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Abstract. Compound flooding is a type of flood event
caused by multiple flood drivers. The associated risk has
usually been assessed using statistics-based analyses or
hydrodynamics-based numerical models. This study pro-
poses a compound flood (CF) risk assessment (CFRA)
framework for coastal regions in the contiguous United
States (CONUS). In this framework, a large-scale river
model is coupled with a global ocean reanalysis dataset to
(a) evaluate the CF exposure related to the coastal backwa-
ter effects on river basins, and (b) generate spatially dis-
tributed data for analyzing the CF hazard using a bivariate
statistical model of river discharge and storm surge. The two
kinds of risk are also combined to achieve a holistic un-
derstanding of the continental-scale CF risk. The estimated
CF risk shows remarkable inter- and intra-basin variabili-
ties along the CONUS coast with more variabilities in the
CF hazard over the US west and Gulf coastal basins. Differ-
ent risk assessment methods present significantly different
patterns in a few key regions such as the San Francisco Bay
area, the lower Mississippi River, and Puget Sound. Our re-
sults highlight the need to weigh different CF risk measures
and avoid using single statistics-based or hydrodynamics-
based CFRAs. Uncertainty sources in these CFRAs include
the use of gauge observations, which cannot account for the
flow physics or resolve the spatial variability of risks, and
underestimations of the flood extremes and the dependence
of CF drivers in large-scale models, highlighting the impor-
tance of understanding the CF risks for developing a more
robust CFRA.

1 Introduction

Compound flooding is a type of multivariate flood event
when various flood drivers occur concurrently in the same or
adjacent regions (Santiago-Collazo et al., 2019). Specifically,
over coastal regions, compound flooding is generally driven
by fluvial and coastal processes. While an individual driver
may not be extreme, the complex nonlinear interactions be-
tween fluvial and coastal processes can intensify the joint
impact of multivariate drivers (Dykstra and Dzwonkowski,
2020), causing significant flood hazards (Mehran et al., 2017;
AghaKouchak et al., 2018) and negative socio-environmental
impacts (Hinkel et al., 2014; Wahl et al., 2017). It is pos-
sible that a compound flood (CF) event is not caused by
extreme weather (Couasnon et al., 2020) but rather occurs
when one or multiple flood drivers exceed their respective
thresholds (Zscheischler et al., 2020). Assessing CF caused
by co-occurring fluvial and coastal flooding is important for
low-lying coastal regions where 680 million people live glob-
ally, and this number is projected to increase to over 1 billion
by 2050 (Portner et al., 2019). Such flood hazard is intensi-
fied during “wet” storms by simultaneous rainfall and storm
surge events and can be exacerbated by future sea level rise
(Kulp and Strauss, 2019) and climate change (Bevacqua et
al., 2019; Gallien et al., 2018; Gori and Lin, 2022). To miti-
gate the CF risks, it is crucial to understand the driving pro-
cesses and the related uncertainties in the risk assessment.
Compound flood risk assessment (CFRA) is critical for
flood planning, management, timely emergency response,
and decision making. CF risk has substantial spatial vari-
abilities since the CF drivers and the CF risk dependence on
the drivers are affected by the local conditions (Wahl et al.,
2015), such as the characteristics of local basins that affect
runoff generation, river routing (Hendry et al., 2019), synop-
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tic weather systems, and storm characteristics (Seneviratne et
al., 2012). CFRA can be classified into statistics-based and
hydrodynamics-based approaches. Statistics-based CFRAs
rely on statistical modeling and define the CF hazard as the
frequency of a CF event. Hydrodynamics-based CFRAs use
numerical simulations that can represent human exposure to
CF events while considering the spatiotemporal variabilities
and interaction of CF drivers.

At regional and global scales, statistics-based CFRAs
consider the CF hazard as statistical dependence or co-
occurrence rate of multiple flood drivers including discharge
and surge (Moftakhari et al., 2017; Sadegh et al., 2018;
Muiioz et al., 2020), precipitation and surge (Bevacqua et al.,
2019), discharge, surge, wave (Camus et al., 2021), and so
on. Statistics-based CFRAs perform statistical analysis using
long-term data at paired gauges near the land—ocean inter-
face. The data can be obtained either from large-scale nu-
merical simulations (Eilander et al., 2020; Nasr et al., 2021)
or gauge observations (Ward et al., 2018; Paprotny et al.,
2020). Bivariate or multivariate analyses are performed to
measure the CF hazard in terms of the joint occurrence of
event extremes (Salvadori et al., 2007; Zscheischler et al.,
2020). The CF hazard is determined either using the extreme
dependence among multiple CF drivers or the likelihood of
their joint occurrence. The dependence structure can be as-
sessed from correlation and/or tail dependence coefficients
(Wahl et al., 2015; Nasr et al., 2021). The co-occurrence
rate may be calculated as the joint exceedance probability
when a single driver or multiple drivers are above their pre-
defined thresholds (Moftakhari et al., 2017), e.g., the 95th or
99th percentiles (Kew et al., 2013), which are defined, re-
spectively, as “OR” and “AND” hazard scenarios by Sal-
vadori et al. (2016).

Statistics-based CFRAs can reveal critical regional vari-
ability in terms of the strength of individual drivers, their
dependence structures, and joint occurrence, as well as the
CF hotspots. Gauged observations provide a robust basis for
large-scale risk assessments (Couasnon et al., 2020). The
simple structure in statistical models facilitates the investi-
gation of major CF drivers. However, the variability in CF
risks is limited to the gauge level since data of the entire river
basin are often unavailable. Consequently, the physical pro-
cesses behind flood drivers and the influence of local basin
characteristics and river topology cannot be fully explored.

CF risk can vary substantially across different rivers and
estuaries (Xiao et al., 2021; Y. J. Zhang et al., 2020) as a
result of the impact of river topology and tidal variations
(Bakhtyar et al., 2020; Gori et al., 2020) and the charac-
teristics of drainage basins that regulate the river processes
(Dykstra and Dzwonkowski, 2021). For example, river topol-
ogy controls streamflow routing and backwater propagation
through river networks (Bilskie and Hagen, 2018). Even if
the statistics-based CFRA yields a high probability of a CF
event in a region, the CF exposure can be limited by a steep
channel slope because the coastal backwater is not able to

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

D. Feng et al.: Understanding the compound flood risk along the coast of the contiguous United States

propagate upstream. Thus, the physical processes can in-
fluence the results of CFRA. Hydrodynamics-based CFRAs
have been applied to measure the population and property
exposure to CF, i.e., the CF exposure, using spatially abun-
dant observations (Dykstra and Dzwonkowski, 2020; Valle-
Levinson et al., 2020), numerical models (Kumbier et al.,
2018; Lian et al., 2013; Olbert et al., 2017; Ye et al., 2020),
and the integration of both (Moftakhari et al., 2019; Mufioz
et al., 2020; Serafin et al., 2019). However, applications of
hydrodynamics-based CFRAs are mostly limited to basin
scales because of the computational cost of high-resolution
numerical models.

Recent developments in large-scale river models (Feng et
al., 2022; Ikeuchi et al., 2017; Luo et al., 2017) and global
water level and storm surge reanalysis datasets (Muis et al.,
2017, 2020) facilitate hydrodynamics-based CFRA across
rivers and estuaries. Large-scale river models can capture
streamflow at fine temporal scales (Towner et al., 2019) and
resolve backwater effects when coupled with the tide- and
surge-induced water level (Feng et al., 2022; Muis et al.,
2020). Such models offer the capability to evaluate spa-
tiotemporally varied CF drivers, flood extent, and population
exposure to CF events from basin to global scales over multi-
ple decades (Ikeuchi et al., 2017; Eilander et al., 2020, 2023).

The CF hazard and exposure evaluated separately by
the aforementioned statistics-based or hydrodynamics-based
CFRAs may produce inconsistent results (K. Xu et al., 2022).
The risk determined based on either CFRA can cause biased
judgments. For example, for high-gradient and sparsely pop-
ulated regions, high CF hazard will not result in high CF ex-
posure. Instead of advocating for either method, this study
proposes a CFRA framework that analyzes both hazard and
exposure, as well as the CF risk that combines the two types
of risks (Kron, 2005). We identify the strengths and limita-
tions of each framework and highlight the possible uncertain-
ties within the CFRA framework.

A robust CFRA should consider the uncertainties asso-
ciated with frequency and possible damages of compound
flooding and provide a thorough understanding of the uncer-
tainties related to the risk analysis (Apel et al., 2004). The
uncertainty can stem from various sources in both statistics-
based and hydrodynamics-based CFRAs, such as measure-
ment errors and approximations in numerical models. A
comprehensive understanding of the uncertainty sources in
CFRA is crucial for managing and predicting CF risks and
will provide valuable insights for guiding future improve-
ments. Uncertainty analysis is challenging due to various un-
certainty sources and has drawn significant attention in risk
assessments in the fields of coastal flooding (Hinkel et al.,
2014; Vousdoukas et al., 2018; Parodi et al., 2020), fluvial
flooding (Apel et al., 2004; Egorova et al., 2008), and com-
pound flooding (Dung et al., 2015; Sadegh et al., 2017, 2018;
D. Zhang et al., 2020).

The contiguous United States (CONUS) (Fig. 1) consists
of 48 states, with coastal counties occupying about 10 % of
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Figure 1. The CFRA framework. Data, numerical modeling, statistical modeling, and risk calculation are represented by green, orange, gray,

and blue colors, respectively. See the text for definitions.

the total area. There are 17 major port cities, and ~ 40 %
of the US population residing in coastal counties are sub-
ject to high coastal flooding risks (Hanson et al., 2011).
A high-resolution analysis study, including pluvial, fluvial,
and coastal flooding, projected a significant changing pattern
of the flood risk in CONUS under future climate scenarios
(Bates et al., 2021). Particularly, the CF risk was previously
evaluated for the CONUS coastline or major US coastal cities
using statistics-based CFRAs in terms of the dependence be-
tween storm surge and precipitation (Wahl et al., 2015), sea-
sonable dependence among multiple CF drivers (Nasr et al.,
2021), and the joint probability in “OR” hazard scenarios in
response to sea level rise (Moftakhari et al., 2017). However,
most existing studies rely on the CF driver measured and/or
modeled at a single site and have not accounted for the dy-
namic change of river flow, such as the spatiotemporally var-
ied streamflow, as well as river topology, coastal backwater
effects, and the associated uncertainties. The CF exposure is
also poorly understood.

The objectives of this study are threefold: (a) to develop
a new CFRA framework based on both statistical analyses
and a large-scale river model that is coupled with a global
ocean model reanalysis product, (b) to provide a holistic haz-
ard and exposure risk assessment of the compounding flu-
vial and coastal flooding along the CONUS coastline, and
(¢) to understand the uncertainties in both statistics-based and
hydrodynamics-based CFRAs.

https://doi.org/10.5194/hess-27-3911-2023

2 Methodology

This section describes the new CFRA framework and pro-
vides details of the statistical and river modeling approaches.
We also describe the methods to identify uncertainties within
the CFRA.

2.1 The CFRA framework

The CFRA framework (Fig. 1) provides estimates of CF haz-
ard, exposure, and the overall risk (Maskrey et al., 2011).
The CF hazard refers to the temporal frequency of CF events
and is derived from the bivariate statistical modeling of river
discharge and storm surge. The CF exposure is defined as the
exposed population within the CF backwater extent, which is
modeled using a large-scale river model, the Model for Scale
Adaptive River Transport (MOSART) (Li et al., 2013). Cor-
respondingly, the CF risk is the combination of the hazard
and exposure.

