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Abstract. Knowledge about streamflow regimes and values
is essential for different activities and situations in which jus-
tified decisions must be made. However, streamflow behavior
is commonly assumed to be non-linear, being controlled by
various mechanisms that act on different temporal and spa-
tial scales, making its estimation challenging. An example
is the construction and operation of infrastructures such as
dams and reservoirs in rivers. The challenges faced by mod-
elers to correctly describe the impact of dams on hydrologi-
cal systems are considerable. In this study, an already imple-
mented solution of the MOHID-Land (where MOHID stands
for HYDrodinamic MOdel, or MOdelo HIDrodinâmico in
Portuguese) model for a natural flow regime in the Ulla River
basin was considered as a baseline. The watershed referred to
includes three reservoirs. Outflow values were estimated con-
sidering a basic operation rule for two of them (run-of-the-
river dams) and considering a data-driven model of a con-
volutional long short-term memory (CLSTM) type for the
other (high-capacity dam). The outflow values obtained with
the CLSTM model were imposed in the hydrological model,
while the hydrological model fed the CLSTM model with
the level and the inflow of the reservoir. This coupled system
was evaluated daily using two hydrometric stations located
downstream of the reservoirs, resulting in an improved per-
formance compared with the baseline application. The analy-
sis of the modeled values with and without reservoirs further
demonstrated that considering dams’ operations in the hydro-
logical model resulted in an increase in the streamflow during
the dry season and a decrease during the wet season but with
no differences in the average streamflow. The coupled sys-

tem is thus a promising solution for improving streamflow
estimates in modified catchments.

1 Introduction

Knowledge about streamflow, including water quantity and
quality, is fundamental for monitoring and controlling the
environmental impacts of several activities and situations,
including infrastructure design, support in decision-making
processes, irrigation scheduling, design and implementa-
tion of water management systems, environmental man-
agement, studies of river and watershed behavior, flood-
warning control, optimal water resource allocation, predic-
tion of droughts, and management of reservoir operations
(Mehdizadeh et al., 2019; Mohammadi et al., 2021; Hu et
al., 2021). However, the task of delivering information about
streamflow can be challenging since it commonly assumes a
non-linear behavior, being controlled by various mechanisms
that act on different temporal and spatial scales (Wang et
al., 2006). These non-linear forcings include meteorological
conditions, land use, infiltration, morphological features of
the river, and catchment characteristics (Mohammadi et al.,
2021). The complex and laborious process of streamflow es-
timation is usually exacerbated when the natural regime flow
is modified by anthropogenic activities and human decisions.
In this sense, reservoirs are a major concern in hydrological
modeling since most models are not prepared to directly con-
sider the existence of such infrastructures and the resulting
alterations caused to the natural regime flow by their opera-
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tions (Dang et al., 2020). If hydrological models are prepared
to study and comprehend the behavior of natural systems, the
lack of information about reservoirs’ operations, such as op-
erating rules and flood contingency plans, poses a challenge
for a correct representation of those infrastructures.

As pointed out by Dang et al. (2020), a post-process
methodology is often used to impose reservoirs’ operations
on hydrologic–hydraulic models. This way, the need for
modifying models’ structures is avoided. However, Bellin et
al. (2016) considered the direct representation of reservoir
water storage and operation to be the best approach to cor-
rectly simulate such systems. Nevertheless, the challenges
faced are many and have limited the number of studies car-
ried out (Dang et al., 2020).

Recently, Xiong et al. (2019) developed a statistical frame-
work where an indicator combining the effects of reservoir
storage capacity and the volume of the multi-day antecedent
rainfall input was used to assess the impact of a reservoir
system on flood frequency and magnitude in downstream ar-
eas of the Han River, China. Yun et al. (2020) modified the
structure of the variable infiltration capacity (VIC) model to
include a reservoir module for estimating the variation of
streamflow and flood characteristics when impacted by cli-
mate change and reservoir operation in the Lancang–Mekong
River basin in southeast Asia. Also using a modified VIC
model, Dang et al. (2020) simulated storage dynamics of
water reservoirs again in the Lancang–Mekong River basin.
In both studies, a comparison between the model results
with and without reservoirs was provided. It is important to
note that both Yun et al. (2020) and Dang et al. (2020) im-
posed operation rules on the model, with the former authors
giving more importance to flood control and environmen-
tal protection and the latter focusing on energy production.
Also, Hughes et al. (2021) used a modified version of the
SHETRAN (Systeme Hydrologique Europeen TRANsport)
model to simulate the streamflow considering the influence
of reservoirs in Upper Cocker catchment, United Kingdom.
The authors considered a weir model, and two tests were
performed: (i) the weir was simulated as static (with closed
sluice) to identify the sluice operating rules by means of a
comparison of the results with the known outflow time series,
and (ii) the weir model was run as non-static to implement
the sluice operating rules deducted from the first approach.
All studies mentioned above reproduced reservoirs’ behav-
iors considering their operation rules, which, in most cases,
are difficult to obtain or are very laborious to reproduce.

The application of operation rules may often be adapted
to specific conditions, objectives, or constraints based on the
knowledge and experience of operators (Yang et al., 2019).
This makes the reservoirs’ operations deviate from the refer-
ence operation curves, invalidating the sole use of physical-
based models and the use of pre-established rule curves to
reproduce the reservoir behavior in real time. To overcome
this issue, Yang et al. (2019) indicated that machine learn-
ing methods, with their capacity to understand, extract, and

reproduce complex high-dimensional relationships, can be
an efficient and easy-to-use solution to reproduce reservoirs’
operations, contemplating both the reference operation rules
and the operators’ historical experience. In this sense, the re-
ferred authors used recurrent neural network (RNN) mod-
els to extract reservoirs’ operation rules from the histori-
cal operation data of three multipurpose reservoirs located
in the upper Chao Phraya River basin, Thailand. Also con-
sidering the use of the geomorphology-based hydrological
model (GBHM) to forecast the reservoir’s inflow, Yang et
al. (2019) achieved a real-time reservoir outflow forecast.
Dong et al. (2023) proposed a similar approach to improve
the reconstruction of daily streamflow time series in the up-
per Yangtze River basin, China. These authors proposed a
practical framework to quantitatively assess the cumulative
impacts of reservoirs’ operations on the hydrologic regimes,
coupling two data-driven models, namely an extreme gradi-
ent boosting (XGBoost) model and an artificial neural net-
work (ANN) model with a high-resolution hydrologic model,
and following a calibration-free conceptual reservoir opera-
tion scheme. The data-driven models were used to predict
the outflow of reservoirs with historical operation data, while
the calibration-free conceptual reservoir approach was used
to simulate the outflow in data-limited reservoirs. The study
presented by Dong et al. (2023) is a rare example of a promis-
ing solution for improving streamflow prediction in highly
modified catchments, which this study aims to follow.

