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Abstract. Hydrological parameters should pass through a
careful calibration procedure before being used in a hydro-
logical model that aids decision making. However, signifi-
cant difficulty is encountered when applying existing calibra-
tion methods to regions in which runoff data are inadequate.
To achieve accurate hydrological calibration for ungauged
road networks, we propose a Bayesian updating framework
that calibrates hydrological parameters based on taxi GPS
data. Hydrological parameters were calibrated by adjusting
their values such that the runoff generated by acceptable pa-
rameter sets corresponded to the road disruption periods dur-
ing which no taxi points are observed. The proposed method
was validated on 10 flood-prone roads in Shenzhen and the
results revealed that the trends of runoff could be correctly
predicted for 8 of 10 roads. This study demonstrates that the
integration of hydrological models and taxi GPS data can
provide viable alternative measures for model calibration to
derive actionable insights for flood hazard mitigation.

1 Introduction

In the context of climate change and increased urbanization,
flooding poses far-reaching threats to urban road networks of
coastal metropolises (Balistrocchi et al., 2020). In Australia,
approximately 53 % of flood-related drowning deaths were
the result of vehicles driving into flood waters between 2004
and 2014. Additionally, indirect losses caused by flooding
such as canceled commutes, mandatory detours, and travel

time delays often outweigh direct losses (Kasmalkar et al.,
2020). Quantifying the impact of flood exposure requires the
prediction of surface runoff over roads and road disruptions
induced by runoff, which are critical for the implementation
of flood mitigation, traffic resilience improvement, and early
warning systems.

Public concerns regarding road flooding hazards have cre-
ated pressure to develop fine-grained and accurate models
for hydrological simulation. Hydrological modeling is based
on a relatively well-established theory that can provide ap-
proximations of real-world hydrological systems and has
been widely used in many road-related studies (Versini et
al., 2010; Yin et al., 2016; Safaei-Moghadam et al., 2023).
Because hydrological modeling is subject to uncertainty that
arises from the oversimplified reflection of hydrological sys-
tems, initial and boundary conditions, and lack of true knowl-
edge, parameters for hydrological models must be carefully
calibrated prior to their application to practical problems, so
that models can closely match the historical trends (Gupta et
al., 1998). As uncalibrated models are indefensible and ster-
ile, very few models documented in the literature have been
applied without a calibration procedure (Beven, 2012).

Over the past four decades, numerous studies have been
conducted on the development of calibration methods.
Methodologies for model calibration range from simple trial-
and-error methods that adjust one parameter value in each it-
eration until the differences between predicted and observed
values are satisfactory to Bayesian updating frameworks that
reject the concept of a single correct solution. To a great ex-
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tent, the success of model calibration is dominated by the
availability of field-observed runoff data. However, runoff
data are generally only gathered at a few sites, and some
cities never measure runoff data in built-up regions (Ge-
bremedhin et al., 2020). Although runoff data can be effec-
tively collected by administration departments in some cities,
these cities are not always motivated to share these data with
the public. For example, among China’s top 10 largest cities,!
only Shenzhen has shared runoff-related data on an open data
platform. For model calibration at the road scale, runoff data
are even more difficult to acquire because road networks are
far denser than river networks and flood gauges are only in-
stalled in a few flood-prone roads based on their high mea-
surement cost, leaving most roads ungauged. As pointed out
by Beven (2012, p. 55), “the ungauged catchment problem is
one of the real challenges for hydrological modelers”.

This lack of hydrological data has prompted researchers to
seek additional data sources to support flood-related decision
making. Based on the advancement of mobile telecommu-
nication technologies, big data are emerging as alternative
sources of information for coping with flood risks (Paul et
al., 2018; Li et al., 2018; Gebremedhin et al., 2020). Citizens
can voluntarily or passively act as human sensors to generate
georeferenced data to improve flood monitoring. Many stud-
ies have leveraged crowdsourced social media data (Brouwer
et al., 2017; Sadler et al., 2018; Zahura et al., 2020), mobile
phone data (Yabe et al., 2018; Balistrocchi et al., 2020), and
taxi GPS data (She et al., 2019; Kong et al., 2022). However,
most previous works have concentrated on using big data
either for flood mapping or mining spatiotemporal patterns
(Restrepo-Estrada et al., 2018), and parameter calibration for
ungauged roads based on big data remains a problem.

This study extends our previous study (Kong et al., 2022)
by going a step further than simply recognizing flooded
roads. We propose a calibration method for road-related hy-
drological parameters based on taxi GPS data. Many studies
have shown that vehicle-related information during rainfall,
including vehicle volume, speed, and trajectory information,
is useful for flooded road detection (Zhang et al., 2019; Qi
et al., 2020; Yao et al., 2020). When a road segment is in-
undated by heavy rainfall, the vehicle volume may exhibit a
sharp or gradual drop depending on the intensity of the rain-
fall event. Conversely, an abnormal drop in vehicle volume
during the rainfall may imply that a road has experienced
rainfall-induced inundation. This motivates us to use traffic-
related data sources to calibrate hydrological parameters. In
this study, we developed a transformation process that con-
verts rainfall time series data into a time series of probabili-
ties that no taxis will drive on a road (“no-taxi-passing prob-
ability” hereafter) for a given hydrological parameter set. We
then assigned a probability to every parameter set by integrat-
ing the no-taxi-passing probability with observed taxi GPS
data. We outlined a generalized taxi-data-driven calibration

IRanked by the resident population in 2021.
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framework and implemented a framework with specific hy-
drological and transportation models.

2 Methodology
2.1 Bayesian updating procedure

Observed data are not always as informative as expected and
may be inconsistent with other data sources. Hydrologists
typically adopt the Bayesian framework to update hydro-
logical parameters, which provides a generalized formalism
that integrates prior probability representing prior knowledge
with likelihood that reflects how accurately a model can re-
produce observations to form a posterior probability. Sup-
pose we have several versions of a hydrological model, each
with different sets of parameters. Then, the purpose of the
Bayesian updating procedure adopted in this study is to as-
sign a posterior probability to every hydrological parameter
set as new taxi data become available.

