
Hydrol. Earth Syst. Sci., 27, 3957–3975, 2023
https://doi.org/10.5194/hess-27-3957-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A semi-parametric hourly space–time weather generator
Ross Pidoto and Uwe Haberlandt
Leibniz University Hannover, Institute of Hydrology and Water Resources Management, Hannover, Germany

Correspondence: Ross Pidoto (pidoto@iww.uni-hannover.de)

Received: 9 February 2023 – Discussion started: 17 February 2023
Revised: 8 August 2023 – Accepted: 29 August 2023 – Published: 8 November 2023

Abstract. Long continuous time series of meteorological
variables (i.e. rainfall, temperature and radiation) are re-
quired for applications such as derived flood frequency anal-
yses. However, observed time series are generally too short,
too sparse in space or incomplete, especially at the sub-daily
timestep.

Stochastic weather generators overcome this problem by
generating time series of arbitrary length. This study presents
a major revision to an existing space–time hourly rainfall
model based on a point alternating renewal process, now cou-
pled to a k-NN resampling model for conditioned simulation
of non-rainfall climate variables.

The point-based rainfall model is extended into space by
the resampling of simulated rainfall events via a simulated
annealing optimisation approach. This approach enforces ob-
served spatial dependency as described by three bivariate
spatial rainfall criteria. A new non-sequential branched shuf-
fling approach is introduced which allows the modelling of
large station networks (N > 50) with no significant loss in
the spatial dependence structure.

Modelling of non-rainfall climate variables, i.e. temper-
ature, humidity and radiation, is achieved using a non-
parametric k-nearest neighbour (k-NN) resampling ap-
proach, coupled to the space–time rainfall model via the daily
catchment rainfall state. As input, a gridded daily observa-
tional dataset (HYRAS) was used. A final deterministic dis-
aggregation step was then performed on all non-rainfall cli-
mate variables to achieve an hourly output temporal resolu-
tion.

The proposed weather generator was tested on 400 catch-
ments of varying size (50–20 000 km2) across Germany,
comprising 699 sub-daily rainfall recording stations. Results
indicate no major loss of model performance with increas-
ing catchment size and a generally good reproduction of ob-
served climate and rainfall statistics.

1 Introduction

Stochastic simulation of rainfall has long been an extensive
topic of research, with applications including hydrological
design, agricultural and water balance models, and for hy-
drological modelling for derived flood frequency analysis.
Through regionalisation techniques, stochastic rainfall mod-
els may also be used to generate synthetic time series for
ungauged sites.

At the daily timestep, a common approach is to model
first the rainfall occurrence (wet or dry) and then the rainfall
depth separately. Examples using Markov chains to model
rainfall occurrence with probability distributions modelling
rainfall depth include Richardson (1981) and Stern and Coe
(1984) amongst others, and extended to the multi-site case
by Wilks (1998) and Bárdossy and Pegram (2009) via copu-
las. Alternatively, rainfall occurrence may also be described
by an alternating renewal process, that is, sequences of seri-
ally independent wet and dry periods (Buishand, 1978), with
a random variable describing the event rainfall depth. Non-
parametric versions of some of the above-mentioned models
which sample from empirical distributions of the modelled
variables also exist (Lall et al., 1996). All of the above daily
rainfall models are conceptually simple plus given the avail-
ability of observed daily rainfall data, easy to apply. How-
ever, these models do not necessarily translate well to sub-
daily timesteps.

Sub-daily rainfall models are often preferred, especially
for flood simulation of smaller catchments. In the urban
context, sub-hourly rainfall models may be required to ac-
curately model flash floods, which are ever increasing due
to land use changes and the effects of climate change. A
common type of sub-daily rainfall model are point pro-
cess models, which describe the arrival of storm cells in
time via a Poisson distribution. Neyman–Scott type mod-
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els (Rodríguez-Iturbe et al., 1987; Cowpertwait, 1991) and
Bartlett–Lewis type models (Onof and Wheater, 1994; Kacz-
marska et al., 2014; Onof and Wang, 2020) both model storm
cells as a collection of rainfall cells, with varying depths and
durations that may overlap. The two types differ in how they
describe the timing of storm cells. In Neyman–Scott mod-
els, cells are described relative to the beginning of a storm
using a Poisson distribution, whereas in the Bartlett–Lewis
type, the duration between cell origins is modelled via a ran-
dom variable. The Newman–Scott type has been extended
into space (Cowpertwait et al., 2002; Leonard et al., 2008)
by modelling storm spatial extent and cell centre in space.
Pegram and Clothier (2001b, a) presented a gridded high-
resolution stochastic model in space which mimics and is
calibrated from sequences of radar images. Paschalis et al.
(2013) expanded on this concept to better describe advective
storm cells stochastically in space and time.

Multiplicative cascade models disaggregate rainfall from
coarser to finer timesteps. Depending on their principles of
mass conservation, they are either described as microcanon-
ical, which strictly conserve mass (Olsson, 1998; Licznar
et al., 2011), or canonical, which only on average conserve
mass (Molnar and Burlando, 2005). Müller and Haberlandt
(2015) further expanded a microcanonical cascade model
into space by the resampling of relative diurnal profiles using
a simulated annealing optimisation approach.

Alternating renewal type models, already introduced
above at the daily timestep, have also been successfully
applied at sub-daily timesteps (Tsakiris, 1988; Haberlandt,
1998; Bernardara et al., 2007), including the 5 min timestep
for urban applications (Callau Poduje and Haberlandt, 2017).
Few attempts have been made to extend these point rain-
fall models in space, with the exception of Haberlandt et al.
(2008). In the study, spatial consistency was applied in a
two-step approach. First, time series at single sites were syn-
thesised with no consideration of neighbouring sites. Then,
rainfall events were resampled on a site-wise basis via a sim-
ulated annealing optimisation procedure conditioned on ob-
served bivariate spatial dependence criteria. A major short-
coming, however, was that the method was only feasible for
smaller stations’ networks (N ≤ 6).