In the present study, the physical-based, distributed
MOHID-Land model (Trancoso et al., 2009; Canuto et al.,
2019; Oliveira et al., 2020) was coupled with a convolu-
tional long short-term memory (CLSTM) model to estimate
the daily outflow in Portodemouros reservoir, Galicia, Spain.
The results obtained with the CLSTM model were estimated
considering the reservoir’s level and inflow simulated by
MOHID-Land and were then imposed in that same model for
streamflow simulation downstream of the reservoirs. How-
ever, the CLSTM model was first trained and tested using
historical data. Thus, the main aim of this study is to verify
the capacity of the coupled system to improve streamflow es-
timation downstream of Portodemouros reservoir. This study
demonstrates the ability of the proposed approach to directly
simulate reservoirs’ operations in a hydrological simulation
and validates a solution that is accessible and easy to imple-
ment.

2 Materials and methods

2.1 Description of the study area

The Ulla River watershed is located in the Galicia region,
northwest of Spain, and drains an area of 2803 km2, discharg-
ing into the Ría de Arousa estuary (Fig. 1). Ría de Arousa is
one of the most important coastal water bodies in Galicia,
having the Ulla and Umia rivers as major tributaries, and it
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is mainly used for recreative and fishery activities (da Silva
et al., 2005; Outeiro et al., 2018; Blanco-Chao et al., 2020;
Cloux et al., 2022). The maximum and minimum elevations
of the Ulla watershed are 1160 and −1 m, respectively, and
the main watercourse has a bed length of 142 km with its
source at an altitude of 600 m. The watershed is inserted into
an area characterized by a warm-summer Mediterranean cli-
mate (Csb) according to the Köppen–Geiger classification
(Köppen, 1884). The annual precipitation is about 1100 mm,
with rainy months from October to May. The annual aver-
age temperature is 12 ◦C, reaching a maximum of 18 ◦C in
August and a minimum of 7 ◦C in February. According to
Nachtergaele et al. (2009), the main soil units in the Ulla
river watershed are Umbric Leptosols and Umbric Regosols,
representing 69 % and 31 %, respectively. The main land uses
are forest, occupying 57 % of the area, and semi-natural and
agricultural areas, covering 40 % (Copernicus Land Monitor-
ing Service, 2016).

There are three reservoirs in the watershed: Portode-
mouros, Bandariz, and Touro (Fig. 1). Those reservoirs were
constructed in cascade and work collectively, with Portode-
mouros placed at the beginning of the cascade, Touro at
the end, and Bandariz in between. Portodemouros has a to-
tal capacity of 297 hm3, while Bandariz and Touro present
much lower capacities, totalizing 2.7 and 3.8 hm3, respec-
tively. Due to its significative storing capacity, Portode-
mouros reservoir can be used for flood control; however, the
set of three reservoirs is mainly responsible for energy pro-
duction. The patterns of daily inflow and outflow of the two
last reservoirs are very similar since they are run-of-the-river
dams (Fig. 2b and c). Nevertheless, Portodemouros works in
a different way, presenting significative differences between
the inflow and outflow patterns (Fig. 2a and d).

2.2 MOHID-Land description

MOHID-Land is an open-source model (https://github.
com/Mohid-Water-Modelling-System/Mohid, last access:
10 February 2019) and is part of the MOHID (hydrody-
namic model) water modeling system. It is a fully distributed
and physically based model adopting mass and momentum
conservation equations considering a finite-volume approach
(Trancoso et al. 2009; Canuto et al., 2019; Oliveira et al.,
2020). The model estimates water fluxes between four main
compartments, namely, the atmosphere; the soil surface; the
river network; and the porous media, which is also intimately
related to the vegetation compartment. Excepting the atmo-
sphere compartment, which is only responsible for providing
the meteorological data needed to impose surface boundary
conditions, the processes in all the other compartments are
explicitly simulated.

In MOHID-Land, the atmosphere compartment can deal
with space- and/or time-variable data, and the input proper-
ties include precipitation, air temperature, relative humidity,
wind velocity, and solar radiation and/or cloud cover.

The simulated domain is discretized considering two grids,
one in the surface plane and the other in the vertical direc-
tion. While the first is defined according to the coordinate
system chosen by the user, the last follows a Cartesian co-
ordinate system. The surface water movement is computed
considering a 2D surface grid and solving the Saint-Venant
equation in its conservative form, accounting for advection,
pressure, and friction forces. The Saint-Venant equation is
also solved one-dimensionally (1D) for the river network.
This network is derived from the digital terrain model rep-
resented in the 2D surface grid by connecting surface cell
centers (nodes) and is characterized by a cross-section ge-
ometry defined by the user. The water fluxes between these
two (2D and 1D) compartments are estimated according to a
kinematic approach, neglecting bottom friction and using an
implicit algorithm to avoid instabilities.

The porous media is discretized by combining the 2D sur-
face grid with the vertical Cartesian grid, defining a 3D do-
main with variable thickness layers. This compartment can
receive or lose water from the river network, with fluxes be-
ing computed considering a pressure gradient in the inter-
face of these two mediums. Besides the water coming from
the drainage network, the porous media also receives water
from the infiltration process, which is calculated according to
Darcy’s law. In this 3D domain, the water movement is sim-
ulated using the Richards equation and considering the same
grid for saturated and unsaturated flow. The soil hydraulic
parameters are described using the van Genuchten–Mualem
functional relationships (Mualem, 1976; van Genuchten,
1980). The saturation is reached when a cell exceeds the
soil moisture threshold value defined by the user, and, in that
case, the model considers the saturated conductivity to com-
pute flow, with pressure becoming hydrostatic and corrected
by friction. To compute the lateral flow, the horizontal sat-
urated hydraulic conductivity is given by the product of the
vertical saturated hydraulic conductivity (Ksat,ver) and a fac-
tor (fh) set by the user.

The soil water loss is mainly due to the evapotranspira-
tion process, which is computed taking into account weather,
crop, and soil conditions. The reference evapotranspiration
(ETo) is first computed according to the FAO Penman–
Monteith method (Allen et al., 1998). Then, the potential
crop evapotranspiration (ETc) is obtained by multiplying the
ETo by a single crop coefficient (Kc) representing standard
crop conditions. ETc values are then partitioned into poten-
tial soil evaporation and crop transpiration rates based on the
leaf area index (LAI) following Ritchie (1972). LAI is simu-
lated using a modified version of the EPIC model (Neitsch et
al., 2011; Williams et al., 1989) and considering a heat units
approach for crop development, the crop development stages,
and crop stress (Ramos et al., 2017). The actual transpiration
is calculated based on the macroscopic approach proposed by
Feddes et al. (1978), where root water uptake reductions are
estimated considering the presence of depth-varying stres-
sors (Šimůnek and Hopmans, 2009; Skaggs et al., 2006).
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Figure 1. Ulla River watershed location, digital terrain model, and identification of hydrometric stations and reservoirs.

Figure 2. Comparison of inflow and outflow volumes in (a) Portodemouros, (b) Touro, and (c) Bandariz reservoirs for the period 2010–2018
and in (d) Portodemouros reservoir for the period 1990–2018.
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The actual soil evaporation is estimated from the potential
soil evaporation by imposing a pressure head threshold value
(ASCE, 1996).

To avoid instability problems and to save computational
time, the model allows the use of a variable time step, which
reaches higher values during dry seasons and lower values in
rainy periods when water fluxes increase.