Two components are critical for this Bayesian updating
procedure: one is the prior probability and the other is the
likelihood function. Regarding the prior probability, for their
famous calibration model called generalized likelihood un-
certainty estimation, Beven and Binley (1992) stated that all
parameter combinations are considered equally probable be-
fore additional information is introduced. After the first up-
date, the prior probability of each updating iteration can be
replaced by the posterior probability of the latest updating it-
eration. Likelihood, which is a measurement of how well a
given model conforms to the observed taxi behavior, is not
as easy to compute as the prior probability because the pa-
rameter set to be estimated is hydrology related, whereas the
observed evidence is taxi related. Therefore, we must deter-
mine how to construct a taxi-based proxy whose probability
is equal to the associated hydrological parameter and con-
struct a function enabling the transformation from hydrolog-
ical parameters to taxi-related proxies.

The proxy selected in this study was the time series of the
no-taxi-passing probability. Figure 1 presents a generalized
procedure for converting a rainfall time series into a time
series of no-taxi-passing probabilities for each hydrological
parameter. This procedure consists of three steps. First, a hy-
drological model is used to convert a rainfall time series into
a hydrograph. Second, a runoff-disruption function that re-
lates runoff to the probability that a road is blocked is used
to transform the hydrograph into a time series of road dis-
ruption probabilities. Third, the taxi arrival rate is combined
with the time series of road disruption probabilities to derive
a time series of no-taxi-passing probabilities. The hydrologi-
cal model and taxi arrival rate are considered to be unique for
every road and are invariable within a short period, whereas
the runoff-disruption function is identical for all roads.

Integrating this three-step process with the Bayesian equa-
tion enables us to compute the posterior probability of a pa-
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Figure 1. Generalized procedure for converting a rainfall time series
into a time series of no-taxi-passing probabilities.

rameter set based on taxi data. For a specific road, suppose
there are N hydrological parameter sets to be estimated. Be-
cause the runoff-disruption function and taxi arrival rate are
assumed to be fixed for the road, we can construct a com-
posite function converting the ith parameter set, which is de-
noted as #), into a time series of no-taxi-passing probabil-
ities, which is denoted as (). Therefore, the probability of
0" being optimal is equal to the probability of ) being
true, which can be expressed as follows:

POy =PYD), (1

where P(0%)) and P(2Y) are the prior probabilities of 6@
and Q| respectively. As taxi observations become avail-
able, P(09) (or P(R®)) can be updated using the Bayes
theorem as

POVIX)=P(QRVIX) o POD)L(X|0D), )

where X 1is the taxi observation, and P(0(i ) |X) and
P(RD|X) are the posterior probabilities of 0@ and O, re-
spectively, conditional on the taxi observation. L(X|0D) is
the likelihood of X given 8. The optimal parameter set is
that which yields the Q) that most closely fits the observed
taxi data.

Solving Eq. (2) involves the calculation of P(0(i)) and
L(X|0%). The derivation of P () depends on prior knowl-
edge regarding the parameter distribution, which is typically
obtained using traditional hydrological methods. However,
this prerequisite knowledge may not always be readily acces-
sible based on limited data availability. In such cases, Beven
and Binley (1992) suggested that any parameter set combi-
nation could be considered to be equally likely. This implies
that the parameter set is drawn from a uniform distribution as
follows:

P@OD)=1/N. (3)

In this study, we compared the effects of two types of prior
parameter distributions, namely a uniform distribution and
a distribution derived from digital elevation model (DEM)
data, on the resulting posterior distributions.

L(X|0%), which is a likelihood function, describes the
joint probability of the observed taxi data X as a function
of the chosen 6®. Consider a rainfall event that is divided
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into 7 5 min intervals. From the taxi data, we can obtain a
sequence of taxi-related observations, which are denoted as
X = {x1,x2,...,x7}, where x; = 1 if the observed road has
at least one taxi pass during the ¢th interval, and x, = 0 oth-
erwise. ) = {wY),a)g),...,w(Ti)} is also a T-dimensional
vector, where wt(’) is the no-taxi-passing probability in the
rth interval with @) as the parameter set. Note that () is
only determined by the chosen hydrological parameter and
rainfall time series, and is not measured from observed data.
Considering that the arrival of taxis is independent of time,

L(X|0(i)) can be formulated as

T
LX) = LX) =1 — o)y @)™ @
=1
By substituting Eq. (4) into Eq. (2), the following equation
can be obtained:

T
POV 1X) o POO)[T(1 — ) () = )
t=1

Equation (5) is the proposed Bayesian updating model for
calibrating hydrological parameters based on taxi data, where
X can be directly measured and a),(l) is calculated through
the three-step process illustrated in Fig. 1, which will be dis-
cussed in detail in the following section. Having selected an
updating model, the optimal parameter for one period of ob-
servations may not be optimal for another period. Because
the model may have continuing inputs of new taxi observa-
tions, the posterior probability for ) should be updated as
new evidence becomes available. For the second update, the
posterior probability from the first observation becomes the
prior probability for the second observation and the posterior
probability for ) is recursively updated as

POD1X;) o« LX210) POV X)), (6)

where X and X, are the first and the second taxi observa-
tions.

2.2 Instantiation of the three-step procedure

Section 2.1 presented a generalized three-step procedure for
converting a rainfall time series into a time series of no-
taxi-passing probabilities. In this section, we specialize this
process by integrating existing theories with our model. The
three conceptualized steps illustrated in Fig. 1 were replaced
with three concrete submodels. First, a Soil Conservation
Service (SCS) unit hydrograph was used to convert rain-
fall excess into a hydrograph of the target road. Second,
an empirical runoff-disruption function based on data ex-
tracted from various experimental, observational, and mod-
eling studies was applied to convert the hydrograph into a
time series of road disruption probabilities. Third, a Poisson
distribution representing the distribution of taxi arrival rate
was combined with the road disruption probability time se-
ries to derive a no-taxi-passing probability time series.