Extending to non-rainfall climate variables, numerous
parametric and non-parametric approaches exist. Richard-
son (1981) extended a single-site Markov based precipitation
model to temperature and solar radiation using a multivari-
ate stochastic process conditioned on the rainfall state (wet
or dry). Wilks (1999) improved and extended this type of
model into space by using spatially correlated random num-
bers for synthesis. More recently, Peleg et al. (2017) intro-
duced a gridded high-resolution (2 km grid, 5 min timestep)
stochastic weather generator for the modelling of eight me-
teorological variables, including advective based rainfall. Pa-
palexiou (2018) introduced a general purpose framework to
stochastically model arbitrary combinations of hydroclimatic
processes at a variety of time scales. Papalexiou (2022) ex-

pands on this framework to encompass properties specific to
rainfall such as intermittency, marginal distribution and auto-
correlation structure for sub-daily time series, however only
for single sites.
k-NN resampling is a flexible non-parametric approach

which can easily be extended to the multi-site and multi-
variate case. Cross correlations between variables are inher-
ently maintained due to simultaneous resampling, and being
non-parametric, the approach is suitable for a diverse range
of climate variables. Lall and Sharma (1996) used k-NN re-
sampling for generating runoff time series. Daily multi-site
rainfall and temperature k-NN models, such as by Buishand
and Brandsma (2001), can further be conditioned on regional
climate scenarios (Yates et al., 2003) or atmospheric circu-
lation patterns (Beersma and Buishand, 2003). One draw-
back of k-NN resampling, though, is the inability to sim-
ulate values beyond the range of observations. Sharif and
Burn (2007) overcame this limitation by introducing a ran-
dom component to the output. Less common are sub-daily
resampling approaches, with most of them in the form of
method of fragments disaggregation models which resample
diurnal rainfall profiles conditioned on daily rainfall (Mehro-
tra et al., 2012). The intermittency of rainfall especially at
the sub-daily timestep creates challenges for resampling and
Markov approaches. Hybrid approaches exist which couple
stochastic rainfall models to non-parametric weather genera-
tors (Apipattanavis et al., 2007).

The present paper adopts this hybrid approach by coupling
a multi-site hourly rainfall model based on an alternating re-
newal approach (Haberlandt et al., 2008) to a k-NN resam-
pling of non-rainfall variables, coupled via the daily rainfall
state (wet, dry, very wet). Innovations to the multi-site rain-
fall model are introduced and tested at multiple scales, by
applying the model to 400 meso-scale catchments of varying
size across Germany. The resampling of non-rainfall vari-
ables is performed using a daily gridded dataset as obser-
vations. As a last step, the daily non-rainfall climate vari-
ables are disaggregated to hourly timesteps to match that of
the rainfall model. Model validation is achieved by assessing
the model’s ability to reproduce extreme rainfall at both the
site and catchment scale, its ability to reproduce observed
spatial rainfall characteristics, the reproduction of observed
correlations between rainfall and the non-rainfall variables,
and more generally the reproduction of observed point and
catchment scale statistics of both rainfall and non-rainfall
variables.

2 Methodology

The model chain is divided into four distinct components
using two primary observation sources (Fig. 1 for a model
chain schematic). The foundation of the weather genera-
tor is a stochastic single-site hourly rainfall model based
on an alternating renewal process (Sect. 2.1), parametrised
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Figure 1. Workflow of the complete model chain. Two primary data
sources are utilised, hourly station rainfall observations (left, blue)
and a daily gridded climate product (right, red). The foundation
and first step of the model chain is the single-site stochastic rain-
fall model based on an alternating renewal process (a). This model
is extended into space u via resampling to enforce observed spa-
tial consistence (b). Non-rainfall climate variables are resampled
from catchment averaged observations using a k-NN approach (c),
conditioned on the daily catchment averaged rainfall state resulting
from (b). Finally, the simulated non-rainfall climate variables are
disaggregated from daily to hourly (d) to meet the desired output
temporal resolution.

using observed hourly station rainfall data. This single-site
model is then extended into space by site-wise resampling
of rainfall events via a simulated annealing optimisation ap-
proach to enforce observed spatial rainfall characteristics
of multi-variate non-lagged rainfall time series (Sect. 2.2).
Non-rainfall climate variables are modelled using a non-
parametric k-NN resampling approach (Sect. 2.3), using a
gridded daily climate dataset as observations. The k-NN
model is coupled to the space–time rainfall model via the
catchment averaged daily rainfall state (dry, wet, very wet).
Finally, to achieve the target output temporal resolution, the
non-rainfall climate variables are disaggregated from daily to
hourly (Sect. 2.4) using the open-source deterministic disag-
gregation tool MELODIST (Förster et al., 2016).

2.1 Single-site stochastic rainfall model

The first step is the generation of synthetic hourly rainfall
time series at the site level. For this, an alternating renewal
model is used. Rainfall is described as an alternating se-
quence of independent wet and dry spells. The model shown
here is a revision of the model introduced by Haberlandt
(1998) and most recently further developed by Callau Poduje
and Haberlandt (2017). The model consists of an internal and
external structure (Fig. 2). The external structure describes
the occurrence of rainfall events. The internal structure de-
scribes the temporal distribution of rainfall within a rainfall
event (i.e. the event hyetograph).

The external structure is the basis of the alternating re-
newal model and describes the occurrence of rainfall events
via the variables wet spell duration (WSD), wet spell amount
(WSA) and dry spell duration (DSD). Probability distribu-
tions are then fitted to these three event variables using the
method of L-moments (Hosking, 1990). Probability distribu-

tions for the event variables were chosen over other potential
distributions through a combination of visual tests (including
L-moment diagrams), goodness-of-fit tests and by evaluat-
ing end model performance when using various distributions.
Rainfall events are defined here as having a volume above a
given threshold, the WSAmin and a minimum separation dis-
tance to the next event of DSDmin. In this study, values of
WSAmin = 1 mm and DSDmin = 4 h were chosen largely ar-
bitrarily. Auto-correlation of the event variables is not con-
sidered, as observed auto-correlations of these variables are
generally less than 0.05 even at lag 1.

However, there exists a strong dependence between the
event variables WSA and WSD. Copulas are one method rou-
tinely used to model such dependencies. A copula describes
a multi-dimensional space where the marginal distributions
of each variable is transformed to the uniform (i.e. each di-
mension has the interval [0,1]). Their use in hydrology has
been increasing over the years (see Chen and Guo, 2019 for
an overview of applications). Copulas can be of any dimen-
sion ≥ 2, but as is most frequently found in the literature and
and as used in this study, only copulas of the bivariate case
will be discussed from this point onwards.

Considering U and V as the uniformly transformed
marginals of the two continuous random variables X and Y ,
with U = FX(X) and V = FY (Y ), a copula C is the bivariate
distribution function of U and V :

CU,V (u,v)= P(U ≤ u,V ≤ v)

= C(FU (u),FV (v))

with C : [0,1]2→ [0,1], for u,v ∈ [0,1]. (1)

The primary benefit of this transformation is that the
marginal distributions of X and Y play no role in describing
the dependence between the variables.

Of special importance in this study is the modelling of ex-
treme events with high rainfall intensity. These events by def-
inition tend to have short duration but large rainfall depth.
A copula capable of modelling these extreme events should
thus be asymmetric (as these events appear in one corner
of the copula but not the opposite corner). In the previous
version of the model (Callau Poduje and Haberlandt, 2017),
the concept of a regional empirical copula was introduced
for this purpose. Within the study area, rainfall events were
first normalised on a station-wise basis and then appended
together to form a study area wide empirical copula. One
drawback is that only observed events can be sampled from
the copula. Events more extreme than previously observed
could never be synthesised. This is particularly problematic
as observation lengths are often limited due to relatively few
recording stations being available at the sub-daily timestep,
especially regarding longer recording periods.