MOSART is a physics-based river routing model that can
be applied at the basin to global scales. The model takes the
total runoff generated by a land surface model and routes the
surface runoff from hillslope to tributary subnetworks, which
along with the subsurface runoff are discharged to river out-
lets through the main channels. In this study, kinematic wave
method is used for overland flow routing, whereas diffusive
wave method is applied in the river channels to represent the
coastal backwater effects (Feng et al., 2022). The MOSART
simulation is performed on the 1/8° resolution CONUS grid.
The MOSART configuration on the same grid has been val-
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idated and applied to flow and sediment simulations (Li et
al., 2015a, 2022). The model parameters are available glob-
ally with more detailed descriptions in previous studies (Li
et al., 2013, 2015b). The model is run at an hourly time
step from 1979 to 2018 and daily outputs are archived for
analysis. The first-year simulation is excluded from analy-
sis due to model spin-up. The floodplain inundation is rep-
resented using a macroscale inundation scheme (Luo et al.,
2017). The channel slope and the riverbed elevation are de-
rived from the 15 arcsec digital elevation model (DEM) of
the HydroSHEDS and river vector data (Lehner et al., 2008;
Lehner and Grill, 2013). The runoff forcing is from Global
Reach-level Flood Reanalysis (GRFR) (Yang et al., 2021), a
bias-corrected offline simulation from a high-resolution VIC
land surface model forced with precipitation from the Multi-
Source Weighted-Ensemble Precipitation (MSWEP) (Beck
et al., 2019), and other climatic forcings from ECMWF Re-
analysis v5 (ERAS5) (Hersbach et al., 2018). The GRFR
forcing has shown excellent performance in simulating ex-
treme streamflow events (Yang et al., 2021). The downstream
boundary is enforced at the river outlets for rivers with a
drainage area > 1000 km? (169 rivers in total). We apply two
types of boundary condition (BC): (1) time-varying storm
surge (SS) level and (2) fixed mean sea level. Both types are
obtained from the third-generation Global Tide and Surge
Model (GTSM) (Muis et al., 2022). The SS-induced back-
water effects in this study are quantified by comparing the
two simulations which use the first and second BCs, respec-
tively (Feng et al., 2022). For small river basins, we apply the
normal depth boundary at their outlets (Feng et al., 2022),
which is MOSART’s default setting. The GTSM is a global
hydrodynamic model with a coastal resolution of ~ 2.5km
(~ 1.25 km in Europe). Driven by the ERAS atmospheric re-
analysis dataset, the GTSM produces time series of hourly to-
tal water level and storm surge at global coasts from 1979 to
2018 (Muis et al., 2020). The total water level in GTSM has
been validated globally against gauged measurements (Muis
et al., 2020) and the storm surge has been validated using
historical events driven by tropical cyclones and extratropi-
cal cyclones (Dullaart et al., 2020).

The modeled streamflow used in the statistical analysis is
from MOSART simulation forced by the dynamic GTSM
BC. The MOSART simulated streamflow is validated at
61 US Geological Survey (USGS) gauges (Fig. 2), which are
selected based on the following criteria: (1) these gauges are
located at the mainstem of the rivers and within 80 km of
the corresponding river outlets, (2) the corresponding river
reaches have upstream drainage areas larger than 1000 km?,
and (3) the gauge data have a temporal coverage longer than
10 years. The MOSART accuracy is evaluated using Kling—
Gupta efficiency (KGE) (Gupta et al., 2009) and a coefficient
of determination (r%). MOSART shows reasonable accuracy
in simulating daily streamflow (Fig. S1 in the Supplement),
with both 72 and KGE generally over 0.6. The model perfor-
mance is lower at a few gauges, likely caused by the coarse
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grid resolution (1/8°), approximations of river geometry in
MOSART, and uncertainty in the GRFR runoff data. The
GTSM simulated water level along the CONUS coastline is
validated against the NOAA measurements at 34 tidal gauges
(Rashid et al., 2019) that have 80 % or more data avail-
able over the simulation period (Fig. 2). The GTSM mod-
eled water level achieves satisfactory performance along the
CONUS coast when measured by 2 and root mean squared
error (RMSE) (Fig. S2): ris generally over 0.75 and RMSE
is below 0.5m. There are only two exceptions on the east
coast with either low r2 or high RMSE, because the GTSM
grid of the two gauges does not resolve the correspond-
ing estuaries. In the context of constructing a new CFRA
framework within the CONUS domain and investigating the
associated uncertainties, the performance of MOSART and
GTSM models is deemed satisfactory in large-scale simula-
tions.

The CF hazard is derived from the bivariate statisti-
cal modeling. The analysis is performed for the MOSART
coastal cells which are defined as the grid cells within seven
upstream cells from the corresponding river mouths. It is as-
sumed that coastal processes have no impacts on the regions
beyond this extent. The simulated daily streamflow (Q) at
each selected cell is paired with the daily maximum storm
surge (SS) level from the GTSM reanalysis dataset at the grid
cell nearest to the outlet. The CF hazard is calculated by the
following procedure:

1. CF event selection: use a SS event selection scheme
(Feng et al., 2022) to extract all SS events with the
SS level over 95th percentile and then in the selected
SS events identify them as CF events if river discharge
of the corresponding station during these events is also
over 95th percentile;

2. univariate analysis: fit the selected SS and Q into
their marginal distributions and calculate the marginal
exceedances, i.e., the probability of exceeding the
95th percentile of the respective marginal distributions;

3. dependence assessment: determine if the bivariate vari-
ables are dependent of each other based on Kendall’s
rank correlation coefficient (7) (Kendall, 1938);

4. bivariate analysis: calculate the joint exceedance proba-
bility based on “AND” hazard scenario (Salvadori et al.,
2016) that accounts for both marginal distributions and
dependence structure.

As the first step, our event selection scheme samples inde-
pendent SS events from the time series data. This sampling
avoids dependence on the extremes and eliminates the need
for declustering. We assume that the Q extreme within each
SS event is independent as both frequency and duration of
SS are generally much smaller than that of fluvial flooding.
While it is possible that the duration of a fluvial flood event
does not precisely align with an SS event, we do not include
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Figure 2. Study domain and observations overlaid on the USGS 3D elevation (US Geological Survey, 2019). The black circles and blue
triangles represent the USGS and NOAA gauges, respectively. The gauges used for identifying uncertainties are labeled with the gauge ID.
The black solid lines are the coastal river network which consists of, at most, seven cells from each river outlet.

any time lag between Q and SS in the consideration as this
study specifically quantifies the CF impact based on the SS-
driven backwater effects. The threshold of 0.95 ensures that
at least 50 pairs of Q and SS data points are available for
bivariate modeling. The occurrence probability of the storm
surge events (P(SS)) is calculated for each river basin as the
ratio of the duration of all SS events divided by the simula-
tion period.

In the univariate analysis, the marginal distributions of
Q and SS (fp and fss) are selected based on the Akaike
information criterion statistics from eight candidate distri-
butions: gamma, generalized Pareto, Pearson type III, log-
normal, generalized extreme value, generalized logistic, log-
gamma, and Gumbel. The fitted distributions are tested us-
ing the Kolmogorov—Smirnov and chi-square tests for good-
ness of fit. The marginal exceedance probabilities of Q and
SS (Pg and Pss) are

Po=Fo(q"), (1)

https://doi.org/10.5194/hess-27-3911-2023

Pss = Fss (ss*), 2

where ¢* and ss* represent the 95th percentile values.

The dependence between Q and SS is assessed for each
MOSART cell by calculating the Kendall’s correlation (7).
The significance level is set as 0.05 following previous stud-
ies of statistics-based CFRAs (Ghanbari et al., 2021; Mof-
takhari et al., 2017). We consider Q and SS to be dependent
of each other when they display a significant positive cor-
relation (p < 0.05). Although assessed in extensive CF lit-
erature, the dependence structure alone does not represent
the CF hazard. For example, in a case when Q and SS are
highly dependent, the CF risk can still be low if both drivers
do not show frequent extremes. Thus, the joint exceedance
probability is calculated based on the “AND” hazard scenar-
ios (Salvadori et al., 2016), which assumes both Q and SS
exceed their corresponding thresholds.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023
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The joint exceedance probability (Pg ss) is given as
Poss=1—Fo(q*)— Fss(ss*) + Fg.ss (q7ss*), (3)

where Fg ss is the cumulative joint distribution which is a
function of the cumulative marginal distributions, Fp and
Fss. When Q and SS are independent, Fg.ss(g*ss*) is sim-
ply the product of the marginal exceedance probability:

Foss(q*.ss%) = Fo (¢") - Fss (ss%). @)

When Q and SS are dependent, the joint distribution can be
expressed using a copula function of the marginal distribu-
tions as (Grimaldi and Serinaldi, 2006)

Foss(q*,s5%) = Co,ss(Fo (q) - Fss (ss7)), Q)

where Cy ss is the bivariate copula function that allows the
analytical formulation of the dependence structure. For each
MOSART coastal cell where Q and SS are dependent, the
copula function is selected from 24 candidate families fol-
lowing the instructions provided in Moftakhari et al. (2017),
using the R-package “copula” (Kojadinovic and Yan, 2010).
The marginal exceedance probabilities (Pp and Pss) and
their joint exceedance probability (Pg ss) are conditioned on
the occurrence of the storm surge events as they are calcu-
lated from the SS data sampled in Step 1. These probabilities
are multiplied by P(SS) to obtain the unconditional proba-
bilities.

The CF exposure is defined as the accumulated popula-
tion (Wp) over the coastal backwater flooded region dur-
ing CF events when Q > ¢* and SS > ss*. To calculate
Wy, we use the 1000 m resolution Global Human Settlement
Layer (GHSL) population data which have been updated ev-
ery 5 years from 1975 to 2020 (Schiavina et al., 2019). We
aggregate the data to the 1/8° MOSART grid and linearly in-
terpolate the data over the simulation period. The backwater
flooded fraction caused by CF is identified by comparing the
simulations with the two different downstream BCs:

Af(@ti) = forsm(t,i) — fmsL(ti), (6)

where f represents the simulated flooded fraction of each
grid cell, ¢ is the model output time step during CF, and i is
the grid cell index of the MOSART coastal cells. During a
single CF event, human exposure in a grid cell is the product
of the corresponding population and A f. Thus, the CF expo-
sure is the accumulated human exposure over all CF events
during the simulation period.

The CF risk is represented by a risk index (CFRI), defined
as the product of the CF exposure and the CF hazard (Judi et
al., 2018; Kalyanapu et al., 2015; Phongsapan et al., 2019):

CFRI = CFHI x CFEI, @)

where the CF hazard index (CFHI) and the CF exposure in-
dex (CFEI) are calculated by normalizing Pg ss and W, with

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

their corresponding 95th percentile values. We do not use
the maximum value as the normalizing constant because the
maximums can be too extreme and likely focus on the river
outlets where CFEI is high. The use of such a normalization
would shadow the CFRIs at upstream regions. Our approach
integrates measures of risks that consider both the probabil-
ity of occurrence and human exposure. However, it should
be noted that the combination of different types of risks, de-
spite providing a comprehensive estimation of the CF risk, is
subjective and may affect the risk assessment results.

2.2 Uncertainty analysis in CFRA

In this section, we review the uncertainty sources in the large-
scale CFRAs. The uncertainty analysis is critical for a robust
CFRA. Given that uncertainty can arise from diverse sources
in both statistical and numerical models, an improved un-
derstanding of the uncertainty sources will provide valuable
guidance for the future enhancement of the CFRA frame-
work. We first examine the spatial variability in streamflow
and storm surge and the relative impacts of riverbed ele-
vations on the hydrodynamics-based CFRA, as neglecting
these physical factors leads to uncertainties in the statistics-
based CFRA. The uncertainties in the statistics-based and
hydrodynamics-based CFRAs are also assessed by compar-
ing the risk estimates at paired observation gauges. While it
is challenging to accurately quantify such uncertainties in the
CFRAs, we aim to highlight the significance of different un-
certainty sources.

2.2.1 CFRA uncertainty sources

The uncertainty in CFRA can generally be classified into two
categories: aleatory uncertainty and epistemic uncertainty.
Aleatory uncertainty is inherent to the intrinsic variability in
natural and anthropogenic systems (Hall, 2003). Epistemic
uncertainty is due to limited knowledge of natural systems
and can be reduced with an improved understanding of the
systems (Ferson and Ginzburg, 1996; Uusitalo et al., 2015).
Herein we list and classify the possible uncertainty sources
in the CFRA (Table 1). This classification may be subjec-
tive because sometimes the distinction between incomplete
knowledge of the systems and natural variabilities cannot be
easily identified (Apel et al., 2004).