Hydrol. Earth Syst. Sci., 27, 3803-3822, 2023
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2.2.1 Step 1: converting rainfall into runoff based on
the SCS unit hydrograph

Not all rainfall produces runoff because soil storage can ab-
sorb a certain amount of rain. However, in urbanized areas,
only a small proportion of rainfall infiltrates the soil or is re-
tained on the land surface, leaving most rain to flow across
urban surfaces and become direct runoff. The rainfall that be-
comes direct runoff is referred to as rainfall excess. The Nat-
ural Resources Conservation Service (NRCS)? developed a
method to estimate rainfall excess based on soil types and
land uses using the following curve number equation:

0 P, <0.25, 7

P { (P, —0.25)/(P,+0.85) P,>02S8
. =

where P. is the accumulated rainfall excess in centimeters,
P, is the accumulated rainfall in centimeters, and S is the
potential retention after runoff begins, which is defined as a
function of the curve number, that is,

S =12.54 x (1000/CN — 10), (8)

where CN is the curve number. For urban and residential
land, the curve number varies from 40 to 95 depending on
the impervious area (Natural Resources Conservation Ser-
vice, 2010a). Because prior knowledge on the CN is unavail-
able, it was considered as a calibrated parameter in this study.

The rainfall excess derived using Eq. (7) was inputted into
the unit hydrograph to derive the runoff. The unit hydrograph
is a commonly used rainfall-runoff model that converts rain-
fall excess into a temporal distribution of direct runoff. First
proposed by Sherman (1932), the unit hydrograph is defined
as the hydrograph resulting from one unit of rainfall excess
distributed uniformly over a catchment area. It assumes that
rainfall is uniform over the catchment area and that runoff in-
creases linearly with rainfall excess. Although these assump-
tions cannot be perfectly satisfied under most conditions, the
results obtained from the unit hydrograph are generally ac-
ceptable for most practical cases. The model, originally de-
signed for larger watersheds, has been found to be applicable
to some catchment areas less than 5000 m? in size (Chow et
al., 1988).

The unit hydrograph is only applicable to watershed areas
where runoff data are measured. The paucity of runoff data
motivated the development of the synthetic unit hydrograph
(SUH) concept. The term “synthetic” in SUH refers to a unit
hydrograph derived from watershed characteristics, rather
than empirical rainfall-runoff relationships. In this study, we
utilized the SCS unit hydrograph, which is a dimensionless
SUH proposed by the NRCS. For the dimensionless SUH,
the discharge (i.e., y axis) is expressed as the ratio of dis-
charge ¢ to peak discharge g, and the time (i.e., x axis) is

2The NRCS was originally called the US Soil Conservation Ser-
vice.
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expressed as the ratio of time ¢ to peak time #,. Therefore,
the SCS unit hydrograph is not exactly an SUH itself, but it
is a useful tool for constructing an SUH.

The shape of an SCS unit hydrograph is entirely deter-
mined by the peak rate factor. A standard value of 2.08 for
the peak rate factor is recommended and commonly used by
the NRCS (Fig. 2). To construct an SUH from an SCS unit
hydrograph, the x axis of the SCS unit hydrograph is mul-
tiplied by #, and the y axis is multiplied by gp. The values
of gp and t, are functions of the catchment area and time of
concentration as follows:

tp=0.6tc +D/2 ®
qp =2.08A/1,, (10)

where ¢ is the time of concentration in hours, A is the catch-
ment area in square kilometers, and D is the duration of
unit rainfall excess in hours, which was set to one-twelfth
of an hour (i.e., S min) in this study. Notably, the catchment
area and time of concentration are required to construct an
SUH, and they are the other two hydrological parameters that
should be calibrated based on taxi data. Although numerous
tools and theories have been developed for estimating catch-
ment area and time of concentration, these two parameters
are still prone to significant errors, particularly in urban ar-
eas, because of challenges in accurately delineating urban
catchments (Huang and Jin, 2019; Li et al., 2020). Urban
catchment delineation is more complex than natural catch-
ment delineation. Urban catchments have spatially heteroge-
neous surface cover types, which change with city develop-
ment and construction, and modify runoff parameters (Good-
win et al., 2009). High densities of residential and commer-
cial buildings obstruct flow paths and alter flow directions
of storm water runoff, complicating rainfall-runoff and over-
land flow processes in urban areas (Ji and Qiuwen, 2015).
Additionally, accurate urban catchment delineation necessi-
tates high-resolution DEMs, which are not always available.
In many Chinese cities, high-resolution DEMs are consid-
ered confidential data and are generally inaccessible to non-
governmental organizations. Based on these challenges, de-
riving accurate catchment area and time of concentration data
in urban areas is difficult in Shenzhen.

For the sake of simplicity, the peak rate factor was not cali-
brated and was at 2.08, although some studies have indicated
that it has a wide range from 0.43 for steep terrain to 2.58 for
very flat terrain (Chow et al., 1988). After 7c and A are cho-
sen, an SUH can be constructed and used to convert rainfall
excess into runoff by applying the discrete convolution equa-
tion. The detailed computation process of the discrete convo-
lution equation can be found in most hydrological textbooks
(e.g., Chow et al., 1988) and will not be discussed here. The
workflow in Fig. 3 illustrates the transformation of rainfall
time series data into a hydrograph for every parameter set.

https://doi.org/10.5194/hess-27-3803-2023
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Figure 2. Standard SCS unit hydrograph. Data provided by the Nat-
ural Resources Conservation Service (2007).

2.2.2 Step 2: derivation of the road disruption
probability using the runoff-disruption function

The goal of Step 2 is to convert the hydrograph generated in
Step 1 into a time series of road disruption probabilities, or
more specifically, the probability that a taxi driver chooses to
turn their car when arriving at a flooded road. Most models
in the literature assume that a road is either open or closed,
which does not correspond to the empirical evidence that
many drivers may take risks to drive on inundated roads. To
transition from a binary view of a flooded road being consid-
ered “open” or “closed,” Pregnolato et al. (2017) proposed
the use of a curve that relates the depth of floodwater to a
reduction in vehicle speed to indicate the probability of road
disruption. This idea was soon adopted by Contreras-Jara et
al. (2018) and Nieto et al. (2021).

