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Abstract. Intensity–duration–frequency (IDF) statistics de-
scribing extreme rainfall intensities in Norway were anal-
ysed with the purpose of investigating how the shape of
the curves is influenced by geographical conditions and lo-
cal climate characteristics. To this end, principal compo-
nent analysis (PCA) was used to quantify salient informa-
tion about the IDF curves, and a Bayesian linear regression
was used to study the dependency of the shapes on climato-
logical and geographical information. Our analysis indicated
that the shapes of IDF curves in Norway are influenced by
both geographical conditions and 24 h precipitation statis-
tics. Based on this analysis, an empirical model was con-
structed to predict IDF curves in locations with insufficient
sub-hourly rain gauge data. Our new method was also com-
pared with a recently proposed formula for estimating sub-
daily rainfall intensity based on 24 h rain gauge data. We
found that a Bayesian inference of a PCA representation of
IDF curves provides a promising strategy for estimating sub-
daily return levels for rainfall.

1 Introduction

Climate change caused by an increased greenhouse effect is
expected to be associated with changes in the hydrological
cycle and an increase in precipitation and more extreme rain-
fall (Field et al., 2012; Stocker and Qin, 2013; Solomon et al.,
2007; IPCC, 2021). There are several physics-based expla-
nations for the increased rainfall amounts. Higher surface
temperature gives higher rates of evaporation and strengthens
the moisture-holding capacity of air. The air moisture is part
of the global hydrological cycle where it condenses to form
clouds and returns to Earth’s surface through precipitation.

Furthermore, a recent analysis of the satellite-based Tropi-
cal Rainfall Measuring Mission (TRMM) suggests that there
has been a change in the global rainfall area over the recent
decades that may also imply changes in the mean rainfall
intensity (Benestad, 2018) and there are similar indications
in recent state-of-the-art reanalyses (Benestad et al., 2022).
There is also a possibility that some rain-producing phenom-
ena become more prevalent under warmer conditions, such
as convective systems. These theoretical aspects are under-
scored by trend analyses of the probability of heavy rainfall
pointing to more extreme rainfall amounts (Benestad et al.,
2019b, 2021; Westra et al., 2014; Donat et al., 2016; Sorte-
berg et al., 2018; Dyrrdal et al., 2021; Olsson et al., 2022).
Extreme rainfall is a disruptive and damaging hazard but
can to some extent be managed through a proper risk analy-
sis. For example, precipitation intensity–duration–frequency
(IDF) curves are commonly used tools in water resource
management and planning (Koutsoyiannis et al., 1998; Mail-
hot et al., 2007; Burn, 2014; Dyrrdal et al., 2015).

One problem associated with IDF curves is that rain gauge
data have limited geographical coverage, making it difficult
to analyse the risk of extreme rainfall everywhere. The Inter-
governmental Panel on Climate Change’s Sixth Assessment
Report also noted that the exact levels of regional IDF char-
acteristics may depend on the method as well as the resolu-
tion of downscaling when derived from climate model sim-
ulations (IPCC, 2021). Furthermore, short time series imply
limited knowledge of extremes and challenge the extrapo-
lation to long return periods. These caveats are particularly
problematic for IDF statistics for short-duration rainfall (3 h
or less), which are useful for the design of urban infrastruc-
ture and urban flood prevention. Short-duration rainfall is of-
ten a result of local convective activity and hence highly vari-
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able, but sub-hourly precipitation observations are relatively
sparse. One way to circumvent this issue is by using sys-
tematic dependencies between IDF curves and climatological
and geographical factors to regionalise the IDF curves from
gauged to ungauged stations. A similar principle may be used
to expand IDF curves from the current period (gauged or un-
gauged) to the future (Lima et al., 2018; Fadhel et al., 2017).
While each precipitation event typically has low predictabil-
ity, the statistical nature of such events, such as their prob-
ability, frequency or typical intensity, may still be highly
predictable. Dyrrdal et al. (2015) developed a method for
estimating return levels for sub-daily rainfall intensity over
Norway based on high-resolution gridded climate observa-
tions and Bayesian hierarchical modelling. Remote sensing
(radar and satellite) products of high spatial resolution can
also be a complementary source of precipitation measure-
ments in regionalisation to ungauged locations (Eldardiry
et al., 2015; Marra et al., 2017; Gado et al., 2017; Panziera
et al., 2018). While radar products have been shown to often
underestimate precipitation and in particular high-intensity
rainfall (Eldardiry et al., 2015; Kreklow et al., 2020), the
inherent bias can be locally adjusted with rain gauge mea-
surements (Panziera et al., 2018). One caveat with gridded
data is that they are not optimal for analysing extreme val-
ues due to spatial inhomogeneities on sub-grid-box scales
(Schilcher et al., 2017; Richard Chandler, personal commu-
nication, 2016). While useful for regionalisation purposes
in conjunction with rain gauge measurements, one should
be careful estimating the frequency of heavy-precipitation
events directly from gridded products.