In statistics-based CFRAs, aleatory uncertainties are re-
lated to the spatial variabilities of the fluvial processes and
river topology that are not well represented in gauge data
(Fan et al., 2021) and the stationary assumption of statisti-
cal models (Ghanbari et al., 2021). It is widely known that
the CF risk is nonstationary due to the changing climate.
Additionally, the flood drivers vary significantly depending
on the local topology (Sun et al., 2021), which is usually
not accounted for in statistics-based CFRAs. The timing of
peak floods changes from an upstream gauge to the outlet
and the storm surge varies between an offshore tidal gauge
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Table 1. Uncertainty sources in CFRA. Sources in boldface are considered in the analysis.

Module Aleatory uncertainty Epistemic uncertainty

Statistical ~ Spatial variability in fluvial processes and river = Measurement uncertainty (e.g.,

models topology measurement errors, inappropriate
in situ locations, and limited data
coverage or partial time series)

Nonstationarity Model structure uncertainty (e.g.,

selection of probability distribution
functions and selection of dependence
models)

Numerical  Future climate change Parameter uncertainty

models Data uncertainty (e.g., uncertain river

topology and channel geometry data)

Model structure uncertainty (e.g.,
simplified flood wave physics, uncertain
runoff generation schemes, and coarse
spatial resolutions)

and the river mouth. Although the statistics-based CFRAs
use a time window of 1-5d (Ward et al., 2018; Wu et al.,
2021) to account for this time lag, this procedure inevitably
increases the possibility of falsely matching two independent
events when distant observation gauges are used. Epistemic
uncertainties in statistical models can include measurement
errors and model structure uncertainty. Although the errors
in the water level measurements at National Oceanic and
Atmospheric Administration (NOAA) tidal gauges are usu-
ally small (O(1 mm)) (Asher et al., 2019), the quality of the
USGS measured streamflow varies significantly. For exam-
ple, it was found that the USGS streamflow errors can reach
over 8 % (Turnipseed and Sauer, 2010) and be even much
larger during extreme events as the measurements are not
sufficiently continuous to cover many extremes (Kiang et
al., 2018). Moreover, USGS gauges may not be installed ex-
actly at the river—ocean interface, which cannot capture the
river discharge to the ocean. The statistical analysis of CF
risks based on these measurements will inevitably be biased.
Moreover, model structure uncertainties always exist in sta-
tistical models, such as the selection of marginal distribution
functions and dependence on level of significance. The latter
is critical for computing the joint exceedance probability of
CF (Fan et al., 2021).

Numerical models used in both statistics-based and
hydrodynamics-based CFRAs also have many uncertainties.
Intrinsically, there is uncertain climate change that modi-
fies climatological and societal systems (Bouwer, 2013). For
numerical models, the epistemic uncertainty can be classi-
fied into uncertainties in model structure, model parameters
and data. The parameter uncertainty and the data uncertainty
are caused by uncertain model parameters (e.g., the channel
roughness coefficient), uncertain river topology, and channel
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geometry. In large-scale river models, the hydraulic physics
are usually simplified to guarantee computational efficiency,
such as using an empirical formulation of floodplain inun-
dation (Yamazaki et al., 2012) and approximations in flood
wave physics (Hodges, 2013). In addition, coarse mesh reso-
Iutions used by large-scale river models can cause unresolved
river networks and topology (Parodi et al., 2020). All these
uncertainties could be related to inaccurate assessments of
the event extremes (Muis et al., 2017) and flood drivers’ de-
pendence (Nasr et al., 2021).

2.2.2 Impact of riverbed elevation

The riverbed elevation determines the extent of coastal back-
water propagation. To understand its impacts on CF risks, a
random forest analysis (Breiman, 2001) is performed to eval-
uate the relative importance of riverbed elevation against Q
and SS to the backwater effects.

Random forest models are widely used to assess the rela-
tive importance of predictors with respect to a response vari-
able (Breiman, 2001; Woolway et al., 2021). Here, the pre-
dictor variables are Q, SS, and the riverbed elevation. For
each coastal grid cell, we use the MOSART simulated Q, the
GTSM simulated SS at the river outlet, and the grid cell ele-
vation. The response variable is the backwater-induced water
volume change (AV):

AV (t,i) = (hgrsm(t,i) — hmsL(2, 1)) LG W (i)
+ (fvgrsm(®, i) — fvmsL(z, 1)), €]

where £ is the channel water depth at the ith grid cell and
the time ¢, L is the main channel length of the ith cell and
W is the corresponding width, and fv is the floodplain wa-
ter volume. The predictor and response variables are normal-
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Table 2. Three combinations of Q and SS for model-data comparison.
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0

SS

(a) MOSART modeled value at the river outlet
(b) MOSART modeled value at the USGS gauge

(¢) USGS measurement

GTSM modeled value at the river outlet
GTSM modeled value at the NOAA gauge
NOAA measurement

ized to [0, 1] before fitting into the random forest model. We
fit independent random forest models for every coastal river
basin, with sizes varying from ~ 10 grid cells to > 100 cells.

2.2.3 Impact of fluvial processes

The impact of complex fluvial processes on streamflow is
significant. The lag in streamflow peaks between an upstream
location and the river outlet will cause biases in the CFRA if
the upstream Q measurements are used in the CF risk anal-
ysis. To identify the associated uncertainty, we compute the
time-averaged shift of modeled Q or SS peaks between the
observation gauges and the corresponding river outlets over
the simulation period. The calculation of the shift in peaks in-
cludes the following steps: (1) for a USGS or NOAA gauge,
we first locate the MOSART or GTSM grid cell nearest to
the corresponding river outlet and extract the Q or SS ex-
treme events of the grid cell; (2) we identify the peak date of
each extreme event and define a time window of 10d around
the extreme; and (3) over the defined time window, we search
for the date of the peak simulated Q or SS at the MOSART or
GTSM grid cell where the USGS or NOAA gauge is located
and calculate the difference between the two peak dates. If
no peaks are identified for the gauge grid cells, we assume
that the difference is 5 d.

We also compute the flow time, defined as the time that
terrestrial runoff takes to travel from an upstream cell to the
outlet via the river network, over the river basins. The flow
time is determined by the basin characteristics, such as chan-
nel geometry, meandering, and riverbed elevation. A longer
flow time typically implies a larger time lag in streamflow
peaks. In this study, the calculated flow time of each grid cell
is averaged over the simulation period.

2.2.4 Model-data comparison

Lastly, we also evaluate the uncertainty caused by using mea-
sured versus modeled Q and SS for analysis. For this, we
compare the statistical metrics of Pgp, Pss, T, and Pg ss for
the modeled and measured pairs of Q and SS at 24 river
basins (Table S1 in the Supplement), where a USGS gauge
paired with a neighboring NOAA tidal gauge can be found.
We include three combinations of Q and SS, as listed
in Table 2. The comparison between the combinations (a)

and (c) represents the uncertainty due to fluvial processes
and river topology. The comparison between the combina-
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tions (b) and (c) represents the uncertainty from the numeri-
cal modeling.

3 Results
3.1 Uncertainty in CFRA
3.1.1 The relative importance of riverbed elevation

Our results show the crucial role of the riverbed elevation
(Figs. 3 and 4) in determining the CF risks in the river basins,
which contrasts with previous studies that mostly focused on
the dynamics of Q and SS. In particular, the elevation effect
dominates in the northwest coast (Fig. 3a), where the large
riverbed elevation impedes the propagation of coastal back-
waters and the areas of high CF risks are thus restricted to
the coastline. In the other regions, the relative importance of
QO and SS varies, which also depends on the riverbed ele-
vation (Fig. 3b and c). The SS impact is limited along the
west coast due to the elevated river channels but exceeds the
impact of Q in the low-lying east and Gulf coasts. The im-
portance of the riverbed elevation to CF risks identified in
this study is consistent with findings from some local studies
(Bilskie and Hagen, 2018; Gori et al., 2020). In brief, the rel-
ative importance of the CF drivers varies depending on local
basin characteristics.

3.1.2 Shift in peaks

The shifted peak days in Q and SS from the USGS or
NOAA gauges to the corresponding river outlet show that the
statistics-based CFRA may have large uncertainties (Figs. 5
and 6). The averaged time lag in the Q peaks varies from
1 to 5d (Fig. 6) depending on the local topology, basin char-
acteristics, and hydrological response to coastal backwaters.
In the northwestern and northeastern river basins, where the
elevation gradient is large, the flow time is ~ 1 d and the re-
sulting shifts are small (~ 1+ 1d). In contrast, the shifts and
the flow time are much larger (~ 3 &+ 1 d) in the low-gradient
regions of the east and Gulf coasts. The time shifts in the
SS peaks generally depend on the distance between the tidal
gauges and river mouth. In CONUS, the shifts are generally
small (~ 1d) with lower variabilities. Our results show that
the combined shifts in the peaks of the two flood drivers in
some locations can be greater than 5d, a duration used by
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Figure 3. The relative riverbed elevation along the (a) west coast, (b) east coast, and (¢) Gulf coast. The river networks within the MOSART
coastal cells are shown as black solid lines.
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Figure 4. The relative importance of Q (red), SS (blue), and relative riverbed elevation (gray) provided in the counterclockwise order of the
river basins along the west, Gulf, and east coastlines. The numbers representing individual river basins correspond to those in Fig. S3.

many previous studies as the time window to identify ex- 3.1.3 Model-data comparison

treme CF events (Ward et al., 2018; Wu et al., 2021).
We compare the marginal exceedance probabilities of dis-

charge and storm surge (Pg and Psg), the Kendall’s rank
correlation coefficient (7), and the joint exceedance proba-
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Figure 5. The flow time of river discharge at the MOSART coastal cells along the (a) west coast, (b) east coast, and (c¢) Gulf coast. The river
networks within the MOSART coastal cells are shown as black solid lines.

bility (Pg,ss) computed from the three combinations of Q
and SS described in Sect. 2.2.4 at 24 river basins (Fig. 7).
For the same river basin, these statistical metrics can differ
significantly among the combinations, indicating substantial
uncertainties due to fluvial processes and river topology, as
well as the numerical modeling. Generally, Psg is more con-
sistent among the three combinations, because the time shifts
in the SS peaks are small (Fig. 6). In contrast, Pg, 7, and
P ss show greater variations.

There are significant differences in Py, 7, and Pg ss be-
tween the combinations of the modeled Q and SS at the in-
terface and at the observation gauges, particularly along the
west coast (black vs. blue bars in Fig. 7). As discussed in
Sect. 2.2.3, this indicates the spatial variabilities of the CF
risk within the river basins and the associated uncertainty in
the statistics-based CFRA. The uncertainty in Py ss varies
along the CONUS coast and is more distinct in several basins
(e.g., 14243000 and 11530500) due to the larger variability
in Pp and higher 7.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

There are also significant differences in Py, 7, and Py ss
between the combinations of modeled and measured Q and
SS at observation gauges across all CONUS coasts (blue
vs. red bars in Fig. 7). As mentioned in Sect. 2.2.3, the dif-
ferences indicate the uncertainty within the numerical mod-
els that could influence the assessment of the CF risk. The
values of Pgp and Psg calculated from the modeled Q and
SS are generally smaller than those calculated from observa-
tions. This is likely because the MOSART and GTSM mod-
els underestimate the Q and SS extremes, a well-known un-
certainty in large-scale models (Muis et al., 2017; Yang et
al., 2021). It should be noted that the USGS reported that
streamflow peaks are likely uncertain because USGS derives
streamflow based on the stage—discharge relationship, but the
data used for the derivation are rarely collected during ex-
treme events (Turnipseed and Sauer, 2010). Besides the un-
certainties mentioned above, we find that the use of mod-
eled Q and SS could lead to underestimation of the depen-
dence (7) and thus the joint risk (Pg ss), particularly along
the west and northeast coasts (Fig. 7). The uncertainties in
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observation gauges (blue), and measured Q and SS at the observation gauges (pink). The number on top of each bar is the percentage of the
data coverage.
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P and 7 are more important in determining the uncertainty
in Pp ss along the west and east coasts, respectively. The
model-data comparison is provided for a few example basins
to demonstrate the various types of uncertainties (see Sup-
plement for further details).

