more similar lesser eigenvalues (i.e.,
the broken-stick model) (Jackson, 1993), suggests retain-
ing the first three dimensions which account for almost
58 % of the total variability of the dataset and are the most
interpretable. The correlation circles illustrate the projec-
tions of the first three principal components (Diml1, Dim2,
and Dim3) (Fig. 7). Highly correlated variables project in
the same direction. The first principal component (Diml)
tends towards a land use composition grouping with some
loading from gradient variables and precipitation variables
(Dim1 explains 28.0 % of the variance). The second prin-
cipal component (Dim2) tends towards an elevation cluster
with additional loading from precipitation variables (Dim2
explains 19.6 % of the variance). The third principal compo-
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nent (Dim3) is a weakly defined land surface grouping with
loading from surficial geology classifications and basin ge-
ometry (Dim3 explains 10.2 % of the variance). While el-
evation is a clear contributor to the variance of the dataset
based on the PCA tests, the directional indicators suggest the
presence of multicollinearity among the elevation predictors
which is reinforced by the results of correlation detection.
Simple Pearson correlation tests (|r| > 0.6) suggest that
29 correlated relationships exist among 11 basin char-
acteristics including %Diamicton and %Sand, %Crop-
land and %Naturalized, Gradient_Mean, Gradient_StDeyv,
Stream_Length, WS_Area, Mean_Rainfall, Min_Elevation,
Max_Elevation, Elev_Mean, and Elev_StDev. Similarly,
Spearman correlation tests (|p| > 0.6) suggest 31 corre-
lated relationships among the same basin characteristics.
PCA and correlation tests support elimination of elevation
variables (i.e., Min_Elevation, Max_Elevation, Elev_Mean,
Elev_StDev, and Elev_Range) except for Gradient_Mean
which is retained as the sole predictor to represent the vari-
ability of topography among the sub-basins. Correlations
between Gradient_Mean and Gradient_StDev (r = 0.795;
p =0.628) and between Mean_Rainfall and Mean_Precip
(r =0.697; p =0.755) also result in the elimination of Gra-
dient_StDev and Mean_Rainfall from the potential predictor
variables. The Mean_Precip variable is retained as it explains
snowmelt floods which dominate the flow regime of southern
Ontario rivers (Javelle et al., 2003). Other correlated vari-
ables are removed from further analysis due to high corre-
lation: WS_Area versus WS_Compactness (r =0.717; p =
0.739) and Stream_Length versus WS_Perimeter (r = 0.884;
p =0.943). Subyani et al. (2012) similarly find significant
correlation between stream length and basin perimeter. The
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Figure 7. Principal component analysis (PCA) highlighting the most contributing variables of the 28-variable dataset for each dimension and
illustrating the correlation circles for principal components one, two, and three (Dim1, Dim2, and Dim3).

variable WS_Area is removed in favour of WS_Compactness
which is a descriptor of basin shape (Apaydin et al., 2006).
Although total catchment size has been shown to have a role
in the catchment hydrological response (Merz and Bloschl,
2009), the contributing upstream drainage area is more pro-
portionally relevant to channel discharge at individual gauge
stations (Dunne and Leopold, 1978; Prancevic and Kirch-
ner, 2019). Stream_Length is also removed in favour of re-
taining WS_Perimeter which is a descriptor of basin shape.
The retention of WS_Compactness and WS_Perimeter en-
ables greater focus on basin shape which impacts hydro-
logical relationships and the efficiency with which a fluvial
system can evacuate precipitation from the region (Apay-
din et al., 2006; Fryirs and Brierley, 2012). For example,
elongated catchments (WS_Compactness ~ 0.4) have been
shown to have slower runoff (Fryirs and Brierley, 2012).
Mean_Rainfall is also eliminated due to correlation with
multiple variables (i.e., Mean_Precip, %Cropland, Gradi-
ent_StDev). By eliminating nine sub-basin characteristics
(Min_Elevation, Max_Elevation, Elev_Mean, Elev_StDeyv,
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Elev_Range, Gradient_StDev, Mean_Rainfall, WS_Area,
and Stream_Length), 27 correlated relationships identified
by the correlation tests are removed. Contrasting geomor-
phic conditions between catchments (i.e., surficial geology)
are represented by a negative correlation (r = —0.707; p =
—0.739 between %Sand or %Diamicton; however, both are
initially retained for multivariate modelling to represent the
primary substrate of each sub-basin.