A driver will turn around when they believe that the flow
rate is too risky for their vehicle configuration. From this
perspective, the road disruption probability is equal to the
probability that vehicle performance is less than the flow
rate perceived by a driver. However, it is difficult to quan-
tify the factors that influence the willingness of people to
drive through a flooded roadway, and impossible to obtain the
precise knowledge regarding all taxi-flood intersections. Al-
ternatively, to ensure vehicle stability in flood flows, guide-
lines are typically recommended based on the limiting value
of depth times velocity. Many researchers have conducted
laboratory testing on the stability of different types of vehi-
cle models exposed to different combinations of depth and
velocity (Merz and Thieken, 2009; Shah et al., 2018). As
suggested by Pregnolato et al. (2017), we constructed our
runoff-disruption function by integrating data from the lit-
erature and authoritative guidelines. In this study, the road
disruption probability was defined as the probability that the
product of flow velocity and flow depth was greater than the
stability limits extracted from the literature, which are listed
in Table 1 and plotted in Fig. 4. The expression of the fitting
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curve is
y =[1+exp(—16.6(x —0.48)>)]", (11)

where x is the product of flow velocity and flow depth, and
y is the disruption probability. According to Eq. (11), a road
has a disruption probability of 50 % when the product of flow
velocity and flow depth is 0.47 m? s~! and is totally disrupted
when the product is greater than 0.80 m? s~!. By applying the
fitting curve, we can easily convert the flood runoff into the
disruption probability as follows:

PDisrup)” = [1 +exp(—16.6(¢"" /W —0.48))171, (12)
where P(Disrupt)fi) and q,(i) are the road disruption proba-
bility and discharge in the ¢th interval derived from the hy-

drological model with the parameter set ), respectively,
and W is the road width.

2.2.3 Step 3: derivation of the time series of
no-taxi-passing probabilities

A road is considered to have no taxis passing in a fixed
time interval if the road has no taxis arriving or if every
taxi that arrives at the road turns around. Therefore, the no-
taxi-passing probability can be calculated using the follow-
ing equation:

o0
o) =" P(Arrival_taxi = n), x (P(Disrupt){ )", (13)
n=0
where wt(’) is the no-taxi-passing probability in the ¢th inter-
val and P (Arrival_taxi = n); is the probability that n taxis
arrive at the road segment during the fth interval. Equa-
tion (13) indicates that if every taxi that arrives at the road
segment makes a turn because of the flooded roadway, then
the taxi volume on the road will be zero. In this study,
P (Arrival_taxi = n), was assumed to follow the Poisson dis-
tribution,

P (Arrival_taxi = n), = e ™A\ /n!, (14)

where A is the average number of taxis arriving at the road
during the tth interval. By substituting Eq. (14) in Eq. (13),
we obtain

o0

o) = " (e7Mag/nl) x (P (Disrupt))". (15)
n=0

By applying e* = 77 (x"/n!, Eq. (15) can be converted

into

00
o) = 3P it
n=0

= exp(A (P (Disrupt)” — 1)). (16)

Hydrol. Earth Syst. Sci., 27, 3803-3822, 2023
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be calibrated:
1. Curve number

series
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2. Catchment area

3. Time of concentration Peak time

Peak discharge

Rainfall
excess time
series
Runoff time
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(i.e. hydrograph)
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SCS unit hydrograph
(peak rate factor=2.08)

Figure 3. Workflow of the SCS unit hydrograph for converting rainfall into runoff.

Table 1. Guidelines recommended in the existing literature.

Reference Vehicle type

Recommended limits for vehicle
stability (m2 s~ 1)

Feature

Shah et al. (2018)

Al-Qadami et al. (2022) Perodua Viva

Calculated according to Kramer et al. (2016) VW Golf III
Shand et al. (2011) Large passenger
Martinez-Gomariz et al. (2017) Mini Cooper
Martinez-Gomariz et al. (2017) BMW i3
Martinez-Gomariz et al. (2017) BMW 650

Martinez-Gomariz et al. (2017) Mercedes GLA
Moore and Power (2002)

Calculated according to Xia et al. (2014) Honda Accord

Volkswagen Scirocco

All but very small cars

Flow direction = 0°
Ground clearance =0.18 m
Not mentioned

Ground clearance > 0.12m
Ground clearance =0.12m
Ground clearance =0.10 m
Ground clearance = 0.08 m
Ground clearance =0.17 m
Not mentioned

Not mentioned

Velocity x depth < 0.014
Velocity x depth < 0.39
Velocity x depth < 0.42
Velocity x depth < 0.45
Velocity x depth < 0.49
Velocity x depth < 0.49
Velocity x depth < 0.50
Velocity x depth < 0.59
Velocity x depth < 0.60
Velocity x depth < 0.65

1.01 « Disruption probability °
—— Curve fitting
20.8/
=
3
0 0.6
o
c
204
o
o
)
A 0.2
0.0
0.0 0.2 0.4 0.6 0.8

Flow velocity x Flow depth m2?s~!

Figure 4. Empirical runoff-disruption function derived from the ex-
isting literature.

Equation (16) indicates that a),(i) is entirely determined by A,

and P(Dismpt),(i). Because P(Dismpt),(i) is obtained from
Step 2, what is left to determine is the value of A;. The value
of A fluctuates according to the time of day, indicating higher
taxi volume during congested periods and lower volume dur-
ing non-congested periods. Therefore, we calculate A; by av-
eraging the taxi volume during the tth interval to account
for time-of-day variations. It should be noted that as the in-
tensity of rain increases, experienced taxi drivers will avoid

Hydrol. Earth Syst. Sci., 27, 3803-3822, 2023

flood-prone roads in advance, meaning that strictly speaking,
At is a decreasing function of rainfall intensity. However, fit-
ting the rainfall-A; curve requires many taxi GPS trajectories
to inspect the route choices of taxi drivers under heavy rain,
which is outside the scope of this study. Therefore, we as-
sumed that A; was independent of rainfall.

Table 2 lists all the submodels and parameters used in the
three-step process. The core principle of the three-step pro-
cess was to calculate the time series of no-taxi-passing proba-
bilities, ), given each parameter set ). Because the best
choice of model is often data specific, it is likely that the
model combination proposed in this study is not optimal for
other scenarios. To apply the proposed calibration method in
practice, the submodels for the three-step process must be
specified according to the available data, prior knowledge,
and accuracy requirements.

3  Working example

The method outlined above was tested on the intersection of
Xinzhou Road and Hongli Road in Shenzhen, which is recog-
nized as a flood-prone point by the Water Authority of Shen-
zhen Municipality. Recall that the parameters to be calibrated
are the curve number CN, catchment area A, and time of con-
centration fc. The parameter spaces for CN, A, and 7c are

https://doi.org/10.5194/hess-27-3803-2023
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Table 2. Specific submodels and parameters used in the three-step process.

3809

Purpose of each step Specific model

Parameter

Source of parameters

Step 1: convert rainfall data
into a hydrograph.