2.2.1 Reservoirs module

Besides the main modules described above, MOHID-Land
can also consider the existence of reservoirs in the river net-
work domain. The operation of a reservoir needs several
characteristics to be defined, namely, the minimum and max-
imum volumes, the minimum outflow (the definition of the
maximum outflow is optional), the curve defining the rela-
tion between the level and the stored volume, the type of
operation, the location in terms of coordinates, and the iden-
tification of the node in the river network where the reser-
voir is placed. A reservoir’s operation may be defined by the
relationship between the level and the outflow as an abso-
lute value or as a percentage of the inflow, the percentage of
the stored volume and the outflow as an absolute value or as
a percentage of the inflow, and the percentage of the stored
volume and the outflow as a percentage of the maximum out-
flow. The user can also define the existence of discharges (in
and/or out) and the state of the storage capacity (full, filled
with a percentage of the total capacity, or empty) at the be-
ginning of the simulation. In that sense, the reservoir module
works with each reservoir as a box where a mass balance is
performed. This mass balance takes into account the stored
volume and the amount of water that enters and leaves the
reservoir. The former considers the inflow from the river net-
work and any input discharge defined by the user. The latter
considers the outflow estimated by the type of operation and
any output discharge defined by the user. The new stored vol-
ume is transformed into a level according to the level–volume
curve specified by the user.

2.2.2 Model setup

The MOHID-Land model was already implemented, cali-
brated, and validated in the study area as detailed in Oliveira
et al. (2020). This study was carried out from 1 January 2008
to 31 December 2017. Only the natural regime flow in the
watershed was considered, with model calibration and val-
idation using data from hydrometric stations not influenced
by reservoirs’ operations. A detailed description of the cali-
brated parameters resulting from the work done by Oliveira
et al. (2020) is presented in Appendix A.

Reservoirs setup

The three reservoirs in the studied watershed were imple-
mented according to the characteristics presented in Table 1.
Their curves relating the level and the stored volume are

Figure 3. Level versus stored volume curves for (a) Portodemouros,
(b) Bandariz, and (c) Touro reservoirs.

given in Fig. 3. These data were made available by Augas
de Galicia (Augas de Galicia, 2022), which is a public entity
managing the Galicia Costa basin district.

The operation for Bandariz and Touro reservoirs was de-
fined based on the relation between the percentage of the
stored volume and the outflow as a percentage of the inflow.
If the stored volume was between 0 % and 95 %, the reser-
voir had no outflow. If the stored volume was above 96 %,
the outflow equaled the inflow; i.e., the entire amount of wa-
ter that entered the reservoir each instant left the reservoir in
the same instant. For Portodemouros, no operation rule was
set since there was no clear relation between the inflow and
outflow values to be used in MOHID-Land. Thus, the daily
outflow of Portodemouros reservoir was estimated using a
neural network model and was imposed upon the hydrologic
model as a time series. Additionally, if the stored volume of
any reservoir was equal to or above the total capacity, the
amount of water that reached the reservoir was transformed
into outflow.

2.3 Neural network model for reservoir outflow
estimation

To estimate Portodemouros reservoir’s daily outflow, a neural
network model was developed and tuned. It was composed of
a combination of convolutional and long short-term memory
layers, hereafter defined as the convolutional long short-term
memory (CLSTM) model. This type of model was already
applied for streamflow estimation by Ni et al. (2020) and
Ghimire et al. (2021), who reported that, when compared
with other neural network models, the CLSTM represented
the best solution. The demonstrated good behavior of the
CLSTM model is mainly related to its structure, which be-
gins with the use of convolutional layers, responsible for the
extraction of patterns in the input variables, and follows with
long short-term layers, which are responsible for the predic-
tion itself.

As referred to by Wang et al. (2019), convolutional neural
networks (CNNs) have their origin in artificial neural net-
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Table 1. Implemented characteristics for Portodemouros, Bandariz, and Touro reservoirs.

Portodemouros Bandariz Touro

Node location 1476 1383 1247
Coordinates 42◦51′21.6′′ N, 8◦11′19.8′′W 42◦50′09.6′′ N, 8◦12′31.8′′W 42◦49′51.6′′ N, 8◦14′19.8′′W
Minimum volume (hm3) 54.5 0.33 0.015
Maximum volume (hm3) 297 2.74 6.83
Minimum outflow (m3 s−1) 10 10 10

works (ANNs), but instead of fully connected layers, CNNs
use local connections, giving more importance to high cor-
relations with nearby data. Developed by LeCun and Ben-
gio (1998) to identify handwritten digits, CNN uses convo-
lutional filtering to achieve high correlation with neighbor-
ing data. This means that this type of network works based
on the weight-sharing concept, with the filters’ coefficients
being shared for all input positions and their number and
values being essential to capture data patterns (Wang et al.,
2019; Barino et al., 2020; Chong et al., 2020). CNNs are thus
recognized as more suitable solutions to identify local pat-
terns, with a certain identified pattern being able to be recog-
nized in another independent occurrence (Tao et al., 2019).
As Ghimire et al. (2021) describe, CNN models can be used
to identify patterns in one (1D), two (2D), or three (3D) di-
mensions. Being more adequate for time series data analy-
sis, the 1D CNN solution was selected to be used in this
study as an input layer. This selection avoided the manual
feature extraction process since 1D convolutional algorithms
are known for their powerful capability of doing this auto-
matically. According to Huang et al. (2020), the time needed
for training CNN models is one of its main weaknesses.

As a type of recurrent neural network (RNN) model, long
short-term memory (LSTM) models are known for their ca-
pacity to maintain historical information about all the past
events of a sequence using a recurrent hidden unit (Elman,
1990; LeCun et al., 2015; Lipton et al., 2015). This charac-
teristic makes RNNs very suitable for time series data model-
ing (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997;
Saon and Picheny, 2017). However, RNN models demon-
strate an inability in learning long-distance information be-
cause of their already known vanishing- and exploding-
gradient problems during the training process (Ghimire et al.,
2021). Trying to solve this RNN problem, Hochreiter and
Schmidhuber (1997) developed the LSTM structure, which
has the capacity to learn long-term dependencies (Xu et al.,
2020).

2.3.1 Input data

The forcing variables were selected from a set that included
the daily values of inflow, level, precipitation, temperature,
and volume. The usage of the outflow values as a forcing
variable was avoided because, when there are no observed

Figure 4. CLSTM structure used in this study.

values, the outflow data generated by the model must be used
to feed the model itself, which can lead to an accumulation
and propagation of errors in the estimated values. Several
tests were performed considering different forcing variables
and their combinations to verify which better estimate the
daily outflow from the Portodemouros reservoir. Also, dif-
ferent time lags of those forcing variables were tested. The
analysis of the test results shows that the best performance of
the CLSTM model was obtained with inflow and level used
as forcing variables, both considering the values from 1, 2,
and 3 d before the forecasted day.

The daily values of inflow, level, and volume were pro-
vided by Augas de Galicia, and original hourly values of
precipitation and temperature were obtained from the ERA5
Reanalysis dataset and were then accumulated or averaged
considering a daily time step. The dataset made available by
Augas de Galicia covered a period of about 29 years, with
data from 1 January 1990 to 16 July 2018.