The uncertainty analyses underscore the uncertainties in
both statistics-based and hydrodynamics-based CFRAs, of
which one should be made aware in applications. Impor-
tantly, while the uncertainty in the hydrodynamics-based
CFRA may be reduced by improving the numerical models,
it is not possible for the statistics-based CFRA to account for
the physical processes and the variability at the basin scale,
such as the varied streamflow and backwater propagation ex-
tent.

3.2 CFRA

This section shows the CFRA framework that provides spa-
tially distributed CF risk estimates based on the modeled QO
and SS and captures the impacts of fluvial processes and
riverbed elevation. The CF risk combines the CF hazard de-
rived from statistical models and the CF exposure simulated
by the coupled MOSART and GTSM.

3.2.1 CF hazard

The CF hazard is represented by the joint exceedance prob-
ability of Q and SS (Pg_ss), which depends on their respec-
tive marginal exceedance probability (Pp and Pss) and the
dependence structure (Figs. 8 and 9). The spatial map shows
larger P variations along the west and Gulf coasts but a
more uniform Pg pattern along the east coast. The highest
Pp (~ 3.0 %) is observed along the northwest coast (Fig. 8),
where the corresponding Psgs is low (~ 1.0 %) (Fig. 9). The
variability in Pss is much smaller compared with that of Pg.
The values of Psg are high (~ 2.0 %) along the western Gulf
coast in correspondence with the moderate Py of the same
basins (~ 2.5 %). Moreover, Py shows critical intra-basin
variability within several basins, with a standard deviation of
up to 1 %. The marginal probability provides the basis to de-
rive the drivers’ dependence structure, copula functions, and
joint probability.

The result of the Kendall’s rank correlation coefficient ()
shows large inter- and intra-basin variabilities of 7 in
CONUS (Fig. 10). The highest dependence is observed along
the northwest coast, where t is approximately 0.2. The other
coastal regions generally have a lower t (0-0.1) and the 7
value normally decreases upstream within the river basins.
The intra-basin variability of t is the greatest along the west
coast.

Lastly, we compute Py ss for the river basins along the
CONUS coast (Fig. 11). The value of Pgp ss shows larger
variabilities than that of Pg, Pg, and 7 as it includes uncer-
tainties in the marginal distribution and dependence struc-
ture as well as uncertainty of the copula function selection.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023
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The highest Pg ss (~ 0.4 %) is observed along the northwest
and Gulf coasts, while that along the east coast is generally
less than 0.3 %. The greater variability in Pp ss along the
west and Gulf coast basins is consistent with the spatial pat-
tern of the marginal exceedance probability and dependence
(Figs. 8-10). Interestingly, in several basins (Fig. S8), Pg ss
differs significantly between the mainstem and tributaries.

The spatial variabilities in the CF hazard can be attributed
to the inherent variability in both streamflow and storm surge.
As implied by the spatially varied relative importance of Q,
SS, and riverbed elevation (Fig. 4), hydrological patterns ex-
hibit substantial variation among river basins depending on
river topology, basin characteristics, and other geomorpho-
logical factors. Storm surge is also influenced by local factors
of coastal topography, bathymetry, and storm characteristics.
These combined factors result in varying frequencies, dura-
tions, and correlations of fluvial and coastal flooding. For in-
stance, along the western Gulf coast, the rivers experience
more frequent extremes (Fig. 8c); however, these extremes
show low correlation with SS in the same region, leading to a
low dependence (t) (Fig. 10c). Similarly, the inter-basin vari-
abilities depend on the spatial heterogeneity of basin charac-
teristics. The timing and magnitudes of the streamflow peaks
typically vary significantly between upstream gauges and the
outlet (Fig. 6), and between smaller streams and major rivers,
resulting in different values of Pgp and 7.

The CF hazard computed in this study shows both sim-
ilarities and notable differences compared with previous
statistics-based CFRAs (Eilander et al., 2020; Nasr et al.,
2021; Wahl et al., 2015). For example, our analysis reveals
several localized hotspots of the CF hazard characterized by
a strong dependence between Q and SS along the north-
west and Gulf coasts (Fig. 12), as indicated by Eilander et
al. (2020). However, the calculated t values in our study are
generally lower than those computed using annual maxima
sampled from Q and SS observations along the east coast
(Nasr et al., 2021). Also, our t values are higher than those
derived from the dependence of Q and precipitation along
the west coast, and a previous study also demonstrated sub-
stantial variations in 7 at specific locations when using differ-
ent sampling approaches for the two CF drivers (Wahl et al.,
2015). These differences result from variations in the sam-
pling of extreme events, the specific CF drivers considered,
the statistical methods employed, as well as other uncer-
tainty sources discussed in Sect. 2.2.1. Despite the variations
observed among different frameworks, each study provides
unique insights into the understanding of, and addresses, the
complexities associated with CF risks.

3.2.2 CF exposure
The cumulative population exposed to CF over the sim-
ulation period is computed to represent the CF exposure

(Fig. 12). The human exposure to CF varies from 0 to
10000 people and is restricted to the coastline. This is not un-
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Figure 8. The marginal exceedance probability Py along the (a) west coast, (b) east coast, and (¢) Gulf coast. The basin-averaged Py is
provided in the counterclockwise order of the basins along the US coast in the inset of (b) where the error bars represent the corresponding

standard deviation.

expected because the CF-impacted riverine regions are gov-
erned by the river topology and the amplitude of SS at the
river outlets. Overall, this CF exposure is low because (a) the
backwater extent is limited to the low-gradient regions and
(b) the occurrence of CF events is low over the 40-year pe-
riod. Although the CF exposure for the west coast is only
observed at the river outlets because of the large riverbed el-
evation impact (Fig. 7), it can extend several cells (O(10* m))
upstream in several river basins of the east and Gulf coasts.
Also, the CF exposure has a spatial variability very different
from the CF hazard, for example, along the northwest coast.
These findings demonstrate the necessity to account for the
impacts of river topology and calculate spatially distributed
risks in CFRA.

3.2.3 CFrisk

The CF risk is derived based on the CF hazard and expo-
sure (Fig. 13). The CF risk varies significantly along the

https://doi.org/10.5194/hess-27-3911-2023

CONUS coast and is the highest at the river outlets, although
the risk can be present to a much larger extent over most
river basins of the east and Gulf coasts due to the upstream
propagation of backwaters. This pattern is consistent with
the flood exposure. In a few low-lying regions of the east
and Gulf coasts, the CF risk extends several cells upstream
from the river—ocean interface. In addition, we identify a few
hotspots ranked using the CFRI averaged over a river basin
(Table 3). Table 3 shows that the coastal areas of the San
Joaquin River and the Hudson River, where Silicon Valley
and New York City are located, respectively, are particularly
vulnerable to CF. The total exposed population and the max-
imum exceedance probability (Pg ss) are also provided. Al-
though the three metrics correspond to different types of CF
risks, these hotspots require extra attention in CF manage-
ment. They also provide target regions where the computa-
tional mesh should be refined to improve model accuracy.
Overall, the CF risk accounts for the occurrence rate of CF
events, the impacts of basin characteristics, and population

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023
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Figure 9. The marginal exceedance probability Pgg located at the GTSM cells nearest to the corresponding outlets.

density. The proposed CFRA avoids the biased risk estima-
tion made by either statistics-based or hydrodynamics-based
CFRA alone and can capture the minimum risk from their
respective estimation.

4 Discussion
4.1 Differences between CFRAs

We examined the CF risk along the CONUS coast using dif-
ferent approaches based on the co-occurrence probability of
a fluvial flood and a storm surge event, the human exposure
to the CF events, as well as their combined impacts. The
comparison shows that the different CFRA approaches re-
sult in significantly different CF risk estimates. The differ-
ence is remarkable in a few key regions. For example, in the
San Francisco Bay area, while the CF hazard is low, the CF
exposure is high due to the dense population and flat topol-
ogy. In contrast, although the lower Mississippi River basin

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

is endangered by backwater flooding, the probability of a CF
event is low over the 40-year period. The difference in the
estimated risks could be partially explained by whether more
detailed physical processes and topological factors are con-
sidered. However, the overall CF risk is also valuable. For ex-
ample, we find that although the northwest coast (e.g., Puget
Sound) has a high CF hazard, such risk is only restricted to
the coastline and does not extend to the upstream regions.
In summary, to comprehensively understand the complex CF
risk, it is critical for CFRAs to integrate multiple risk factors
based on the available approaches.

The proposed CFRA also draws attention to the CF risk
in upstream river basins which are usually ignored in the
large-scale statistics-based CFRA. Typically, the flood risks
related to coastal hazards (e.g., storm surge) are limited to the
land—ocean interface. However, through the river networks,
the backwater effects can propagate upstream by hundreds
of kilometers in low-lying watersheds (Lamb et al., 2012).
Our results show the CF risks extending upstream over sev-
eral river basins (Figs. 12 and 13).
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Figure 10. The Kendall’s correlation coefficient () computed for each MOSART coastal cell using the corresponding Q and SS along
the (a) west coast, (b) east coast, and (¢) Gulf coast (see Sect. 2.1). The inset in (b) illustrates the basin-averaged value of t provided in
the counterclockwise order of the river basins along the west, Gulf, and east coastlines with the error bars representing the corresponding
standard deviation.

Table 3. The top 10 rivers with high CF risk. The locations are shown in Fig. 13. CFRI represents the averaged CF comprehensive risk index
(Eq. 7) in the river basin. Population exposure is the total population exposed to CF over the simulation period.

No. River name River outlet location CFRI  Population Maximum
exposure CF
(persons)  probability
(%)
1 Ogeechee River, GA 31.9375, —81.1875 38.617 4617 0.158
2 Cooper River, SC 32.8125, —79.9375 36.468 11096 0.264
3 San Joaquin River, CA  38.0625, —122.3125 33.182 19621 0.075
4 Pearl River, MS 30.1875, —89.8125  19.829 103314 0.131
5 Hudson River, NY 40.6875, —74.0625 19.516 22542 0.151
6 White Oak River, NC 34.6875, —77.0625 19.076 1849 0.283
7 Biloxi River, MS 30.4375, —88.9375 12.414 2261 0.253
8 Siletz River, OR 44.9375, —124.0625 11.467 2438 0.278
9 Columbia River, WA 47.6875, —122.4375 10.323 1567 0.310
10 Taunton River, MA 41.6875, —71.1875 9.528 3795 0.186

https://doi.org/10.5194/hess-27-3911-2023 Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023



3926

50

45

Latitude

B
o

D. Feng et al.: Understanding the compound flood risk along the coast of the contiguous United States

vy

—98 -96 -94  -02

90 -88 -86 -84  -82

Longitude

Figure 11. The joint exceedance probability (P ss) computed for each MOSART coastal cell using Eq. (3) along the (a) west coast, (b)
east coast, and (¢) Gulf coast (see Sect. 2.1). The inset in (b) is the basin-averaged value of Pg g provided in the counterclockwise order of
the river basins along the west, Gulf, and east coastlines with each error bar representing the corresponding standard deviation.