Curve number equation
SCS unit hydrograph

1. Curve number

2. Catchment area

3. Time of concentration
4. Peak rate factor

Parameters to be calibrated
Parameters to be calibrated

Existing literature

Step 2: convert the hydrograph ~ Empirical runoff-
into a time series of disruption  disruption
probabilities. function

5. Limit of product of flow velocity
and depth

Existing literature

Step 3: convert the time series
of disruption probabilities into
a time series of no-taxi-passing
probabilities.

Taxi arrival rate following
Poisson distribution

6. Average taxi volumes in 5 min
periods

Taxi GPS data

determined by DEMs and other prior knowledge, which will
be discussed in Sect. 4. Table 3 presents the details of the pa-
rameter sets to be calibrated, which form 8 x 20 x 30 =4800
possible combinations. For ease of exposition, we assume
that all parameters are uniformly distributed.

Taxi GPS data collected during two storm events that oc-
curred on 9 and 23 May 2015 were used to calibrate the pa-
rameter sets for the target intersection. Rainfall time series
data and taxi observations during these two storms are pre-
sented in Fig. 5. Each taxi observation contains two time se-
ries: the time series of taxi volumes at 5 min intervals and the
time series of road statuses at 5 min intervals. These series
were derived from the taxi volumes with a value of one if the
taxi volume was greater than zero and a value of zero if the
taxi volume was zero.

Given the rainfall on 9 May 2015, we must calculate the
time series of no-taxi-passing probabilities for each parame-
ter combination. Because there are 4800 parameter sets, we
can derive 4800 possible time series of no-taxi-passing prob-
abilities. For simplicity, we only present the 3120th parame-
ter set (i.e., CN=65, A =0.2 km?, and tc =2.75h) as an ex-
ample to demonstrate the working of the proposed method.
According to the three-step process, the first step is to convert
the original rainfall into rainfall excess using the curve num-
ber method given CN = 65 (Fig. 6a). Then, we calculated the
peak discharge g}, and peak time #, using Eqgs. (9) and (10):

1
t=0.6x275+—— ~1.69h
P =D

0.2
gp =2.08 x —— ~0.24m>s~".
1.69

The SUH was derived through multiplication by #;, on the x
axis and gp on the y axis of the standard SCS unit hydro-
graph (Fig. 6b). Next, the rainfall excess presented in Fig. 6a
was combined with the derived SUH to obtain a hydrograph
through convolution (Fig. 6c¢).
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In the second step, the runoff was transformed into a time
series of road disruption probabilities based on the runoff-
disruption function (Fig. 6d). The runoff-disruption function
takes the product of water depth and velocity (in units of
m? s~ 1) as inputs. Therefore, the original runoff (in units of
m? s™1) derived in the first step should be divided by the road
width before inputting it into the runoff-disruption function.

In the third step, the time series of road disruption proba-
bilities (Fig. 6e) was converted to no-taxi-passing probabil-
ities using Eq. (16) (Fig. 6f). The average number of taxis
during the flooding period is presented in Fig. 6f, and the de-
rived time series of no-taxi-passing probabilities is presented
in Fig. 6g.

After the time series of no-taxi-passing probabilities for
every parameter set were derived, the degree of belief that a
given parameter set is optimal was calculated by integrating
it with the taxi observations on 9 May 2015. According to
Eq. (5), the posterior probability of the 3120th parameter set
is calculated as

POP01X) oc LX|9O120) P(95120) = 174800

T
3120 3120)\1—
Xl_[(l_a)t( ))xt(a)t( ))] x,’
=1

where L(0%"?9|X) is the posterior distribution of probabil-
ities that the 3120th parameter set is optimal conditional on
X, which represents the taxi observations on 9 May 2015
presented in Fig. 5c. P (0 (3120)) i the prior probability of the
3120th parameter set being optimal and its value is 1/4800
because there are 4800 possible combinations.

By following this process, we can calculate the posterior
probabilities for every parameter set. Additionally, the poste-
rior probability distribution of a parameter set can be updated
using the taxi observations and rainfall data on 23 May 2015
as

P(OV]X) oc L(X210) POV X)),
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Table 3. Detailed information on parameter sets to be calibrated.

X. Kong et al.: A Bayesian updating framework

Parameter Annotation  Minimum Maximum Increment Number of possible
parameter values
Curve number CN 40 75 5 8
Catchment area A 0.1km®>  0.29km?  0.01km? 20
Time of concentration ¢ 0.75h 3.2h 1/12h 30
(a) 1 (b)
g 100 E
(8] (8] 8
& 75 &
£ £ 6
c c
£ 5.0 £ 4
£ £
0.0 0
14:00 15:00 16:00 17:00 18:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00
(C) Time h Time h o "
£ have 2
Taxi volume 510% . ]
Road status ] | o ol o
14:00 15:00 16:00 17:00 18:00 g =g
(d ) Time h
-
Taxi volume 20 5 g 35 e
Road status 50 Eﬂno_ 2
13:00 14:00 15:00 16:00 17:00 18:00 19:00 g =g
Time h

Figure 5. Rainfall and taxi observations used to calibrate hydrological parameters: (a) rainfall time series in 5 min intervals on 9 May 2015,
(b) rainfall time series in 5 min intervals on 23 May 2015, (¢) taxi observations on 9 May 2015, and (d) taxi observations on 23 May 2015.

where P(0® X)) is the original posterior probability dis-
tribution calibrated based on the storm on 9 May 2015 and
P(0Y)X5) is the updated posterior distribution after the data
of the storm from 23 May 2015 are added. Figure 7 illus-
trates the evolution of the probability distribution with the
availability of additional taxi data. The first row in Fig. 7 rep-
resents the prior joint distribution of hydrological parameter
sets, and the second and third rows represent the posterior
distribution after each round of updating. The posterior dis-
tribution dominates the uniform prior distribution after the
first update, and the distribution is refined slightly after the
second update.

