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Abstract. The moisture content of vegetation canopies con-
trols various ecosystem processes such as plant productiv-
ity, transpiration, mortality, and flammability. Leaf moisture
content (here defined as the ratio of leaf water mass to leaf
dry biomass, or live-fuel moisture content, LFMC) is a veg-
etation property that is frequently used to estimate flamma-
bility and the danger of fire occurrence and spread, and is
widely measured at field sites around the globe. LFMC can
be retrieved from satellite observations in the visible and
infrared domain of the electromagnetic spectrum, which is
however hampered by frequent cloud cover or low sun ele-
vation angles. As an alternative, vegetation water content can
be estimated from satellite observations in the microwave do-
main. For example, studies at local and regional scales have
demonstrated the link between LFMC and vegetation optical
depth (VOD) from passive microwave satellite observations.
VOD describes the attenuation of microwaves in the veg-
etation layer. However, neither were the relations between
VOD and LFMC investigated at large or global scales nor
has VOD been used to estimate LFMC. Here we aim to esti-
mate LFMC from VOD at large scales, i.e. at coarse spatial
resolution, globally, and at daily time steps over past decadal
timescales. Therefore, our objectives are: (1) to investigate
the relation between VOD from different frequencies and
LFMC derived from optical sensors and a global database of
LFMC site measurements; (2) to test different model struc-
tures to estimate LFMC from VOD; and (3) to apply the
best-performing model to estimate LFMC at global scales.
Our results show that VOD is medium to highly correlated

with LFMC in areas with medium to high coverage of short
vegetation (grasslands, croplands, shrublands). Forested ar-
eas show on average weak correlations, but the variability
in correlations is high. A logistic regression model that uses
VOD and additionally leaf area index as predictor to account
for canopy biomass reaches the highest performance in esti-
mating LFMC. Applying this model to global VOD and LAI
observations allows estimating LFMC globally over decadal
time series at daily temporal sampling. The derived estimates
of LFMC can be used to assess large-scale patterns and tem-
poral changes in vegetation water status, drought conditions,
and fire dynamics.

1 Introduction

Changes in water availability and the occurrence and sever-
ity of droughts affect various processes in land ecosystems
and vegetation (Konings et al., 2021a; Sippel et al., 2018).
For example, soil moisture and atmospheric water demand
affect plant water uptake, the water potential, and water con-
tent of vegetation, stomatal conductance, and transpiration
(Jarvis, 1976; Bonan, 2015). The regulation of plant water
content and stomatal conductance controls the exchange of
water, carbon, and energy between the ecosystem and atmo-
sphere. Hence, soil moisture and atmospheric water demand
are strong controls on plant productivity, growth, and mor-
tality (W. Li et al., 2021; McDowell, 2011; DeSoto et al.,
2020). Furthermore, the water content of living or dead veg-
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etation material controls the occurrence and intensity of dis-
turbances such as fires. A low water content of the fuel is
associated with higher flammability or a higher risk of fire
occurrence and spread (Chuvieco et al., 2010). Hence, fuel
moisture content (FMC) is a key variable to estimate daily to
long-term changes in fire danger (Stocks et al., 1998; Jolly et
al., 2015). FMC is defined as the ratio of the mass of water to
the dry biomass of a material and can be directly measured
from determining the fresh and dry mass m of a vegetation
sample (Yebra et al., 2013):

FMC=
mfresh−mdry

mdry
. (1)

FMC is frequently expressed as a percentage number
(FMC× 100 %). FMC can be determined for living vegeta-
tion components such as green grasses and leaves (i.e. live-
fuel moisture content, LFMC) or for dead vegetation com-
ponents such as litter and woody debris (dead-fuel mois-
ture content, DFMC) (Matthews, 2014; Yebra et al., 2013;
Viney, 1991). FMC is measured frequently at various loca-
tions in grasslands, shrublands, or forest ecosystems in sev-
eral countries to validate or calibrate satellite retrieval al-
gorithms and ultimately to support fire danger forecasting.
LFMC measurements from various countries have been com-
piled in the Globe-LFMC database which provides obser-
vations from 1383 sites over the period 1977 to 2018, but
with different length and frequency of observations among
different sites (Yebra et al., 2019). Site-level measurements
of LFMC provide an accurate estimate of the plant water sta-
tus; however, their limited spatial coverage is a constraint for
spatial-explicit estimates of the role of fuel moisture for fire
danger.

In order to complement site observations of LFMC, satel-
lite observations can be used to estimate LFMC over large
areas (Yebra et al., 2013). Thereby, especially satellite ob-
servations in the visible and infrared domain of the electro-
magnetic spectrum have been used to estimate LFMC. For
example, spectral information from the short-wave and near-
infrared bands from Landsat are correlated with LFMC (Chu-
vieco et al., 2002; Bowyer and Danson, 2004). This is be-
cause leaf water content has a strong effect on the absorp-
tion of near and shortwave infrared radiation. Hence, LFMC
can be computed by using empirical models or visible-
infrared leaf and canopy radiative transfer models by estimat-
ing equivalent water thickness (EWT, i.e. leaf water column
per unit area) and the leaf dry matter content (Danson and
Bowyer, 2004; Riano et al., 2005). Medium and coarse res-
olution visible-infrared satellite instruments are most com-
monly used to estimate LFMC, as they provide a frequent
temporal coverage (García et al., 2008; Yebra et al., 2008).
For example, observations from the Moderate Resolution
Imaging Spectroradiometer (MODIS) are the main input for
recently developed algorithms to estimate LFMC at conti-
nental or global scales (Yebra et al., 2018; Quan et al., 2021;
Zhu et al., 2021). Despite the direct biophysical relations be-

tween surface reflectance and LFMC and their implementa-
tion in visible-infrared radiative transfer models, the occur-
rence of cloud cover, smoke, or low sun elevation angles hin-
ders the retrieval of LFMC time series with high temporal
frequency from visible-infrared satellite sensors.

Microwaves can largely penetrate clouds and smoke, are
independent of the illumination by the sun, and hence pro-
vide an alternative to derive information about the land sur-
face. Microwave observations from either active radar instru-
ments or from passive microwave radiometers are sensitive
to the moisture content of soil and vegetation (Ulaby et al.,
1979; Jackson et al., 1982) and hence also to FMC (Kon-
ings et al., 2019). For example, early studies have shown that
fuel moisture conditions are related to the radar backscatter
of C-band (5.3 GHz frequency ≈ 5.6 cm wavelength) syn-
thetic aperture radar (SAR) observations from the ERS-1 and
RADARSAT-1 satellites (Leblon et al., 2002; Abbott et al.,
2007). Also observations from modern C-band SAR satel-
lites such as Sentinel-1 allow to estimate LFMC (Wang et al.,
2019; Rao et al., 2020). SAR observations are generally sen-
sitive to the above-ground biomass and moisture content of
vegetation, whereby the sensitivity to certain vegetation com-
ponents such as crown and stem changes with the used mi-
crowave wavelength. While short microwave wavelengths at
C-band, X-band (≈ 3 cm wavelength), and Ku-band (≈ 1.6–
2.5 cm) are mostly sensitive to the top of the canopy, L-band
(≈ 23 cm) is sensitive to the crown and P-band (≈ 70 cm) to
the stem (Saatchi and Moghaddam, 2000).

Similar relations between the microwave signal and veg-
etation water content are valid for observations from pas-
sive microwave instruments that measure naturally emitted
microwaves from the Earth surface. Passive microwaves are
emitted by the soil and vegetation and are then attenuated in
the vegetation layer (Jackson et al., 1982; Mo et al., 1982).
Passive microwave instruments are commonly used to es-
timate surface soil moisture (Njoku and Entekhabi, 1996;
Njoku et al., 2003; Wigneron et al., 1998, 2021; Dorigo et
al., 2017). Recently, surface soil moisture datasets from pas-
sive microwave sensors have also been used as a proxy to
estimate LFMC (Jia et al., 2019; Lu and Wei, 2021). How-
ever, passive microwaves are also directly related to LFMC.
The attenuation of the passive microwave signal in the vege-
tation layer is commonly described by the opacity or optical
thickness of the vegetation (VOD, vegetation optical depth)
(Jackson and Schmugge, 1991; Frappart et al., 2020). VOD
is proportional to vegetation water content (VWC, i.e. mass
of water per unit area) and hence to the dry biomass (mdry)
and LFMC (Konings et al., 2019):

VOD= b×VWC= b×mdry×LFMC, (2)

where b is a parameter that depends on vegetation type
and wavelength. Using this relation, VWC can be estimated
from passive microwave observations of VOD (Jackson and
Schmugge, 1991; Sawada et al., 2016, 2017). However, those
studies were mainly based on measurements of VWC and
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VOD in grasslands and for different crop types, and only few
observations for the relation between VOD and vegetation
water are available for forests (Holtzman et al., 2021; Mo-
men et al., 2017). Thereby, the observed relationship between
VOD and above-ground biomass (Rodríguez-Fernández et
al., 2018; Mialon et al., 2020; Frappart et al., 2020) sug-
gests that the relationship in Eq. (2) is also valid for forest
ecosystems but is modulated by wavelength (Holtzman et al.,
2021). The parameter b exponentially declines with increas-
ing wavelength, which implies that longer wavelengths have
a lower VOD and are less attenuated by the vegetation layer
than shorter wavelengths (Jackson and Schmugge, 1991). As
longer microwave wavelengths can penetrate deeper in the
vegetation layer, VOD from L-band instruments (L-VOD)
is more related to the biomass and water content of woody
components than VOD from instruments with shorter wave-
lengths (e.g. Ku-, X-, and C-VOD) which are more related to
leaf cover (Tian et al., 2016; Chaparro et al., 2019; X. Li et
al., 2021). Hence, we assume that Ku-, X-, and C-VOD show
a stronger relation with LFMC than L-VOD, which should be
more sensitive to changes in the moisture content of woody
components (Konings et al., 2021b). Fan et al. (2018) com-
pared LFMC from site measurements with passive and active
microwave satellite datasets of VOD, soil moisture and radar
backscatter ratios, and spectral indices from visible-infrared
sensors over France. They showed that X-VOD showed the
highest correlation (median r= 0.43 across sites) with LFMC
among all microwave-derived properties, but that spectral in-
dices from the visible-infrared domain were higher corre-
lated with LFMC than all microwave-derived properties (Fan
et al., 2018). However, the relation in Eq. (2) (Jackson and
Schmugge, 1991) and the results from Fan et al. (2018) and
Sawada et al. (2016) suggest that LFMC can be directly esti-
mated from passive-microwave VOD.

Despite this direct theoretical relationship between LFMC
and VOD, which has been established from field observa-
tions, there is currently no study that verified this relationship
at large (i.e. continental to global) scale. This implies that
no method exists that would allow to estimate LFMC from
VOD at large scales. However, the use of novel VOD datasets
with almost daily temporal coverage and data available partly
since 1987 (Moesinger et al., 2020; Wang et al., 2021) offers
the opportunity to estimate LFMC globally with high tempo-
ral resolution and over decadal timescales. In comparison to
visible-infrared satellite observations, the main disadvantage
of using VOD to estimate LFMC is the coarser spatial res-
olution of passive microwave data (usually 0.25◦× 0.25◦).
However, the same disadvantage applies for soil moisture
datasets from passive microwave satellites, which neverthe-
less experience a wide use for the investigation of land sur-
face processes or to constrain land surface models at large
scale (Dorigo et al., 2017; Wigneron et al., 2021; Scholze et
al., 2017).