CF hazard and exposure can also be impacted by climate
change as CF drivers interact with climate drivers (Zscheis-
chler et al., 2020). Global warming will likely increase the
frequency of extreme precipitation (Alfieri et al., 2016), the
intensity of river discharge (Bermiidez et al., 2021) and storm
surge (Camelo et al., 2020), and the duration of the fluvial
and coastal flooding (Feng et al., 2022) in many regions, such
as the US east coast (Ting et al., 2019). All these factors con-
tribute to the exacerbation of CF risks, as both marginal and
joint exceedance probabilities will increase. Moreover, cli-
mate change has the potential to alter the characteristics or
distributions of CF drivers. For instance, the dependence be-
tween storm surge and precipitation is increased by climate
warming, which increases the CF hazard (Wahl et al., 2015).
The elevated sea level will move the backwater extent fur-
ther upstream, increasing the CF exposure (Kulp and Strauss,
2019). Given the uncertainty of climate change, more atten-
tion should be paid to understand the potential impacts of
different socioeconomic pathways on the CF risk.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

4.2 Limitations and future work

The CFRA framework provides an effective tool to support
large-scale CF risk management in CONUS. However, this
study has a few limitations that warrant further improve-
ments. First, the 40-year time series is relatively short for de-
riving robust extreme statistics, as extreme events can have
much longer return periods (Apel et al., 2004). This type
of epistemic uncertainty can be reduced by using data that
covers a longer period. The simulation period is limited by
the available large-scale runoff forcing (Yang et al., 2021)
and the GTSM reanalysis dataset (Muis et al., 2022). The re-
analysis forcing typically covers a shorter period (e.g., from
1979 to 2018), and thus statistical analyses based on such
periods may lead to unreliable estimates of the return fre-
quency and/or probability of tropical cyclones (TCs). While
it remains challenging to determine the sufficient data length,
such uncertainty likely depends on the region-specific ex-
ceedance probability, particularly when lower probabilities
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Figure 12. The accumulated population exposed to CF over the simulation period.

correspond to longer return periods. Earth system models
(ESMs), which can simulate CF drivers for longer peri-
ods than reanalysis data, can be used to analyze historical
CF risks. Moreover, high-resolution cloud-resolved ESMs
show promising performance in representing extreme events
(Caldwell et al., 2021), which can help the hydrodynamics-
based CFRA quantification. The ability to better represent
the complex processes at the terrestrial and aquatic inter-
face could also increase the simulation accuracy for extreme
events. For example, several related new capabilities have re-
cently been developed for the Energy Exascale Earth Sys-
tem Model (E3SM) (Golaz et al., 2022), such as the multi-
scale variable-resolution meshes and state-of-the-art tech-
niques developed in E3SM land and ocean models (Lilly et
al., 2023; Pal et al., 2023). These advancements have shown
the potential to improve the representation of climate ex-
tremes, which is important for the CF risk assessment.
Second, we quantify the CF impacts using the SS-induced
backwater effects without considering the complex interac-
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tions between the two flood drivers or the possibility of a CF
event induced by an individual extreme driver. CF does not
necessarily require all drivers to exceed their corresponding
thresholds (Zscheischler et al., 2020). The backwater effects
are driven in MOSART by prescribing the SS time series at
the downstream boundary. However, the actual CF is driven
by the interactive processes between multiple drivers, includ-
ing precipitation, land surface runoff and inundation, river
discharge and coastal tide, storm surge, and wave (Nasr et al.,
2021). For example, the interaction between flooded water
and channel flow, groundwater and surface water, river dis-
charge and upstream propagation of ocean tides, and storm
surge will likely attenuate the hydrograph, intensify inland
flooding, or affect the backwater propagation, particularly
in low-lying watersheds. Such interactions contribute to an-
other layer of complexity and uncertainty at the terrestrial
and aquatic interface and should be simulated using ESMs
with fully coupled land, river, and ocean modeling compo-
nents. Furthermore, interactive coupling has been developed

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023
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Figure 13. The CFRI represented on a logarithmic scale using a base of 10 along the (a) west coast, (b) east coast, and (¢) Gulf coast.

within the E3SM (Feng et al., 2022; D. Xu et al., 2022) for
further CFRA developments. Third, the MOSART simulated
floodplain inundation could be a sensitive factor when esti-
mating the CF exposure, as MOSART employs a macro-scale
inundation scheme (Luo et al., 2017) and the model has lim-
ited resolution for evaluating risk in high population density
areas. Validation of the floodplain inundation over coastal
river basins is challenging because the CF inundation data
are limited, and such data does not differentiate coastal inun-
dation and river floodplain inundation. Last but not least, the
uncertainty sources identified in this study are undoubtedly
only “the tip of the iceberg”. There are many other uncer-
tainties related to parameterization and structural errors of
data and physical models. For example, the 1/8° MOSART
grid is appropriate for continental-scale multi-decadal sim-
ulations. The mesh resolution is insufficient to resolve the
distributed risk within a grid cell, as neither human residence
nor topology can be resolved to represent the flood exposure.
The input data, such as surface runoff and digital elevation

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

models, have uncertainties that should be quantified. This is a
well-acknowledged challenge in large-scale modeling (Cook
and Merwade, 2009; Van de Sande et al., 2012). As quanti-
fying the uncertainty of simulated runoff and streamflow in
ESMs remains challenging (Lawrence et al., 2019), fully ad-
dressing such uncertainty in CFRAs is beyond the scope of
this study.

5 Conclusion

This research proposes a CFRA framework to investigate the
CF risk along the CONUS coast. This framework includes
both statistics-based and hydrodynamics-based CFRAs and
assesses the CF hazard, exposure, and overall risk using a bi-
variate statistical model of river discharge and storm surge,
as well as the large-scale MOSART river model coupled with
the global GTSM reanalysis dataset. The resulting CF risks
show substantial variabilities at the inter- and intra-basin
scales. In particular, the variability is significant in the CF
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hazard and along the west and Gulf coasts. More importantly,
the three risk measures show very different spatial patterns
and hotspots depending on the local settings. The high oc-
currence probability of a CF event does not necessarily pose
high CF exposure. Thus, it is important to understand the
different risk types and avoid biased risk estimation using
either statistics-based or hydrodynamics-based assessment
methods singly. Using the new CF risk index, we have de-
termined that the coastal areas of the San Joaquin River and
the Hudson River, where Silicon Valley and New York City
are located, respectively, are particularly vulnerable to CF.

Moreover, we have identified the uncertainty sources in
the existing CFRAs. Even though statistics-based CFRA is
widely used in continental and global domains, the estimated
CF risks based on such CFRAs could be too high because
flow physics, such as complex fluvial processes and the back-
water propagation, are neglected. The hydrodynamics-based
CFRA is more appropriate for analyzing the spatially dis-
tributed risk, but the large-scale numerical models likely un-
derestimate the flood extremes and the dependence structure
among the CF drivers. A more robust CFRA requires im-
proved performance in large-scale modeling. In the future,
we plan to apply the land-river—ocean fully coupled E3SM
on a coastal-refined mesh to better represent the interactive
CF physics and develop a more robust CFRA.

Code and data availability. The water level observation along the
CONUS coastline is obtained from the NOAA tides & currents
website (https://tidesandcurrents.noaa.gov/) (NOAA, 2022). The
streamflow measurements are downloaded from the USGS
National Water Information System (NWIS) website (http:/
waterdata.usgs.gov/nwis/) (US Geological Survey, 2016). The
GTSM storm surge simulation is available from the Coper-
nicus Climate Change Service (C3S) Climate Data Store
(https://doi.org/10.24381/cds.8c59054f, Yan et al., 2022). The
MOSART source code, the statistical analysis code of the com-
pound flood risk assessment, the MOSART simulation out-
put, and the statistical analysis results are available on Zenodo
(https://doi.org/10.5281/zenodo.7588256, Feng, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-27-3911-2023-supplement.

Author contributions. DF and ZT devised the framework of the
compound flood risk assessment and designed the statistical and nu-
merical analyses. DX created the MOSART runoff forcing from the
GREFR dataset. DF carried out the model simulation, risk analysis,
and visualization. All authors discussed and reviewed the analysis
and results and contributed to the manuscript editing. ZT and LL su-
pervised the project.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/hess-27-3911-2023

3929

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. All model simulations were performed using
resources available through Research Computing at Pacific North-
west National Laboratory (PNNL). PNNL is operated for DOE by
the Battelle Memorial Institute (Ohio, USA) under contract DE-
ACO05-76RLO1830.

Financial support. This research has been supported by the Earth
System Model Development program areas of the US Department
of Energy, Office of Science, Office of Biological and Environmen-
tal Research as part of the multi-program, collaborative Integrated
Coastal Modeling (ICoM) project (grant no. KP1703110/75415).

Review statement. This paper was edited by Rohini Kumar and re-
viewed by three anonymous referees.

References

AghaKouchak, A., Huning, L. S., Chiang, F., Sadegh, M., Vahedi-
fard, F., Mazdiyasni, O., Moftakhari, H., and Mallakpour, I.: How
do natural hazards cascade to cause disasters?, Nature, 561, 458—
460, https://doi.org/10.1038/d41586-018-06783-6, 2018.

Alfieri, L., Feyen, L., and Di Baldassarre, G.: Increasing flood risk
under climate change: a pan-European assessment of the bene-
fits of four adaptation strategies, Climatic Change, 136, 507-521,
https://doi.org/10.1007/s10584-016-1641-1, 2016.

Apel, H., Thieken, A. H., Merz, B., and Bloschl, G.: Flood
risk assessment and associated uncertainty, Nat. Hazards Earth
Syst. Sci., 4, 295-308, https://doi.org/10.5194/nhess-4-295-
2004, 2004.

Asher, T. G., Luettich Jr., R. A., Fleming, J. G., and Blanton,
B. O.: Low frequency water level correction in storm surge
models using data assimilation, Ocean Model., 144, 101483,
https://doi.org/10.1016/j.ocemod.2019.101483, 2019.

Bakhtyar, R., Maitaria, K., Velissariou, P., Trimble, B., Mashriqui,
H., Moghimi, S., Abdolali, A., Van der Westhuysen, A., Ma,
Z., and Clark, E.: A new 1D/2D coupled modeling approach
for a riverine-estuarine system under storm events: Applica-
tion to Delaware River Basin, J. Geophys. Res.-Oceans, 125,
€2019JC015822, https://doi.org/10.1029/2019JC015822, 2020.

Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O.,
Sosa, J., Savage, J., Olcese, G., Neal, J., Schumann, G., Gius-
tarini, L., Coxon, G., Porter, J. R., Amodeo, M. E, Chu, Z.,
Lewis-Gruss, S., Freeman, N. B., Houser, T., Delgado, M.,
Hamidi, A., Bolliger, 1., McCusker, K., Emanuel, K., Fer-
reira, C. M., Khalid, A., Haigh, I. D., Couasnon, A., Kopp,
R., Hsiang, S., and Krajewski, W. F.: Combined modeling of
US fluvial, pluvial, and coastal flood hazard under current

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023


https://tidesandcurrents.noaa.gov/
http://waterdata.usgs.gov/nwis/
http://waterdata.usgs.gov/nwis/
https://doi.org/10.24381/cds.8c59054f
https://doi.org/10.5281/zenodo.7588256
https://doi.org/10.5194/hess-27-3911-2023-supplement
https://doi.org/10.1038/d41586-018-06783-6
https://doi.org/10.1007/s10584-016-1641-1
https://doi.org/10.5194/nhess-4-295-2004
https://doi.org/10.5194/nhess-4-295-2004
https://doi.org/10.1016/j.ocemod.2019.101483
https://doi.org/10.1029/2019JC015822

3930

and future climates, Water Resour. Res., 57, e2020WR028673,
https://doi.org/10.1029/2020wr028673, 2021.

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles,
D. G, Van Dijk, A. I, McVicar, T. R., and Adler, R. F.:
MSWEP V2 global 3-hourly 0.1 precipitation: methodology and
quantitative assessment, B. Am. Meteorol. Soc., 100, 473-500,
https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.

Bermudez, M., Farfan, J., Willems, P., and Cea, L.: Assess-
ing the effects of climate change on compound flooding in
coastal river areas, Water Resour. Res., 57, €2020WR029321,
https://doi.org/10.1029/2020WR029321, 2021.

Bevacqua, E., Maraun, D., Vousdoukas, M., Voukouvalas, E., Vrac,
M., Mentaschi, L., and Widmann, M.: Higher probability of com-
pound flooding from precipitation and storm surge in Europe
under anthropogenic climate change, Sci. Adv., 5, eaaw5531,
https://doi.org/10.1126/sciadv.aaw5531, 2019.