For this study, a Khoudraji–Gumbel copula was chosen
to model the WSA–WSD dependence. Selection was again
through a combination of visual tests, goodness-of-fit crite-
ria and end model performance. A Khoudraji copula is a de-
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Figure 2. Schematic of the external (a) and internal (b) forms of the alternating renewal single-site rainfall model. Observations are shown
as vertical blue bars. Rainfall events are shown by dark blue rectangles. Observations falling outside of rainfall events are below the WSAmin
threshold. Events are additionally separated according to the DSDmin threshold. For synthesis, each event is assigned an event hyetograph
based on an exponential function (pink curve).

vice in which two copulas C1 and C2 are combined via the
equation:

C = C1(u
1−a1 ,v1−a2) C2(u

a1 ,va2), (2)

with a1 and a2 being shape parameters in the range [0,1].
A common use of the Khoudraji copula is to better model
asymmetries (i.e. C(U,V ) 6= C(V,U)). In its use here, an
independence copula is selected as C1 and a single param-
eter Gumbel (a.k.a. Gumbel–Hougard) copula, which shows
greater dependence in the positive tail, as C2. The second
shape parameter a2 is fixed to 1, meaning that the combined
copula is described by two parameters. An independence
copula is one where the uniform marginals U and V show
no dependence (correlation = 0) and is defined by

CI (u,v)= uv = C1. (3)

The bivariate Gumbel copula is defined by

CGθ (u,v)= exp
(
−
[
(− lnu)θ + (− lnv)θ

]1/θ)
= C2, (4)

and parameterised by θ ∈ [1,∞).
An additional modification from Callau Poduje and Haber-

landt (2017) is the use of the Weibull distribution for both the
DSD and WSA marginals in place of the Kappa distribution.
As Weibull is a three-parameter distribution versus Kappa’s
four, better model parsimony has been achieved without any
significant loss of performance. This is also of benefit in any
regionalisation setting. The cumulative distribution function
for the Weibull distribution is defined by

F(x)= 1− exp

[
−

(
x+ ζ

β

)δ]
, (5)

with x > 0, ζ ≥min(x) a location parameter, β > 0 a scale
parameter and δ > 0 a shape parameter.

The WSD is modelled using the three-parameter log nor-
mal distribution defined by

F(x)=8

[
log(x− ζ )−µlog

σlog

]
, (6)

with8 being the cumulative distribution function of the stan-
dard normal distribution, ζ the lower bound (real space) of x
and µlog and σlog being the mean (location parameter) and
standard deviation (scale parameter), respectively, of x in the
natural logarithmic space.

The internal model structure describes the temporal distri-
bution of rainfall within a rainfall event, in other words the
event hyetograph (Fig. 2b). The following exponential func-
tion is used to disaggregate the event rainfall intensity WSI
over each timestep within an event:

P(t)=

{
WSP · e[cλ(t−WSPT)]α if t 6=WSPT

WSP if t =WSPT

with c =

{
+1 if t <WSPT

−1 if t >WSPT
, (7)

with P being the rainfall intensity for timestep t , WSP the
wet spell peak intensity and WSPT the timestep of the wet
spell peak. λ is solved numerically for each event separately,
and the WSPT is sampled from a uniform distribution. α is
used to adjust the shape of the exponential curve relative to
the WSP (Fig. 2) and as per Callau Poduje and Haberlandt
(2017) is set to 1/3.

Differently to what is presented in Callau Poduje and
Haberlandt (2017), the WSP is now modelled by fitting a
Weibull distribution (Eq. 5) to the ratio WSP :WSA. Events
with a length equal to the timestep (1 hour) are first ex-
cluded. This restricts the range of possible values to between
(0,1). A Khoudraji–Gaussian copula then models the depen-
dence of the ratio WSP :WSA to WSD. Here, too, use of
an asymmetric copula via Khoudraji’s device (again with a
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fixed second shape parameter= 1 and an independence cop-
ula as C1 as per Eq. 2) showed the best results. The bivariate
normal copula is defined by Eq. (8). The previous model re-
lied on a symmetrical Gaussian copula to describe the de-
pendence between WSP and the event wet spell intensity
(WSI=WSA/WSD). This approach was problematic dur-
ing synthesis, as wet spell peaks could be sampled produc-
ing a wet spell peak greater than the event WSA. The new
method avoids this issue. The normal copula is defined as

CG
φR
(u,v)= φR

(
φ−1(u),φ−1(v)

)
= C2, (8)

with φR being the joint bivariate Gaussian distribution func-
tion with correlation matrix R for u and v, and φ−1 being the
inverse normal cumulative distribution function.

The rainfall event definition (requiring WSA ≥WSAmin,
DSD≥ DSDmin) leads to a systematic underestimation of to-
tal rainfall. As a final step, small events (rainfall events be-
low the WSAmin threshold) are added to the time series. The
method simply resamples (with replacement) small events
from observations until the observed proportion of small to
large rainfall events is met. Small event depth, duration and
distance to the next adjacent large event are sampled simul-
taneously and placed randomly in dry spells of adequate
length.

2.2 Space–time rainfall synthesis via resampling

Following generation of single-site rainfall time series, rain-
fall events are then resampled to reproduce observed spa-
tial rainfall dependence across a catchment. Specifically, the
method aims to preserve the rainfall occurrence, correlation,
and continuity of concurrent timesteps between station pairs
within the network. As only concurrent (i.e. non-lagged)
timesteps are considered, lagged spatial rainfall effects such
as advection are neither considered nor reproduced. The re-
sampling procedure is an extension of the simulated anneal-
ing optimisation approach described by Haberlandt et al.
(2008). By reshuffling rainfall events (as opposed to hourly
timesteps), the independence of rainfall events at single sites,
as is a pre-condition of the alternating renewal model, is
maintained.

Simulated annealing is a discrete optimisation procedure
which is well suited to finding global minima or maxima
(Bertsimas and Tsitsiklis, 1993). The method as presented
here minimises an objective function describing spatial rain-
fall dependence by swapping rainfall events at sites at ran-
dom. All reductions in the objective function are accepted,
however swaps which result in an increase can also be ac-
cepted with a probability relative to the current annealing
temperature. The annealing temperature decreases as the al-
gorithm proceeds, making it less and less likely that bad
swaps will be accepted. By sometimes accepting a worse ob-
jective function result, the algorithm avoids becoming stuck
in local minima and aids in finding the global minimum.

As we are attempting to recreate observed spatial rainfall
dependence, the objective function incorporates three bivari-
ate rainfall dependence criteria. The first describes the prob-
ability of simultaneous rainfall occurrence at station pair k
and l:

Pk,l(zk > 0|zl > 0)=
n11

n
, (9)

where n11 is the number of timesteps with simultaneous rain-
fall occurrence at stations k and l, and n is the total number
of (non-missing) timesteps.