5.2.2 Multivariate regression analysis with backward
elimination to identify the most parsimonious
models

It can be a practice to test and transform independent vari-
ables to ensure a normal distribution of a multivariate dataset;
however, tests for multivariate normality are rarely per-
formed (Tacq, 2010). Alternatively, the plots of standard-
ized residuals from combinations of predictor variables are
examined for a desired elliptically symmetric distribution
(Sheather and Oostrom, 2009). To enable model comparison,
the gauge drainage area predictor variable included in the

https://doi.org/10.5194/hess-27-3977-2023
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Table 4. Results from model regression of all 19 predictors indicating predictor variables found to be statistically significant in the 19-variable
model. The remaining variables are not found to be statistically significant in 19-variable regressions.

19-variable Residual df R? adj R?  F stat p value Variables t statistic p value  Normalized
model SE identified as proportion
statistically of variance
significant
logDrainage 45112 <22x10°16 75.51%
0125 0.152 187 0941 0935 1567 <22x1071® %Naturalized —1.759 0.080 2.72%
Gradient_Mean 2.622 0.010 225 %
logDrainage 42947 <22x10°16 75.35%
—16 g g
0 0.161 187 0935 0929 1425 <22x10 Gradient. Mean 5448 0.015 5 39%
logDrainage 44565 <22x10716 75.31 %
16 log g
Qs 0.153 187 0940 0934 1531 <22x10 Gradient. Mean 2319 0,002 2 19%
logDrainage 38.081 <22x10716 74.73 %
—16 g g
010 0.174 187 0920 0912 1130 <22x10 % Naturalived o074 0,039 2 73%
logDrainage 35.663 <22x10716 75.03 %
%Organic —1.999 0.047 0.67 %
~16 g
075 0.186 187 0908 0.899 975 <22x10 gBedrock Y 0.044 L06%
%Naturalized —1.760 0.080 2.65%
logDrainage 28982 <22x10716 74.51 %
050 0225 187 0.868 0.854 645 <22x1071®  %Organic —2.196 0.029 0.86 %
%Bedrock —2.227 0.024 1.44 %
logDrainage 23417 <22x10716 73.67 %
%Organic —2.228 0.024 1.09 %
~16 g
0100 0273 187 0812 0792 424 <22x10 %Bedrock 2394 0,018 Loda
Aspect_Mode —1.759 0.080 0.49 %

multivariate regression is logarithmically transformed, con-
sistent with the single-variable power model.

Multiple linear regression is applied to the remaining 19-
variable dataset for each of the seven flood RIs, i.e., 1.25, 2,
5, 10, 25, 50, and 100 years, using an OLS approach. The
fitted values of the model are compared to the dependent
variables (i.e., Q1.25, Q2. Os, Q10. @25, Os0, and Qigp) to
detect heteroscedasticity. Regression of all 19 predictor vari-
ables for each flood quantile reveals statistically significant
relationships (p < 2.2 x 1071%) suggesting at least one of the
predictor variables is significantly related to the quantile dis-
charge (Table 4). The multiple coefficients of determination
are greater than 0.8 (R? > 0.8) for all quantiles.

Examination of the associated p values for the 7 statis-
tic of each predictor variable indicates that, for all seven
flood quantiles, logDrainage overwhelmingly contributes to
the 19-variable prediction models (> 70 %), although its im-
portance decreases as flood frequency decreases. The 19-
variable regression (logDrainage included) indicates that ei-
ther %Naturalized or Gradient_Mean is statistically signif-
icant for predicting flood quantiles Q125, Q2, Qs, QOjio,
and Q5. This is consistent with the results of the PCA,
which identifies the first principal component as a land use
grouping and the second principal component as an eleva-
tion grouping. Other potential predictor variables do not in-
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dicate statistical significance in the 19-variable models. Dur-
ing backward elimination, added-variable plots (or partial re-
gression plots) indicating low statistical significance are con-
sistent with the ¢ statistic results confirming a lack of signif-
icance. Variables indicating no relationship are eliminated.
A high variance inflation factor (VIF > 5) confirms %Di-
amicton is unsuitable as a predictor variable due to multi-
collinearity. Marginal model plots indicate somewhat linear
but weak relationships for %Organic, %Sand, and %Gravel.
For both %Clay and %Bedrock, high incidences of zero val-
ues produce non-linear relationships suggesting a lack of
significance as predictor variables. A high VIF is indicated
for %Cropland. High negative correlation (r = —0.775; p =
—0.780) is also observed between %Cropland and Gradi-
ent_Mean resulting in the elimination of %Cropland as a pre-
dictor. All five-predictor models demonstrate statistical sig-
nificance; however, the identified variables are not consistent
over all seven flood quantiles (Table 5).