Another problem is that IDF curves may be inconsistent
across durations. Roksvåg et al. (2021) proposed two post-
processing approaches to deal with such inconsistencies. An-
other approach may involve a sort of “temporal downscal-
ing” of sub-daily rainfall intensity based on 24 h precipita-
tion statistics (Benestad et al., 2021). In a similar vein, Ro-
dríguez et al. (2014) estimated future hourly extreme rainfall
using temporal downscaling based on scaling properties of
rainfall for a case study of Barcelona and the SRES A1B,
A2, and B2 climate scenarios. Fauer et al. (2021) used a dif-
ferent approach, proposing a flexible and consistent quan-
tile estimation method for IDF curves that explored how to
improve the estimation by adjusting parameters represent-
ing curvature, multi-scaling and flatness. Their approach in-
volved using a duration-dependent formulation of the gen-
eralised extreme value (GEV) distribution to fit IDF models
with a range of durations simultaneously. The degree of un-
certainty associated with estimating IDF curves is substan-
tial, and Chandra et al. (2015) attempted to quantify uncer-
tainties connected to both insufficient quantity and quality
of data, leading to parameter uncertainty due to the distri-
bution fitted to the data, and uncertainty as a result of using
multiple global climate models (GCMs) from the CMIP5 en-
semble (RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios).
They used a Bayesian approach and a case study of the city

of Bangalore in India and found that the uncertainty is larger
for shorter than for longer durations for the rainfall return
levels and also that parameter uncertainty was greater than
the model uncertainty.

In this study, we test an empirical statistical modelling ap-
proach to estimate the shape of the IDF curves, rather than
the return values for each duration and return period. This
approach is based on principal component analysis (PCA)
and Bayesian inference. Using PCA reduced the return val-
ues of all stations and return periods to a set of principal
components (PCs) in the form of spatial patterns, with ac-
companying IDF shapes and eigenvalues. The leading PC
spatial patterns were subjected to Bayesian linear regression
and subsequently expanded to new stations based on clima-
tological and geographical information. The analysis is in-
cluded in its entirety in the R Markdown document provided
in the Supplement. Predicting the shape of the IDF curves
of all return periods simultaneously through PCA is a novel
strategy which to our knowledge has not been done before in
this context. The motivation for this approach was the ob-
servation and expectation that the curves have simple and
smooth shapes with regional similarities. In other words, the
return values for rainfall intensities over different durations
are related to each other, and the IDF curves are associated
with a substantial degree of redundant information that can
be utilised through the application of PCA. The estimated
return values were compared with the simple formula for
estimating approximate values of return levels for sub-daily
rainfall based on 24 h rain gauge data presented in Benestad
et al. (2021). A strategy that involved using a weighted set
of polynomials to represent the IDF shapes was also pursued
but abandoned as it provided a poor representation of the re-
turn values. The purpose of the statistical modelling was (i)
to explore the influence of meteorological and geographical
conditions on the IDF curves, (ii) to establish an empirical
model to be used for regionalisation where sub-daily precip-
itation data are not available, and (iii) to compare different
and independent strategies for estimating sub-daily rainfall
intensity.