The second criterion describes the Pearson correlation of
simultaneous rainfall at both k and l:

ρk,l(zk > 0|zl > 0)=
cov(zk,zl)

√
var(zk)× var(zl)

, (10)

where zk and zl are timesteps with rainfall at k and l.
Lastly, the third criterion is a continuity measure proposed

by Wilks (1998) and is the ratio of the expected rainfall at
station k for timesteps with and without simultaneous rainfall
at station l:

Ck,l =
E(zk|zk > 0,zl = 0)
E(zk|zk > 0,zl > 0)

. (11)

A continuity close to one describes independent stations,
whereas values approaching zero describe increased depen-
dence.

In the paper by Haberlandt et al. (2008), these three spatial
rainfall criteria were combined into one objective function as
follows:

Ok,l =wP × (Pkl −P
∗

kl)
2
+wρ × (ρkl − ρ

∗

kl)
2

+wC × (Ckl −C
∗

kl)
2, (12)

for stations k and l withwP ,wρ , andwC being weights above
zero to account for the effect of differing scales between the
three criteria, and ∗ denoting target values. Target values can
be assigned either by fitting regression curves to observed
values as a function of station separation distance, or by us-
ing observed values directly. In this study the first approach
is taken in order to demonstrate the method’s applicability in
regionalisation settings. However, as direction between sta-
tion pairs is not considered, any anisotropic properties of the
three criteria will not be reproduced.

Experimentation showed that splitting the three-part ob-
jective function into two separate objective functions could
lead to a faster and more optimal convergence. Of the three
criteria, the occurrence criterion is by far the hardest to con-
verge. In addition, the Pearson correlation criterion shows
high sensitivity and tends to dominate over the other two
criteria. Selecting appropriate weights to counteract discor-
dance between the three criteria also proved to be problem-
atic. Therefore, the optimisation procedure was split into a
two-step process, where first the occurrence criterion (Eq. 9)
is converged (step I), followed together by the correlation
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(Eq. 10) and continuity (Eq. 11) criteria (step II). However,
for this to be possible in the second step, only events of equal
length are swapped, in order to maintain the rainfall occur-
rence which was already optimised in step I. At low station
counts the benefit of such an approach is negligible, however
with increasing station count (N > 20), such a method can
halve the computational time required and shows increased
overall performance.

In the study by Haberlandt et al. (2008), stations were
shuffled in sequence. That is, the first station was left un-
changed, then the second station was shuffled against the
first, then the third against both the first and second and so
forth. It was shown that such an approach is only effective up
to station counts of around 5, as with each additional station,
the resampling becomes less and less flexible due to fewer
and fewer degrees of freedom.

To overcome this, a new shuffling procedure is introduced
in this study, best described as a non-sequential approach.
Non-sequential here describes the fact that stations are no
longer shuffled sequentially across the entire station network,
but rather simultaneously. So for a given annealing temper-
ature, swaps are performed among all stations at random al-
lowing for a more flexible and rapid convergence.

The simulated annealing shuffling algorithm is thus as fol-
lows. Let U be the set of all stations to be shuffled, k be the
station currently having two events swapped and R be the
set of reference stations for which the objective function is
calculated for k, with R = U,k 6∈ R.

1. The algorithm begins at step I, considering only the
rainfall occurrence (Eq. 9).

2. An initial annealing temperature Ta is chosen. Experi-
ence shows that an annealing temperature resulting in
an initial swap count of ≈ 80 % is optimal (Bárdossy
et al., 2002).

3. A station k is chosen at random from all eligible stations
within the set U .

4. The initial objective function Ok,prev is calculated for
station k using Eq. (13) if step I or Eq. (14) if step II,
with l = 1, . . .,M being the set of reference stations R.

Ok =

√∑M
l=1(Pkl −P

∗

kl)
2

M
, (13)

Ok = wρ

√∑M
l=1(ρkl − ρ

∗

kl)
2

M

+wC

√∑M
l=1(Ckl −C

∗

kl)
2

M
. (14)

5. Two rainfall events from station k are chosen at random
to be swapped with the following pre-condition.

– For step I, the events must be within an allowed
temporal distance (here, six events). This allows a
quicker and smoother convergence as the sensitiv-
ity of the objective function from swaps is greatly
reduced.

– For step II, only events of equal length my be
swapped, in order to avoid invalidating the occur-
rence objective criterion previously converged in
step I.

6. An updated objective function Ok,new is calculated to
reflect the swap.

7. If Ok,new <Ok,prev, then the swap is accepted.

8. If Ok,new≥Ok,prev, the swap is accepted with the prob-
ability π :

π = exp
(
Ok,prev−Ok,new

Ta

)
. (15)

where Ta is the current annealing temperature.

9. Repeat sub-steps 3–8 N times.

10. The annealing temperature Ta is reduced:

Ta = Ta−1× dT , (16)

with dT being the temperature reduction factor in the
range 0< dT < 1. Generally, a slow reduction in tem-
perature is best (i.e. dT ≈ 0.98). After reducing the an-
nealing temperature, proceed once more from sub-step
3.

11. The current step is stopped when the mean improve-
ment of the objective function across all stations be-
tween temperature reductions is below a certain thresh-
old, or if the mean objective function across all stations
is below a certain target value.

12. If step I, the algorithm proceeds again from sub-step
2, with step II now considering together the correlation
(Eq. 10) and continuity (Eq. 11), otherwise the optimi-
sation is complete.

Lastly, it was shown that the shuffling process can be fur-
ther optimised if large station networks are branched into
groups, similarly to the approach by Müller and Haberlandt
(2015). This is not absolutely necessary for successful con-
vergence, but was shown to both increase performance and
decrease computational effort, especially for very large net-
works (N ≥ 20). A group size of 4 was used in this study, and
groups are formed in a way that maximises the minimum dis-
tance between group midpoints. At each annealing tempera-
ture, shuffling (sub-steps 3–8) occurs on a group-wise ba-
sis in random order. For any group, U is restricted to group
members, but R is expanded to include stations external to
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the group in order to transfer spatial dependence information
between groups so that a consistent result is obtained across
the entire study area. These additional stations, selected by
closest distance, are included in R for the calculation of the
objective function but are not included in the set U from
which station k is selected for swapping. In this study, up
to 16 additional stations were added to R in step I and up to
24 for step II.

For very large networks (N ≥ 20), a further modification
is to select from each group a single station to act as a parent
station, with all other stations classed as child stations. The
shuffling procedure is then first performed for parent stations
alone (i.e. both R and U are restricted to parent stations), af-
ter which they are fixed (removed from U but remaining in
R) for the further shuffling of the child stations. This allows
the wider scale transfer of spatial dependence information
across the network. Again, this modification is not absolutely
necessary but may lead to both a better and faster overall con-
vergence. This is the version ultimately used for this study for
all catchments comprising eight or more stations.