The five- and three-predictor models retain surficial mate-
rial variables (%Organic, %Sand, and %Gravel) and climate
variables (Mean_Precip, Precip_Days, and Rainfall_Days).
Reducing from five-variable models to three-variable models
decreases the adjusted R? value and increases the F statistic
over all flood quantiles. Three-predictor models demonstrate
statistical significance; however, the third variable is not con-

Hydrol. Earth Syst. Sci., 27, 3977-3998, 2023
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Table 5. Regression results of five- and three-predictor models over all flood quantiles tested. Variables with some explanatory contribution

in five- and three-predictor models are indicated by an “X”.

2
8 »n g g &
s R=TR > 90 5] Q
., x %5 8 & 3248 : % g
g 5 E 8 £ & /A 4 £ B g & 5 B = 3
— < = b} = | = < ) L Rz [0}
5% FB» % EE g EEE G2 ES 2oz 0% E
5 2 O O M v & O 3 3 Do Z 8 8 w = 2 =2 g
z = T & s s &5 £ & 8858 2z T2 S S
2 0195 X X X X X 0924 0.164 5046 <22x10716
é 0, X X X X X 0.924 0.166 5029 <22x10"16
o Qs X X X X X 0925 0.163 509.1 <22x10716
€ Qo X X X X X 0901 0.185 3740 <22x10"16
g 0 X X X X X 0.886 0.198 3199 <22x10710
2 05 X X X X X 0823 0248 1921 <22x10716
=~ 0100 X X X X X 0792 0276 1532 <22x10716
2 Q125 X X X 0922 0.166 8089 <22x10710
é 0, X X X 0919 0.171 7825 <22x10"16
o 0Os X X X 0923 0.165 8268 <22x10716
@ 010 X X X 0.892 0.192 567.6 <22x10"16
g Qs X X X 0.881 0203 5003 <22x10716
8 050 X X X 0.821 0249 3159 <22x10710
£ Q100 X X X 0755 0296 2129 <22x10"!0
Table 6. The most parsimonious two-variate RFFA models for each flood quantile.
Flood Two-variable models (i.e., logDrainage and %Naturalized)
quantile  Equation Residual ~ Adjusted
SE R?
0125 log Q1.5 = —0.537 4+ 0.917(log Drainage) — 1.179(%Naturalized) 0.177 0911
0> log 0> = —0.420 + 0.928(log Drainage) — 1.196(%Naturalized) 0.184 0.907
0Os log Q5 = —0.224 + .916(log Drainage) — 1.194(%Naturalized) 0.179 0.910
Q10 log Q19 = —0.068 + 0.889(log Drainage) — 1.158(%Naturalized) 0.197 0.887
075 log Q25 = 0.090 4 0.878(log Drainage) — 1.148(%Naturalized) 0.213 0.867
050 log Q50 = 0.223 4 0.858(log Drainage) — 1.127(%Naturalized) 0.251 0.818
Q100 log Q100 = 0.353 + 0.837(log Drainage) — 1.100(%Naturalized) 0.299 0.750

sistent over all seven flood frequency quantiles. Results show
that including Mean_Precip as a variable increases model fit
for flood quantiles Q1 .25, 02, Os, and Q»s, whereas includ-
ing Rainfall_Days improves the goodness of fit for the Q¢
model. Alternatively, the inclusion of %Organic is shown to
have some statistical significance (p < 0.05) as a third pre-
dictor variable for flood quantiles Q50 and Qjgo. For all
seven flood quantiles, i.e., Q1.25, Q2, Os, Q10, O25, 050,
and Qjgg, backward elimination reduces to the same sin-
gle independent variable, logDrainage. As the most parsimo-
nious model, logDrainage is shown to significantly predict
discharge (p < 2.2x107'%) confirming the often used single-
variable relationship between drainage area and discharge.
However, all seven flood quantiles also identify a two-
predictor model using the variables logDrainage and %Natu-
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ralized where ¢ tests demonstrate that both logDrainage and
%Naturalized are statistically significant (p < 2.2 x 10719)
(Table 6).