Bilskie, M. and Hagen, S.: Defining flood zone transitions in low-
gradient coastal regions, Geophys. Res. Lett., 45, 2761-2770,
https://doi.org/10.1002/2018GL077524, 2018.

Bouwer, L. M.: Projections of future extreme weather losses un-
der changes in climate and exposure, Risk Anal., 33, 915-930,
https://doi.org/10.1111/j.1539-6924.2012.01880.x, 2013.

Breiman, L.: Random forests, Mach. Learn.,, 45,
https://doi.org/10.1023/a:1010933404324, 2001.

Caldwell, P. M., Terai, C. R., Hillman, B., Keen, N. D., Bo-
genschutz, P., Lin, W., Beydoun, H., Taylor, M., Bertagna, L.,
and Bradley, A.: Convection-permitting simulations with the
E3SM global atmosphere model, J. Adv. Model. Earth Syst.,
13, €2021MS002544, https://doi.org/10.1029/2021MS002544,
2021.

Camelo, J., Mayo, T. L., and Gutmann, E. D.: Projected Cli-
mate Change Impacts on Hurricane Storm Surge Inundation in
the Coastal United States, Front. Built Environ., 207, 588049,
https://doi.org/10.3389/fbuil.2020.588049, 2020.

Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E.,
and Nicholls, R. J.: Regional analysis of multivariate com-
pound coastal flooding potential around Europe and envi-
rons: sensitivity analysis and spatial patterns, Nat. Hazards
Earth Syst. Sci., 21, 2021-2040, https://doi.org/10.5194/nhess-
21-2021-2021, 2021.

Cook, A. and Merwade, V.. Effect of topographic data,
geometric  configuration and modeling approach on
flood inundation mapping, J. Hydrol, 377, 131-142,
https://doi.org/10.1016/j.jhydrol.2009.08.015, 2009.

Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. L., Haigh, I. D.,
Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring com-
pound flood potential from river discharge and storm surge ex-
tremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489—
504, https://doi.org/10.5194/nhess-20-489-2020, 2020.

Dullaart, J., Muis, S., Bloemendaal, N., and Aerts, J. C.:
Advancing global storm surge modelling using the new
ERAS5 climate reanalysis, Clim. Dynam., 54, 1007-1021,
https://doi.org/10.1007/s00382-019-05044-0, 2020.

Dung, N. V., Merz, B., Bardossy, A., and Apel, H.: Handling uncer-
tainty in bivariate quantile estimation — An application to flood
hazard analysis in the Mekong Delta, J. Hydrol., 527, 704-717,
https://doi.org/10.1016/j.jhydrol.2015.05.033, 2015.

5-32,

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

D. Feng et al.: Understanding the compound flood risk along the coast of the contiguous United States

Dykstra, S. and Dzwonkowski, B.: The propagation of
fluvial flood waves through a backwater-estuarine en-
vironment, Water Resour. Res., 56, e2019WR025743,
https://doi.org/10.1029/2019WR025743, 2020.

Dykstra, S. and Dzwonkowski, B.: The Role of Intensifying Precip-
itation on Coastal River Flooding and Compound River-Storm
Surge Events, Northeast Gulf of Mexico, Water Resour. Res.,
57, €2020WR029363, https://doi.org/10.1029/2020WR029363,
2021.

Egorova, R., van Noortwijk, J. M., and Holterman, S. R.: Uncer-
tainty in flood damage estimation, Int. J. River Basin Manage.,
6, 139-148, https://doi.org/10.1080/15715124.2008.9635343,
2008.

Eilander, D., Couasnon, A., Ikeuchi, H., Muis, S., Yamazaki, D.,
Winsemius, H. C., and Ward, P. J.: The effect of surge on riverine
flood hazard and impact in deltas globally, Environ. Res. Lett.,
15, 104007, https://doi.org/10.1088/1748-9326/ab8ca6, 2020.

Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki,
D., Muis, S., Dullaart, J., Haag, A., Winsemius, H. C., and
Ward, P. J.: A globally applicable framework for compound flood
hazard modeling, Nat. Hazards Earth Syst. Sci., 23, 823-846,
https://doi.org/10.5194/nhess-23-823-2023, 2023.

Fan, Y., Yu, L., Shi, X.,, and Duan, Q.: Tracing Uncer-
tainty Contributors in the Multi-Hazard Risk Analysis for
Compound Extremes, Earth’s Future, 9, e2021EF002280,
https://doi.org/10.1029/2021EF002280, 2021.

Feng, D.: Compound flood risk analysis in CONUS, Zenodo [code],
https://doi.org/10.5281/zenodo.7588256, 2023.

Feng, D., Tan, Z., Engwirda, D., Liao, C., Xu, D., Bisht, G., Zhou,
T., Li, H. Y., and Leung, L. R.: Investigating coastal backwater
effects and flooding in the coastal zone using a global river trans-
port model on an unstructured mesh, Hydrol. Earth Syst. Sci., 26,
5473-5491, https://doi.org/10.5194/hess-26-5473-2022, 2022.

Ferson, S. and Ginzburg, L. R.: Different methods are needed to
propagate ignorance and variability, Reliabil. Eng. Syst. Safe.,
54, 133-144, https://doi.org/10.1016/S0951-8320(96)00071-3,
1996.

Gallien, T. W., Kalligeris, N., Delisle, M.-P. C., Tang, B.-X.,
Lucey, J. T., and Winters, M. A.: Coastal flood modeling chal-
lenges in defended urban backshores, Geosciences, 8, 450,
https://doi.org/10.3390/geosciences8120450, 2018.

Ghanbari, M., Arabi, M., Kao, S. C., Obeysekera, J., and Sweet, W.:
Climate Change and Changes in Compound Coastal-Riverine
Flooding Hazard Along the US Coasts, Earth’s Future, 9,
€2021EF002055, https://doi.org/10.1029/2021EF002055, 2021.

Golaz, J. C., Van Roekel, L. P, Zheng, X., Roberts, A. F,
Wolfe, J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud,
M. E., and Forsyth, R. M.: The DOE E3SM Model Ver-
sion 2: Overview of the physical model and initial model
evaluation, J. Adv. Model. Earth Syst., 14, ¢2022MS003156,
https://doi.org/10.1029/2022ms003156, 2022.

Gori, A. and Lin, N.: Projecting compound flood hazard
under climate change with physical models and joint
probability methods, Earth’s Future, 10, e2022EF003097,
https://doi.org/10.1029/2022EF003097, 2022.

Gori, A., Lin, N., and Smith, J.: Assessing compound flood-
ing from landfalling tropical cyclones on the North Car-
olina coast, Water Resour. Res., 56, e2019WR026788,
https://doi.org/10.1029/2019WR026788, 2020.

https://doi.org/10.5194/hess-27-3911-2023


https://doi.org/10.1029/2020wr028673
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1029/2020WR029321
https://doi.org/10.1126/sciadv.aaw5531
https://doi.org/10.1002/2018GL077524
https://doi.org/10.1111/j.1539-6924.2012.01880.x
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1029/2021MS002544
https://doi.org/10.3389/fbuil.2020.588049
https://doi.org/10.5194/nhess-21-2021-2021
https://doi.org/10.5194/nhess-21-2021-2021
https://doi.org/10.1016/j.jhydrol.2009.08.015
https://doi.org/10.5194/nhess-20-489-2020
https://doi.org/10.1007/s00382-019-05044-0
https://doi.org/10.1016/j.jhydrol.2015.05.033
https://doi.org/10.1029/2019WR025743
https://doi.org/10.1029/2020WR029363
https://doi.org/10.1080/15715124.2008.9635343
https://doi.org/10.1088/1748-9326/ab8ca6
https://doi.org/10.5194/nhess-23-823-2023
https://doi.org/10.1029/2021EF002280
https://doi.org/10.5281/zenodo.7588256
https://doi.org/10.5194/hess-26-5473-2022
https://doi.org/10.1016/S0951-8320(96)00071-3
https://doi.org/10.3390/geosciences8120450
https://doi.org/10.1029/2021EF002055
https://doi.org/10.1029/2022ms003156
https://doi.org/10.1029/2022EF003097
https://doi.org/10.1029/2019WR026788

D. Feng et al.: Understanding the compound flood risk along the coast of the contiguous United States 3931

Grimaldi, S. and Serinaldi, F.: Asymmetric copula in multivariate
flood frequency analysis, Adv. Water Resour., 29, 1155-1167,
https://doi.org/10.1016/j.advwatres.2005.09.005, 2006.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80-91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hall, J. W. Handling uncertainty in the hydroin-
formatic process, J. Hydroinform., 5, 215-232,
https://doi.org/10.2166/hydro.2003.0019, 2003.

Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot,
J., Herweijer, C., and Chateau, J.: A global ranking of port cities
with high exposure to climate extremes, Climatic Change, 104,
89-111, https://doi.org/10.1007/s10584-010-9977-4, 2011.

Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal,
R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing
the characteristics and drivers of compound flooding events
around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117-3139,
https://doi.org/10.5194/hess-23-3117-2019, 2019.

Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Sim-
mons, A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Bal-
samo, G., and Bechtold, P.: Operational global reanalysis:
progress, future directions and synergies with NWP, ECMWFE,
https://doi.org/10.21957/tkic6g3wm, 2018.

Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R.
J., Tol, R. S., Marzeion, B., Fettweis, X., Ionescu, C., and Lev-
ermann, A.: Coastal flood damage and adaptation costs under
21st century sea-level rise, P. Natl. Acad. Sci. USA, 111, 3292—
3297, https://doi.org/10.1073/pnas.1222469111, 2014.

Hodges, B. R.. Challenges in continental river dy-
namics, Environ. Model. Softw., 50, 16-20,
https://doi.org/10.1016/j.envsoft.2013.08.010, 2013.

Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J.,
Winsemius, H. C., Verlaan, M., and Kanae, S.: Compound sim-
ulation of fluvial floods and storm surges in a global coupled
river-coast flood model: Model development and its application
to 2007 Cyclone Sidr in Bangladesh, J. Adv. Model. Earth Syst.,
9, 1847-1862, https://doi.org/10.1002/2017MS000943, 2017.

Judi, D. R., Rakowski, C. L., Waichler, S. R., Feng, Y., and Wig-
mosta, M. S.: Integrated modeling approach for the develop-
ment of climate-informed, actionable information, Water, 10,
775, https://doi.org/10.3390/w10060775, 2018.

Kalyanapu, A. J., Judi, D. R., McPherson, T. N., and Burian,
S. J.: Annualised risk analysis approach to recommend ap-
propriate level of flood control: application to S wan-
nanoa river watershed, J. Flood Risk Manage., 8, 368-385,
https://doi.org/10.1111/jfr3.12108, 2015.

Kendall, M. G.: A new measure of rank correlation, Biometrika, 30,
81-93, https://doi.org/10.2307/2332226, 1938.

Kew, S., Selten, F., Lenderink, G., and Hazeleger, W.: The si-
multaneous occurrence of surge and discharge extremes for
the Rhine delta, Nat. Hazards Earth Syst. Sci., 13, 2017-2029,
https://doi.org/10.5194/nhess-13-2017-2013, 2013.

Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J.,
Westerberg, 1. K., Belleville, A., Sevrez, D., Sikorska, A. E.,
and Petersen-@verleir, A.: A comparison of methods for stream-
flow uncertainty estimation, Water Resour. Res., 54, 7149-7176,
https://doi.org/10.1029/2018WR022708, 2018.

https://doi.org/10.5194/hess-27-3911-2023

Kojadinovic, I. and Yan, J.: Modeling multivariate distributions with
continuous margins using the copula R package, J. Stat. Softw.,
34, 1-20, https://doi.org/10.18637/js5.v034.109, 2010.

Kron, W.: Flood risk = hazard - values - vulnerability, Water Int., 30,
58-68, https://doi.org/10.1080/02508060508691837, 2005.

Kulp, S. A. and Strauss, B. H.: New elevation data triple estimates
of global vulnerability to sea-level rise and coastal flooding, Nat.
Commun., 10, 1-12, https://doi.org/10.1038/s41467-019-12808-
z,2019.