2 Materials and methods

2.1 Data

We used new IDF statistics from 74 Norwegian stations, con-
sisting of return values for a range of durations (1, 2, 3, 5, 10,
15, 30, and 45 min and 1, 1.5, 2, 3, 6, 12, and 24 h) and return
intervals (2, 5, 10, 20, 25, 50, 100, and 200 years), depicted
in Fig. 1. The return values were calculated using the method
described in Lutz et al. (2020) and post-processed with the
quantile selection algorithm from Roksvåg et al. (2021). The
post-processing by Roksvåg et al. (2021) was only applied to
stations where the IDF curves were not consistent (21 out of
the stations). In the calibration, statistical properties based on
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rainfall and temperature observations were used to represent
local climatological conditions in addition to coordinates, el-
evation, and distance to the ocean. In this study, only stations
where the IDF statistics were calculated based on at least 10
seasons of precipitation data were considered. Eight stations
with IDF statistics based on long precipitation records from
different parts of Norway were selected to display results vi-
sually (Fig. 2; IDF curves for all return periods for the sta-
tions are displayed in Fig. 12a–h and a map of their locations
in Fig. 12i).

Daily mean precipitation (pr) and air temperature at 2 m
(t2 m) data were downloaded from the Norwegian Meteoro-
logical Institute (https://frost.met.no, last access: 29 April
2022), from the same stations as the IDF data or those clos-
est available. Only stations with at least 10 years of data
within the period 1970–2020 were included in the analy-
sis. The availability of daily precipitation and temperature
data is shown in the Supplement (Fig. S1). All IDF stations
had daily precipitation data, but only 17 of the 74 stations
had available temperature data. At the stations that did not,
the distance to the nearest station with temperature data was
on average 6.3 km and at most 25 km. Due to limited spatial
coverage of the observational network, the same temperature
data were assigned to multiple IDF stations in some cases
(12 stations were assigned to multiple IDF stations, 46 were
used only once). The multiple assignments occurred primar-
ily in the more densely populated parts of the country (around
Oslo, Trondheim, and Stavanger), where there are many ob-
servational stations in a relatively small area.

2.2 Principal component analysis of the IDF curves

Principal component analysis (PCA) was applied to the IDF
curves through singular value decomposition (SVD) (Jolliffe,
1986; Jolliffe and Cadima, 2016; Trefethen and Bau, 1997).
This framework was based on the expression

X= U3VT , (1)

where the matrix X contains the IDF curves, i.e. return values
for various return periods and durations at each location; U
is a matrix holding eigenvectors, which can be interpreted
as shapes of IDF curves; 3 is a diagonal matrix holding
the eigenvalues; and V represents the principal components
(PCs) containing weights for the different geographical loca-
tions.

The purpose of the PCA was to reduce the complexity of
the IDF data while preserving as much variability as possible.
The procedure finds new variables that are linear functions of
the original data, where the new variables (PCs) are uncorre-
lated with each other, and the variance is successively max-
imised, meaning that the leading PC describes the dominant
pattern, and each successive mode represents a smaller and
smaller portion of the variance. The original IDF curves can
thus be reproduced by combining a few of the leading PCs,
eigenvectors, and eigenvalues with little loss of information.

We consider several criteria for assessing the number m
of PCs that needs to be retained in order to represent most
of the information: (i) set m to the smallest value for which
the total cumulative explained variance exceeds a given per-
centage, for example, 80 % or 90 %. (The explained variance
can be calculated from the eigenvalues λ.) (ii) Using a Scree
diagram where the eigenvalues are plotted against their rank,
identify an “elbow” (a bend in the curve where the slope goes
from steep to shallow) and retain the eigenvalues to the left
of this point (Cattell, 1966). (iii) An approach suggested by
Ali et al. (1985) is to calculate the correlation between the
original variables and the PCs and set m to one less than the
first PC for which there are no correlation coefficients that
are statistically significantly different from zero. In our case,
the “original variables” are the return values, which for each
station was compared with the IDF shapes U i for i ∈ [1,10]
(Eq. 1).