5.3 Model evaluation

For all seven flood quantile models, the addition of the %Nat-
uralized predictor variable reduces the residual standard er-
ror (Res SE) and increases the adjusted coefficient of deter-
mination (adj R?). Plots of the fitted single-variable mod-
els and the two-variable models, versus gauge derived esti-
mates of discharge, demonstrate less scatter (Fig. 8 illustrates
six quantiles). The two-variable model (i.e., logDrainage and
%Naturalized) results in an increased adjusted R? value of
approximately 0.05 and a lower standard error suggesting
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Figure 8. The single-variable and two-variable fitted discharge models are plotted against the best-fit estimated discharge derived from the
flood frequency curves for (a) a 1.25-year RI, (b) a 2-year RI, (c) a 5-year RI, (d) a 10-year RI, (e) a 25-year RI, and (f) a 100-year RI. The
two-predictor logDrainage and %Naturalized model shows less scatter and a lower standard error than the single logDrainage predictor for
all six flood RIs shown. The explanation of variability in flood discharge is improved by nearly 5 % using the two-predictor model for all

seven flood quantiles.
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Table 7. Leave-one-out cross validation (LOOCYV) and analysis of variance (ANOVA) comparing the single-variable models to the two-

variable models.

P. E. Tetford and J. R. Desloges: Modelling flood frequency: testing land cover and land use

Flood Model LOOCV ANOVA
quantile RMSE R? MAE RSS  Sum  F stat p value
of sq.
Single-variable Model ~ 0.218  0.865 0.171 9.669 _16
Q125 Tyo-variable Model 0.178 0909 0.136 6400 269 1042 <2.2x10
Single-variable Model ~ 0.225  0.860 0.177 10.264 _16
Q2 Two-variable Model 0.185 0.905 0.144 6808 366 995 <2.2x10
Single-variable Model ~ 0.220  0.862  0.176 9.850 _16
Qs Two-variable Model 0.180 0.908 0.143 6.497 3353 1053 <22x10
Single-variable Model ~ 0.234  0.840 0.183 11.081 _16
Q1o Two-variable Model ~ 0.199  0.884  0.153 70905 3136 812 <2210
Single-variable Model ~ 0.247  0.821  0.193 12.343 1
025 Two-variable Model 0214 0.865 0.169 9241 102 685 1.65x10
Single-variable Model ~ 0279  0.773  0.215 15.859 11
Q50 Two-variable Model 0253 0.814 0.198 12872 2987 473 T18x10
Single-variable Model ~ 0.322  0.709  0.248 21.127 _3
Q100 Two-variable Model 0301 0746 0.237 18279 2848 318 37010

that the addition of the second variable (i.e., %Naturalized)
improves the goodness of fit for all seven flood quantile mod-
els (six illustrated). The two-predictor combination of vari-
ables provides an improved explanation for the variations
in discharge by nearly 5 %. Generally, an increase in model
scatter is observed for both one-variable and two-variable
prediction as the RI increases suggesting increasing uncer-
tainty in prediction of discharge moving from Q1.5 to Q190-.
This is consistent with the higher variance in discharge ob-
served for large, infrequent flood events within the origi-
nal gauge datasets. The predictability of larger flood events
is limited by both the low frequency with which they oc-
cur and the length of the gauge records analyzed (average
42.5 years).