2.3.2 Structure

In this study, the model structure was developed using Python
language and the Keras package (Chollet et al., 2015) on
top of TensorFlow (Abadi et al., 2016). The types of lay-
ers made available by the Keras package and used here were
the Conv1D, MaxPooling, LSTM, and dense. After several
tests, the adopted model’s structure included a Conv1D in-
put layer followed by a MaxPooling layer. Then, two other
sets of Conv1D plus MaxPooling layers were adopted. After
those, an LSTM layer was introduced, and the output layer
was selected to be a dense layer (Fig. 4).

For the convolutional layers, no activation function was
defined, while the LSTM layer was activated with the hyper-
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bolic tangent function. For the output dense layer, the expo-
nential linear unit function was used as activation function.

The optimizer, i.e., the training algorithm, was selected to
be the Nadam algorithm, with a learning rate of 1× 10−3

and an epsilon value of 1× 10−7. The loss was estimated
using the mean absolute error (MAE). Finally, the number
of epochs and the batch size were, respectively, 300 and 20,
found after a trial-and-error procedure.

2.3.3 Model optimization

The model optimization considered two phases, namely, the
manual tuning of hyperparameters and the optimization of
weights reached with the training process. In both cases, the
structure presented above was exposed to a subset of the orig-
inal dataset, i.e., the training dataset, where the forcing and
target variables were included. The training dataset was han-
dled and prepared with Pandas (McKinney, 2010) and scikit-
learn (Pedregosa et al., 2011) packages, with the data being
delayed with the first and scaled with the latter. The scaling
function transformed the features of the given data into val-
ues within a desired range, which was defined from 0 to 0.9
considering that the maximum values of the variables cannot
be represented in the dataset.

The tuning process was carried out to optimize the hyper-
parameters of the model. Several values for the number of
filters, the kernel size for convolutional layers, and the num-
ber of units for the LSTM layer were tested. The best per-
formance was reached with 16 filters and a kernel size of 10
for all three convolutional layers and 10 units for the LSTM
layer. The pool size was set as 2 for the first and second Max-
Pooling layers and as 1 for the third layer of this type.

The training process consisted of changing the weights
and bias values of a model to improve its capacity to es-
timate the target variable. The initialization of those values
followed the default definitions of the Keras package for all
the layers, which means that the weights were initialized ac-
cording to the Glorot uniform method (Glorot and Bengio,
2010), and the biases were initialized with value 0. How-
ever, this type of initialization and the consequent training
process have a random nature associated with them, repeat-
edly resulting in different estimations of the same target vari-
able even when considering the same forcing variables and
the same trained structure. To overcome this problem, the
CLSTM model was exposed and trained and the final weights
were saved 100 times, always considering the same training
dataset, with the results being evaluated individually for each
experiment. Based on these results, the model with the best
performance was selected to estimate the outflow values for
the Portodemouros reservoir.

2.4 Coupling MOHID-Land and CLSTM models

The operationality of the coupled system, which includes
the CLSTM and MOHID-Land simulations, was divided into

Figure 5. Operationality scheme for the modeling process.

two phases, one that comprehended the warm-up period and
the other including the calibration and validation periods de-
fined in Oliveira et al. (2020). Since MOHID-Land is a phys-
ical model, it was necessary to consider an initial warm-up
period for the stabilization of the hydrological processes and
to avoid the influence of the errors related to the imposed
initial conditions in the results.

In both phases, models were simulated on a daily basis,
taking advantage of the possibility of doing continuous sim-
ulations in MOHID-Land. This means that, in every simula-
tion, the state of the system in the last simulated instant is
saved and can be used as the initial state in the next simula-
tion if the date and time match.

In the warm-up simulation, the reservoirs’ module was de-
activated. In the end of the warm-up period, the reservoirs’
module was activated, and the initial conditions (level and
stored volume) for the three reservoirs were manually im-
posed considering the measured values. Then, for each sim-
ulated day, the CLSTM model was the first to be run. The
optimized model was loaded and received the information
about the levels and the inflows of Portodemouros reservoir
estimated by MOHID-Land for the 3 d before the simulated
day. The CLSTM used this information to estimate the out-
flow for the simulated day. The outflow value estimated by
the CLSTM model was then imposed in MOHID-Land. A
scheme representing the described process to couple both
models is presented in Fig. 5.

2.5 Model’s evaluation

The CLSTM model used to predict the outflow from Por-
todemouros reservoir was evaluated considering a subset
of the original dataset from Augas de Galicia, which was
not previously exposed to the trained model. That subset is
known as a test dataset and contained pairs of forcing (in-
flow and level) and target (outflow) variables. Thus, the out-
flow was estimated based on the forcing variables and was
then compared to the corresponding measured outflow. The
test dataset corresponded to 10 % of the size of the original
dataset and covered the period between 19 September 2015
and 16 July 2018, totalizing 1023 daily values.

In turn, the evaluation of streamflow values focused on
the hydrometric stations placed downstream of the set of
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reservoirs and intended to verify the behavior of the cou-
pled modeling system (MOHID-Land+CLSTM). This eval-
uation was performed by comparing the streamflow values
estimated by the coupled modeling system with those mea-
sured in the Ulla–Touro and Ulla–Teo hydrometric stations.
The validation of the coupled system was conducted from
1 January 2009 to 31 December 2017.

In both cases, the comparison between modeled and ob-
served values was based on a visual inspection, and the esti-
mation of four different statistical indicators, namely, the co-
efficient of determination (R2), the percentage bias (PBIAS),
the ratio of the root mean square error to the standard devia-
tion of observation (RSR), and the Nash–Sutcliffe modeling
efficiency (NSE), which were computed using Eqs. (1)–(4),
respectively:
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where xobs
i and xsim

i are the outflow values observed and esti-
mated, respectively, by the model on day i; Xobs

mean and Xsim
mean

are the average outflow considering the observed and mod-
eled values in the analyzed period; and p is the total number
of days and/or values in this period.

According to Moriasi et al. (2015), the NSE must be higher
than 0.50 for the model to be classified as satisfactory, higher
than 0.70 to be good, and higher than 0.8 for a very good
performance. The R2 values should be higher than 0.60 for
a satisfactory performance, higher than 0.75 for a good per-
formance, and higher than 0.85 for a very good performance.
Finally, PBIAS of ±5 % is a characteristic of a very good
model, while a model with a PBIAS of ±10 % is classified
as good. To be classified as satisfactory, a model’s PBIAS
should be ±15 %.

3 Results

3.1 MOHID-Land model

In a natural regime flow, MOHID-Land’s performance
reached satisfactory to good results at the Sar, Ulla, Arnego–
Ulla, and Deza hydrometric stations (Table 2), as shown in
Oliveira et al. (2020). The R2 values ranged from 0.56 to
0.75 and 0.76 to 0.85 in the calibration (1 January 2009–
31 December 2012) and validation (1 January 2013–31 De-

cember 2017) periods, respectively. The RSR showed val-
ues lower than 0.67 for all stations in both periods, while the
NSE presented values from 0.55 to 0.72 in the calibration pe-
riod and from 0.72 to 0.84 in the validation period. Finally,
the PBIAS presented a slight overestimation of river flow at
the Sar hydrometric station (calibration: 0.18 %; validation:
16.09 %), while at the other three stations, the model under-
estimated the river flow, with PBIAS values ranging from
−12.29 % to −8.96 % and from −18.54 % to −4.35 % in the
calibration and validation periods, respectively.