2.3 k-NN non-parametric weather generator

Non-rainfall climate variables are modelled using a non-
parametric k-NN approach. Non-parametric approaches have
the benefit of not needing to assume any underlying distri-
butions of the modelled variables. Traditional k-NN weather
generators resample target variables simultaneously for day t
with replacement from observations, conditioned on the pre-
vious day t − 1. As the name implies, k-NN selects a pos-
sible k candidate observations for resampling, selected by a
distance metric between the feature vectors for day t − 1 of
the simulation and the candidate observations. The day fol-
lowing the selected observation is then inserted directly as
day t of the simulation. As target variables are resampled si-
multaneously, cross correlations between target variables are
inherently maintained. The conditioning on the previous day
of the simulation aids in preserving the auto-correlation of
the target variables.

In this study, the k-NN resampling is further conditioned
on the catchment averaged rainfall state S, which is the
mechanism used to couple the space–time rainfall model to
the k-NN model. Conditioning on the rainfall state aims to
preserve correlations between the target variables and the
already simulated catchment rainfall and is based on the
method by Apipattanavis et al. (2007).

As the observed climate dataset used in this study is a grid-
ded daily dataset, resampling occurs at the daily timestep.
The catchment averaged rainfall state S describes the daily
areal rainfall of a catchment as either dry, wet, or very wet.
The corresponding rainfall depths which describe these states
are taken as the 50th and 95th percentiles of daily rainfall
(Pdry < 0.5; 0.5≤ Pwet < 0.95; Pv.wet ≥ 0.95). Rainfall acts
here purely as a conditioning variable for the k-NN resam-

pling of non-rainfall climate variables, and is not itself re-
sampled.

For each day of the simulation, candidate days from ob-
servations are chosen using a moving window ±w around
the current simulation day t . For example, if t is 15 June and
w = 7 d, only observed days between 8 and 22 June (from
any year) may be chosen. This enables the reproduction of
seasonal climate characteristics.

Potential neighbours are then further reduced by condi-
tioning by rainfall state S for both days t and t−1 of the sim-
ulation. For example, if simulated day t is wet and simulated
day t − 1 very wet, only observed days which are very wet
followed by a wet day (and within the observation window
±w) may be chosen. If no days from observations match this
criteria, this conditioning is relaxed to apply to day t only.

Feature vectors D are created for each day of observa-
tions, with D consisting of the normalised catchment aver-
aged variables x′. Each climate variable x is first normalised
by subtracting the mean and dividing by the standard devia-
tion:

x′ =
x− x
√

var(x)
. (17)

The k-NN procedure proceeds as follows:

a. For the first day of the simulation t = 1, an observed day
within the selection window ±w is selected at random
conditioned only on the rainfall state St .

b. The simulation day t is advanced by 1.

c. Observed days within the selection window ±w are se-
lected to form candidate days U .

d. U is reduced by conditioning on the rainfall state St and
St−1.

e. A distance metric, the weighted Euclidean distance
δ(Dt−1,Du), is calculated for each day u in U and sim-
ulation day t − 1:

δ(Dt−1,Du)=

[
N∑
j=1

wj (x
′

t−1,j − x
′

u,j )
2

]1/2

, (18)

with wj being the weight for climate variable x′j , N the
total number of climate variables, x′t−1,j and x′u,j be-
ing the normalised climate variable for day t − 1 and
candidate day u. For this study, variable weights were
assigned manually by trial and error. A higher weight
for one variable over another will generally improve the
performance of that variable regarding its correlation to
rainfall.

f. Candidate days are then ordered from nearest to farthest
and given ranks j .
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Figure 3. Box plot of catchment area (N = 400).

g. U is then further reduced to k neighbours based on low-
est rank (closest distance). The selection of k is user de-
finable but is often taken as k =

√
N where N is the

sample size, as proposed by Lall and Sharma (1996).
As the window size ±w restricts possible neighbours,
k =
√
Y × (2w+ 1), with Y equal to the length of ob-

servations in years.

h. A single day is then selected from U using a discrete
probability distribution. Lall and Sharma (1996) recom-
mended a kernel which gives increased weight to nearer
neighbours:

pj =
1/j
k∑
i=1

1/i
, for j = 1, . . .,k . (19)

i. Day t of the simulation is then taken as day u+ 1.

j. The algorithm begins again from step b until all days
have been simulated.

The choice of which combination of climate variables to
resample depends largely on the intended end-use of the sim-
ulation and the availability of observations. As the feature
vector D contains normalised climate values, variables of
any magnitude and distribution may be used. Heavily skewed
variables may undergo an optional log transformation. For
this study, relative humidity, temperature (daily mean, min-
imum and maximum) and global radiation were chosen, as
the intended end-use is derived flood frequency analysis us-
ing the hydrological model HBV (Lindström et al., 1997).
HBV requires rainfall, temperature and potential evapora-
tion as input, which can all be directly used or derived from
these chosen variables. Furthermore, due to ease of use and
availability, a gridded observational climate dataset was used
for this study. However, the k-NN resampling approach pre-
sented is not limited to gridded datasets and may be applied
to networks of point observations, with the feature vector D

representing mean values across the station network.

2.4 Disaggregation from daily to hourly

A final step is required to disaggregate the resampled daily
catchment-averaged non-rainfall climate variables from daily

to hourly. This is achieved using the open-source disaggre-
gation tool MELODIST (Förster et al., 2016) which applies
deterministic disaggregation functions to a variety of meteo-
rological variables. This tool offers the user several forms of
disaggregation, depending on the level of complexity sought
and the availability of observations for parameter calibration.
For this study, the forms chosen do not rely on hourly obser-
vations and instead rely on geographic position (catchment
midpoint) only.

Temperature is first disaggregated to hourly values Td,h for
day d and hour h using the cosine function (Debele et al.,
2007):

Td,h = Tmin,d+ (Tmin,d+ Tmax,d)/2

× (1+ cos(π(h+ a)/12)) , (20)

with Tmin,d and Tmax,d being the minimum and maximum
temperatures for day d. The parameter a describes the time
difference between solar noon and the time of maximum
daily temperature. For this study, a is simplified to two hours
across the entire year.

Humidity relies on already disaggregated hourly tempera-
ture data. Relative humidity for hour h for day d is calculated
by

Hd,h = 100 ·
es(Tdew,d)

es(Td,h)
[%] , (21)

with es being the saturation vapour pressure of a given tem-
perature T [◦C], given by the Magnus formula (Alduchov
and Eskridge, 1997)

es(T )=

6.1078exp
(

17.08085T
234.175+T

)
T ≥ 0 ◦C

6.1071exp
(

22.4429T
272.44+T

)
T < 0 ◦C

. (22)

The dew point temperature is simplified and taken as the
daily minimum temperature (Tdew,d = Tmin,d) and is constant
throughout the day (no diurnal profile). Finally, global short-
wave radiation is disaggregated from daily values using a
simplified formula which assumes a flat surface (Liston and
Elder, 2006):

R0 = 1370 Wm−2
· cosZd,h,φ · (ψdir+ψdif)

[
Wm−2

]
, (23)

with ψdir and ψdif being the direct and diffuse radiation
scaling values, Zd,h,φ being the local solar zenith angle for
day d, hour h and latitude φ, which for this study is taken as
the mid-point of each catchment. Further details of the radi-
ation scaling values can be found in Liston and Elder (2006).