An analysis of variance (ANOVA) (Table 7) comparing the
single-variable models to the two-variable models further in-
dicates an improved prediction of discharge using the two-
predictor model compared with the one-predictor model. For
all seven flood quantiles, a decrease in the sum of squares of
residuals (RSS) is observed with the addition of the %Nat-
uralized predictor, and an F statistic (p < 0.001) demon-
strates very strong evidence in favour of the two-predictor
model. These results are supported by leave-one-out cross
validation (LOOCYV) (Table 7). For all seven flood quantiles,
LOOCV demonstrates a reduction in the root mean square
error (RMSE), an improvement of the R? value, and a reduc-
tion in the mean absolute error (MAE) for the two-variable
model compared with the single-variable model.
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6 Discussion

Flood magnitude, frequency, and duration are primary
drivers of channel erosion and stream morphology
(Taniguchi and Biggs, 2015). High-magnitude, less-frequent
floods will undoubtedly result in significant alterations to a
channel’s morphology and are more important when consid-
ering hazards, loss of life and infrastructure damage (Onen
and Bagatur, 2017). However, the cumulative effects of more
frequent, lower-magnitude floods can also be geomorphi-
cally more effective in altering channel form (Church and
Ferguson, 2015; Wolman and Gerson, 1978; Wolman and
Miller, 1960). Consequently, for effective risk management
and hazard prevention, it is useful to model flows of different
flood RIs when considering flood frequency as a predictive
tool to better understand a river’s morphological response
to discharge (Basso et al., 2016). The best estimation of
extreme flood events, however, is limited by the availability
and accuracy of recorded gauge data, the length of the
observed flood series, and the presence or absence of
extreme flood occurrences within a flow record (Odry and
Arnaud, 2017). This analysis uses a broad range of high-
and low-frequency flood estimates from long-term historical
flow data to develop a reliable RFFA for urban planning and
infrastructure engineering. It is common practice to develop
an RFFA relating the drainage area of a catchment to channel
discharge using a single-variable power-law relationship.
Research suggests that physiographic features, such as those
inherited by southern Ontario’s glacial legacy, and anthro-
pogenic land use, for example, southern Ontario’s clustered
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urbanization and widespread agricultural development, can
influence a region’s hydrogeomorphic response, particularly
in smaller watersheds (Royall, 2013). Seeking to improve
upon a widely accepted single-variate RFFA model in a
heterogeneous landscape, the objective of this study was to
explore a dependable RFFA using a multivariate approach
for a region influenced by glacial conditioning and varying
land use while also considering the hydrological influences
of climate and topography.

In this study, rigorous goodness-of-fit testing of annual
maximum mean daily discharge data series from 207 hydro-
metric gauge stations in a heterogeneous landscape shows
that 42.5% of gauge records are most suited to a two-
parameter LN distribution, 31.9 % to a two-parameter EV1
distribution, 21.7 % to a three-parameter LP3 distribution,
and 3.9 % to a three-parameter GEV distribution. This sug-
gests that all four distributions are potentially suitable for
modelling flood extremes in heterogeneous regions. The
model selection criteria favoured a two-parameter model
over a three-parameter model in 74.4 % of cases, consistent
with other studies which found that selection criteria demon-
strate a predisposition towards the most parsimonious model
(i.e., fewest distribution parameters) (Farooq et al., 2018;
Laio et al., 2009; Onen and Bagatur, 2017). Most notably,
the two-parameter EV1 model is optimal five times more fre-
quently than its three-parameter parent model, the GEV dis-
tribution, which is only found appropriate for use in 3.9 %
of cases. This finding is similar to that of Laio et al. (2009)
where the GEV distribution was only selected in a limited
number of cases when modelling the annual maxima of peak
discharge in 1000 United Kingdom basins. However, the
GEV and LP3 distributions are heavier tailed than the LN or
EV1 distributions (El1 Adlouni et al., 2008; Merz et al., 2022;
Papalexiou et al., 2013) suggesting the upper tail behaviour
of a flood time series may be underestimated when estimat-
ing flood frequency from small sample sizes (less than 50)
while a single extreme flood event may lead to overestima-
tion of the upper tail (Papalexiou et al., 2013). The average
hydrological record in this study was 42.5 years which im-
plies uncertainty in estimating extreme quantiles in the study
region due to a limited record length of some gauges, but
research has indicated that basins with snowmelt-dominated
regimes tend towards lighter tailed distributions (Merz et al.,
2022).