Figure 6 compares the observed streamflow (black line)
with the respective MOHID-Land simulations without con-
sidering the influence of reservoirs (blue line) at Ulla–Touro
and Ulla–Teo. Since these hydrometric stations have their
natural regime flow altered by the operation of the set of
reservoirs in the watershed, the performance of the hydro-
logical model without reservoirs showed a significative de-
crease, as expected (Table 2).

3.2 CLSTM model

To better evaluate the performance of the CLSTM neural net-
work model, the four statistical indicators were calculated for
the set of 100 models trained with the same training dataset.
Table 3 presents a summary of the results obtained.

The behavior of the developed CLSTM model was ex-
tremely regular, with an R2 above 0.89 and an NSE higher
than 0.86. The worst PBIAS was −15.74 %, and the maxi-
mum value of RSR was 0.37. More specifically, the trained
model elected to represent the outflow estimation of the Por-
todemouros reservoir obtained an NSE of 0.90, an R2 of
0.91, a PBIAS of −2.61 %, and an RSR of 0.31. Figure 7
shows the comparison between the modeled and the observed
values for Portodemouros outflow using observed levels and
inflows to feed the model.

The CLSTM predicted the outflow of the Portodemouros
reservoir very accurately. However, when the observed val-
ues showed accentuated differences in a short period of time,
such as 2 consecutive days, the model demonstrated some
difficulty in reproducing that behavior, being able to repro-
duce the increase–decrease behavior at the right instant but
being unable to reach the correct values. This is the case for
the outflow predictions for May and June of 2016 (Fig. 7).

3.3 Coupled system

In the coupled system (MOHID-Land+CLSTM), the Por-
todemouros outflow was estimated with the CLSTM model
considering the level and inflow estimated by the MOHID-
Land model. Then, the outflow predicted by the CLSTM
model was imposed upon MOHID-Land. Therefore, the in-
flow and outflow of the reservoir, as well as the two hydro-
metric stations influenced by the presence of the reservoirs,
were the target of the validation of the coupled system.
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Table 2. Statistical indicators resulting from the comparison of the natural regime flow estimated by MOHID-Land with the observed
streamflow values at six hydrometric stations (Cal. – calibration, Val. – validation; adapted from Oliveira et al., 2020).

Station R2 NSE RSR PBIAS Position relative to reservoirs
(–) (–) (–) (%)

Cal. Val. Cal. Val. Cal. Val. Cal. Val.

Sar 0.75 0.83 0.72 0.81 0.53 0.44 0.18 16.09 Upstream
Ulla 0.56 0.76 0.55 0.72 0.67 0.53 −11.24 −18.54
Arnego–Ulla 0.70 0.78 0.69 0.76 0.55 0.49 −12.29 −16.82
Deza 0.74 0.85 0.72 0.84 0.53 0.40 −8.96 −4.35

Ulla–Touro 0.46 0.52 −0.09 0.24 1.04 0.87 −19.06 −19.12 Downstream
Ulla–Teo 0.77 0.79 0.71 0.73 0.54 0.52 −16.68 −14.36

Figure 6. Comparison of modeled and observed average monthly streamflow in hydrometric stations (a) Ulla-Touro and (b) Ulla-Teo with
and without considering the existence of reservoirs. Focus on the daily values for the period between September 2013 and September 2014
in (c) Ulla-Touro and (d) Ulla-Teo hydrometric stations.

Table 3. Average, minimum, maximum, and standard deviation val-
ues of the four statistical parameters estimated for the set of 100
models run and the elected model.

R2 NSE RSR PBIAS
(–) (–) (–) (%)

Average 0.90 0.89 0.33 −1.71
Minimum 0.89 0.86 0.31 −15.74
Maximum 0.91 0.90 0.37 14.07
Standard deviation 0.00 0.01 0.01 6.26

Elected model 0.91 0.90 0.31 2.61

Figure 8a compares the observed and modeled inflow in
Portodemouros reservoir, while Fig. 8b shows the same com-
parison for the outflow. The observed (black line) and mod-
eled (red line) streamflow comparisons for Ulla–Touro and
Ulla–Teo stations are presented in Fig. 6a and b, respectively.
The four statistical indicators used to evaluate the model’s
performance were also calculated for the inflow, outflow, and

streamflow in Ulla–Touro and Ulla–Teo stations and are pre-
sented in Table 4.

Inflows estimates in Portodemouros reservoir were in ac-
cordance with Oliveira et al. (2020). For the outflow values
estimated with the CLSTM model considering the original
dataset, the performance of the coupled system decreased
slightly when compared with the previous indicators, with
R2 of 0.66, NSE of 0.55, RSR of 0.67, and PBIAS of −25 %
for the validation period. The coupled system further showed
a good performance when simulating streamflow at the two
hydrometric stations (Ulla–Touro and Ulla–Teo), where the
regime flow is altered by the presence of the reservoirs. Con-
sidering both hydrometric stations, theR2 improved by about
30 % compared with the results without reservoir, reaching a
minimum of 0.70. The RSR indicator also demonstrated a
better performance with values fitting the range from 0.39 to
0.63 and revealing an average improvement of about 30 %.
The higher impact was observed for the NSE indicator, which
increased by about 253 %, with the values laying in the range
from 0.61 to 0.85. Finally, the PBIAS showed an average de-
crease of about 4 %.
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Figure 7. Comparison between modeled and observed Portodemouros outflow considering the CLSTM model: (a) monthly average and
(b) daily values between December 2015 and June 2016.

Table 4. Statistical parameters for inflow, outflow, and streamflow at Ulla–Touro and Ulla–Teo stations (Cal. – calibration, Val. – valida-
tion). The values between brackets represent the percentage change of the statistical parameter in relation to the corresponding value in the
simulation without reservoirs.

Station R2 NSE RSR PBIAS
(–) (–) (–) (%)

Cal. Val. Cal. Val. Cal. Val. Cal. Val.

Inflow 0.79 0.81 0.76 0.77 0.49 0.48 −23.68 −28.38
Outflow 0.71 0.66 0.64 0.55 0.60 0.67 −19.53 −25.35
Ulla–Touro 0.74 0.70 0.65 0.61 0.59 0.63 −17.20 −19.58

(+61 %) (+35 %) (+822 %) (+154 %) (−43 %) (−28 %) (−10 %) (+2 %)
Ulla–Teo 0.87 0.86 0.85 0.83 0.39 0.41 −15.48 −14.68

(+13 %) (+9 %) (+20 %) (+14 %) (−28 %) (−21 %) (−7 %) (+2 %)

Figure 8. Comparison between the modeled and observed (a) in-
flow and (b) outflow in Portodemouros reservoir using the coupled
system.

Despite the good results obtained for the streamflow of the
downstream reservoirs, it is important to note that the reser-
voir’s level estimated by MOHID-Land model did not reach
the minimum requirements to be classified as satisfactory
(calibration: NSE of 2.44, R2 of 0.01, PBIAS of −3.16 %,
RSR of 1.85; validation: NSE of 0.00, R2 of 0.09, PBIAS of
−0.67 %, RSR of 1.00). The coupled system overestimated
the Portodemouros level most of the time, with an exception

Figure 9. Comparison between modeled and observed level in Por-
todemouros reservoir.

for the period between January 2013 and the middle of 2016,
when the observed and modeled values were more similar
(Fig. 9).