3 Study area and data

For this study, 400 meso-scale catchments in Germany were
selected. These catchments range in size from 30 km2 to over
20 000 km2. Figure 3 shows a box plot of catchment by area.
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Figure 4. Study area showing location of DWD rainfall stations (N = 699), DWD climate stations (N = 39) and catchments (N = 400).
Catchments may be overlapping.

As observed rainfall, 699 point sub-daily recording sta-
tions at the hourly timestep were sourced from the Ger-
man Weather Service (DWD) (DWD Climate Data Center,
2021a). A common time period of January 2006–December
2020 was chosen to maximise station availability over the pe-
riod across all stations. Figure 4 displays the location of both
catchments and rain gauges.

Stations are assigned to catchments, and the space–time
weather generator is applied on a catchment basis. The
largest catchment contains 87 stations, with 109 catchments
containing at least 10 stations, and 27 catchments containing
at least 30 stations.

The HYRAS (Razafimaharo et al., 2020; DWD Climate
Data Center, 2021b) gridded (5 km× 5 km) daily observa-
tional climate dataset was chosen for use for the non-rainfall
climate variables. Climate variables include the mean, maxi-
mum and minimum daily temperature, relative humidity, and
global radiation. Coverage of this dataset is German wide,
extending into neighbouring countries except Czech Repub-
lic. This results in a few catchments with boundaries extend-
ing into Czech Republic not having 100 % pixel coverage.
For use in the k-NN weather generator, catchment averages
were calculated for each catchment and climate variable. The
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time period 1976–2015 (40 years) was chosen to increase the
total number of days available for resampling.

To validate the weather generator results, 40 sub-daily ref-
erence climate stations (DWD Climate Data Center, 2021a)
were chosen across Germany (Fig. 4). Of these, 20 also in-
clude data for global radiation.

The climate of the study area is generally temperate, tend-
ing towards continental in the east and southeast and oceanic
in the north. Convective precipitation is typical in the sum-
mer months, this being a reason why the parametric mod-
els presented here were applied to summer and winter sep-
arately. Annual rainfall sums range from around 500 mm to
over 2000 mm in southern elevated regions. Rainfall is com-
mon year round, being the highest in summer and the lowest
in spring. Elevations are typically below 1000 m above sea
level except in the southern Alpine region. Large tempera-
ture gradients are not present, with the warmest area being
the Rhine valley along the border with France.

4 Model set-up and validation

To adequately test the performance of the complete model
chain, 100 realisations of 15 years simulation length were
generated; 15 years was chosen to match the observa-
tion length of the sub-daily rainfall stations. The model
is conditioned on summer (April–September) and winter
(October–March) seasons separately. A conditioning on cal-
endar month would of course have been possible, but due to
the limited observation length, a coarser conditioning by sea-
son ensures a sufficient number of observations leading to a
more robust parametrisation.

Target values as used in the objective function of the simu-
lated annealing resampling procedure were calculated as fol-
lows. For each catchment, the closest 100 (at least) to 150 (at
most) stations from the centroid of the catchment were se-
lected (this may also include stations located outside of the
catchment boundary). For each station pair, the three bivari-
ate spatial rainfall criteria were calculated from observations.
Regression curves (not shown here) were then fitted to the
observed data with station separation distance as the inde-
pendent variable. The target values for simulations were then
taken from these curves with added noise equal to the resid-
ual variance.

For the evaluation criteria, relative bias is calculated as fol-
lows:

Bias= 100×
X∗i −Xi

Xi
[%]. (24)

whereXi is the observed value of the variable in question for
station i andX∗i the simulated value. A positive bias indicates
overestimation, a negative bias underestimation.

The performance of the weather generator is evaluated as
described in the sub-sections below.

4.1 Point rainfall model

The point rainfall model (Sect. 2.1) was applied in two modes
for all 699 rainfall stations. The first mode is the model as de-
scribed by Callau Poduje and Haberlandt (2017) and will be
referred to as the “previous” model. The second mode in-
corporates the changes as introduced in this paper, and is re-
ferred to as the “revised” model. The two modes allow us to
directly assess whether changes to the rainfall model have,
indeed, increased its performance. Note that as the previous
model has a target output timestep of 5 min, it may perform
less well at an hourly timestep.

The performance is assessed via the following:

– Relative bias of annual precipitation sum and number
of events. The median bias for each station over 100
realisations is taken.

– Relative bias of the event variables WSA, WSD, DSD,
WSI and WSP. Note that WSI is indirectly modelled but
acts as a good indicator of the performance of the bivari-
ate copula C(WSA,WSD). The median bias for each
station over 100 realisations is taken.

– Exceedance probabilities for given durations for both
WSD and DSD. The mean result over all stations is
taken and shown for winter and summer.

– Extremes are assessed via the relative bias in fitted in-
tensity duration frequency (IDF) curves. IDF curves
were fitted to observed and simulated (100× 15 years)
annual maxima series using the robust method accord-
ing to Koutsoyiannis et al. (1998) for the storm dura-
tions 1, 3, 6, 12, 24 and 48 h. For each storm duration,
the rainfall depth for a return period of 20 years was
calculated. The median bias across realisations is then
calculated for each station and presented in box plots
for each storm duration.

– The wet/dry intermittence of daily rainfall, first by con-
sidering wet day frequencies and wet–wet/dry–wet tran-
sition probabilities (and by implication their comple-
ments, wet–dry/dry–dry transition probabilities). These
are presented in observed versus simulated plots. A
threshold of ≥ 0.1 mm was used to classify wet days.

4.2 Space–time rainfall model

After the generation of point rainfall, the model was extended
into space on a catchment-wise basis by applying the simu-
lated annealing resampling approach described in Sect. 2.2.
Due to computational constraints, the previous model is not
considered here. The performance in space is assessed via
the following:

– Spatial dependence of hourly rainfall via the three bi-
variate criteria (occurrence, correlation and continuity)
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Figure 5. Violin plots of the median bias from 100× 15 year simulations for 699 rainfall stations. The left side of the violin plot shows
results for winter, the right side for summer. Annual N refers to the mean number of annual rainfall events and Annual P the mean annual
rainfall sum (before the addition of small events).