Here, we aim to estimate LFMC from VOD at large
scales, i.e. globally at coarse spatial resolution and at decadal

timescales. Therefore, we will use VOD from short wave-
lengths from the VOD Climate Archive (VODCA) dataset,
which provides consistent time series of Ku-VOD, X-VOD,
and C-VOD harmonized from VOD retrievals from differ-
ent passive microwave satellites (Moesinger et al., 2020).
We first investigate the relation between VOD and LFMC
by comparing VOD with an LFMC dataset from MODIS
(Yebra et al., 2018) and with the Globe-LFMC database of
site observations (Yebra et al., 2019). In the second step, we
develop different model structures to compute LFMC from
VOD, and we calibrate each model against site-level obser-
vations from the Globe-LFMC database. Finally, we apply
the best-performing model globally to estimate and analyse
LFMC at large scales.

2 Data and methods

An overview of the properties of all used datasets is provided
in Table 1.

2.1 Vegetation Optical Depth Climate
Archive (VODCA) dataset

VOD was taken from the VODCA dataset (Moesinger et
al., 2020). VODCA provides VOD at 0.25◦× 0.25◦ spatial
resolution in three separate wavelength bands with differ-
ent temporal coverage, namely Ku-VOD (1987–2017), X-
VOD (1997–2018), and C-VOD (2002–2018). The dataset is
a merge of VOD retrievals from several passive microwave
instruments that were derived with the Land Parameter Re-
trieval Model (LPRM) (Owe et al., 2001; van der Schalie
et al., 2017). The merging uses a cumulative distribution
function matching of the individual VOD retrievals into a
joint long-term time series. Thereby VOD retrieved from the
AMSR-E sensor is used as scaling reference (Moesinger et
al., 2020).

The VODCA dataset has a daily temporal sampling, but
observations are not available for each day dependent on
time period and latitude. The VODCA dataset was masked
for artefacts because of radio frequency interference (RFI),
for land surface temperature < 0 ◦C, and for negative VOD
values, and therefore has mainly gaps in the winter months
in northern latitudes. We did not perform any gap-filling or
other further processing of the VODCA dataset. However, we
excluded grid cells from further analysis that were either not
vegetated or that have a higher coverage of ocean or inland
water bodies (see Sect. 2.5).

Spatial patterns, seasonal dynamics, and long-term trends
in the VODCA dataset have been intensively compared with
datasets of leaf area index, gross primary production, and
vegetation cover, and show that VODCA reflects common
patterns of large-scale vegetation changes (Moesinger et al.,
2020; X. Li et al., 2021; Wild et al., 2022).
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Table 1. Properties of the used datasets.

Dataset Variable Spatial resolution Temporal resolution Reference
and coverage and coverage

VODCA v01.0 Ku-VOD 0.25× 0.25◦ Daily Moesinger et al.
X-VOD Global Ku-VOD: 1987–2017 (2020)
C-VOD X-VOD: 1997–2018

C-VOD: 2002–2018

MODIS-LFMC LFMC (%) 500× 500 m 8-daily (Europe) Yebra et al. (2018)
Australia, Europe 4-daily (Australia)
including the EU, the 2000–2019
UK, and Turkey

Globe-LFMC LFMC (%) Site measurements Irregular sampling, Yebra et al. (2019)
(1383 sites) some stations since
Globally distributed 1980s

MOD15A2H v006 LAI 500× 500 m 8-daily Myneni et al. (2015)
Global 2000–2019

AVHRR tree and Tree cover (%) 1× 1 km Annual Song et al. (2018)
short vegetation cover Short vegetation cover Global 1982–2016

(%)

ESA CCI land cover Land cover classes 300× 300 m Annual Li et al. (2016)
V2.0.7 converted into Global 1992–2015

fractional coverage

Worldclim 2.5 Mean annual 10′× 10′ Average for the period Fick and Hijmans
bioclimatic variables temperature, annual Global 1970–2000 (2017)

total precipitation

CGIAR CSI SRTM Digital elevation 90× 90 m 2000 Jarvis et al. (2008)
model Global

Global Drought 12-monthly 1× 1◦ Monthly Global Drought
Observatory Standardized Global Since 1981 Observatory – JRC
Standardized Precipitation European Commission
Precipitation Index Index (SPI-12) (2022)

US Drought Monitor US Drought Severity Per US state, Weekly US Drought
and Coverage Index downloaded for Since 2000 Monitor (2022)
(DSCI) California

2.2 Live fuel moisture content datasets

LFMC was taken from two datasets, namely from the Globe-
LFMC database of site (Yebra et al., 2019) and from LFMC
data retrieved from MODIS satellite observations by apply-
ing the methodology of Yebra et al. (2018) (in the follow-
ing MODIS-LFMC). The Globe-LFMC measurements are
the primary dataset for the comparison with VOD and to de-
velop and calibrate the models to estimate LFMC from VOD.
However, as there is severe scale mismatch between site mea-
surements of LFMC and the coarse spatial resolution of VOD
(0.25◦× 0.25◦), we additionally used LFMC retrievals from
MODIS to make comparisons at the same spatial scale and
to assess if the obtained results are comparable.

Globe-LFMC provides LFMC field measurements from
1383 sites in 11 countries, mainly in the USA (963 sites),
China (229 sites), Spain (76 sites), and Australia (42 sites).
However, each site has a different temporal coverage and
sampling frequency of measurements, and different plant
species are sampled (Yebra et al., 2019). For example, all
sites in China have only one LFMC measurement, while the
site “Reader Ranch” in California has 1291 measurements.
At most sites, only one plant species is sampled throughout
the time, but at other sites several plant species are sampled.
LFMC values vary at many sites between species. In order to
simplify the comparison of LFMC measurements from dif-
ferent species with VOD, we grouped each species accord-
ing to their genus into a typical growth form. We consid-
ered the following growth forms: broad-leaved trees (TreeB),
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needle-leaved trees (TreeN), shrubs, grass (i.e. herbaceous
graminoid), and forbs (i.e. herbaceous non-graminoid). As
some plant genera can grow as tree or shrub, we decided for
one or the other based on the land cover type (forest or shrub-
land) at the site and based on the site photos that come with
the Globe-LFMC database.

MODIS-LFMC is based on an inversion (using look-
up tables) of different radiative transfer models for
grass/shrubs (PROSAILH) and trees (PROGeoSAIL) to
estimate LFMC from surface reflectance observations of
MODIS (Yebra et al., 2018). The method and dataset were
initially developed for Australia. Additionally, we used re-
trievals for Europe based on the same method. The dataset
provides LFMC at 500 m spatial resolution for the pe-
riod 2000 to 2019 at 4-daily (Australia) and 8-daily (Eu-
rope) time steps. The dataset comes in tiles based on the
original sinusoidal grid of MODIS observations. We first
merged all tiles within Europe or Australia and then repro-
jected the data to a longitude/latitude projection (WGS84)
using nearest neighbour resampling in Geospatial Data Ab-
straction Library software. We then aggregated the dataset to
0.25◦×0.25◦ spatial resolution of the VODCA dataset using
spatial averaging.

2.3 Leaf area index – MODIS

As the relationship between VOD and LFMC also depends
on leaf or canopy biomass, we additionally used leaf area
index (LAI) retrievals from MODIS as a proxy for total
leaf biomass. The MOD15A2H collection 6 product pro-
vides LAI globally on 500 m spatial resolution and 8-daily
time steps (Myneni et al., 2015). We only used retrievals
that were flagged as good quality in the dataset. Like the
MODIS-LFMC data, the LAI data were projected to geo-
graphical coordinates and then aggregated to 0.25◦× 0.25◦

spatial resolution by spatial averaging. The 8-daily MODIS
LAI data obtain a clear temporal variability within months,
which, despite the use of good quality observations, might be
still related to atmospheric effects or possibly other changes
in leaf and canopy properties (e.g. water content) that were
not considered during the retrieval of LAI. As we here in-
tend to use LAI only as a proxy for the temporal changes
in canopy biomass, we averaged the 8-daily LAI values to
monthly values to suppress the intra-monthly variability.

2.4 Vegetation cover and ancillary data

The cover of trees and short vegetation was used to stratify
the comparison between LFMC and VOD with land cover
information and to account for land cover in the models to
calculate LFMC from VOD. For this purpose, we used the
dataset from Song et al. (2018), which provides the percent-
age of tree cover, short vegetation, and bare ground within
grid cells of 1 km× 1 km resolution. The dataset was es-
timated based on observations from Advanced Very-High-

Resolution Radiometer (AVHRR) satellite sensors and pro-
vides annual maps for the years 1982 to 2016.

We additionally used information about ocean and in-
land water cover from the ESA CCI land cover map (ver-
sion 2.0.7) (Li et al., 2016). We aggregated the land cover in-
formation from the original spatial resolution to the fractional
coverage of different plant functional types at 0.25◦× 0.25◦

by using the cross-walking approach (Poulter et al., 2015).
We then used the fractional cover of water (> 50 %) in grid
cells to mask VOD data in global analyses (see Sect. 2.5).

Global maps of mean annual temperature and annual pre-
cipitation from the Worldclim 2.5 dataset (Fick and Hijmans,
2017) and the CGIAR SRTM digital elevation model (Jarvis
et al., 2008) were used to stratify analyses with ancillary in-
formation (Fig. A4).

Time series of the 12-monthly Standardized Precipitation
Index (SPI-12) and the US Drought Severity and Coverage
Index (DSCI) were used in a case study to compare the
large-scale estimates of LFMC with drought conditions in
the western United States and in California. SPI-12 data were
taken from the Global Drought Observatory (Global Drought
Observatory – JRC European Commission, 2022) and DSCI
data from the US Drought Monitor (2022).

2.5 Combination and comparisons of VOD and LFMC
data

We combined the VOD and LFMC data in four different
data combinations for our comparisons. Each combination
of VOD and LFMC data had a different purpose and used
a different masking or temporal sampling of data. The four
combinations enable to: (1) compare satellite retrievals from
MODIS-LFMC with the different bands of VOD; (2) com-
pare site measurements of LFMC from Globe-LFMC with
VOD; (3) calibrate and test models to estimate LFMC from
VOD using LFMC site measurements; and (4) apply the best
performing model to global VOD data to estimate LFMC
globally.

The first data combination (D1) uses MODIS-LFMC for
Australia and Europe to compare the temporal dynamic of
LFMC with Ku-, X-, and C-VOD. In order to make a com-
parison of VOD and LFMC time series per grid cell and
to assess the differences between the different VOD wave-
lengths, we only used observations from dates that occur in
all four datasets (i.e. MODIS-LFMC, Ku-VOD, X-VOD, and
C-VOD). These are for Australia 1390 time steps between
22 June 2002 and 28 July 2017, and for Europe 900 time
steps between 26 June 2002 and 31 July 2017. We then com-
puted the Spearman rank correlation between LFMC and the
different VOD bands per grid cell and stratified the result for
tree and short vegetation cover.