Flood estimation will often apply a universal, fixed proba-
bilistic model to historical gauge data (Di Baldassarre et al.,
2009). Other southern Ontario studies have employed a blan-
ket LP3 probability distribution to model the O, flood fre-
quency (Annable, 1995; Phillips and Desloges, 2014). How-
ever, the variation in statistical distributions identified as an
optimal fit in this study suggests a need for careful, system-
atic model selection criteria when fitting observed flow data
in regions with variable land use or other hydraulic influences
(i.e., geomorphology, substrate materials, climate, or topog-
raphy). To prevent an over-estimation or, more importantly,
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an under-estimation of discharge when predicting flood re-
currence, model goodness of fit should be evaluated. The re-
sults of this study indicate that a two-parameter LN statis-
tical distribution will provide an optimal fit for 43 % of the
southern Ontario flood records when a broad range of flood
quantiles are being examined.

Other studies have explored a variety of novel regional-
ization approaches. Di Lazzaro et al. (2015) presented an
RFFA using a single-variable parameterization of drainage
density. Ahn and Palmer (2016) estimated flood frequency
using the GEV distribution and then proposed regionalization
methods using a spatial proximity approach. However, re-
gionalization based on spatial proximity assumes that nearby
sites are more similar than distal sites (Odry and Arnaud,
2017). In a glacially conditioned landscape, such as the
southern Ontario region, the configuration of glacial deposits
(Fig. 5a) often forms drainage divides that segregate neigh-
bouring catchments with diverse flood characteristics. This
study, therefore, explores regionalization through a multi-
variate regression-based approach to capture the variability
of upstream hydrological controls that are often dependent
on the spatial arrangement of post-glacial physiographic fea-
tures and, in the case of southern Ontario, the variable land
use (i.e., regionally clustered urbanization and agricultural
development). The mapping of surficial material, climate
conditions, topography, and land use illustrates the variabil-
ity of hydrological influences on the region (Fig. 5). Consis-
tent with the agricultural land use of southern Ontario, anal-
ysis reveals a negative correlation between %Cropland and
Gradient_Mean. Regions of steep gradient are not typically
associated with areas of high agricultural activity, whereas
lower gradient regions provide much of the agricultural/crop-
ping activity. Crops are typically cultivated in areas with
favourable conditions for growth (i.e., rainfall and gradient)
producing collinear relationships with key elevation and pre-
cipitation variables relevant to channel discharge. Likewise,
the high spatial variability in surficial geology of southern
Ontario (due to its glacial conditioning) can be problem-
atic. Contrasting geomorphic conditions between catchments
are represented by, for example, high negative correlations
among %Diamicton and %Sand, and an absence of surficial
material types in many areas (e.g., %Bedrock and %Clay)
produces high incidences of zero values and non-linear rela-
tionships. Conversely, a measure of natural land use is avail-
able across the study region, making a linear relationship be-
tween %Naturalized and discharge possible.

During the backward elimination process, different land
use, geomorphic, climatic, and topographic variables assume
different importance in predicting channel flow depending on
the flood magnitude being modelled. The influence of the
glacial legacy is captured by the inclusion of surficial ma-
terials in the five- and three-variable models (Table 5). The
less parsimonious, but still statistically valid, five- and three-
predictor models show the importance of land cover/glacial
legacy (%Organics, %Sand, and %Gravel) and climate vari-
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ables (rainfall days). In three-variable models, precipitation
(i.e., Mean_Precip or Rainfall_Days) increases model fit for
lower magnitude and more frequent flood events (i.e., Q1 .25,
0>, 0Os, Q10, and Qrs), suggesting a greater predictive re-
lationship of channel discharge. In contrast, surficial geol-
ogy (i.e., %Organic) has more predictive value for high-
magnitude, less-frequent flood events (Q50 and Q1g). Dur-
ing low-magnitude flood events, it is unsurprising that a flu-
vial system’s hydrological response is more directly related
to the amount of rainfall or snowmelt infiltration, whereas
during less-frequent, high-magnitude or flash flood events,
surface saturation across an increasing area of the water-
shed is more closely tied to surficial material properties that
limit or enhance infiltration, impacting surface runoff. The
surficial material %Organic is retained for high-magnitude,
low-frequency floods (i.e., Qso and Qjgp) in the three-
variable models suggesting that the percentage of a basin
with highly organic surficial material (e.g., wetlands) can
effectively increase infiltration, limiting overland flow and
the magnitude of channel discharge during high-magnitude
flood events. Surficial material with higher organic content
has been shown to significantly increase infiltration capacity
and porosity (Luna et al., 2018).