Figure 6. Exceedance probabilities of the event variables WSD and DSD for varying durations, split by season, for both the previous and
revised models and compared to the empirical value from observations. The mean over all stations is shown.

presented as a 2D density plot. To produce the empirical
densities, for each station pair the median result across
all realisations was taken.

– Like for the point rainfall model (see above), the bias
in fitted areal IDF curves, again incorporating the storm
durations 1, 3, 6, 12, 24 and 48 h with a return period
of 20 years, was calculated for each catchment and pre-
sented as box plots. Catchment rainfall was calculated
via the Thiessen polygon method.

4.3 Non-rainfall climate variables

The non-rainfall climate variables are first assessed at the
daily timestep to isolate errors stemming from the k-NN re-
sampling. The performance for catchment averaged values is
assessed via the following:

– Summary statistics of modelled climate variables com-
paring mean monthly observed vs. simulated values.

– For each of the modelled climate variables, the daily
auto-correlations up to lag 7 is shown plotted on ob-
served vs. simulated plots.

– Daily correlation between rainfall vs. non-rainfall cli-
mate variables plotted on observed vs. simulated plots,
shown by month.

Also of interest is how well the k-NN resampling approach
performs considering point observations. For this, 39 refer-
ence weather stations were taken from the German Weather
Service observation network and compared to first, (a) the
grid cell values taken directly from the HYRAS observa-
tional dataset in order to first assess bias resulting from the
gridded dataset, and secondly, (b) the k-NN resampled values
by taking the median result over 37× 40 year simulations.
Monthly mean values are shown on observed vs. simulated
plots.

Finally, the bias due to disaggregation from daily to hourly
is assessed by comparing hourly means of each climate vari-
able averaged across each reference station. As the intended
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Figure 7. Box plots of median IDF bias over 100 realisations for all stations across the study area (N = 699) for various storm durations,
split by season, for both the previous (a) and revised models (b). A return period of 20 years has been used.

Figure 8. Daily wet day statistics for all stations across the study area (N = 699), for both the previous and revised models, split across
seasons. Grey lines show the range of results across 100 realisations. The dry–dry and wet–dry transition probabilities, and the dry day
frequency, can be inferred from the plots using the complement.

use of the weather generator is for applications such as de-
rived flood frequency analyses, the performance of the hourly
non-rainfall variables is of lower priority.

5 Results and discussion

5.1 Point rainfall model

Figure 5 shows violin plots of the median bias of event vari-
ables, the number of annual events, and the total annual pre-
cipitation sum. For the event variables WSD, DSD and WSI,
the previous and revised models perform almost identically.
This demonstrates that the change from the four-parameter
kappa distribution to the three-parameter Weibull distribution
for the variables WSA and DSD has no negative consequence
on model performance. Of the directly modelled event vari-
ables, DSD shows the worst performance, and more so for
summer, indicating that an alternative distribution function
may be more appropriate.

The revised model shows decreased performance regard-
ing wet spell intensities. Wet spell intensities are indirectly
modelled via the WSA :WSD copula. The previous model

implements a so-called regional empirical copula, which re-
samples from observations. As the median bias shown in the
violin plot directly compares simulated versus observed val-
ues, it may be that this statistic favours the previous model
due to this resampling. On the other hand, the revised model
shows a substantially better modelling of the wet spell peak,
which validates the new wet spell peak modelling approach.
Except for WSP and WSI, the bias for all other variables lies
within ±10 % range.

Finally, in terms of annual number of events and rain-
fall sum, both models perform similarly well, with summer
showing a greater underestimation and winter a more moder-
ate overestimation. This is likely due to a mean overestima-
tion of DSD in summer as was discussed above. Here, bias
also lies within a ±10 % range.

The ability of the models to accurately model event dura-
tions is shown in Fig. 6. As the previous and revised models
both use the log normal distribution for the WSD, no differ-
ence is seen between the models. The revised model shows
a very slight improvement regarding DSD over the previous
model. Here, it can be seen that both models have difficul-
ties modelling smaller durations of DSD, most likely due to
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Figure 9. 2D density plots of the occurrence (a), Pearson’s correlation (b) and continuity (c) bivariate spatial dependence criteria, grouped
by season, for all station pairs across all catchments (N = 19773), by station distance. For simulated results, the median value from 100
realisations was taken.

Figure 10. Box plots of median areal IDF bias over 100 realisations
for all catchments across the study area (N = 400) for various storm
durations, split by season. A return period of 20 years has been used.

poor fitting of the lower bound parameter. Overall the DSD
in winter is modelled best, with deviations from the observa-
tions strongest between 4–24 h.

Figure 7 shows the bias for extreme rainfall, split by sea-
son. In general, it can be seen that the revised model shows a
far better performance. Most storm durations show a median
result close to zero, however winter at the 1 h storm dura-
tion shows an overestimation and large range (±30 %). With
increasing storm duration, an increasing underestimation is
seen. The previous model significantly underestimates ex-
treme rainfall, which is likely caused by the significant un-
derestimation of wet spell peaks.

Figure 8 shows wet/dry day statistics for all stations for
both summer and winter seasons and for both the previous
and revised models. Large differences between the previous

and revised model are not seen, so the points discussed here
apply to both model versions. The relative frequency of wet
days is generally well maintained with no obvious bias for
both summer and winter. Dry–wet day transition probabili-
ties show in winter a greater underestimation (and conversely
an overestimation of dry–dry day), however with a mean un-
derestimation of only ∼ 5 %. Wet–wet day transition prob-
abilities are generally overestimated. Overall, both models
show a good reproduction of all wet/dry day statistics.

5.2 Space–time rainfall model

Figure 9 shows the performance of the three bivariate spa-
tial criteria in the form of 2D density plots over all catch-
ments and station pairs. Station separation distances of up to
150 km are shown. Results for the occurrence criterion show
an overall good reproduction of observations with no signif-
icant loss, albeit with a narrower range of values, especially
for summer. As the occurrence criterion is optimised first be-
fore the other two criteria, we should expect good results.
For Pearson’s correlation, the general form of the density
plot is maintained but again with a narrower range of values.
Above 75 km there is a greater loss in performance unlike for
the occurrence criterion. This is most likely due to the fact
that such distant stations are generally not included in the set
of reference stations R used in the objective function of the
re-sampling optimisation approach, due to the grouping ap-
proach used for larger catchments. Lastly, the continuity cri-
terion can be described as the worst performing of the three
criteria, especially regarding summer. A general loss in per-
formance can be seen across all station distances, however
the general form of the density plot is maintained.
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Figure 11. Scatter plots of mean monthly values for all catchments (N = 400) for the variables minimum temperature (a), mean temperature
(b), maximum temperature (c), global radiation (d) and relative humidity (e). The range from all realisations is shown via grey bars, and the
median is shown coloured by month.