The second data combination (D2) is used to compare
site measurements from Globe-LFMC with VOD. For this
comparison, we used VOD data from the same days when
LFMC measurements were available. As each site has a dif-
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ferent temporal sampling of LFMC, the number of joint pairs
of LFMC and VOD observations is on average per site 80,
72, and 42 for Ku-, X-, and C-VOD, respectively, whereby
the differences between the number of observations for each
band are caused by the longer temporal coverage of Ku-VOD
than for X- or C-VOD. Single sites have up to 827 pairs
of Ku-VOD/LFMC observations. For this comparison, we
only matched LFMC with the dates of each individual VOD
band, but did not match additionally the dates of the three
VOD bands because this would decrease the availability of
LFMC/VOD pairs further. We then computed the Spearman
rank correlation between VOD and all LFMC measurements
for each site (regardless of the sampled plant species) and
also for each individual species at a site. We calculated the
correlation for all sites/site-species with at least 10 pairs of
LFMC/VOD observations. Based on this criterion, correla-
tions were computed for 910 sites. We then assessed how a
difference in the land cover distribution at the site and at the
corresponding 0.25◦× 0.25◦ grid cell affects the correlation
between LFMC and VOD. Therefore, we extracted for the
coordinate of each site the percentage of tree and short veg-
etation cover from the original resolution (1 km× 1 km) and
the aggregated resolution (0.25◦× 0.25◦) of the vegetation
cover dataset. The use of both resolutions allows assessing
if the local land cover distribution at the site is comparable
with the land cover distribution of the 0.25◦×0.25◦ grid cell
of the VOD data. The difference in land cover between the
1 km spatial resolution at the local site and the coarse 0.25◦

resolution of the corresponding grid cell was computed based
on the Euclidean distance:

D =

√
(TC25−TC1)

2
+ (SV25−SV1)

2, (3)

whereby TC and SV are tree cover and short vegetation, re-
spectively, and the subscripts 1 and 25 denote the 1 km and
0.25◦ spatial resolution. As TC and SV are percentages, the
difference D is in percent.

The third data combination (D3) used Globe-LFMC site
measurements to calibrate and evaluate models to estimate
LFMC from VOD. We found from data combination D2
that the correlation between site measurements of LFMC
and VOD decreases if the land cover distribution at 1×1 km
around the site increasingly differs from the land cover dis-
tribution at the 0.25◦× 0.25◦ grid cell of the VOD data (see
results in Sect. 3.1). Therefore, we aimed to select only sites
for the calibration and evaluation of models that are homoge-
nous and representative for the coarse resolution of the VOD
data. The Globe-LFMC database provides for each site a
spatial coefficient of variation of the normalized difference
vegetation index to quantify the homogeneity of vegetation
cover at each site (Yebra et al., 2019). We used sites with
a low coefficient of variation (CV < 0.26). Additionally, we
used the land cover difference D (Eq. 3) to quantify the rep-
resentativeness of the land cover at the site for the coarse
spatial resolution of the VOD data. We selected only sites

with D < 10 %, i.e. with a similar land cover distribution at
1 km and 0.25◦ spatial resolution. We further selected sites
for model calibration that have at least 15 pairs of VOD and
LFMC observations and that showed a positive correlation
(r > 0.2) between VOD and LFMC. These selection criteria
left 216 combinations of sites and plant species at 163 sites
to calibrate and test models (Fig. A4).

The fourth data combination (D4) uses daily-sampled
VODCA Ku-VOD and monthly-averaged MODIS LAI to es-
timate daily LFMC globally with the best performing model
for the overlapping period of both datasets (1 February 2000
to 31 July 2017). We applied the model to all grid cells at
0.25◦× 0.25◦ spatial resolution that have on average at least
5 % vegetation cover (TC+SV≥ 5 %) and that have less
than 50 % water cover.

2.6 Models to estimate LFMC from VOD

We developed and tested four different models to estimate
daily LFMC from daily values of VOD. All models were de-
veloped in this study either by assuming non-linear regres-
sions between LFMC and VOD or by adopting known rela-
tions between LFMC, VOD, VWC, and dry biomass from
previous studies (Jackson and Schmugge, 1991; Sawada et
al., 2016; Frappart et al., 2020). Specifically, in models A
and B we assume a positive relationship between VOD and
LFMC and use logistic regression (S-shaped curve) to esti-
mate LFMC from VOD. We use logistic regression because
LFMC cannot be smaller than 0 % and LFMC values higher
than 200 % are rare (the 95th percentile of LFMC is 193 %,
the maximum is 549 % in the Globe-LFMC database). In
models C and D, we adopt the relationships between LFMC,
VWC, and dry biomass (Eq. 1) and between VOD and VWC
(Eq. 2) to calculate LFMC. The four models are described
with more detail in the following paragraphs. Each model has
up to four model parameters. Prior ranges and values of those
model parameters were manually selected in order to always
obtain a positive relationship between VOD and LFMC and
to obtain typical LFMC values (Table 2).

In Model A, we assume that LFMC is directly proportional
to VOD by using a logistic regression as follows:

LFMC=
LFMCmax

1+ e−sl×(VOD−VOD0)
, (4)

where LFMCmax is the maximum possible LFMC value
(in %) and sl is the slope of the curve. VOD0 is the inflec-
tion point of the logistic curve, i.e. the VOD value at which
half of the LFMC between 0 % and LFMCmax is reached.
The parameters LFMCmax, sl, and VOD0 were calibrated for
each site.

In Model B, we additionally assume that LFMC depends
on seasonal changes in canopy structure. Therefore, we addi-
tionally include monthly-averaged LAI as predictor. We as-
sume that LFMC can be expressed based on a weighted com-
bination x of daily VOD and monthly-averaged LAI. Like in
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Table 2. Overview about prior parameter values and results after site-level calibration for the four models.

Model Parameter Prior parameter Parameter after site-level calibration
(prior, minimum, (median and 5th and 95th percentiles across all sites with the same growth form)

and maximum) Forb or grass Shrub Broad-leaved tree Needle-leaved tree

Model A LFMCmax (%) 360 [315, 600] 375 [315, 592] 420 [315, 554] 476 [343, 599] 389 [4315, 579]
(Eq. 4) sl 10 [3, 50] 10.34 [44.2, 23.8] 4.9 [3.2, 8.6] 5.6 [3, 12] 3.9 [3, 6]

VOD0 0.8 [0.1, 1.4] 0.78 [0.62, 1.1] 1 [0.76, 1.2] 0.95 [0.79, 1.14] 1.02 [0.84, 1.22]

Model B LFMCmax (%) fixed at 400 – – – –
(Eqs. 5 f 0.5 [0, 1] 0.53 [0.01, 0.85] 0.55 [0.08, 0.91] 0.75 [0.39, 1] 0.7 [0, 0.96]
and 6) sl 10 [1, 50] 7.2 [2.4, 14.7] 2.8 [1.1, 7.4] 4.1 [1.3, 12.6] 2.8 [1.4, 5.3]

x0 0.5 [0.1, 2] 0.77 [0.43, 1.24] 1.26 [0.7, 1.87] 1.07 [0.76, 1.68] 1.13 [0.78, 1.73]

Model C a 1 [0.01, 100] 0.02 [0.01, 24] 0.01 [0.01, 28] 0.01 [0.01, 6.29] 0.01 [0.01, 25]
(Eqs. 7 b 1.5 [0.1, 4] 0.19 [0.1, 1.64] 0.22 [0.1, 4] 0.33 [0.1, 3.79] 0.21 [0.1, 3.98]
and 8) c 0.1 [−10, 10] 3.1 [−8.3, 8.7] 4.1 [−9.1, 9.4] 0.78 [−7.1, 6.3] 1.0 [−8.63, 7.45]

Model D a 0.1 [0.01, 100] 0.66 [0.01, 50.1] 0.58 [0.01, 55.4] 0.41 [0.01, 9.57] 0.69 [0.01, 41.9]
(Eqs. 9–11) c 0.1 [−10, 10] 0.33 [−9.9, 9.05] 0.57 [−9, 6.9] 0.61 [−7, 5.3] 0.07 [−9.4, 6.1]

k 1 [0.1, 100] 0.39 [0.16, 1.92] 0.78 [0.34, 12.9] 0.92 [0.33, 15.7] 0.72 [0.21, 18.9]

Model A, we use a logistic regression in order to limit LFMC
between 0 % and LFMCmax:

x = f ×VOD+ (1− f )×LAI (5)

LFMC=
LFMCmax

1+ e−sl×(x−x0)
, (6)

where f is a fraction between zero and 1 that regulates if
VOD (f = 1) or LAI (f = 0) contributes more to the cal-
culation of x and hence to LFMC. Sl and x0 are the slope
and inflection point of the logistic curve. Note that we kept
the parameter LFMCmax constant at 400 % in Model B (cor-
responding to the 99.99th percentile of LFMC in the Globe-
LFMC database) throughout all analyses because the calibra-
tion results from Model A have shown that any high value
for LFMCmax is not sensitive for the performance of the es-
timated LFMC.

For Model C, we directly made use of the VOD–LFMC
relationship presented in Eq. (2) (Jackson and Schmugge,
1991; Konings et al., 2019) and compute LFMC by solving
this equation for LFMC:

LFMC=
VOD

b×mdry
× 100%. (7)

To account for dry biomass of the canopy, we assume a linear
relation with monthly-averaged LAI:

mdry = a×LAI+ c. (8)

For the parameter b in Eq. (7), a prior value of 1.5 with a
range between 0.1 and 4 was taken based on the values pre-
sented in Jackson and Schmugge (1991). The parameter a

was varied between 0.01 and 100, as dry canopy biomass

should positively scale with LAI. The parameter c is the in-
tercept of this linear regression and was chosen around zero
(between −10 and 10). Note that the parameters a and b are
directly positively correlated in Model C and could indeed
be represented by a combined product. However, as we have
both prior information on the values of b (i.e. VOD–VWC
relation) and a (i.e. the relation between leaf mass and leaf
area) but not on their combined product, we decided to keep
the two factors separated.

We developed Model D by using the basic definition of
FMC (Eq. 1) and compute LFMC as the ratio between VWC
and dry biomass:

LFMC=
VWC
mdry

× 100%. (9)

Thereby, we compute VWC based on a exponential relation-
ship between LAI and VWC (Paloscia and Pampaloni, 1988;
Sawada et al., 2016) and compute dry biomass by assuming
a positive relationship between VOD and biomass (e.g. Frap-
part et al., 2020). Following Sawada et al. (2016), VWC is
computed based on an exponential relationship with LAI:

VWC= e
LAI
k − 1, (10)

where the parameter k defines the shape of the exponential
relationship. As we have no prior information about the value
of k, we sampled k over a large range (0.1–100). The compu-
tation of dry biomass is based on a linear relation with VOD,
which is based on the assumption that VOD at short wave-
lengths is proportional to canopy biomass (Frappart et al.,
2020):

mdry = a×VOD+ c. (11)
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The parameters a and c define the relation with dry biomass
like in Model C.

2.7 Site-level calibration and evaluation

The parameters of the models A to D were calibrated sepa-
rately for each species at each site from the data combina-
tion D3. For the calibration, we used a genetic optimization
algorithm together with a cost function that is sensitive to
the statistical distribution of LFMC and the temporal correla-
tion. We initially tested several common model performance
measures as cost functions, like the root mean squared er-
ror (RMSE), modelling efficiency, and the Kling–Gupta ef-
ficiency (KGE) (Gupta et al., 2009), to calibrate the model
parameters, but we found that based on those cost functions
the variance of the observed LFMC was underestimated in
most cases. As an alternative, we developed a cost function
that aims to fit the observed variance by minimizing the dif-
ferences in the percentiles of the statistical distribution of
LFMC. The used cost function J adopts the basic definition
of the Euclidean distance like in the Kling–Gupta efficiency,
and is here defined as the Euclidean distance in a multivariate
space of performance measures based on the Pearson correla-
tion r between estimated and observed LFMC and the ratios
of the 5th, 50th, and 95th percentiles p:

J =√
3× (r − 1)2+

(
Sp=5

Op=5
− 1

)2

+

(
Sp=50

Op=50
− 1

)2

+

(
Sp=95

Op=95
− 1

)2

, (12)

where S and O are the percentiles of simulated and observed
LFMC, respectively. The individual terms in the cost func-
tion are zero in case of a perfect model–data agreement and
can go to infinite. The correlation-related term was multi-
plied with 3 to give the temporal correlation the same weight
like the three distribution-based ratios.