Kumbier, K., Carvalho, R. C., Vafeidis, A. T., and Woodroffe,
C. D.: Investigating compound flooding in an estuary using
hydrodynamic modelling: a case study from the Shoalhaven
River, Australia, Nat. Hazards Earth Syst. Sci., 18, 463-477,
https://doi.org/10.5194/nhess-18-463-2018, 2018.

Lamb, M. P, Nittrouer, J. A., Mohrig, D., and Shaw, J.: Backwa-
ter and river plume controls on scour upstream of river mouths:
Implications for fluvio-deltaic morphodynamics, J. Geophys.
Res.-Earth, 117, F01002, https://doi.org/10.1029/2011JF002079,
2012.

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swen-
son, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout,
L., and Kennedy, D.: The Community Land Model version 5: De-
scription of new features, benchmarking, and impact of forcing
uncertainty, J. Adv. Model. Earth Syst., 11, 4245-4287, 2019.

Lehner, B. and Grill, G.: Global river hydrography and net-
work routing: baseline data and new approaches to study the
world’s large river systems, Hydrol. Process., 27, 2171-2186,
https://doi.org/10.1002/hyp.9740, 2013.

Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography
derived from spaceborne elevation data, Eos Trans. Am. Geo-
phys. Union, 89, 93-94, https://doi.org/10.1029/2008EO 100001,
2008.

Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A.
M., and Leung, L. R.: A physically based runoff routing model
for land surface and earth system models, J. Hydrometeorol., 14,
808-828, https://doi.org/10.1175/JHM-D-12-015.1, 2013.

Li, H. Y., Ruby Leung, L., Tesfa, T., Voisin, N., Hejazi, M., Liu, L.,
Liu, Y., Rice, J., Wu, H., and Yang, X.: Modeling stream temper-
ature in the Anthropocene: An earth system modeling approach,
J. Adv. Model. Earth Syst., 7, 1661-1679, 2015a.

Li, H.-Y,, Leung, L. R., Getirana, A., Huang, M., Wu, H., Xu,
Y., Guo, J., and Voisin, N.: Evaluating global streamflow sim-
ulations by a physically based routing model coupled with
the community land model, J. Hydrometeorol., 16, 948-971,
https://doi.org/10.1175/JHM-D-14-0079.1, 2015b.

Li, H.-Y,, Tan, Z., Ma, H., Zhu, Z., Abeshu, G. W., Zhu, S.,
Cohen, S., Zhou, T., Xu, D., and Leung, L. R.: A new
large-scale suspended sediment model and its application over
the United States, Hydrol. Earth Syst. Sci., 26, 665-688,
https://doi.org/10.5194/hess-26-665-2022, 2022.

Lian, J., Xu, K., and Ma, C.: Joint impact of rainfall and tidal level
on flood risk in a coastal city with a complex river network: a
case study of Fuzhou City, China, Hydrol. Earth Syst. Sci., 17,
679-689, https://doi.org/10.5194/hess-17-679-2013, 2013.

Lilly, J. R., Capodaglio, G., Petersen, M. R., Brus, S. R.,
Engwirda, D., and Higdon, R. L.: Storm Surge Model-
ing as an Application of Local Time-Stepping in MPAS-
Ocean, J. Adv. Model. Earth Syst., 15, €2022MS003327,
https://doi.org/10.1029/2022MS003327, 2023.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023


https://doi.org/10.1016/j.advwatres.2005.09.005
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.2166/hydro.2003.0019
https://doi.org/10.1007/s10584-010-9977-4
https://doi.org/10.5194/hess-23-3117-2019
https://doi.org/10.21957/tkic6g3wm
https://doi.org/10.1073/pnas.1222469111
https://doi.org/10.1016/j.envsoft.2013.08.010
https://doi.org/10.1002/2017MS000943
https://doi.org/10.3390/w10060775
https://doi.org/10.1111/jfr3.12108
https://doi.org/10.2307/2332226
https://doi.org/10.5194/nhess-13-2017-2013
https://doi.org/10.1029/2018WR022708
https://doi.org/10.18637/jss.v034.i09
https://doi.org/10.1080/02508060508691837
https://doi.org/10.1038/s41467-019-12808-z
https://doi.org/10.1038/s41467-019-12808-z
https://doi.org/10.5194/nhess-18-463-2018
https://doi.org/10.1029/2011JF002079
https://doi.org/10.1002/hyp.9740
https://doi.org/10.1029/2008EO100001
https://doi.org/10.1175/JHM-D-12-015.1
https://doi.org/10.1175/JHM-D-14-0079.1
https://doi.org/10.5194/hess-26-665-2022
https://doi.org/10.5194/hess-17-679-2013
https://doi.org/10.1029/2022MS003327

3932

Luo, X., Li, H.-Y,, Leung, L. R., Tesfa, T. K., Getirana, A., Papa,
F., and Hess, L. L.: Modeling surface water dynamics in the
Amazon Basin using MOSART-Inundation v1.0: impacts of geo-
morphological parameters and river flow representation, Geosci.
Model Dev., 10, 1233-1259, https://doi.org/10.5194/gmd-10-
1233-2017, 2017.

Maskrey, A., Peduzzi, P., Chatenoux, B., Herold, C., Dao,
Q.-H., and Giuliani, G.: Revealing Risk, Redefining
Development, Global Assessment Report on Disaster
Risk Reduction, United Nations Strategy for Disas-
ter Reduction, 17-51, https://www.undrr.org/publication/
global-assessment-report-disaster-risk-reduction-2011 (last
access: 3 November 2023), 2011.

Mehran, A., AghaKouchak, A., Nakhjiri, N., Stewardson, M.
J., Peel, M. C., Phillips, T. J., Wada, Y., and Ravalico,
J. K.: Compounding impacts of human-induced water stress
and climate change on water availability, Sci. Rep., 7, 1-9,
https://doi.org/10.1038/s41598-017-06765-0, 2017.

Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew,
R. A., and Sanders, B. F.: Linking statistical and hydrody-
namic modeling for compound flood hazard assessment in
tidal channels and estuaries, Adv. Water Resour., 128, 28-38,
https://doi.org/10.1016/j.advwatres.2019.04.009, 2019.

Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B.
F., and Matthew, R. A.: Compounding effects of sea level rise
and fluvial flooding, P. Natl. Acad. Sci. USA, 114, 9785-9790,
https://doi.org/10.1073/pnas.1620325114, 2017.

Muis, S., Verlaan, M., Nicholls, R. J., Brown, S., Hinkel, J., Lincke,
D., Vafeidis, A. T., Scussolini, P., Winsemius, H. C., and Ward,
P. J.: A comparison of two global datasets of extreme sea lev-
els and resulting flood exposure, Earth’s Future, 5, 379-392,
https://doi.org/10.1002/2016EF000430, 2017.

Muis, S., Apecechea, M. 1., Dullaart, J., de Lima Rego, J.,
Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A high-
resolution global dataset of extreme sea levels, tides, and storm
surges, including future projections, Front. Mar. Sci., 7, 263,
https://doi.org/10.3389/fmars.2020.00263, 2020.

Muis, S., Apecechea, M. L., Alvarez, J. A., Verlaan, M., Yan,
K., Dullaart, J., Aerts, J., Duong, T., Ranasinghe, R., Erik-
son, L., O’Neill, A., Bars, D. 1., Haarsma, R., and Roberts,
M.: Global sea level change time series from 1950 to 2050
derived from reanalysis and high resolution CMIP6 climate
projections, CDS — Copernicus Climat Data Store [data set],
https://doi.org/10.24381/cds.a6d42d60, 2022.

Muiloz, D., Moftakhari, H., and Moradkhani, H.: Compound effects
of flood drivers and wetland elevation correction on coastal flood
hazard assessment, Water Resour. Res., 56, e2020WR027544,
https://doi.org/10.1029/2020WR027544, 2020.

Nasr, A. A., Wahl, T., Rashid, M. M., Camus, P., and Haigh,
I. D.: Assessing the dependence structure between oceano-
graphic, fluvial, and pluvial flooding drivers along the United
States coastline, Hydrol. Earth Syst. Sci., 25, 6203-6222,
https://doi.org/10.5194/hess-25-6203-2021, 2021.

NOAA: NOAA tides & currents, https://tidesandcurrents.noaa.gov/
(last access: 19 January 2023), 2022.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023

D. Feng et al.: Understanding the compound flood risk along the coast of the contiguous United States

Olbert, A. 1., Comer, J., Nash, S., and Hartnett, M.: High-resolution
multi-scale modelling of coastal flooding due to tides, storm
surges and rivers inflows. A Cork City example, Coast. Eng.,
121, 278-296, https://doi.org/10.1016/j.coastaleng.2016.12.006,
2017.

Pal, N., Barton, K. N., Petersen, M. R., Brus, S. R., Eng-
wirda, D., Arbic, B. K., Roberts, A. F., Westerink, J. J., and
Wirasaet, D.: Barotropic tides in MPAS-Ocean (E3SM V2): im-
pact of ice shelf cavities, Geosci. Model Dev., 16, 1297-1314,
https://doi.org/10.5194/gmd-16-1297-2023, 2023.

Paprotny, D., Vousdoukas, M. 1., Morales-Ndapoles, O., Jonkman, S.
N., and Feyen, L.: Pan-European hydrodynamic models and their
ability to identify compound floods, Nat. Hazards, 101, 933-957,
https://doi.org/10.1007/s11069-020-03902-3, 2020.

Parodi, M. U., Giardino, A., Van Dongeren, A., Pearson, S. G.,
Bricker, J. D., and Reniers, A. J.: Uncertainties in coastal flood
risk assessments in small island developing states, Nat. Hazards
Earth Syst. Sci., 20, 2397-2414, https://doi.org/10.5194/nhess-
20-2397-2020, 2020.

Phongsapan, K., Chishtie, F., Poortinga, A., Bhandari, B.,
Meechaiya, C., Kunlamai, T., Aung, K. S., Saah, D., Anderson,
E., and Markert, K.: Operational flood risk index mapping for
disaster risk reduction using Earth Observations and cloud com-
puting technologies: a case study on Myanmar, Front. Environ.
Sci., 7, 191, https://doi.org/10.3389/fenvs.2019.00191, 2019.

Portner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P.,
Tignor, M., Poloczanska, E., and Weyer, N.: The ocean
and cryosphere in a changing climate, IPCC Special Re-
port on the Ocean and Cryosphere in a Changing Climate,
https://doi.org/10.1017/9781009157964, 2019.

Rashid, M., Wahl, T., Chambers, D. P, Calafat, F. M.,
and Sweet, W. V.. An extreme sea level indicator for
the contiguous United States coastline, Sci. Data, 6, 1-14,
https://doi.org/10.1038/s41597-019-0333-x, 2019.

Sadegh, M., Ragno, E., and AghaKouchak, A.: Multivariate Cop-
ula Analysis Toolbox (MvCAT): describing dependence and un-
derlying uncertainty using a Bayesian framework, Water Resour.
Res., 53, 5166-5183, https://doi.org/10.1002/2016WR020242,
2017.

Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E.,
Mazdiyasni, O., Sanders, B., Matthew, R., and AghaK-
ouchak, A.: Multihazard scenarios for analysis of com-
pound extreme events, Geophys. Res. Lett., 45, 5470-5480,
https://doi.org/10.1029/2018GL077317, 2018.

Salvadori, G., De Michele, C., Kottegoda, N. T., and Rosso, R.:
Extremes in nature: an approach using copulas, Springer
Science & Business Media, ISBN 978-1-4020-4414-4,
https://doi.org/10.1007/1-4020-4415-1, 2007.

Salvadori, G., Durante, F., De Michele, C., Bernardi, M., and Pe-
trella, L.: A multivariate copula-based framework for dealing
with hazard scenarios and failure probabilities, Water Resour.
Res., 52, 3701-3721, https://doi.org/10.1002/2015WR017225,
2016.