The reproduction of extreme catchment rainfall has been
assessed via the bias in areal rainfall depth for a return period
of 20 years for varying storm durations as shown in Fig. 10.
For the 1 hour storm duration, winter performs significantly
worse than for summer, especially regarding the median and
range. This matches the result seen at the station level. The
median annual result is close to zero, but with a wide over-
all range (±30 %). From a duration of 3 h and above, win-
ter performs similarly to summer. A general underestimation
(∼ 10 %) of extreme rainfall can be observed.

5.3 Non-rainfall climate variables

The non-rainfall climate variables were first assessed at the
daily timestep (before disaggregation to hourly), to isolate
errors arising from the k-NN resampling procedure.

Mean monthly values of all resampled climate variables
are shown in the form of observed vs. simulated scatter plots
(Fig. 11). All three temperature variables show a good re-
production over the year, with no systematic under or over-
estimation. Global radiation performs worse in both spring
and summer, with the highest values showing greatest spread.
The relative absolute bias is rarely greater than 5 % however.
Relative humidity shows the greatest spread of values, par-
ticularly for the months April–July. For all variables, large
variations across realisations were not shown.

The ability of the k-NN resampling procedure to main-
tain observed variable auto-correlation is shown in Fig. 12.
The magnitude of auto-correlation is well preserved for all
variables and all lags. As expected, a certain loss in auto-

correlation is seen, particularly for lag 1. In general, it can be
said that the temperature variables are the better performing
ones. The auto-correlation results are sensitive to the weights
used in the distance metric (Eq. 18). As these are user as-
signed, the performance relating to auto-correlation can be
manipulated to a degree. The results here also show only
small variations across realisations for all variables.

The Pearson correlation between resampled climate vari-
ables and daily rainfall is shown in Fig. 13. Also, here cross-
correlation is reproduced well, however a loss in correlation
is observed for all variables across most months. The tem-
perature variables are worst performing during the winter
months, where correlation is highest. Summer months, where
a smaller negative correlation is observed, on average per-
form better, though with a greater spread of results. Relative
humidity also performs worse for summer months. Correla-
tion to global radiation is seen to be less dependent on month,
and a general loss of correlation is observed.

To assess errors stemming from the use of the gridded cli-
mate dataset, observed daily time series from 39 reference
stations from the German Weather service where compared
against corresponding HYRAS gridded values both before
and after resampling (Fig. 14). Looking at the results be-
fore resampling (top row of Fig. 14), performance is gen-
erally good with absolute bias generally not exceeding 2 ◦C
for temperature. Radiation shows a very good reproduction
of observations, whereas relative humidity in part shows a
very poor reproduction. The results after resampling (bottom
row of Fig. 14) mimic those of before, however with a small
increase in bias, with temperature still performing very well,
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Figure 12. Scatter plots of variable auto-correlation for lags 1 to 7 for all catchments (N = 400) for the variables minimum temperature (a),
mean temperature (b), maximum temperature (c), global radiation (d) and relative humidity (e). The range from all realisations is shown via
grey bars, and the median is shown coloured by month.

Figure 13. Scatter plots of correlation to daily rainfall for all catchments (N = 400) for the variables minimum temperature (a), mean
temperature (b), maximum temperature (c), global radiation (d) and relative humidity (e). The range from all realisations is shown via grey
bars, and the median is shown coloured by month.

followed by global radiation and humidity. This shows that
the use of the gridded dataset does not bring about a sig-
nificant loss of performance, with the exception of relative
humidity.

Finally the disaggregation to hourly performance is as-
sessed by comparing hourly observed vs. simulated means
of each climate variable, as shown in Fig. 15. Significant de-
viations between observed and simulated values can be seen,
particularly for daily minimum values, and for relative hu-
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Figure 14. Scatter plots showing bias of mean monthly values of temperature (a), global radiation (b) and relative humidity (c) between
point weather station observations and, (a, b, c) HYRAS gridded observations for the same time period (1976–2015), and (d, e, f) median
bias from 37× 40 year simulations after k-NN resampling. For temperature, values are further split by daily minimum, mean and maximum.
As weather stations can overlap multiple catchments, more data points are included in the bottom plots. Temperatures were corrected for
elevation difference between the grid cell elevation and weather station elevation using a lapse rate of 6.5 ◦C km−1.

Figure 15. Mean hourly values of the non-rainfall climate variables temperature (a), global radiation (b) and relative humidity (c), separated
by season for 39 DWD reference stations. Simulations show output from the MELODIST disaggregation model, using daily observations as
input.

midity in winter. However, as the model’s intended end-use
is derived flood frequency analyses, the recreation of diurnal
profiles is of lower priority. In contrast to the results from the
k-NN resampling, global radiation is the best performing of
the three resampled variables.

6 Conclusions

This study presents a major revision of the previous space–
time rainfall model by Haberlandt et al. (2008). Large sta-
tion networks of over 80 stations can now be modelled with
limited loss in the observed spatial dependence structure.
This was achieved by introducing a novel non-sequential
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branched event resampling approach based on a simulated
annealing discrete optimisation procedure, extending the
single-site rainfall model into space. While the current ver-
sion does not consider advection or anisotropic properties,
the optimisation procedure is flexible enough that such fea-
tures could be incorporated in future model revisions by ex-
pansion of the objective function. Further modifications to
the single-site rainfall model also resulted in improved model
parsimony and performance regarding rainfall extremes.

Furthermore, the coupling of the space–time rainfall
model to a non-parametric k-NN weather generator and sub-
sequent disaggregation to hourly now provides the user a sin-
gle tool for the generation of hourly climate time series for
applications such as derived flood frequency analyses. Cou-
pling the two sub-models via rainfall state allowed an ade-
quate reproduction of both auto-correlations and correlation
to rainfall. The flexibility of the approach allows the mod-
elling of a diverse range of climate variables and observation
sources (point or gridded).

By testing the complete model on 400 catchments and 699
rainfall stations across Germany, the model was shown to
perform across a wide range of catchment sizes and loca-
tion. Future studies may assess the performance in different
climates and over more diverse terrain.

Currently, the space–time rainfall model is run separately
for summer and winter seasons. This coarse partitioning is
one potential area for future improvement. Conditioning the
model on circulation patterns, which better categorise differ-
ent rainfall and weather pattern types, may lead to increased
performance, particularly regarding extremes. It may, how-
ever, be that a conditioning of the model on circulation pat-
terns is too restrictive, especially as observation lengths of
sub-daily rainfall are generally too short.

Data availability. The observational datasets used in this study
can be downloaded from the German Weather Service’s (DWD)
climate data centre (CDC), the HYRAS (version 4.0) gridded
dataset here: https://opendata.dwd.de/climate_environment/CDC/
grids_germany/daily/hyras_de/ (DWD Climate Data Center,
2021b) and the point observations here: https://opendata.dwd.de/
climate_environment/CDC/observations_germany/climate/hourly/
(DWD Climate Data Center, 2021a). The software developed for
this study (in R and Python) can be provided by the author on
request.
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