The cost function was minimized for each model and for
each plant species at each site by using the Genetic Opti-
mization using Derivatives (GENOUD) algorithm (R pack-
age rgenoud, version 5.8-3) (Mebane and Sekhon, 2011).
GENOUD is a global optimization algorithm that addition-
ally uses a local search algorithm. We used GENOUD with
100 parameter sets per generation and computed it for 10
generations. The local search algorithm was used only after
the third generation to avoid a too fast convergence of the al-
gorithm to a local minimum. Prior ranges of each parameter
(Table 2) were provided as search domains to the optimiza-
tion algorithm. As a measure for parameter uncertainty, we
then selected the best-performing parameter sets from the op-
timization results, which have a cost J less than or equal to
the 25th percentile of all parameter sets in an optimization
run. As a result, we obtained for each species at each site a
sample of best-performing parameters for each model. The
median and the 5th and 95th percentiles of each parameter
from the best-performing parameter sets are listed for differ-
ent growth forms in Table 2.

Additionally to the used cost function, we used the Pear-
son correlation coefficient r , the RMSE, and the KGE per-
formance measures to evaluate the optimization results. The
KGE allows associating the lack of model performance to a
mismatch between observed and estimated mean values (bias
component), to a mismatch between observed and estimated
variance (variance component) and to a lack of correlation
(correlation component) (Gupta et al., 2009). We used the
KGE and its three components to diagnose the model perfor-
mance.

Please note that we did not perform for the site-level cali-
brations any evaluation with independent test data. We used
at each site all available pairs of LFMC/VOD observations
for model calibration, because a split of the available LFMC
observations would further reduce the available data and sites
for model calibration as many sites have few observations.
However, we built a random forest model to predict the pa-
rameters of the best-performing model in space and we ap-
plied spatial cross-validation to evaluate the performance of
the predicted LFMC (Sect. 2.8).

2.8 Spatial model application, evaluation, and
uncertainty assessment

The calibration of model parameters was performed for each
species at each site, and allows evaluating and comparing
the performance of the four models at site level. However,
in order to apply the best-performing model globally, the
model parameters need to be estimated for each grid cell
of the global 0.25◦× 0.25◦ raster. We therefore tested dif-
ferent regression approaches to predict single model param-
eters from percentage tree cover or from other model pa-
rameters. We initially tested different regression approaches
to estimate the model parameters, namely linear regression,
second- and third-order polynomials, generalized additive
models (GAMs), and random forest (RF). While third-order
polynomials, GAM, and RF resulted in similar performance
in training, only RF had plausible results in cross-validation.
Hence, we decided to use RF to estimate the parameters of
Model B in space. Thereby, we followed a step-wise appli-
cation of RF: in the first RF model, we predicted the param-
eter x0 of Model B from percentage tree cover. In the sec-
ond RF model, we then predicted the parameter sl from tree
cover and the parameter x0. In the third RF model, we pre-
dicted the parameter f from tree cover and the parameters x0
and sl. The parameter LFMCmax was held constant at 400 %.
We applied RF in the same way for the parameters of the
other models by first always predicting the parameter that
had the highest correlation with tree cover. We used the ran-
domForest package version 4.6-14 (Liaw and Wiener, 2002)
in R with 200 decision trees per RF and a node size of 15. A
higher number of decision trees did not result in better per-
formance. The node size describes the number of samples in
the terminal nodes of each decision trees that are averaged to
provide the regression result. Note that we here used based
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on our experience with RF a higher node size of 15 than the
default value of 5 in order to reduce the risk of overfitting
when using RF with only one to three predictors and only
216 sites. In summary, to predict the parameters of Model B
for one grid cell, a nested set of three RF models is needed
(one RF for each parameter).

In order to train and evaluate the set of three RF mod-
els, we applied a 20-fold spatial cross-validation procedure.
Therefore, we spatially clustered all Globe-LFMC sites from
the data collection D4 based on their coordinates using a
k-means clustering with 20 clusters. We then used the op-
timized model parameters from all sites within 19 clusters to
train the set of three RF models, and applied the trained set
of RF to the 20th cluster to predict and evaluate the parame-
ters of Model B. Model B was then applied with the predicted
parameters to estimate LFMC and to cross-validate LFMC.
The procedure was repeated 20 times so that once each spa-
tial cluster was not included in the training of the RF models,
it was rather used for cross-validation.

During this spatial training and cross-validation proce-
dure, we also attempted to propagate the uncertainty of the
optimized model parameters. Therefore, we randomly sam-
pled from each Globe-LFMC site in the training set five out
of the best-performing parameter sets from the site-level cal-
ibration. Hence, in each of the 20 folds, a different combina-
tion of best-performing parameter sets was used to train the
set of RF models.

The spatial training and cross-validation resulted in 20 sets
of RF models that allow estimating Model B parameters for
any grid cell based on percentage tree cover. Each of the
20 sets of RF models varies based on the spatial distribution
of the used Globe-LFMC sites in training and based on the
uncertainty of the best-performing model parameters after
site-level calibration. To estimate LFMC globally, we applied
all 20 sets of RF models to all global vegetated grid cells.
Therefore, we excluded grid cells with less than 5 % vege-
tation cover (tree cover + short vegetation cover) and grid
cells with more than 50 % water cover. For each grid cell we
then obtained the model parameters from the set of RF mod-
els and used Model B to predict 20 realisations of LFMC.
We then computed from the predicted LFMC values the me-
dian, minimum, and maximum values as measures of the un-
certainty. In the results, we display this uncertainty estimate
as relative uncertainty (i.e. (maximum LFMC−minimum
LFMC)/median LFMC).

2.9 Global random forest model as alternative to
models A–D

As described in the previous section, we used RF to estimate
parameters of models A–D in space and then apply those
models to estimate LFMC. As an alternative, RF could be
used directly to estimate LFMC globally, which would not
require any assumptions about the type of relationships like
in models A–D and allows a higher flexibility in including

predictor variables. In order to assess the performance of the
spatially-applied models A–D against a more flexible global
RF model, we trained a global RF model directly against
LFMC measurements from all sites within the 20 spatial
folds and by using the same set of predictors that we used for
Model B (i.e. daily Ku-VOD, monthly LAI, and tree cover).
The global training of the RF was performed with the same
spatial cross-validation procedure like for the other models,
i.e. with the same set of 20 folds of spatially-clustered LFMC
sites.

3 Results and discussion

3.1 Correlation between VOD and LFMC

3.1.1 Temporal and spatial correlations

The comparison of VOD and LFMC time series from ground
measurements and MODIS retrievals shows widespread pos-
itive temporal correlations (Fig. 1). Across the 910 Globe-
LFMC sites with ≥ 10 pairs of VOD/LFMC observations,
the median temporal correlation between LFMC and VOD is
0.10 for Ku- and X-VOD and 0.06 for C-VOD. The maxi-
mum correlation is 0.88 for Ku-VOD, 0.79 for X-VOD, and
0.80 for C-VOD. Globally, 633 sites show positive correla-
tions and 277 sites show negative correlations with Ku-VOD.
For X- and C-VOD, 632 and 395 sites show positive cor-
relations, respectively. The comparison with MODIS-LFMC
shows median correlations of 0.30 for Ku-VOD, 0.26 for X-
VOD, and 0.28 for C-VOD in Europe and 0.39 for Ku-VOD,
0.37 for X-VOD, and 0.35 for C-VOD in Australia. These re-
sults show that correlations between VOD and LFMC from
site measurements and MODIS retrievals are in the major-
ity of sites or grid cells positive and similar for the different
VOD bands, but that Ku-VOD shows slightly higher correla-
tions.

The spatial pattern of temporal correlations between
LFMC and Ku-VOD indicate spatial clusters with medium
to high positive correlation and clusters with low or neg-
ative correlation (Fig. 1). In the USA, sites with low cor-
relation (r < 0.1) are in many cases distributed along the
mountain ranges of the Rocky Mountains, Coast Range, or
Sierra Nevada (Fig. 1b). This association of low correla-
tions with mountain ranges is also confirmed by the com-
parison with MODIS-LFMC in Europe, where positive cor-
relations between LFMC and Ku-VOD are widespread, but
negative correlations occur in the Alps, the Carpathians, and
the Scandinavian mountains (Fig. 1c). Additionally, the flat-
ter areas of central and eastern Scandinavia show generally
very low correlations between Ku-VOD and MODIS-LFMC.
In Australia, positive correlations between LFMC and Ku-
VOD dominate, but negative correlations occur in parts of
the northern Great Dividing Range and in parts of the Simp-
son Desert and the Nullabor Plain (Fig. 1d). These spatial
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Figure 1. Temporal correlations between Ku-VOD and LFMC. Correlations of Ku-VOD with Globe-LFMC sites are plotted as point symbols
and with MODIS-LFMC as coloured back ground raster (in c and d). The greyscale raster in (a) and (b) shows percentage of short vegetation
cover.

patterns of correlations with MODIS-LFMC are nearly iden-
tical in all three VOD bands.

All global spatio-temporal pairs of VOD and LFMC site
measurements together show a weak positive correlation but
a large bi-variate scatter (Fig. 2a–c). This scatter between
globally distributed VOD and LFMC indicates that a unique
global VOD–LFMC relation does not exist, or that such a re-
lationship is modified by other surface and land cover prop-
erties or by the scale mismatch between VOD grid cells and
LFMC site measurements.

The medium to high positive correlations between VOD
and LFMC in the majority of sites support earlier studies that
identified a relationship between VOD and VWC or LFMC
(Jackson and Schmugge, 1991; Konings et al., 2019). Despite
the strong similarity in correlations between LFMC and the
different VOD bands, contaminations by residual effects of
RFI could explain the slightly lower correlation for C-VOD.
The VODCA dataset uses the RFI flagging in LPRM ver-
sion 6.0, which is based on the method proposed by de Nijs
et al. (2015). Main contamination areas in AMSR2 in both
the C1- (6.9 GHz) and C2- (7.3 GHz) bands include North
America and Europe (de Nijs et al., 2015), where the major-
ity of Globe-LFMC sites is also located. We observed that
some residual RFI can still be observed in these areas, which
was not covered by the masking used in VODCA (Fig. A1).

As the D2 data combination uses VOD from the same days
as Globe-LFMC without any smoothing, it is likely that the
lower correlation between C-VOD and LFMC is affected by
residual RFI.

3.1.2 Effect of land cover differences between scales

The site measurements of LFMC and the 0.25◦× 0.25◦ grid
cells of the VOD data are representative for very different
scales. Therefore, we further investigated how a difference
in land cover at a site (here defined as the 1 km grid cell in
which the site is located) and at the 0.25◦ grid cell affects
the temporal correlations between LFMC and VOD. Despite
a large variability of temporal correlations, on average we
found decreasing correlations with increasing dissimilarity
in land cover distribution between the site-scale and the VOD
grid. For example, the correlation between Globe-LFMC and
Ku-VOD increased by 0.07 (to median r = 0.17) if the land
cover difference is less than 10 %. In this case, 126 sites had
negative correlations and 365 sites had positive correlations.
Hence, the difference in land cover at an LFMC measure-
ment site and in the coarse VOD grid cell can explain a small
decrease in the correlation between VOD and LFMC.