Although the most parsimonious model for estimating dis-
charge is found to be the generally accepted and efficient
single-variable relation between discharge and drainage area,
when considering model variance, the two-predictor combi-
nation of upstream drainage area and the regional percent-
age of naturalized landscape (%Naturalized) shows a 5 % im-
provement when explaining variation in flood discharge for
all RIs tested (i.e., 1.25, 2, 5, 10, 25, 50, and 100 years). An
analysis of variance further indicates a statistically signifi-
cant improvement in prediction of discharge using the two-
predictor model (i.e., logDrainage and %Naturalized) com-
pared with the single-predictor model (i.e., logDrainage).
The percentage of naturalized landscape is important because
it reflects areas within a catchment that have enhanced wa-
ter storage compared with urban or agricultural areas. These
findings are important for situations when it is necessary to
reduce uncertainty in flood prediction. Plots comparing the
single- and two-predictor models demonstrate less scatter for
all seven flood quantiles. Generally, an increase in model
scatter is observed for both one-variable and two-variable
prediction as the RI increases suggesting the predictive ca-
pability lessens moving from Q125 to Q0. This finding
is similar to that of Basso et al. (2016) where model per-
formance is better for short and intermediate return inter-
vals. Any flood frequency analysis is limited by the length
of the flow records being analyzed. Since the average length
of gauge records used in this study is 42.5 years, a decrease
in model reliability is anticipated as the non-linear hydrolog-
ical processes of the region are extrapolated. Despite care-
ful selection of the candidate statistical distributions to “best
fit” the observed flow records, the absence of large flood
events captured within the sample data can skew the esti-
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mation of flood frequency for low-probability, low-frequency
events (Odry and Arnaud, 2017).

The findings of this research demonstrate that land use has
greater predictive power than surficial geology when cou-
pled with drainage area to estimate channel discharge in a
heterogeneous landscape over a broad range of flood quan-
tiles. While the methodology used in this study is transfer-
able to other regions, this finding may also be transferable.
However, a new scenario would require recalibration of the
drainage area relationship and possibly reclassification of
land use types to suit the spatial variation of the new loca-
tion. Human landscape alterations that impact drainage den-
sity will influence rates of overland flow and channel flow,
exerting additional influence on hydrological processes and
stream response and, subsequently, impacting the magnitude
and frequency of peak channel flows (Taniguchi and Biggs,
2015). Changes to land cover, such as deforestation, conver-
sion to cropping, and urbanization, typically decrease infil-
tration which increases discharge, and alters flood magnitude
(Chin et al., 2013; Royall, 2013). It follows that the presence
of reforested or natural areas will have a significant influence
on modelled discharge. Since the early 1900s, select areas
of southern Ontario have been reforested in recognition of
wasteful clearing of marginal and submarginal agricultural
lands by early settlers (Armson et al., 2001). The %Natu-
ralized variable includes tall-grass land cover, mixed forests,
cultivated tree plantations, swamps, wetlands, and open wa-
ter areas, representing areas of high infiltration or the surface
storage of water. The negative coefficient for the percent-
age of naturalized area reduces the weight of the drainage
area input. This is consistent with the theoretical expecta-
tion that drainage areas of sub-basins with a high percentage
of naturalized areas may be overemphasized without the ap-
propriate correction for surface water storage. Although ur-
banization has been shown to have the most profound influ-
ence on fluvial system response, altering hydrological pro-
cesses through (a) a decrease in infiltration, (b) an increase
in overland flow, and (c) a potential decrease in groundwa-
ter recharge (Chin et al., 2013), the regional impact of clus-
tered urban populations of southern Ontario is diluted by the
expansive regions of cropland, grazing, and naturalized ar-
eas that separate them. Consequently, the %Urban variable
shows minimal significance in the multivariate regression.
Similarly, %Cropland was shown to be a poor regional pre-
dictor for discharge due to a collinear relationship with other
predictors. The statistical significance of %Naturalized, how-
ever, suggests that the percentage of a sub-basin that is nat-
uralized can be an effective variable to represent temporary
surface water storage, limiting the impact to a channel during
flood events.
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7 Conclusion

To transfer flood discharge information from gauged sites to
ungauged sites in a heterogeneous landscape (e.g., a low-
relief, glacially conditioned landscape with variable land
use), the primary objective of this research was to explore
additional explanatory hydrological controls to improve the
predictive strength of a well-known regional flood frequency
approach that correlates drainage area to discharge. The main
conclusions of this analysis are as follows:

1. When modelling the annual maximum mean daily dis-
charge records for southern Ontario, 42.5 % are most
suited to a two-parameter LN distribution, 31.9 % to
EV1, and 21.7 % to LP3, and 3.9 % to a GEV distri-
bution suggesting all four distributions tested are poten-
tially suitable for modelling flood extremes in a hetero-
geneous landscape. The variation of “best fit” probabil-
ity distributions indicates that systematic model selec-
tion criteria is necessary when fitting observed flow data
in regions with variable land use or other hydraulic in-
fluences (i.e., geomorphology, climate, or topography).

2. For lower-magnitude, more-frequent flood events (i.e.,
0125, O2, Os, Q10, and Q2s5), precipitation shows a
greater predictive relationship with channel discharge
in three- and five-variable models, whereas for high-
magnitude, less-frequent flood events surficial geol-
ogy has more predictive value. For high-magnitude,
low-frequency floods (i.e., Qso and Qioo) highly or-
ganic surficial material (e.g., wetlands) can effectively
increase infiltration, limiting overland flow and the
magnitude of channel discharge during high-magnitude
flood events.

3. While land use, geomorphology, material type, climate,
and topographic variables are variably important on
the flood magnitude being modelled, the results here
show the most parsimonious predictor for estimating
discharge in ungauged streams is the accepted and ef-
ficient single-variable drainage area.

4. When considering model variance, a two-predictor
combination of upstream drainage area and the regional
percentage of naturalized landscape shows a statistically
significant 5 % improvement when explaining variation
in flood discharge for a broad range of recurrence inter-
vals tested (i.e., 1.25, 2, 5, 10, 25, 50, and 100 years).
The negative coefficient associated with the percentage
of naturalized area serves as a correction to the drainage
area relationship to account for surface water storage.
This finding is important for situations when it is neces-
sary to reduce uncertainty in flood prediction.

5. The findings suggest that applying a zonal two-variable
model, which accounts for drainage area and the per-
centage of upstream naturalized land use, serves as a

https://doi.org/10.5194/hess-27-3977-2023

correction for surface water storage when modelling
flood magnitude for high- and low-frequency flood
events. This improvement is of value in a heterogeneous
landscape when considering the geomorphic response
of channels to predicted channel discharge for a broad
range of flood recurrence intervals and greater precision
is required.

Appendix A: Probability distribution functions

The GEV distribution uses a three-parameter probability dis-
tribution function such that

exp (—(1 —gﬂ)l/8> e#0

(o2

i (AD)
exp (—exp (—=£)) £=0,

F(x):[

where u, o, and ¢ are the location, scale, and shape param-
eters of the flow data, respectively. The location parameter
describes the shift of a distribution along the horizontal axis,
while the scale and shape parameters describe the spread
(Zhang et al., 2020). The GEV blends the Gumbel (EV1),
Frechet, and Weibull distributions which are nested models
within the GEV distribution (Laio et al., 2009). The simpli-
fied EV1 distribution uses the GEV function where the shape
parameter, ¢, is reduced to zero, giving the two-parameter
probability distribution function

F(x)=exp (—exp (—%)) (A2)

where u is the location parameter and o is the scale param-
eter. Consideration of the three-parameter GEV distribution
balances model bias versus model variance. The more com-
plicated three-parameter GEV distribution reduces model
bias compared with the two-parameter EV1 distribution;
however, as the number of parameters increases, variance
typically increases (Laio et al., 2009). The LN distribution is
the log-transformed two-parameter normal or Gaussian dis-
tribution represented by the probability distribution function

FOO = — - ox _l(x‘“>2 (A3)
T ovan P T\, ’

also applying © and o as location and scale parame-
ters, respectively. Similarly, the LP3 distribution is the log-
transformed three-parameter gamma or Pearson type III
identified by the probability distribution function

e—1
Flo)= (x_“) exp(—x_“>, (A4)
lo|Te o o

where u, o, and ¢ are the location, scale, and shape param-
eters, respectively. Pearson type III and normal distributions
are converted to LP3 and LN distributions when the data are
log-transformed at the outset (Di Baldassarre et al., 2009).
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