4 Method validation
4.1 Data description

The proposed method was validated on flood-prone roads lo-
cated in Shenzhen, China, which is a coastal city frequently
hit by extreme storms during summer. To the best of our
knowledge, Shenzhen is the only city that has shared runoft-
related data with the public in China. Three data sources,
namely taxi GPS data, rainfall data, and authoritative water
level data, were used to validate our parameter calibration
method. Hydrological parameters were calibrated using the
first two data sources and the water level data acted as the
ground truth to validate the proposed method. Taxi GPS data
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were anonymized and aggregated in 5 min intervals. Rainfall
data, which were also collected in 5 min intervals, were mea-
sured at 115 gauging stations citywide and mapped to the
road network throughout Shenzhen using the ordinary Krig-
ing spatial interpolation algorithm. The water level data were
only measured at certain flood-prone points with a dynamic
sampling interval ranging from 5 min when the weather was
rainy to 1 h when the weather was clear. The proposed cali-
bration method was validated by analyzing the hydrographs
derived from the calibrated hydrological models against the
authoritative water levels for 10 selected roads. Detailed in-
formation on the three data sources is provided in Table 4.
The two storm events on 9 and 23 May 2015 were treated
as calibration events, and a storm on 11 June 2019 was re-
tained for testing. Clearly, there is a 4 year gap between the
calibration data and validation data based on data availabil-
ity. The hydrological environments of flood-prone roads may
have changed during these years, which could render the pa-
rameters calibrated based on data from 2015 inaccurate for
analysis in 2019. To reduce the validation error caused by
this time gap, the roads to be validated should have been vul-
nerable to flooding in both 2015 and 2019 so that the hydro-
logical parameters of these roads would have a higher chance
of remaining unchanged. Therefore, a total of 10 flood-prone
roads that were labeled as such in both the List of 2015
Flood-prone Roads in Shenzhen (Water Authority of Shen-
zhen Municipality, 2015) and the List of 2019 Flood-prone

https://doi.org/10.5194/hess-27-3803-2023
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Figure 6. Example transformation of a rainfall time series into no-taxi-passing probabilities using the three-step procedure for the 3120th
parameter set: (a) time series of rainfall and rainfall excess, (b) SUH constructed using the 3120th parameter set, (¢) derived runoff, (d) em-
pirical runoff-disruption function, (e) derived time series of disruption probabilities, (f) average taxi volume in 5 min intervals, and (g) derived

no-taxi-passing probabilities.

Roads in Shenzhen (Water Authority of Shenzhen Munici-
pality, 2019) were carefully selected (Fig. 8).

4.2 Prior distributions of calibrated parameters
We introduced two types of prior distributions to demonstrate
the effects of prior distributions on calibrated parameters.

The first prior distribution was determined based on prior
knowledge and DEMs from Shenzhen, which were obtained

https://doi.org/10.5194/hess-27-3803-2023

from ASTER GDEM V3, which is a product of NASA and
Japan’s Ministry of Economy, Trade, and Industry (METI)
(Ministry of Economy, Trade, and Industry (METTI) of Japan
and the United States National Aeronautics and Space Ad-
ministration (NASA), 2023). This global DEM covers the en-
tire land surface of the earth with a 30 m resolution, exhibit-
ing notable improvements in horizontal and vertical accuracy
while reducing anomalies compared with previous versions.
We inputted the DEMs from Shenzhen into the hydrologi-
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Figure 7. Evolution of the posterior probability distribution of hydrological parameter sets: (a) prior distribution before updating, (b) posterior
distribution after the first updating, and (c) posterior distribution after the second updating.

Table 4. Detailed information on the three data sources.

Item Taxi GPS data! Rainfall data! Water level data?

Source Transport Commission of Shenzhen = Meteorological Bureau of Shenzhen  Shenzhen Municipal Government
Municipality Municipality Data Open Platform!

Record Taxi volume of each road 5 min accumulative rainfall Water level

Data collection period May 2015 2015 and 2019 2019

Data collection interval 5 min 5 min Sminto 1h

Location Citywide 115 rainfall gauging stations 171 flooding gauging sites

! The complete taxi GPS data and rainfall data are not openly accessible owing to the requirements of data policy. To validate our research findings, we have uploaded the necessary
data to Zenodo (Kong, 2022). 2 Openly available at: https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_01403147 (last access: 6 September 2022).

cal software PCSWMM to delineate catchments and calcu-
late the catchment area. Subsequently, we computed the time
of concentration using the watershed lag method (Natural
Resources Conservation Service, 2010b). As suggested by
Zhang and Huang (2018), we used the average curve number
for Shenzhen in 2015, which was assessed to be 60, as the
estimated curve number for each road under validation.

We then constructed a discretized parameter space for the
three parameters for each road as follows: for the curve
number, we examined eight possible values centered on 60
with steps of five. For the catchment area, we considered 20
possible values centered on the estimated value with steps
of 0.01 km?. For the time of concentration, we considered
30 possible values centered on the estimated value with steps
of 5min. After constructing the parameter space for the pa-
rameters, we assigned a triangular prior distribution to each,
which assumed the maximum probability at the estimated
value and linearly decreased to zero at the parameter space
boundaries, as depicted in Fig. 9.

The second prior distribution assumed that the three pa-
rameters all follow uniform distributions. The parameter
spaces for the second prior distribution were the same as
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those for the first. As a result, the joint probability of each
parameter set was equal to (1/20) x (1/30) x (1/8). To facil-
itate comparisons, we present the detailed information on the
two types of prior distributions in Table 5.

4.3 Posterior distributions after calibration

We first calibrated the parameters based on the prior distri-
butions calculated according to the DEMs and other prior
knowledge. The resulting posterior distributions are pre-
sented in Fig. 10. Each row in Fig. 10 represents a different
road, and each column represents a curve number. Each sub-
plot presents the joint probability distribution of the catch-
ment area and time of concentration for a given curve num-
ber. The color intensity in Fig. 10 represents the magnitude
of the probabilities. Following two iterations of updating,
the posterior probability distributions for both the catchment
area and time of concentration converge around the optimal
parameter sets for most flood-prone roads. This demonstrates
that incorporating taxi observations significantly reduces the
uncertainty associated with catchment area and time of con-
centration. The probability typically achieves its maximum
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Figure 8. Spatial distribution of 10 flood-prone roads in Shenzhen.
Table 5. Detailed information on the two types of prior distributions.
Item Prior probability distributions based on DEM Uniform
and other prior knowledge distributions
Number of possible ~ Parameter ~ Prior marginal Number of possible ~ Parameter  Prior marginal
values interval  distribution values interval  distribution
Curve number 8 5 Maximum probabil- 8 5 1/8 for each possible
ity at 60 and linearly value
reduces to zero at
the parameter space
boundaries
Catchment area 20 0.01 Maximum probabil- 20 0.01  1/20 for each possible
ity at the estimated value
value and linearly
reduces to zero at
the parameter space
boundaries
Time of concentration 30 1/12 30 1/12  1/30for each possible
value

value when the curve number is either 55 or 60. Furthermore,
each subplot contains a salient cluster with higher probabil-
ity than other regions, suggesting that there may be multiple
acceptable parameter sets.