Although this analysis allowed to quantify how the cor-
relation between site measurements of LFMC and coarse-
resolution grid cells of VOD are affected by the land cover
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Figure 2. Global scatterplots and correlation of LFMC from the Globe-LFMC database against Ku-, X-, and C-VOD. The red lines are
smoothing spline fits between the values at the x and y axes.

differences between both scales, it does not allow to resolve
this scale mismatch. Only local measurements of passive mi-
crowave emissions and derived estimates of VOD in con-
junction with LFMC samples allow to factor out the scale
mismatch for the analysis of relations between LFMC and
VOD. However, such measurements are rare (Momen et al.,
2017). Our results demonstrate the need to better understand
the effect of the local to regional heterogeneity in land cover
on coarse-scale VOD estimates in order to make better use of
VOD in estimating LFMC.

3.1.3 Effect of vegetation type

Furthermore, we investigated if the correlations between
VOD and LFMC are associated to vegetation type (Fig. 3).
The comparison of VOD with Globe-LFMC shows higher
correlations at higher short vegetation cover within the VOD
grid cell. For example, the median correlation between
LFMC and Ku-VOD is 0.30 if the short vegetation cover is
≥ 80 % and is 0.09 if the short vegetation cover is < 80 %
(Fig. 3a). However, despite this average increase in correla-
tion with increasing short vegetation cover, several sites with
low short vegetation cover also have correlations of > 0.5.
The increase of correlation with short vegetation cover is mir-
rored by a decrease of correlation with increasing tree cover.
For example, the median correlation between Globe-LFMC
and Ku-VOD is 0.15 for tree cover < 20 % and is 0.05 for tree
cover≥ 20 %. The changes in correlation with short vegeta-
tion or tree cover are similar for all three VOD bands, but
Ku-VOD shows in the majority of vegetation cover fractions
higher correlations than the other two bands. The dependency
of the correlation between LFMC and VOD on vegetation
type is more pronounced if we use MODIS-LFMC instead
of Globe-LFMC site measurements. Thereby, we find for
all VOD bands and both in Australia and Europe a general
increase of the correlation with increasing short vegetation
cover (or decreasing tree cover) (Fig. 3c and d).

The dependency on vegetation composition becomes
clearer when we compute the correlation between VOD and
LFMC separately for each sampled plant species at each site
and then grouped the plant species in growth forms (Fig. 3b).

We find the highest correlation for forbs (median r = 0.38 for
Ku-VOD), followed by grass (r = 0.22), broad-leaved trees
(r = 0.15), shrubs (r = 0.11), and finally needle-leaved trees
(r = 0). The order of median correlations is the same for X-
and C-VOD. However, the results show that despite low me-
dian correlations for some growth form classes, high corre-
lations are also possible at some sites for all growth forms.
For example, the 90th percentile of the correlation between
LFMC and Ku-VOD is 0.7 for forbs, 0.65 for grass, 0.55 for
shrubs, 0.61 for broad-leaved trees, and 0.40 for needle-
leaved trees. These results demonstrate that especially Ku-
VOD is related to LFMC and that the relationship is closest
for short vegetation types such as forbs, grasses, and shrubs.

The results are in agreement with earlier studies that es-
tablished the relation between VOD and VWC or LFMC
based on observations from crops and grasses (Jackson and
Schmugge, 1991; Konings et al., 2019). The more homoge-
nous canopies of short vegetation than of forest canopies
might cause the generally higher correlations between VOD
and LFMC at many herbaceous sites than at forest sites.
However, based on the additional high 90th percentiles of
correlations at some tree-dominated sites, we assume that
coarse-resolution VOD data are also sensitive to LFMC at
forest sites but that the relationship is in many cases masked
by the mismatch between land cover at the local site and the
coarse VOD grid cell. This assumption is also supported by
the findings of Holtzman et al. (2021) who report a corre-
lation of r = 0.76 between L-VOD and leaf water potential
as measured locally in a deciduous forest and by Momen et
al. (2017) who were able to model X-VOD from measure-
ments of leaf water potential and LAI for two mixed decidu-
ous forests.

The higher correlation for Ku- and X-VOD with LFMC
than for C-VOD might be confounded by an effect of rain
on the atmospheric transmissivity of those wavelengths. Al-
though microwaves are generally assumed largely indepen-
dent of atmospheric conditions, thick water clouds and rain
reduce the transmissivity of the atmosphere especially for
shorter wavelength microwaves. For example, the atmo-
spheric transmissivity is between 60 % and 80 % in the case
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Figure 3. Statistical distributions of the temporal correlation between VOD and LFMC stratified by vegetation type. (a, b) Correlation with
measurements from the Globe-LFMC database stratified by (a) the percentage cover of short vegetation and (b) by the growth form of the
sampled plant. (c, d) Correlation with MODIS-LFMC in (c) Australia and (d) Europe stratified by the percentage cover of short vegetation.

of water clouds and between 20 % and 70 % in the case of
rain for Ku-band (Ulaby et al., 1981, p. 2–3). However, ef-
fects of rain on the retrievals of Ku- and X-VOD in the
VODCA product are not known. Overall, the quality of the
Ku-band VOD is comparable to X- and C-VOD (Moesinger
et al., 2020): Ku-VOD correlates higher (global average r =

0.39) with MODIS LAI than C-VOD (r = 0.37) but a bit
weaker than X-VOD (r = 0.42). The effect of RFI on C-
VOD is not present in Ku-VOD. Moreover, Ku-VOD has a
larger data coverage because the CDF matching approach
used in the VODCA dataset was more often successful for
Ku-VOD than for the X- or C-VOD data. Multi-year trends
in Ku-VOD agree with trends in X and C-VOD. Hence, the
higher correlation of Ku-VOD with LFMC and the quality
and overall similarity of the Ku-VOD data with X- and C-
VOD, suggests using Ku-VOD to estimate LFMC.

3.2 Estimating LFMC at site-level

3.2.1 Performance of models A–D in site-level
calibration

Based on the finding that Ku-VOD shows slightly higher
correlations with LFMC than X- or C-VOD and given the
longer temporal overlap of Ku-VOD with Globe-LFMC ob-
servations, we used Ku-VOD as input to four different mod-
els to estimate LFMC. We separately calibrated each model
at each of 216 Globe-LFMC sites that were selected based
on the criteria for the data collection D3 (Sect. 2.5). An ex-

ample of the calibration of Model B for one species at one
site is shown in Fig. 4. The example demonstrates a very
good fit between observed and estimated LFMC (correla-
tion r = 0.84). This example corresponds approximately to
the 90th percentile highest correlation between observed and
estimated LFMC from Model B and is therefore among the
best results of all sites. The model response function shows
that the estimated LFMC increases with both daily Ku-VOD
and monthly LAI, which is supported by the observed LFMC
(Fig. 4b). In this model, the performance of the estimated
LFMC is most strongly influenced by the parameter sl (e.g.
r = 0.95 between sl and RMSE), while the parameter x0 also
has a strong effect on the model performance (e.g. r =−0.65
between x0 and RMSE). This example shows that LFMC
from site-level observations can be estimated from coarse
resolution Ku-VOD (and LAI) observations.

Across all sites and vegetation types, the estimated LFMC
from Model B shows a better fit against the observed
LFMC than the estimates from the other three models
(Fig. 5). Model B achieves correlations of 0.640.86

0.36 (median
and 5th and 95th percentiles), followed by Model D with
0.540.83

0.66, Model A with 0.450.75
0.16, and finally Model C with

0.410.75
0.06. Also for the RMSE, Model B shows the lowest er-

ror with RMSE= 2960.7
11.5 %-LFMC. The other three models

show higher RMSE with Model C having the highest error
(RMSE= 44.9643 707

10.1 %-LFMC). Please note the high 95th
percentile of the RMSE for Model C, which indicates that
it was not possible to successfully fit Model C at some sites.
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Figure 4. Example of the fit of Model B using daily Ku-VOD and monthly LAI for Artemisia tridentata ssp. at the site Great Divide,
Colorado (40.76◦ N, 107.85◦W). (a) Scatterplot of estimated against observed LFMC. (b) Distribution of observed LFMC (points) and
estimated LFMC (coloured background) in relation to daily Ku-VOD and monthly LAI.

Figure 5. Performance of the models A–D using daily Ku-VOD (and monthly LAI in models C and D) after calibrating each model at
each site. Shown is the root mean squared error (RMSE) and correlation coefficient between estimated and measured LFMC. Small dots are
results from different parameter sets at each site, and big dots and bars are the median and range from the 5th–95th percentiles across all
sites, respectively.

By investigating the model performance for different veg-
etation growth forms, we generally found that Model B per-
formed best and that the ranking of model performance for
the other three models is similar for all vegetation types
(Fig. 5). We found the highest correlation between estimated
and observed LFMC for shrubs (0.730.87

0.46, Model B), followed
by forbs and grasses (0.670.83

0.44), broad-leaved trees (0.550.86
0.32),

and needle-leaved trees (0.500.70
0.28). The lowest median cor-

relation was found for Model C for broad-leaved trees
(0.350.62

0.14). While the models A, B, and D resulted in only
positive correlations between observed and estimated LFMC,
Model C produced negative correlations at five sites. In
terms of the RMSE, needle-leaved trees had the lowest error
with RMSE= 15 %-LFMC (median for Model B), followed
by shrubs (RMSE= 19 %), broad-leaved deciduous trees
(RMSE= 35 %), and forbs and grasses (RMSE= 39 %). The
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results indicate that the performance of the models to es-
timate LFMC from Ku-VOD depends on vegetation type.
Thereby, the temporal correlation can be well estimated for
all vegetation types using Model B. The absolute values of
estimated LFMC show low to medium errors for most vege-
tation types except for broad-leaved evergreen trees.

3.2.2 Suitability of model structures

The logistic regression Model B based on daily VOD and
mean monthly LAI outperforms other model structures. The
improved performance of Model B (using VOD and monthly
LAI) over Model A (only using VOD) demonstrates that the
dynamics in LAI need to be considered in order to provide
good estimates of LFMC. The parameter f in Model B de-
fines the relative contribution of VOD or LAI to the estimated
LFMC. The higher values of f for trees than for grasses and
forbs (Table 2) show that VOD needs to be higher weighted
to predict the LFMC of forest sites, while a lower weight
of VOD (and higher relative contribution of monthly LAI)
is necessary to predict the LFMC of grasses and forbs. The
higher weighting of VOD to predict LFMC of trees corre-
sponds to the findings of Zhang et al. (2019) who found that
canopy biomass has a stronger effect on short-wavelength
VOD than leaf water potential in temperate forests.

Model C adapted the relationship between VOD and
LFMC as proposed by Jackson and Schmugge (1991) and
Konings et al. (2019) (i.e. Eq. 2). Hence, this model used
VOD to account for VWC and used LAI to account for
canopy biomass. Model C resulted on average in low cor-
relations and high errors between estimated and observed
LFMC. While this model could not be fitted successfully
at some sites, it also reached good performances at others.
These results suggest that the relationship between VOD and
LFMC as denoted in Eq. (2) is valid for some sites but it
might not be valid for all sites or is overly sensitive to scale
mismatches in the local measurements and the coarse-scale
VOD and LAI data.