Santiago-Collazo, F. L., Bilskie, M. V., and Hagen, S. C.: A
comprehensive review of compound inundation models in low-
gradient coastal watersheds, Environ. Model. Softw., 119, 166—
181, https://doi.org/10.1016/j.envsoft.2019.06.002, 2019.

https://doi.org/10.5194/hess-27-3911-2023


https://doi.org/10.5194/gmd-10-1233-2017
https://doi.org/10.5194/gmd-10-1233-2017
https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2011
https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2011
https://doi.org/10.1038/s41598-017-06765-0
https://doi.org/10.1016/j.advwatres.2019.04.009
https://doi.org/10.1073/pnas.1620325114
https://doi.org/10.1002/2016EF000430
https://doi.org/10.3389/fmars.2020.00263
https://doi.org/10.24381/cds.a6d42d60
https://doi.org/10.1029/2020WR027544
https://doi.org/10.5194/hess-25-6203-2021
https://tidesandcurrents.noaa.gov/
https://doi.org/10.1016/j.coastaleng.2016.12.006
https://doi.org/10.5194/gmd-16-1297-2023
https://doi.org/10.1007/s11069-020-03902-3
https://doi.org/10.5194/nhess-20-2397-2020
https://doi.org/10.5194/nhess-20-2397-2020
https://doi.org/10.3389/fenvs.2019.00191
https://doi.org/10.1017/9781009157964
https://doi.org/10.1038/s41597-019-0333-x
https://doi.org/10.1002/2016WR020242
https://doi.org/10.1029/2018GL077317
https://doi.org/10.1007/1-4020-4415-1
https://doi.org/10.1002/2015WR017225
https://doi.org/10.1016/j.envsoft.2019.06.002

D. Feng et al.: Understanding the compound flood risk along the coast of the contiguous United States 3933

Schiavina, M., Freire, S., and MacManus, K.: GHS pop-
ulation grid multitemporal (1975, 1990, 2000, 2015)
R2019A, European Commission, JRC - Joint Research
Centre, https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-
BFOE64DAS5218, 2019.

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae,
S., Kossin, J., Luo, Y., Marengo, J., Mclnnes, K., and
Rahimi, M.: Changes in climate extremes and their impacts
on the natural physical environment, Columbia University,
https://doi.org/10.7916/d8-6nbt-s431, 2012.

Serafin, K. A., Ruggiero, P., Parker, K., and Hill, D. F.: What’s
streamflow got to do with it? A probabilistic simulation of the
competing oceanographic and fluvial processes driving extreme
along-river water levels, Nat. Hazards Earth Syst. Sci., 19, 1415—
1431, https://doi.org/10.5194/nhess-19-1415-2019, 2019.

Sun, N., Wigmosta, M. S., Judi, D., Yang, Z., Xiao, Z., and Wang,
T.: Climatological analysis of tropical cyclone impacts on hydro-
logical extremes in the Mid-Atlantic region of the United States,
Environ. Res. Lett., 16, 124009, https://doi.org/10.1088/1748-
9326/ac2d6a, 2021.

Ting, M., Kossin, J. P., Camargo, S. J., and Li, C.: Past and future
hurricane intensity change along the US East Coast, Sci. Re., 9,
7795, https://doi.org/10.1038/s41598-019-44252-w, 2019.

Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo,
J., Coughlan de Perez, E., and Stephens, E. M.: Assessing the
performance of global hydrological models for capturing peak
river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23,
3057-3080, https://doi.org/10.5194/hess-23-3057-2019, 2019.

Turnipseed, D. P. and Sauer, V. B.: Discharge measurements at gag-
ing stations, US Geological Survey 2328-7055, US Geological
Survey, https://doi.org/10.3133/tm3AS8, 2010.

US Geological Survey: National Water Information System data
available on the World Wide Web, USGS Water Data for
the Nation, http://waterdata.usgs.gov/nwis/ (last access: 19 Jan-
uary 2023), 2016.

US Geological Survey: USGS 3D Elevation Program Digi-
tal Elevation Model, https://elevation.nationalmap.gov/arcgis/
rest/services/3DEPElevation/ImageServer (last access: 19 Jan-
uary 2023), 2019.

Uusitalo, L., Lehikoinen, A., Helle, 1., and Myrberg, K.: An
overview of methods to evaluate uncertainty of deterministic
models in decision support, Environ. Model. Softw., 63, 24-31,
https://doi.org/10.1016/j.envsoft.2014.09.017, 2015.

Valle-Levinson, A., Olabarrieta, M., and Heilman, L.:
Compound flooding in Houston-Galveston Bay dur-
ing Hurricane Harvey, Sci. Total Environ., 747, 141272,
https://doi.org/10.1016/j.scitotenv.2020.141272, 2020.

Van de Sande, B., Lansen, J., and Hoyng, C.: Sensitivity of coastal
flood risk assessments to digital elevation models, Water, 4, 568—
579, https://doi.org/10.3390/w4030568, 2012.

Vousdoukas, M. 1., Bouziotas, D., Giardino, A., Bouwer, L. M.,
Mentaschi, L., Voukouvalas, E., and Feyen, L.: Understanding
epistemic uncertainty in large-scale coastal flood risk assessment
for present and future climates, Nat. Hazards Earth Syst. Sci., 18,
2127-2142, https://doi.org/10.5194/nhess-18-2127-2018, 2018.

Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.:
Increasing risk of compound flooding from storm surge and
rainfall for major US cities, Nat. Clim. Change, 5, 1093-1097,
https://doi.org/10.1038/NCLIMATE2736, 2015.

https://doi.org/10.5194/hess-27-3911-2023

Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S.,
Hinkel, J., and Slangen, A. B.: Understanding extreme sea lev-
els for broad-scale coastal impact and adaptation analysis, Na-
ture Commun., 8, 1-12, https://doi.org/10.1038/ncomms16075,
2017.

Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry,
A., Muis, S., Veldkamp, T. I., Winsemius, H. C., and Wahl,
T.: Dependence between high sea-level and high river dis-
charge increases flood hazard in global deltas and estuaries,
Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-
9326/aad400, 2018.

Woolway, R. L., Sharma, S., Weyhenmeyer, G. A., Debolskiy,
A., Golub, M., Mercado-Bettin, D., Perroud, M., Stepanenko,
V., Tan, Z., and Grant, L.: Phenological shifts in lake strat-
ification under climate change, Nat. Commun., 12, 1-11,
https://doi.org/10.1038/s41467-021-22657-4, 2021.

Wu, W., Westra, S., and Leonard, M.: Estimating the probability
of compound floods in estuarine regions, Hydrol. Earth Syst.
Sci., 25,2821-2841, https://doi.org/10.5194/hess-25-2821-2021,
2021.

Xiao, Z., Yang, Z., Wang, T., Sun, N., Wigmosta, M., and Judi, D.:
Characterizing the non-linear interactions between tide, storm
surge, and river flow in the delaware bay estuary, United States,
Front. Mar. Sci., 8, 715557, 10.3389/fmars.2021.715557, 2021.

Xu, D., Bisht, G., Zhou, T., Leung, L. R., and Pan, M.: De-
velopment of Land-River Two-Way Hydrologic Coupling for
Floodplain Inundation in the Energy Exascale Earth Sys-
tem Model, J. Adv. Model. Earth Syst., 14, e2021MS002772,
https://doi.org/10.1029/2021MS002772, 2022.

Xu, K., Wang, C., and Bin, L.: Compound flood models in coastal
areas: a review of methods and uncertainty analysis, Nat. Haz-
ards, 116, 469—496, https://doi.org/10.1007/s11069-022-05683-
3,2022.

Yamazaki, D., Lee, H., Alsdorf, D. E., Dutra, E., Kim, H.,
Kanae, S., and Oki, T.: Analysis of the water level dy-
namics simulated by a global river model: A case study
in the Amazon River, Water Resour. Res., 48, W09508,
https://doi.org/10.1029/2012WR011869, 2012.

Yan, K., Muis, S., Irazoqui Apecechea, M., and Verlaan, M.: Wa-
ter level change time series for the European coast from 1977
to 2100 derived from climate projections, Copernicus Climate
Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.8c59054f, 2022.

Yang, Y., Pan, M., Lin, P, Beck, H. E., Zeng, Z., Ya-
mazaki, D., David, C. H., Lu, H.,, Yang, K., and Hong,
Y.: Global Reach-Level 3-Hourly River Flood Reanalysis
(1980-2019), B. Am. Meteorol. Soc., 102, E2086-E2105,
https://doi.org/10.1175/BAMS-D-20-0057.1, 2021.

Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E.,
Nunez, K., Zhang, R., Wang, H. V., and Roland, A.: Simulating
storm surge and compound flooding events with a creek-to-ocean
model: Importance of baroclinic effects, Ocean Model., 145,
101526, https://doi.org/10.1016/j.ocemod.2019.101526, 2020.

Zhang, D., Shi, X., Xu, H., lJing, Q., Pan, X., Liu, T,
Wang, H., and Hou, H.: A GIS-based spatial multi-index
model for flood risk assessment in the Yangtze River
Basin, China, Environ. Impact Assess. Rev., 83, 106397,
https://doi.org/10.1016/j.eiar.2020.106397, 2020.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023


https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.7916/d8-6nbt-s431
https://doi.org/10.5194/nhess-19-1415-2019
https://doi.org/10.1088/1748-9326/ac2d6a
https://doi.org/10.1088/1748-9326/ac2d6a
https://doi.org/10.1038/s41598-019-44252-w
https://doi.org/10.5194/hess-23-3057-2019
https://doi.org/10.3133/tm3A8
http://waterdata.usgs.gov/nwis/
https://elevation.nationalmap.gov/arcgis/rest/services/3DEPElevation/ImageServer
https://elevation.nationalmap.gov/arcgis/rest/services/3DEPElevation/ImageServer
https://doi.org/10.1016/j.envsoft.2014.09.017
https://doi.org/10.1016/j.scitotenv.2020.141272
https://doi.org/10.3390/w4030568
https://doi.org/10.5194/nhess-18-2127-2018
https://doi.org/10.1038/NCLIMATE2736
https://doi.org/10.1038/ncomms16075
https://doi.org/10.1088/1748-9326/aad400
https://doi.org/10.1088/1748-9326/aad400
https://doi.org/10.1038/s41467-021-22657-4
https://doi.org/10.5194/hess-25-2821-2021
https://doi.org/10.1029/2021MS002772
https://doi.org/10.1007/s11069-022-05683-3
https://doi.org/10.1007/s11069-022-05683-3
https://doi.org/10.1029/2012WR011869
https://doi.org/10.24381/cds.8c59054f
https://doi.org/10.1175/BAMS-D-20-0057.1
https://doi.org/10.1016/j.ocemod.2019.101526
https://doi.org/10.1016/j.eiar.2020.106397

3934 D. Feng et al.: Understanding the compound flood risk along the coast of the contiguous United States

Zhang, Y. J., Ye, F, Yu, H., Sun, W., Moghimi, S., Myers, E., Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond,
Nunez, K., Zhang, R., Wang, H., and Roland, A.: Simulating C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel,
compound flooding events in a hurricane, Ocean Dynam., 70, A., and Mahecha, M. D.: A typology of compound weather
621-640, https://doi.org/10.1007/s10236-020-01351-x, 2020. and climate events, Nature Rev. Earth Environ., 1, 333-347,

https://doi.org/10.1038/s43017-020-0060-z, 2020.

Hydrol. Earth Syst. Sci., 27, 3911-3934, 2023 https://doi.org/10.5194/hess-27-3911-2023


https://doi.org/10.1007/s10236-020-01351-x
https://doi.org/10.1038/s43017-020-0060-z

	Abstract
	Introduction
	Methodology
	The CFRA framework
	Uncertainty analysis in CFRA
	CFRA uncertainty sources
	Impact of riverbed elevation
	Impact of fluvial processes
	Model-data comparison


	Results
	Uncertainty in CFRA
	The relative importance of riverbed elevation
	Shift in peaks
	Model-data comparison

	CFRA
	CF hazard
	CF exposure
	CF risk


	Discussion
	Differences between CFRAs
	Limitations and future work

	Conclusion
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