Furthermore, the optimal catchment area under a given
curve number decreases as the curve number increases,
whereas the optimal time of concentration under a given
curve number increases with the curve number. This is logi-
cal, because a higher curve number corresponds to increased
rainfall excess under identical rainfall conditions, requiring a
reduction in catchment area to maintain the runoff that best
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aligns with the taxi observations. Similarly, an increase in the
time of concentration diminishes the peak runoff produced
by the additional runoff generated by a higher curve number,
thereby preserving the optimal runoff status.

We also present the marginal distributions of the three pa-
rameters for 10 roads before and after calibration in Fig. 11.
In Fig. 11, the marginal posterior distributions of the curve
number appear relatively similar to the marginal prior distri-
butions. It seems that the proposed method employing taxi
data provides limited information regarding the distribution
of curve numbers compared with the catchment area and
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Figure 9. Prior probability distributions of hydrological parameter sets based on DEMs and other prior knowledge for 10 flood-prone roads.

time of concentration. This outcome may be a result of the
range and discretization granularity of the parameter spaces.
Catchment area and time of concentration encompass 20 and
30 possible values, respectively, whereas the curve number
has only 8 potential values. The smaller parameter space of
the curve number reduces the search space, and its impact on
the no-taxi-passing probability is comparatively lower than
that of the catchment area and time of concentration.

For example, for road ID =6, the optimal parameter set
consists of a catchment area of 0.19km?, time of concen-
tration of 0.9 h, and curve number of 55. To investigate the
effects of these parameters on the hydrograph and time se-
ries of no-taxi-passing probabilities, we held two parameters
constant at their optimal values and observed the impact of
changing the third parameter. Our findings are presented in
Fig. 12. One can see that when the catchment area varies
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from 0.04 to 0.23km? the maximum no-taxi-passing prob-
ability increases from 20 % to 100 % and the duration for
which the no-taxi-passing probability exceeds 0.5 increases
from 0.0 to 1.3 h. Similarly, when the time of concentration
fluctuates from 0.1 to 1.9h, the peak time of the no-taxi-
passing probability varies from 0.5 to 1.8 h. In contrast, when
the curve number varies from 40 to 75, the maximum no-taxi-
passing probability is fixed at 100 %, the duration for which
the no-taxi-passing probability exceeds 0.5 extends from 1.1
to 1.3 h, and the peak time of the no-taxi-passing probability
remains fixed at 1.1 h. These small fluctuations in the time
series of no-taxi-passing probabilities are representative of
why the distribution of curve numbers remains relatively sta-
ble after calibration compared with the catchment area and
time of concentration.
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Figure 10. Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads after calibration. The prior probability
distributions were derived from the DEMs and additional prior knowledge.

The posterior distributions calibrated based on the uniform
prior distribution are presented in Fig. 13. When comparing
two posterior distributions derived from two prior distribu-
tions, it is clear that the posterior distributions of the catch-
ment area and time of concentration are very similar, indi-
cating that the impact of prior distributions on these parame-
ters rapidly diminishes after taxi-related knowledge is added.
As stated by Beven and Binley (1992, p. 286), “as soon as
information is added in terms of comparisons between ob-
served and predicted responses then, if this information has
value, the distribution of calculated likelihood values should
dominate the uniform prior distribution when uncertainty es-
timates are recalculated”.
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4.4 Validation results

After the parameter sets were calibrated, they were com-
bined with an SCS unit hydrograph to construct an SUH,
which was combined with the rainfall data from 11 June 2019
to produce the predicted hydrograph. Because the posterior
probability associated with each parameter set can be re-
garded as a fuzzy measure reflecting the degree of belief that
the parameter set is true, the weighted runoff values for each
parameter set were summed to calculate the final predicted
runoff:

N
0=> PEVIX)0Q".

i=1

a7
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Figure 11. Marginal prior and posterior probability distributions of the curve number for 10 flood-prone roads.

Here, Q is the final predicted runoff, Q(i) is the simulated
runoff derived from the ith parameter set, and P@O® |X) is
the posterior probability of the ith parameter set, which acts
as a weight.

The output of the calibrated hydrological model is runoff
(with units of m?s~!), whereas the validation data are wa-
ter level data (with units of m). Because the calibration data
and validation data came from multiple sources and have dif-
ferent units, conventional error-based statistics, such as the
mean absolute error, were not suitable for this study. The
discharge of a stream is rarely measured directly. Instead,
streamflow is typically determined by converting measured
water depth (i.e., water stage) into discharge through a rat-
ing curve, which provides a functional relationship between
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the water stage and discharge at a specified point (Le Coz et
al., 2014). Inspired by the application of the rating curve, we
validated our method by estimating the goodness of fit be-
tween the water level which was measured in the field and
the corresponding runoff which was predicted based on the
proposed calibration method. A higher goodness of fit indi-
cates synchronous trends between the runoff and water level,
which indirectly demonstrates the feasibility of the proposed
method.

Because the posterior distributions derived from the two
types of prior distributions were very similar, we only consid-
ered the posterior distribution calibrated based on prior dis-
tributions derived from DEMs and other prior knowledge for
validation. Comparisons between the observed water depth
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Figure 12. Impacts of three parameters on the variation of the time
series of runoff and no-taxi-passing probabilities: (a) catchment
area conditional on runoff, (b) catchment area conditional on the
no-taxi-passing probability, (¢) time of concentration conditional on
runoff, (d) time of concentration conditional on the no-taxi-passing
probability, (e) curve number conditional on runoff, and (f) curve
number conditional on the no-taxi-passing probability.

and simulated runoff for 10 selected roads are presented
in Fig. 14, and corresponding scatter plots are presented in
Fig. 15. We use the Pearson correlation coefficient, which
measures the linear correlation between two variables, as a
goodness of fit indicator. One can see that 8 of 10 roads are
characterized by significant positive Pearson coefficients, in-
dicating that the runoff and water have similar and consistent
variation trends.