Model D adapted the relationship between VWC and LAI
as suggested by Sawada et al. (2016) and estimated canopy
biomass based on VOD. As this model resulted in better
performance than Model C, it indicates that VOD is in-
deed a valuable predictor for canopy biomass and VWC
can be indeed estimated from LAI at many sites. Model D
achieved on average higher correlations between estimated
and observed LFMC than Model A (only using VOD), which
shows that LAI is required to predict temporal dynamics in
LFMC. However, Model D had higher errors than Model A,
which indicates that using VOD only as predictor for canopy
biomass is not sufficient but that the VOD information in
Model A provides information of absolute values (and hence
reduces errors) of LFMC.

Models A, C, and D with lower performance have a low
flexibility in how they use VOD and LAI to estimate LFMC:
Model A only uses VOD; Model C uses VOD to account for

VWC and LAI to account for biomass; and Model D uses
LAI to account for VWC and VOD to account for biomass.
On the other hand, Model B allowed to combine daily VOD
and monthly LAI in a flexible way to estimate LFMC and
reached highest performance. These results demonstrate that
flexible model structures are needed in order to estimate
LFMC from VOD and LAI. This finding is supported by
several studies that identified that the relative contributions
of changes in biomass and vegetation water content (or leaf
water potential) depends on land cover type (Momen et al.,
2017; Zhang et al., 2019; Konings et al., 2021b).

3.3 Estimating LFMC spatially using spatial
cross-validation

In a next step, we investigated the applicability of the four
models in space, which requires an estimate of the model pa-
rameters for each of the 0.25◦ VOD grid cells. Therefore, we
first analysed the correlation of the estimated parameters of
each model with land cover properties of the VOD grid cell
(e.g. shown for Model B in Fig. A2). We found that some of
the optimized model parameters are highly correlated with
land cover information, while other parameters can be esti-
mated based on the covariation between parameters. For ex-
ample, in Model B the parameter x0 had the strongest corre-
lation with the percentage tree cover (r = 0.74), the param-
eter sl with the parameter x0 (r =−0.74) and then with tree
cover (r =−0.32), and the parameter f with the parame-
ter sl (r = 0.3) (Fig. A2). Based on those findings, we used
random forest to predict first for each VOD grid cell the pa-
rameter x0 from percentage tree cover and then the parame-
ter sl from tree cover and the parameter x0. Finally, we pre-
dicted the parameter f from tree cover and the parameters x0
and sl. We performed the same step-wise approach to predict
the parameters with random forest for the other models and
then applied each model to the 0.25◦ grid cell by using the
predicted parameters to estimate LFMC. We applied this ap-
proach within a 20-fold spatial cross-validation to evaluate
the performance of the estimated LFMC in space. Addition-
ally, we use RF to estimate the spatial–temporal dynamics of
LFMC directly.

3.3.1 Model performance in spatial cross-validation

As expected, the performance of all models slightly de-
creased in cross-validation in comparison to the site-level
calibration results (Fig. 6). However, the ranking in model
performance remained the same with Model B showing the
best performance. For example, Model B had correlations
of 0.580.84

0.30 in spatial cross-validation samples (0.640.86
0.36 in

site-level calibration, see Sect. 3.2), which corresponds to
a decrease of 0.06 of the median correlation in compari-
son to the calibration against the site data. The RMSE in
spatial cross-validation was 48.8111.8

17.9 %-LFMC for Model B
(RMSE= 2960.7

11.5 %-LFMC in site-level calibration). Like
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Figure 6. Performance of the models A–D using Ku-VOD after
calibrating each model for each species at each site (cal at site)
and after using sites as test data in spatial cross-validation after the
application of random forest to predict model parameters (spatial-
cv). The global RF model (shown in orange) was directly trained
against LFMC measurements from multiple sites. Shown is the root
mean squared error (RMSE) and correlation coefficient between es-
timated and measured LFMC. Dots and bars are the median and
range from the 5th–95th percentiles across all sites, respectively.

Model B, models A and D also experienced small de-
creases in correlation and increases in RMSE in spatial cross-
validation (Fig. 6). However, Model C experienced strong de-
creases in correlation from median r = 0.42 in site-level cal-
ibration to r = 0.22 in spatial cross-validation, which shows
the parameters of Model C could not be reliably estimated in
space in order to obtain a sufficient performance in estimat-
ing LFMC.

The global RF model achieved comparable performances
like the other models, with correlations of 0.500.77

0.18 and
RMSE of 4079.5

21.9 %-LFMC in spatial cross-validation be-
tween observed and estimated LFMC. Hence, the RF per-
formed on average slightly better than the best-performing
Model B in terms of RMSE, but worse than models B and D
in terms of correlation.

These results demonstrate that especially Model B can be
applied in space and results in a comparable performance in
estimated LFMC between site-level calibration and spatial
cross-validation.

We then performed a more detailed evaluation of the cross-
validation results of the best-performing Model B by inves-
tigating the Kling–Gupta efficiency (KGE) and its compo-
nents for each site and each vegetation growth form (Fig. 7).
We found the highest KGE in cross-validation for shrubs
(median KGE= 0.4) and forbs (median KGE= 0.32). Grass-
lands (median KGE= 0.29) and broad-leaved trees (median
KGE= 0.25) had lower performance and needle-leaved trees
had overall low performance (median KGE=−0.49). How-
ever, the variability in KGE was high within all vegetation

types. All grass sites and 88 % of the forb and shrub sites
had positive KGE, but only 38 % of the needle-leaved sites
had positive KGE. In most sites with low KGE, KGE is
dominated by a mismatch between the observed and esti-
mated variance of LFMC. This can be seen for example in
the LFMC time series in Fig. 7b, which is representative for
a broad-leaved tree site with low KGE and corresponds to
the 5th percentile of the KGE across all sites. However, the
correlation between observed and estimated LFMC is still
moderate at such sites, which indicates that the temporal dy-
namic of the estimated LFMC has still a moderate agreement
with the observed LFMC. For sites with medium and high
KGE (Fig. 7c and d), the error is in most cases a mixture of
a mismatch in mean values (bias), variance, or not-perfect
correlation. For example, the time series in Fig. 7c and d
demonstrates that Model B fits well the mean, variance. and
correlation of the observed LFMC.

3.3.2 Spatial applicability of model structures

The ranking in performance of the four models in spatial
cross-validation resembles the ranking of the performance in
site-level calibrations. On the one hand, the large variabil-
ity in performance at site-level calibration and the strong de-
crease in performance in spatial cross-validation for Model C
demonstrates that this model cannot be successfully applied
and transferred to estimate LFMC globally. On the other
hand, the results demonstrate that Model B can be suc-
cessfully used to estimate the spatial–temporal dynamics of
LFMC, whereby the parameters of model B can be estimated
from observed tree cover using random forest. Medium to
high performance of the estimated LFMC can be expected
for herbaceous vegetation, shrublands, and for most broad-
leaved trees. On average, a low performance and underesti-
mation of the observed variance can be expected for needle-
leaved trees, but this is not the case for all sites with needle-
leaved trees.

The application of Model B in estimating LFMC results in
performances (i.e. median RMSE= 48.8 % in global spatial
cross-validation) that are comparable with other studies that
estimated LFMC based on optical satellite observations. For
example, estimated LFMC reached errors of 40 % (Yebra et
al., 2018), 45 % (Caccamo et al., 2011) and 44 % (Nolan et
al., 2016) across validation sites in Australia (Yebra et al.,
2018) and approx. 34% in a global study with MODIS data
(Quan et al., 2021). Rao et al. (2020) used Landsat-8 and
Sentinel-1 Radar backscatter to estimate LFMC for the west-
ern US using a neural network model and obtained RMSE of
25 % across vegetation types. They obtained the lowest er-
rors for mixed and needle-leaved forests (RMSE= 20 % and
22 %) and the highest errors for grasslands (RMSE= 31 %).
While our results are similar for site-level calibrations of
model B (i.e. RMSE= 15 % for needle-leaved trees and
39 % for grasslands), we found much lower performance for
needle-leaved trees in spatial cross-validation.
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Figure 7. Performance of Model B using Ku-VOD in spatial cross-validation at each site grouped by the sampled vegetation growth form
of LFMC measurements. (a) Kling–Gupta efficiency with its components caused by bias, variance, and correlation. Purple dots represent
the 5th, 50th, and 95th percentiles of the KGE across all sites. The time series of the sites corresponding to those percentiles are shown in
panels (b, 5 %= site with low performance, broad-leaved tree site), (c, 50 %= site with medium performance, broad-leaved tree site), and
(d, 95 %= site with good performance, forb site).

The lower performance of Model B for needle-leaved trees
in spatial cross-validation than at site-level calibration indi-
cates that the calibrated parameters from each site cannot
be well estimated in space. We assume that this is caused
by the spatial representativeness of the used LFMC sites
with needle-leaved trees. All of the used sites with needle-
leaved trees are located in the western US and most of the
sites are located in regions with low tree cover. Only a few
sites are located in regions with higher tree cover and those
sites are distributed across different spatial clusters for cross-
validation. Hence, needle-leaved trees are included in 11 out
of 20 spatial clusters and six of the spatial clusters include
less than three sites with needle-leaved trees. This implies
that in such cases, the training of model parameters is mostly
based on sites without needle-leaved trees and from other
regions, which will result in a low performance for needle-
leaved forests. Those results suggest that still all vegetation
types should be considered in spatial cross-validation in or-
der to obtain realistic results for under-represented vegetation
types.

Overall, our estimates of LFMC from coarse-resolution
VOD and LAI data reach medium to high performances for
most vegetation types that are comparable with other studies
that use more data with higher spatial resolution or data from
optical satellite systems for which the physical relations be-
tween LFMC and surface reflectance are established for sev-
eral years (Yebra et al., 2013).

3.4 Global LFMC estimates

3.4.1 Global spatial–temporal patterns

Finally, we applied model B and the associated RF-based
parameters to global data of Ku-VOD, LAI, and tree
cover to estimate LFMC globally at 0.25× 0.25◦ spatial
resolution and at daily sampling for the period Febru-
ary 2000 to July 2017 (overlapping period of Ku-VOD and
MODIS LAI). As an example, we show global estimates
for four dates in the year 2003 (Fig. 8). The four dates
cover the different seasons in northern ecosystems as well
as wet and dry seasons in tropical Africa. The four maps
show generally high LFMC in wet tropical regions (Amazon
and Congo basins, SE Asia), medium LFMC in many sub-
tropical and temperate regions, and low LFMC in Savannah
and desert regions. Seasonal changes in LFMC generally fol-
low wet and dry seasons in semi-arid regions and the course
of the phenological development as commonly seen in other
vegetation properties (i.e. LAI or productivity). For exam-
ple, the Sahel in northern Africa shows high LFMC in Au-
gust (wet season) and low LFMC in February (dry season).
Similar seasonal changes between wet and dry seasons can
be seen in South America, the southern United States, the
Mediterranean, India, eastern Asia, and Australia. The sea-
sonal changes in LFMC are also visible in the Hovmöller dia-
gram (Hovmöller, 1949) shown in Fig. 9. Thereby, equatorial
regions show continuously high LFMC with a very weak sea-
sonality. Northern subtropical regions between 5 and 18◦ N
show prolonged dry seasons with low LFMC towards north-
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Figure 8. Example of global patterns of LFMC and associated uncertainties as estimated with Model B for 4 selected days in 2003, rep-
resenting typical days during the northern seasons and the wet and dry seasons in Africa. Grey areas (missing data) is because of missing
vegetation cover or gaps in the LAI or VOD data.

ern latitudes. Northern mid- and high latitudes (> 30◦ N)
show higher LFMC during the summer months than during
spring and autumn.