It could be expected that this issue would affect streamflow
estimation downstream of the reservoir since the outflow es-
timated by the CLSTM model considered the level values es-
timated by MOHID-Land. However, as demonstrated before,
this issue did not significantly impact downstream results.

3.4 Impact of reservoir operation on streamflow

As referred to before, the reservoirs have an impact on the
natural regime flow downstream of their infrastructures. The
impact in the Ulla River watershed was here assessed by
comparing the simulations under natural flow regime with
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the simulation of the coupled system. For this, the stream-
flow was evaluated in three locations along the river network,
namely, at the Ulla–Touro and Ulla–Teo stations and at the
outlet of the watershed. Table 5 shows the minimum; max-
imum; average; and second-, third-, and fourth-quartile val-
ues of the streamflow time series obtained for those locations
considering the scenarios with (Res.) and without (No res.)
reservoirs.

The most significative differences in streamflow occurred
at the Ulla–Touro station, located immediately downstream
of the reservoirs and more influenced by the reservoirs’ op-
erations. The main differences between the two scenarios
were observed in the smallest values, namely, the minimum
and the second-quartile values. In both cases, the streamflow
showed an increase when the reservoirs were considered in
the simulation, with the minimum streamflow increasing by
105 % in the outlet, by 127 % in Ulla–Teo, and by 356 % in
Ulla–Touro and with the second quartile increasing by 16 %,
17 %, and 28 % in the outlet, Ulla–Teo, and Ulla–Touro, re-
spectively. On the other hand, the main decreases were ob-
served in the maximum and fourth-quartile values for all the
evaluated points. However, the decreases of the highest val-
ues were not so significant compared to the differences ob-
served for the smallest values, with the maximum values de-
creasing by 10 % in the outlet, by 6 % in Ulla–Teo, and by
18 % in Ulla–Touro and with the fourth quartile presenting
differences of −3 %, −4 %, and −6 % in the outlet, Ulla–
Teo, and Ulla–Touro, respectively.

The distribution of streamflow along the year (Fig. 10)
showed a decrease in the average streamflow between Octo-
ber and December (wet season) when considering the reser-
voirs. Between January and March, also in the wet season,
the streamflow only showed slight differences when consid-
ering or not considering the reservoirs. Finally, the dry season
was totally characterized by an increase in the streamflow for
the simulations with reservoirs, with the main differences be-
ing found between July and September. For the same reasons
presented before, Ulla–Touro station was the point where the
main differences were observed.

The behavior presented in Fig. 10 is the expected result
when considering reservoirs’ operations since this type of in-
frastructure is commonly used to store water during the wet
season, causing a decrease of downstream streamflow. On the
other hand, it is expected that average streamflow increases
during dry seasons due to the constant necessity of energy
production throughout the year and the imposition of eco-
logical flows downstream of the reservoirs to maintain the
health of the ecosystems.

4 Discussion

The results of the presented study show that the direct in-
corporation of reservoirs’ operations in hydrologic model-
ing has a significative impact on the results of the modeled

Figure 10. Average monthly streamflow in Ulla–Touro and Ulla–
Teo stations and in the outlet for the two simulated scenarios, i.e.,
without and with reservoirs.

system, as already referred to by Bellin et al. (2016). The
development of the CLSTM model for the prediction of Por-
todemouros outflow, which was afterwards imposed upon the
hydrological model, needed to guarantee that the model es-
timation was good enough to avoid an error propagation.
The elected CLSTM model reached a level of performance
where the NSE was 0.90; the R2 was 0.91; and the PBIAS
and RSR were −2.61 % and 0.31, respectively, consider-
ing a test dataset. Similar results were obtained by Yang et
al. (2019), who estimated the daily outflow of three multipur-
pose reservoirs located in Thailand considering three differ-
ent types of RNN models, namely, a non-linear autoregres-
sive model with exogenous input (NAXR), a long short-term
memory (LSTM), and a genetic algorithm based on NAXR
(GA-NAXR). The authors considered as forcing variables the
inflow estimated by a hydrological model for the previous
2 d and the following 2 d together with the reservoir storage
volume of the previous day. They obtained an average Pear-
son correlation coefficient of 0.91, an average NSE of 0.81,
and an average PBIAS of −0.71 % with the NARX model
and considering the three modeled reservoirs. The LSTM
and GA-NARX models reached an average Pearson corre-
lation coefficient of 0.88 and 0.94, respectively; an average
NSE of 0.72 and 0.88; and an average PBIAS of 0.22 % and
−0.24 %, with the GA-NARX demonstrating the best per-
formance. Hughes et al. (2021) demonstrated the ability of a
modified version of the SHETRAN model to predict the out-
flow of Crummock Water Lake, located in the Upper Cocker
catchment in the United Kingdom. By including a dynamic
weir module in the original SHETRAN model, the authors
deduced the behavior of sluices by comparing the outflow
values of static- and dynamic-weir models. The developed
approach reached an NSE of 0.82, a value similar to the ones
obtained in the present study, but its application to other case
studies presents several limitations. First, it can be very labo-
rious since it was based on a generic framework that included
12 steps. Second, the implementation of that framework im-
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Table 5. Alterations to streamflow downstream of the reservoirs considering the simulations without and with those infrastructures (without
reservoirs – No res.; with reservoirs – Res ).

Statistical indicator Ulla–Touro Ulla–Teo Outlet

No res. Res. No res. Res. No res. Res.

Minimum (m3 s−1) 1.4 6.2 3.6 8.2 4.2 8.7
(+356 %) (+127 %) (+105 %)

Maximum (m3 s−1) 319.1 260.8 462.2 432.8 569.3 511.9
(−18 %) (−6 %) (−10 %)

Average (m3 s−1) 33.4 33.2 62.1 62.1 74.1 73.9
(−1 %) (0 %) (0 %)

Second quartile (m3 s−1) 8.5 10.9 17.2 20.1 20.2 23.4
(+28 %) (+17 %) (+16 %)

Third quartile (m3 s−1) 21.5 22.0 42.0 42.8 49.7 50.2
(+3 %) (+2 %) (+1 %)

Fourth quartile (m3 s−1) 43.5 40.9 83.3 79.8 99.2 96.0
(−6 %) (−4 %) (−3 %)

plied a deep knowledge about the geometry of control struc-
tures and the details of operating procedures, with the authors
referring to the fact that the broad conceptual understanding
of sluice operations needed for the implementation was ob-
tained through site visits and operator interviews.

On the other hand, the estimation of reservoirs’ outflows
using neural network models, such as the CLSTM model
used here, can also present several limitations. As pointed out
by several authors (ASCE, 1996; Maier et al., 2010; Dolling
and Varas, 2002; Wu et al., 2014; Juan et al., 2017), the
choice of the forcing variables is a crucial task for a success-
ful model. Thus, the consideration of other possible forcing
variables for the CLSTM model should be evaluated. Also,
the structure of this type of model, which includes the num-
ber of hidden layers, the number of nodes, the kernel size,
the activation functions, and other characteristics, is usually
optimized by a trial-and-error procedure. However, the num-
ber of options that can be adopted for each of those structural
characteristics and their combination makes the search space
too wide to evaluate all the possible solutions. Thus, the man-
ual approach adopted here to define the model’s structure can
be restrictive to the search for the best solution since a small
number of possible solutions were tested when considering
the entire search space. It is then clear that the optimization
of the structure of the CLSTM model can improve the results.
As suggested by Oliveira et al. (2023), this task can be done
using tools that implement different algorithms to efficiently
search for the best solution contained in a search space.