It is noteworthy that goodness of fit simply describes
the degree of correlation between the observed and simu-
lated data, and may contain validation bias. As suggested by
Legates and McCabe (1999), correlation-based statistics are
insensitive to additive and proportional differences between
simulations and observations. Therefore, the fitting of a rat-
ing curve is only a partial validation and the usefulness of the
proposed calibration method requires further analysis.

5 Discussion

Four main points about the proposed calibration method are
worthy of further discussion. The first is that although the
presented validation results support the use of taxi GPS data
to calibrate hydrological parameters for poorly gauged road
networks, the proposed method is more applicable to roads
that are frequently visited by taxis. Uncertainty increases as
the taxi volume on a road decreases. A road is considered
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to be passable when at least one taxi GPS point is observed
during a time interval, but we cannot assert that a road is
disrupted when the taxi volume is zero. When a road with
frequent taxi traffic is observed with no taxi GPS points dur-
ing a storm, it is highly probable that the road is disrupted
by flooding, which provides relatively reliable information
for parameter calibration. Conversely, when a road with lit-
tle taxi traffic has no taxi points during a storm, there is a
relatively high likelihood that the road remains passable and
is simply exhibiting its typical trend of no taxis. Therefore,
the proposed calibration method becomes relatively unreli-
able when a no-taxi-passing period is no longer a good proxy
for the disruption period on a road with sparse taxi data. To
compensate for a shortage of taxi GPS data, additional data
sources, such as ride-hailing data and bus data, should be in-
corporated in future work.

Second, the disruption of one road may cause cascading
failures, where the disruption is rapidly propagated from the
inundated road to adjacent non-inundated roads under the
constraints of road connectivity. For a road that is disrupted,
but not inundated by a storm, the implementation of the pro-
posed calibration method may be subject to structural errors.
Consider two connected roads called Road 1 and Road 2 that
are both disrupted during a storm and have taxi volumes of
zero (Fig. 16). In this case, Road 1 is disrupted by the flood-
ing, whereas Road 2 is only disrupted because it is connected
to Road 1. If taxi data are the only data used for calibration,
then the posterior distributions of the hydrological parame-
ters for Road 1 and Road 2 will be identical after calibration,
because the sequences of taxi volume are identical for both
roads. However, we know that the hydrological parameters
of these two roads are not the same, because only one road is
flooded. Just like we cannot simply treat the no-taxi-passing
period as the disruption period, we cannot confuse the dis-
ruption period with the flooded period. In future work, an
algorithm that facilitates distinguishing the flooding-induced
disruption from connectivity-induced disruption should be
developed.

Third, the proposed three-step process, which consists of
an SCS unit hydrograph, empirical runoff-disruption func-
tion, and Poisson distribution, is a realization of the gener-
alized framework presented in Fig. 1. The submodels used
in the three-step process can be flexibly replaced with other
submodels according to complexity requirements and data
availability. For example, an alternative to the SCS unit hy-
drograph is the distributed hydrological model. Unlike the
SCS unit hydrograph, the distributed hydrological model par-
titions a watershed into physically homogeneous units and
captures the complex spatial variation induced by human ac-
tivity in high resolution, which may be more applicable to ur-
banized environments such as road networks. However, con-
sidering that some critical data, such as road drainage data
and land use data, are missing, as well as the extreme com-
putational cost associated with the distributed hydrological
model, we did not adopt this model in this study. Another as-
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Figure 13. Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads after calibration. The prior probability

distributions were derived from a uniform distribution.

sumption we made in this study is that the number of taxis
arriving at a road follows a Poisson distribution. By conduct-
ing the chi-square goodness of fit test, we found that the fre-
quency distribution of taxi volumes adheres to a Poisson dis-
tribution for more than 50 % of 5 min intervals for 7 of the 10
roads presented in Fig. 8, indicating that the Poisson model
appears to be a suitable assumption. However, this hypothe-
sis may not be universally applicable, particularly in differ-
ent urban contexts, where alternate distributions, such as the
Weibull distribution, may provide a more accurate represen-
tation.

Fourth, it is imperative to acknowledge that the parameter
values in this study were discretized, although hydrological
model parameters are inherently continuous. This discretiza-
tion approach could result in the omission of optimal solu-
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tions, particularly when hydrological models exhibit sensi-
tivity to these parameters. It is important to note that dis-
cretization is neither a requisite nor a recommended strategy.
Future research should address the optimization or posterior
inference problem in a continuous parameter space based on
established methods such as the Monte Carlo algorithm.

6 Conclusion

An urban flooding model requires various types of data for
calibration. In this study, we proposed a Bayesian calibra-
tion framework for the hydrological parameters of a road
network based on taxi GPS data. A three-step procedure con-
sisting of a rainfall-runoff model, runoff-disruption function,
and no-taxi-passing probability model enabled us to trans-
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Figure 16. The difference between the disruption period and
flooded period.

form a given rainfall time series into a time series of no-taxi-
passing probabilities for each parameter set, which is key to
taxi-data-driven model calibration. The calculated no-taxi-
passing probabilities, which acted as a proxy for the asso-
ciated hydrological parameter sets, were compared with ob-
served taxi data based on the Bayes equation to assess the
posterior probability distributions of the hydrological param-
eter sets. Three parameters, namely the curve number, catch-
ment area, and time of concentration, were calibrated. The
proposed calibration method was instantiated by combining
classical hydrological models with traffic flow models and
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was validated on 10 flood-prone roads in Shenzhen. The val-
idation results indicate that the trends of runoff could be cor-
rectly predicted for eight roads, which demonstrates the po-
tential of calibrating hydrological parameters based on taxi
GPS data.

This study highlights the potential of integrating
transportation-related data with hydrological theory for the
transportation resilience improvement and flood risk man-
agement of road networks. We hope that our study can pro-
vide a flexible calibration framework for countries that have
little runoff data but rich taxi data. We acknowledge that the
application of the proposed method is currently limited by
the heterogeneous spatial distributions of taxis citywide and
the cascading effects of road inundation, but we expect this
to change with the increasing availability of vehicle data and
continuous optimization of modeling approaches.
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