The large similarity of the global seasonal changes in
LFMC with similar changes found in other vegetation prop-
erties such as LAI or gross primary productivity might seem
astonishing at first view because LFMC represents a relative
property of moisture content and not an absolute property of
vegetation cover or biomass (like LAI). However, seasonal
changes in leaf cover are highly correlated with LFMC, es-
pecially in short vegetation regions. For example, MODIS
LAI has an across-site median temporal correlation with

measurements of the Globe-LFMC dataset between r = 0.30
and r = 0.50 for regions with short vegetation cover > 80 %
(Fig. A5). Hence the Globe-LFMC site-level data show in-
deed a strong coupling between LFMC and LAI, which is
then also reflected in our global estimates of LFMC. This
suggests a close coupling of LFMC increases with leaf de-
velopment and of LFMC decreases with leaf cavitation and
shedding.

Areas without estimates of LFMC (grey areas in Figs. 8
and 9) occur because of several reasons. (1) Missing data in
deserts and ice-covered regions are because the model was
not applied to grid cells with less than 5 % vegetation cover.
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Figure 9. Hovmöller diagram of monthly LFMC as estimated from Model B using daily Ku-VOD and monthly LAI.

(2) Missing data in northern latitudes in winter months are
either because of months without LAI observations because
of low solar zenith angles, snow or cloud cover, or because
Ku-VOD observations were not available over frozen soils.
(3) Other days with missing observations in some regions are
because of missing coverage of passive microwave sensors or
were masked in the VODCA dataset because of RFI.

We also compared the estimated LFMC from Model B
with MODIS-LFMC for Australia and Europe to assess the
similarity of both datasets. However, as the VOD-based
LFMC uses monthly LAI from MODIS as input, which is de-
rived from the same spectral bands like MODIS-LFMC, both
LFMC datasets are not independent of each other and a high
correlation can be expected. Indeed both the VOD-based
LFMC and MODIS-LFMC are highly correlated (Fig. A3).
The spatial patterns of correlation between the VOD-based
LFMC and MODIS-LFMC show similar regions where Ku-
VOD already had high and low correlations with MODIS-
LFMC, respectively (Fig. 1). The correlation between VOD-
based LFMC and MODIS-LFMC is higher than between Ku-
VOD and MODIS-LFMC in many regions, which is likely
due to the additional use of MODIS-LAI in Model B. The
low correlation in parts of northern Europe and the Alps
was already present in the correlation between MODIS-
LFMC and Ku-VOD. The low correlation between VOD-
based LFMC and MODIS-LFMC in northern Europe can
be additionally caused by the low performance of the esti-
mates in needle-leaved forests, which are widespread in those
regions. However, the very high correlation between VOD-
based LFMC and MODIS-LFMC demonstrates in many re-

gions and in most fire-prone regions a good comparability of
the two datasets.

3.4.2 Uncertainties and observational support

The uncertainty estimates of the global LFMC estimates are
on average low (global mean relative uncertainty= 0.28) and
do not show distinct spatial patterns (Fig. 8, right column).
Larger relative uncertainties tend to occur at low LFMC,
i.e. at seasonally dry conditions or in transitions areas to
deserts (e.g. the Sahel, border of Sahara, Central Asia, parts
of Australia) and in the boreal forest regions in Russia and
Canada. The higher uncertainty over boreal forests corre-
sponds to the lower correlations between LFMC and Ku-
VOD and between estimated and observed LFMC after site-
level calibration, and to the lower performance in spatial
cross-validation for sites with needle-leaved trees.

The analysis of the estimated global patterns of LFMC
needs to be compared with the number of observations that
support the global estimates. The majority of pairs of Ku-
VOD and Globe-LFMC observations come from the west-
ern US and from sites in the Mediterranean, western Africa,
and southern Australia (Fig. A4a). The available Globe-
LFMC observations cover mean annual temperatures be-
tween−0.3 and 27 ◦C and annual total precipitation between
202 and 1465 mm (Fig. A4c). This indicates that boreal and
polar regions and very wet tropical regions are generally not
supported by Globe-LFMC observations. Likewise, the ob-
servations cover tree coverages between 0 % and 79 %, but
no observations are available at high tree cover with high
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mean annual temperature > 20 ◦C (i.e. in tropical forests)
(Fig. A4d).

We additionally estimated the number of supporting ob-
servations in space as a function of mean annual temper-
ature, tree cover, maximum Ku-VOD, and maximum LAI
(Fig. A4b). Therefore, a random forest regression was fitted
to the number of observations per site in the Globe-LFMC
database and by using mean annual temperature, tree cover,
mean annual maximum Ku-VOD, and mean annual maxi-
mum LAI as predictors. The fitted random forest model was
then applied to each 0.25× 0.25◦ grid cell to provide an es-
timate of how many observations actually support an LFMC
estimate in a grid cell. We found that the global LFMC esti-
mates are not supported by any site-level LFMC observations
with similar conditions in most of the tropical forests and in
the boreal forests in Eurasia. However, most temperate and
semi-arid regions are supported by Globe-LFMC observa-
tions. In addition, large areas of high northern latitudes (in-
cluding most of the polar Tundra regions) are supported by
Globe-LFMC observations because they have similar condi-
tions of low tree cover, LAI, and Ku-VOD, like some sites
in mountainous areas in the western US or the existing sites
in Alaska. However, as many sites in mountainous regions
have low correlations between VOD and LFMC (Fig. 1), the
plausibility of LFMC estimates in northern latitudes is ques-
tionable. However, the global estimates of LFMC have strong
observational support by site-level observations in many fire-
prone regions such as in western Canada, the western US and
Mexico, in southern South America, in the Mediterranean,
central Asia, parts of China, southern and eastern Africa, and
southern and eastern Australia. This provides confidence that
the LFMC estimates can be used as a predictor for fire dy-
namics in most fire-prone ecosystems.

3.5 Applicability of the LFMC estimates and future
directions

The aim of this study was to investigate the VOD–LFMC
relationship and to develop and test model approaches to
estimate LFMC globally. We also generated a daily LFMC
dataset for past conditions, whereby the daily information
originates from the Ku-VOD data. Although the presented
LFMC dataset has a much coarser spatial resolution than
MODIS-LFMC datasets (Yebra et al., 2018; Quan et al.,
2021; Zhu et al., 2021), the advantages are the daily cover-
age, because VOD is cloud- and illumination-independent,
and the long timespan of VOD data (e.g. Ku-VOD start-
ing in 1987), which potentially allow to produce long-term
estimates of LFMC in future studies. Hence, the described
methodology to estimate LFMC from VOD can complement
LFMC retrievals from optical sensors by providing a higher
temporal frequency and potentially a longer temporal cover-
age.

We envision several applications of the global Ku-VOD-
based estimates of leaf moisture content (expressed as

LFMC), but also want to raise attention to the limitations of
the dataset in other applications. The VOD-based LFMC es-
timates are suitable to investigate large-scale patterns of veg-
etation responses to drought, to assess fire danger and to esti-
mate fire emissions, or to benchmark global ecohydrological
and fire-enabled vegetation models.

3.5.1 Application of the LFMC estimates as drought
indicator

Several remotely sensed vegetation properties such as spec-
tral vegetation indices, LAI, sun-induced fluorescence, or de-
rived variables of plant productivity are frequently used to
monitor drought effects on vegetation (e.g. Jiao et al., 2021;
Crocetti et al., 2020) or to investigate the effects of water
availability on vegetation growth. The VOD-based LFMC
estimates can complement such analyses by providing infor-
mation on large-scale changes in leaf moisture content.

As a case study, we compared the VOD-based LFMC
with drought conditions in North America and specifically
in California by using the 12-monthly Standardized Pre-
cipitation Index (SPI-12) and the US Drought Severity and
Coverage Index (DSCI) (Fig. 10). August 2014 was one of
the most severe drought months in the western US. The
VOD-based LFMC estimates show widespread patterns of
very low LFMC over the western US during this month
(Fig. 10a). This corresponds to a lack in precipitation as indi-
cated by the negative SPI-12 (Fig. 10b). Also, large regions
in northern Canada show precipitation deficit with low SPI-
12 in northern Canada, which also corresponds to patterns of
low LFMC.

To investigate multi-year drought events, we also com-
pared LFMC, SPI-12, and DSCI time series averaged for
the state of California (Fig. 10c). Both SPI-12 and the DSCI
show the multi-year drought between 2013 and 2016. The
LFMC time series is dominated by the strong seasonal signal.
Therefore, we decomposed the LFMC time series for Cali-
fornia into a seasonal, trend, and remainder component using
the seasonal decomposition of time series by Loess (STL)
method (Cleveland et al., 1990). The LFMC trend shows a
long period of low values between 2013 and 2016, which
corresponds to the drought period. Likewise, the wet period
between 2005 and 2007 with higher precipitation (i.e. high
SPI-12) and no drought conditions (i.e. DSCI close to 0) cor-
responds to high LFMC values. The LFMC trend compo-
nent is medium correlated with SPI-12 (r = 0.495) and DSCI
(r =−0.515), and hence reflects well the inter-annual vari-
ability of drought and wet conditions. This continental/re-
gional case study demonstrates the potential to investigate
effects of multi-year drought conditions and climate variabil-
ity on vegetation moisture with the VOD-based LFMC esti-
mates.
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Figure 10. Comparison of LFMC as estimated from model B with
drought conditions in North America and California. (a) Map of
mean monthly LFMC for August 2014, a month with severe drought
in the western United States. The state of California is highlighted
in the map. (b) Map of the Standardized Precipitation Index for
12-monthly accumulation periods (SPI-12) for August 2014. SPI-
12 data are taken from Global Drought Observatory – JRC Euro-
pean Commission (2022). (c) Comparison of LFMC, SPI-12, and
the US Drought Severity and Coverage Index (DSCI) for Califor-
nia. A severe drought started in California (and in the western US)
in 2013 and lasted until end 2016, as shown by negative SPI-12 val-
ues, very high DSCI values, and low LFMC. The dashed vertical
line corresponds to August 2014, which is shown as map in pan-
els (a) and (b).

3.5.2 Applications for large-scale fire science

Generally, the main application of LFMC data is the assess-
ment of fire risks (Chuvieco et al., 2010). The high tem-
poral frequency and long period of the VOD-based LFMC
dataset allow investigating short-term to long-term changes
in fuel moisture and hence fire risk at a large scale. Previ-
ously, VOD datasets have been used as proxies for fuel condi-
tions in global empirical models of burned area (Forkel et al.,
2017; Kuhn-Régnier et al., 2021) and helped to explain how
trends in climate conditions and vegetation affect large-scale
trends in burned area (Forkel et al., 2019). However, the in-
terpretation of VOD effects on the prediction of burned area
was hampered in those studies by the unclear role of VOD
as a proxy for fuel loads (biomass) or fuel moisture content.
The VOD-based LFMC estimates overcome this problem by
translating VOD into LFMC. Besides in empirical models for

large-scale burned area, the VOD-based LFMC estimates can
be used to investigate changes in fire radiative energy or fire
emissions, which both depend on fuel moisture content. Fur-
ther investigations could assess the predictive performance
of the VOD-based LFMC data within large-scale empirical
modelling studies to predict burned area or other properties
of fire dynamics.

However, the coarse spatial resolution of the VOD-based
LFMC data (0.25◦×0.25◦) prevents applications in regional
and local fire risk assessment. At a small scale, differences in
vegetation structure and topography are the main controls on
fire ignitions and propagation (Chuvieco et al., 2010), which
are not accounted for in the VOD-based LFMC dataset.
Hence, an application of the VOD-based LFMC estimates for
regional fire risk assessment should be tested with caution,
especially in heterogeneous landscapes or mountainous re-
gions. However, our cross-validation results suggest that the
LFMC estimates can be applied in large homogenous land-
scapes with short vegetation types.