Considering the coupled system, the results showed a very
clear and interesting improvement when compared with the
implementation without reservoirs, with all the statistical in-
dicators demonstrating a better performance in the coupled
system for the two hydrometric stations influenced by reser-

voirs’ operations. Although the coupled system has demon-
strated a very good performance, it is important to refer to
the fact that, besides the limitations already pointed out for
the CLSTM model, the coupled system has its own limi-
tations. Firstly, when CLSTM is incorporated into the sys-
tem, it will use an estimated inflow, which is in opposition
with the observed values used to train the model. Thus, when
the inflow value is not correctly estimated by the hydrologic
model, this will negatively influence the estimation of the
outflow by the CLSTM model, leading to an exacerbation
of the error downstream of this point. Also, the level used by
the CLSTM model to force the outflow estimation is simu-
lated by a mass balance performed by the hydrologic model.
However, MOHID-Land does not yet incorporate the reser-
voir’s loss by evaporation and infiltration, which can lead
to an overestimation of the reservoir’s level, as observed in
Fig. 9. As in the case of the inflow, if the level value that
feeds the CLSTM model is far from the correct value, the es-
timated outflow will also be inaccurate and may lead to an in-
creased error in downstream areas. This is intimately related
to the discussion presented by Kirchner (2006) about obtain-
ing the right results for the right reasons, specifically where
the author explores the limitations of the operational prac-
tice of hydrology. In that sense, the coupled system presented
here, namely the CLSTM model, seems to be obtaining the
right answer but for the wrong reasons. With the behavior of
the CLSTM model being classified as a “black box”, without
any physical constraints implemented, its results can be good
enough while the model is exposed to conditions similar to
those used for its optimization. However, when the forcing
conditions go far beyond those used in the optimization, the
results of these types of models become unreliable because
of their lack of physical realism.
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Nevertheless, the results of this study agree with those of
other studies. For instance, Yun et al. (2020) modified the
original VIC model to contemplate the reservoirs operations
in the Lancang–Mekong River basin in Asia and compared
the performance of the model with observed data from five
hydrometric stations. Considering the calibration and valida-
tion periods, the authors obtained NSE values ranging from
0.61 to 0.75 and a model bias that varied between −3 % and
4 % for daily streamflow. Following a similar approach, Dang
et al. (2020) modified the VIC model to integrate reservoirs’
operations into hydrological simulations. A total of 118 so-
lutions of the model with reservoirs and 109 solutions with-
out reservoirs were run and automatically calibrated consid-
ering the upper Mekong River basin as a case study. That
set of models obtained NSE values from 0.68 to 0.79 and a
transformed root mean square error from 8.10 to 16.69, with
the statistics of both solutions being evenly distributed in
those ranges. It is important to note that the authors referred
to the fact that, in the case of the implementations without
reservoirs, the model probably reached such a good level of
performance because the model parameterization helped to
compensate for the structural error of the non-consideration
of reservoirs. However, in both modified versions of the VIC
model, reservoirs’ operations were imposed by the authors
through the definition of several operation rules that implied
the knowledge of reservoirs’ characteristics that sometimes
are not easily available, such as the normal storage, the flood-
limited storage, the environmental streamflow, the maximum
safe streamflow for the downstream area, the capacity of the
turbines, the target storage, and others. This fact can limit
the application of both methodologies in areas with limited
information.

Dong et al. (2023) adopted a similar approach to the one
presented in this study, using two data-driven models to re-
produce reservoir behavior in terms of outflow, when data
was available, and coupling them with a high-resolution
model. For the reservoirs with no data, a calibration-free con-
ceptual reservoir operation scheme was designed. Consider-
ing the upper Yangtze River basin, China, as a case study, 10
reservoirs were considered, with 4 being simulated with the
data-driven models and 6 being simulated with the concep-
tual scheme. The authors simulated the outflow and the stor-
age of the reservoirs using a XGBoost model and an ANN
model, with the first demonstrating the best performance for
both properties. Considering the test period, XGBoost ob-
tained NSE values higher than 0.85 for the outflow simula-
tion and higher than 0.88 for the storage simulation, while
the same indicator was higher than 0.80 and 0.83 for the out-
flow and storage simulations, respectively, when the ANN
was considered. Taking into account the set of hydrometric
stations analyzed, the NSE values were higher than 0.65.

Finally, the reservoir’s downstream effects on the stream-
flow values found in this study were also in accordance with
Yun et al. (2020) and Dong et al. (2023). Both studies con-
cluded that the presence of the reservoirs decreased the aver-

age streamflow during the wet season and increased the aver-
age streamflow during the dry season, with a higher increase
during the dry season than the decrease in the wet season. In
the Ulla River basin, the annual average streamflow did not
show any changes; however, the differences between wet and
dry seasons were also observed (Fig. 10). During the wet sea-
son (October–March), the streamflow suffered a decrease of
about 5 %, 3 %, and 2 % in Ulla–Touro, Ulla–Teo and the out-
let of the watershed, respectively. For the dry season (April–
September), increases of approximately 18 %, 9 %, and 8 %
were estimated for those same points. At the same time, the
maximum streamflow and the fourth-quartile values verified
a decrease when the presence of the reservoirs was consid-
ered. The maximum streamflow decreased by a maximum
of 18 % (from 319 to 261 m3 s−1) at the Ulla–Touro station
and by a minimum of 6 % (from 462 to 433 m3 s−1), while
the fourth quartile presented decreases between 6 % (from 44
to 41 m3 s−1) and 3 % (from 99 to 96 m3 s−1) at Ulla–Touro
and at the outlet, respectively. The capacity of decreasing and
controlling flow peaks is of extreme importance in the Ulla
River basin since the downstream area is exposed to high
flood risks, exacerbated by the combination of intense rain-
fall events and the influence of high tides (Augas de Galicia,
2019).

5 Conclusion

The approach presented and discussed in this work made
possible the direct integration of reservoir operations into a
hydrologic model. A CLSTM data-driven model was devel-
oped to estimate the reservoir outflows, the values of which
were then imposed upon the MOHID-Land model. The case
study focused on the Ulla River basin, which was the target
of a previous work where MOHID-Land was implemented,
calibrated, and validated for natural regime flow. In this wa-
tershed, a set of three reservoirs is present, with the reser-
voir more upstream having the higher storing capacity while
the following two work as run-of-the-river dams. The oper-
ation of run-of-the-river dams was simulated with an opera-
tion curve that relates the level, the inflow, and the outflow of
the reservoirs, and the outflow of the high-capacity reservoir
was estimated using the CLSTM model. The target of this
work was to analyze how streamflow simulations improved
in the areas where the natural regime flow was modified by
reservoirs’ operations using the proposed coupled system.
The main conclusions were as follows:

1. The CLSTM model selected to represent Portode-
mouros’ outflow showed a very good performance, with
NSE, R2, and RSR values of 0.90, 0.91, and 0.31, re-
spectively. The PBIAS was −2.61 %, indicating a very
slight underestimation of the reservoir outflow.