Furthermore, the VOD-based LFMC estimates can con-
tribute to the evaluation and improvement of moisture sim-
ulations in global ecohydrological and fire-enabled vegeta-
tion models such as from the fire-model inter-comparison
project (FireMIP) (Rabin et al., 2017). FireMIP models sim-
ulate live and dead fuel moisture either based on fire danger
indices (e.g. the Nesterov index, Thonicke et al., 2010) or
based on empirical functions with soil moisture or relative
humidity (Rabin et al., 2017). FireMIP models have been in-
tensively evaluated for simulations of burned area, fire emis-
sions, LAI, plant productivity, and biomass (Hantson et al.,
2020), and the simulated fuel moisture has a strong effect
on simulations of burned area and fire emissions (Li et al.,
2019). However, fuel moisture has not yet been evaluated in
those models. Hence, we propose that the VOD-based LFMC
estimates or other global products (Quan et al., 2021) can be
used in benchmarking activities of global fire-enabled vege-
tation models.

3.5.3 Future developments

Finally, we propose several further developments of the
VOD-based LFMC datasets:

– The calibration and evaluation of the applied models
used only 163 sites out of 1384 sites in the Globe-LFMC
database according to the selection criteria described
in Sect. 2.5. This is mainly caused by the joint avail-
ability of pairs of LFMC/VOD observations. Addition-
ally, our selection criteria also prevented us from using
the measurements from all 229 sites in China, where
each site has only one measurement. Future develop-
ments can apply different approaches to make use of
more observations in model training. While sites with
single measurements cannot be used to calibrate mod-
els at site level, they could be still used in training the
spatial random forest model to estimate model param-
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eters. At other sites, a filling of short temporal gaps
in VOD time series could increase the availability of
LFMC/VOD pairs and would increase the number of
sites that can be used for model calibration.

– An estimation of LFMC for different vegetation types
within a VOD grid cell can be explored as the site-
level model calibration was performed for different
vegetation growth forms reported in the Globe-LFMC
database.

– LAI data at their original spatial resolution within the
VOD-based models could be used to provide LFMC es-
timates at higher spatial resolution.

– One advantage of our methodology is the long timespan
of VOD data (e.g. Ku-VOD starting in 1987), which
potentially allows to produce long-term estimates of
LFMC in future studies. Hence, the temporal coverage
of the LFMC estimates can be extended back to 1987 by
using longer LAI time series than provided by MODIS.
Such an extension would also allow the use of older
LFMC field data in model calibration. Such long time
series of LFMC can facilitate climatological studies on
the variability and LFMC and the potential effects on
fire.

– The prediction of fire risks requires the availability
of satellite products shortly after the observation. Our
methodology could be applied to estimate LFMC in
near-real time, however, this requires the availability of
near-real time VOD products.

4 Conclusions

This study assessed the relationship between short-
wavelength VOD from passive microwave satellite observa-
tions and leaf moisture content (expressed as LFMC) glob-
ally, and successfully developed and applied a method to es-
timate LFMC from VOD globally at 0.25◦× 0.25◦ spatial
resolution, at daily time steps, and for the period from Febru-
ary 2000 to July 2017. We achieved our three objectives as
follows:

1. We investigated the relationship between VOD and
LFMC. VOD and LFMC are in the majority of sites
or grid cells positively correlated, whereby Ku-band
VOD has slightly higher correlations than X- or C-
VOD. The correlation between VOD and LFMC is on
average higher for short vegetation types such as forbs,
grasses, and shrubs than for trees, but also several forest
sites show high correlations. Broad-leaved forests show
higher correlations than needle-leaved forest. These re-
sults confirm earlier studies about the VOD–LFMC re-
lation and demonstrate additionally that coarse-scale
VOD is sensitive to LFMC at forest sites if the land

cover distribution locally is similar to the coarse grid
cell.

2. We tested different model structures to estimate LFMC
from VOD. A logistic regression model that uses daily
Ku-VOD and monthly LAI as predictors for LFMC out-
performed alternative model structures in site-level cal-
ibration and spatial cross-validation. The comparison of
model structures demonstrates that LAI is needed in ad-
dition to VOD as a proxy for either canopy biomass or
vegetation water content to reach acceptable model per-
formances.

3. We applied spatial cross-validation to assess the trans-
ferability of model structures in space and applied the
best-performing model to estimate LFMC globally. The
obtained model performances are comparable with re-
sults from previous studies that estimated LFMC based
on visible/near-infrared satellite observations. Medium
to high performance of the VOD-based LFMC estimates
can be expected for herbaceous vegetation, shrublands,
and for most broad-leaved trees in many fire-prone re-
gions, such as in western Canada, the western US and
Mexico, in southern South America, in the Mediter-
ranean, central Asia, parts of China, southern and east-
ern Africa, and southern and eastern Australia. Large
variability in performance and high uncertainties can be
expected in needle-leaved forests, whereby especially
estimates in boreal forest have low observational sup-
port.

We propose to use VOD-based estimates of LFMC to inves-
tigate effects of drought and climate variability on vegetation
leaf moisture at large scale, for large-scale assessments and
empirical modelling of fire dynamics, or to benchmark global
fire-enabled vegetation models.
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Appendix A

Figure A1. Example time series of C-, X-, and Ku-VOD over a grid cell in Spain (5.88◦W, 40.12◦ N), where the C-VOD time series shows
a high level of noise likely caused by RFI in the later years.
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Figure A2. Across-site correlations between the site-optimized parameters f , sl, and x0 of Model B with model performance measures and
land cover properties of the corresponding 0.25◦ grid cells. Numbers and blue to red colours in the upper triangle display Spearman correla-
tion coefficients. Red lines in the lower triangle are Loess fits between x and y values. Grey bars along the diagonal are histograms of each
variable. Correlation (Cor), percent bias (Pbias), and RMSE of predicted and observed LFMC; temporal median of Ku-VOD (VOD.K.med);
multi-year mean of the annual interquartile range of Ku-VOD (VOD.K.yiqr); multi-year mean of annual maximum Ku-VOD (VOD.K.ymax);
tree and short vegetation cover from Song et al. (2018); tree cover of broad-leaved deciduous (TreeBD), broad-leaved evergreen (TreeBE),
needle-leaved deciduous (TreeND), and needle-leaved evergreen (TreeNE) trees (ESA CCI Land cover V2.0.7 dataset); elevation (Elev) and
slope from the CGIAR CSI SRTM digital elevation model.
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Figure A3. Pearson correlation between the VOD-based LFMC from Model B and MODIS-LFMC for Australia and Europe for the time
period February 2000 to July 2017.
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Figure A4. Distribution of the number of joint observations of Ku-VOD and Globe-LFMC measurements. (a) Distribution of Globe-LFMC
sites overlaid over the percentage tree cover. (b) Spatial estimate of the number of supporting observations that indicates how many pairs
of Ku-VOD/Globe-LFMC observations are available with similar mean annual temperature and vegetation conditions (i.e. LAI, tree cover,
Ku-VOD). To create this map, a random forest regression was fitted to the number of observations shown in (a) and by using mean annual
temperature, tree cover, mean annual maximum Ku-VOD, and mean annual maximum LAI as predictors. The fitted random forest model
was then applied to each 0.25◦ grid cell to provide an estimate of how many observations are actually supporting an LFMC estimate in a grid
cell. (c, d) Number of observation within the global feature space of mean annual temperature and annual total precipitation (c) and mean
annual temperature and tree cover (d).
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Figure A5. Statistical distributions of the temporal correlation be-
tween Ku-VOD or LAI and measurements from the Globe-LFMC
database stratified by the percentage cover of short vegetation.
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https://doi.org/10.5281/zenodo.6545571 (Forkel et al., 2022).

Author contributions. MF and WD developed the concept. MF,
LS and MY processed and curated data. MF, LS and RMZ per-
formed the analysis. MF developed the methodology. MF and
RMZ developed the visualizations and created the figures.
MF wrote the original draft which has been reviewed and edited
by all co-authors.

Competing interests. Matthias Forkel is guest editor of the spe-
cial issue “Microwave remote sensing for improved understand-
ing of vegetation–water interactions”. The peer-review process was
guided by an independent editor, and the authors have also no other
competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special is-
sue “Microwave remote sensing for improved understanding of
vegetation–water interactions (BG/HESS inter-journal SI)”. It is a
result of the EGU General Assembly 2020, 3–8 May 2020.

Acknowledgements. We thank Niels Andela and Sandy Harrison
for comments on early developments of this work. Matthias Forkel
and Luisa Schmidt acknowledge funding from TU Dresden and
from the H2020 project FirEUrisk (101003890).

Financial support. This research has been supported by the H2020
Environment (grant no. 101003890).

This open access publication was financed by the Saxon State
and University Library Dresden (SLUB Dresden).

Review statement. This paper was edited by Julia K. Green and re-
viewed by Seung Hee Kim, Lei Fan, and one anonymous referee.

References

Abbott, K. N., Leblon, B., Staples, G. C., Maclean, D. A., and
Alexander, M. E.: Fire danger monitoring using RADARSAT-1
over northern boreal forests, Int. J. Remote Sens., 28, 1317–1338,
https://doi.org/10.1080/01431160600904956, 2007.

Bonan, G.: Ecological Climatology: Concepts and Applica-
tions, 3rd Edn., Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9781107339200, 2015.

Bowyer, P. and Danson, F. M.: Sensitivity of spectral re-
flectance to variation in live fuel moisture content at leaf
and canopy level, Remote Sens. Environ., 92, 297–308,
https://doi.org/10.1016/j.rse.2004.05.020, 2004.

Caccamo, G., Chisholm, L. A., Bradstock, R. A., Puotinen, M. L.,
Pippen, B. G., Caccamo, G., Chisholm, L. A., Bradstock, R. A.,
Puotinen, M. L., and Pippen, B. G.: Monitoring live fuel moisture
content of heathland, shrubland and sclerophyll forest in south-
eastern Australia using MODIS data, Int. J. Wildland Fire, 21,
257–269, https://doi.org/10.1071/WF11024, 2011.

Chaparro, D., Duveiller, G., Piles, M., Cescatti, A., Vall-llossera,
M., Camps, A., and Entekhabi, D.: Sensitivity of L-band vegeta-
tion optical depth to carbon stocks in tropical forests: a compar-
ison to higher frequencies and optical indices, Remote Sens. En-
viron., 232, 111303, https://doi.org/10.1016/j.rse.2019.111303,
2019.

Chuvieco, E., Riaño, D., Aguado, I., and Cocero, D.: Estima-
tion of fuel moisture content from multitemporal analysis of
Landsat Thematic Mapper reflectance data: Applications in
fire danger assessment, Int. J. Remote Sens., 23, 2145–2162,
https://doi.org/10.1080/01431160110069818, 2002.

Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín,
M. P., Vilar, L., Martínez, J., Martín, S., Ibarra, P., de la
Riva, J., Baeza, J., Rodríguez, F., Molina, J. R., Herrera,
M. A., and Zamora, R.: Development of a framework for
fire risk assessment using remote sensing and geographic
information system technologies, Ecol. Model., 221, 46–58,
https://doi.org/10.1016/j.ecolmodel.2008.11.017, 2010.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning,
I.: STL: A Seasonal-Trend Decomposition Procedure Based on
Loess, J. Off. Stat., 6, 3–73, 1990.

Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salen-
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