2. The implementation of the coupled system demon-
strated a significative improvement of streamflow es-
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timations in areas downstream of the reservoirs, with
the NSE increasing from a minimum of −0.09 without
reservoirs to a minimum of 0.61 with reservoirs. Also,
the R2 demonstrated the same improvement, increasing
from a minimum of 0.46 to 0.70 without and with reser-
voirs, respectively.

3. The MOHID-Land model failed to reproduce the level
of the high-capacity reservoir, probably because the
model does not include evaporation losses. However,
the lack of accuracy did not have a significative impact
on the performance of the coupled system in the calcu-
lation of daily streamflow.

4. According to the validation performed downstream of
the reservoirs, the basic operation curves selected to
simulate the function of the two run-of-the-river dams
in the study domain seemed adequate.

5. For the modeled 10-year period, the impacts down-
stream of the reservoirs were in line with other stud-
ies, with the maximum streamflow (wet season) val-
ues experiencing a decrease and the minimum values
(dry season) suffering an increase. However, the aver-
age streamflow did not show any increasing or decreas-
ing tendency.

Besides the excellent results obtained in this study, fu-
ture applications of the methodology should be tested and
evaluated to understand its applicability to different scenar-
ios. One of the doubts that remains is whether the CLSTM
model has the capacity to reproduce the behavior of a reser-
voir where water is used for irrigation, which is characterized
by punctual discharges in time, instead of an almost contin-
uous discharge as in Portodemouros. Also, the capability of
the trained CLSTM model in reproducing outflow values of
other reservoirs with similar purposes should be addressed.

Appendix A

Following the sensitivity analysis performed, the best solu-
tion for the Ulla River model implementation was obtained
considering a constant quadrangular horizontally spaced grid
with 215 columns (west–east direction) and 115 rows (north–
south direction) and a resolution of 0.005◦ (∼ 500 m). The
calibrated parameters were theKsat,ver, the fh factor, and the
dimensions of the cross-sections in the river network.

The elevation of the calibrated solution was interpolated
based on the digital terrain model from the European En-
vironment Agency (European digital elevation model (EU-
DEM), 2016), which has a resolution of 0.00028◦ (∼ 30 m).
The Manning coefficient for the river network was set to
0.035 s m−1/3, and the river cross-sections were assumed to
be rectangular, with the dimensions varying according to the
drained area of each node (Table A1 in the Appendix).

The surface Manning coefficients were specified based
on the CLC 2012 (Copernicus Land Monitoring Service,
2016) data. For each land use, a Manning coefficient was
first defined according to Pestana et al. (2013). Considering
the interpolation process, those values varied from 0.023 to
0.298 s m−1/3. CLC 2012 data were further used to identify
the vegetation in the watershed; these were made to corre-
spond to data (vegetation growth parameters) in the MO-
HID’s vegetation database. For each type of vegetation, a
single crop coefficient (Kc) was adopted based on the tab-
ulated values of Allen et al. (1998). After the interpolation
process, the Kc values varied from 0.15 to 1.0.

The soil domain was vertically discretized considering
three horizons that comprehended six grid layers. The lay-
ers had variable thicknesses, increasing from the surface to
the bottom: 0.3 (surface), 0.3, 0.7, 0.7, 1.5, and 1.5 m (bot-
tom). The first horizon included the first two layers, while the
second horizon included the two middle layers, and, finally,
the bottom horizon considered the last two layers. The van
Genuchten–Mualem soil hydraulic parameters were obtained
from the multi-layered European Soil Hydraulic Database
(ESHD, Tóth et al., 2017). For the surface horizon, ESHD
data at 0.3 m depth were used to represent soil hydraulic data;
ESHD data at 1.0 m depth were used to characterize the mid-
dle horizon; ESHD data at 2.0 m depth described the bottom
horizon. In each of these horizons, three different sets of soil
hydraulic data were identified (Fig. A1 in the Appendix). Af-
ter the model’s calibration, the van Genuchten–Mualem soil
hydraulic parameters assumed the values presented in Ta-
ble A2 for each set. The horizontal saturated hydraulic con-
ductivity was obtained assuming an fh equal to 10.

The meteorological boundary conditions were extracted
from the ERA5 Reanalysis dataset (Hersbach et al., 2017),
which is a gridded product with a resolution of 0.28125◦

(∼ 31 km) and which makes available meteorological vari-
ables with an hourly time step. The variables used and inter-
polated to the case study grid were the u and v components
of wind velocity at 10 m height, dew point and air tempera-
tures at 2 m height, surface solar radiation downwards, sur-
face pressure, total cloud cover, and total precipitation.

Table A1. Cross-section dimensions.

Drained area Top width Depth
(km2) (m) (m)

37.85 12.71 2.0
62.65 16.45 2.0
84.49 19.16 2.0
123.35 23.24 3.0
161.90 26.71 3.0
195.10 29.38 3.0
312.45 37.36 3.0
503.12 46.95 4.0
1164.36 73.16 4.0
2246.34 102.33 4.0
2785.08 114.21 4.0
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Figure A1. Soil IDs for each horizon: (a) surface, (b) middle, and (c) bottom horizons.

Table A2. Soil hydraulic properties by soil ID: θs – saturated water content, θr – residual water content, η and α – empirical shape parameters,
Ksat,ver – vertical saturated hydraulic conductivity, and l – pore connectivity and/or tortuosity parameter.

ID θs θr η Ksat,ver α l

(m3 m−3) (m3 m−3) (m3 s−1) (m−1)

1 0.491 0.0 1.913 1.64× 10−5 3.47 −4.3
2 0.465 0.0 1.116 2.26× 10−4 12.84 −5.0
3 0.409 0.0 1.134 5.05× 10−5 7.00 −5.0
4 0.433 0.0 1.170 9.93× 10−6 3.36 −5.0
5 0.413 0.0 1.119 1.43× 10−5 2.27 −5.0
6 0.384 0.0 1.121 4.29× 10−5 7.17 −5.0
7 0.432 0.0 1.170 9.93× 10−6 3.36 −5.0
8 0.413 0.0 1.119 1.43× 10−5 2.27 −5.0
9 0.384 0.0 1.121 4.29× 10−5 7.17 −5.0
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Code availability. MOHID-Land is available on the GitHub repos-
itory https://github.com/Mohid-Water-Modelling-System/Mohid/
releases/tag/v18.06 (Mohid-Water-Modelling-System, 2019). The
CLSTM model and the scripts to run the coupled system are avail-
able on https://github.com/anaioliveira/NNandMOHID (last ac-
cess: 17 October 2023; https://doi.org/10.5281/zenodo.10016911,
Oliveira, 2023).

Data availability. Streamflow data are available from http://www2.
meteogalicia.es/servizos/AugasdeGalicia/estacions.asp (Augas de
Galicia, 2019). Reservoir data were made available to the authors
by Augas de Galicia; any requests pertaining to these data should
be directed to the aforementioned agency.
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