There are other more objective but also computationally
demanding methods of selecting the number of PCs to retain,
for example, based on cross-validation or bootstrapping, but
these were not deemed necessary for our purposes. Based
on the criteria above, we focused primarily only on the two
leading PCs in most of the analysis and statistical modelling
of this study (see discussion in Sect. 3.1).

2.3 Statistical modelling

Statistical relationships were established between the two
leading PCs of the IDF curves, which represent the dominant
spatial patterns of the data, and a set of geographical and me-
teorological predictors: the wet-day mean precipitation in the
warm season (April–September) and cold season (October–
March), µwarm and µcold; the wet-day frequency in the warm
season and cold season, fwwarm and fwcold ; the temperature in
the summer season (June–August), t2 mJJA ; the latitude; the al-
titude, and the minimum distance to the coast (docean). These
predictors describe both the cold-season precipitation regime
in Norway, primarily dominated by stratiform precipitation
associated with low-pressure systems, and the warm-season
precipitation regime, which to a larger degree is regulated by
convective processes. The summer temperature was included
because it is closely linked to the convective environment.

The statistical model can be described as follows:

V̂i(long, lat) =c0,i + c1,ip1(long, lat)+ c2,ip2(long, lat)

+ . . .+ cN,ipN (long, lat), (2)

where V i is the ith spatial pattern obtained by PCA of the
IDF curves (Eq. 1); c0,i is the intercept; and c1,i , c2,i , . . .,
cN,i are the coefficients associated with the predictors p1,
p2, . . ., pN for principal component i ∈ [1,2].

The estimated principal components were then combined
with the corresponding eigenvectors and eigenvalues:

X̂= U1,231,2V̂T1,2, (3)
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Figure 1. Return values for 74 Norwegian stations for the (a) 20- and (b) 200-year return periods. The colours represent different locations
shown in the map (c).

Figure 2. IDF curves for (a) Hamar II, (b) Oslo – Blindern Plu, (c) Kristiansand – Sømskleiva, (d) Time – Lye, (e) Bergen – Sandsli, (f)
Kristiansund – Karihola, (e) Trondheim – Risvollan, and (g) Bodø – Skivika. The locations of the stations are shown on a map in panel (i).
The colour scale represents the various return periods, from 2 to 200 years, as described in the legend in panel (a).
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where the matrix X̂ contains the estimated IDF curves; V̂1,2
is a matrix with the estimated eigenvectors V̂ 1 and V̂ 2
(Eq. 2); and U1,2 and 31,2 are matrices holding the first two
leading eigenvectors and eigenvalues, respectively (a subset
of U and 3 from Eq. 1).

Model fitting was performed by Bayesian linear re-
gression, using the R package “BAS” (see Clyde et al.,
2011, 2018, Chap. 6–8). A Markov chain–Monte Carlo
(MCMC) resampling method was used for stochastic explo-
ration of the model space. The number of predictors was
reduced by applying the median probability model (MPM)
rule: including only variables with a marginal posterior in-
clusion probability (pip) of at least 0.5 (Barbieri and Berger,
2004).

2.4 Evaluation of results

2.4.1 Cross-validation

To evaluate model skill, a leave-one-out cross-validation was
performed in which the predictand and predictor data of one
station were excluded from model calibration. The statisti-
cal model was subsequently applied to the climatological and
geographical data of the excluded station to estimate return
values. This procedure was repeated so that independent esti-
mates of the return values were obtained for all stations. The
root-mean-square error (RMSE) and relative RMSE between
the original return values and independent estimates obtained
through cross-validation were then calculated as described in
Appendix A.

2.4.2 Confidence intervals

Confidence intervals of the estimated return values, X̂, were
calculated based on the standard errors of the estimated PCs,
V̂ 1 and V̂ 2, which were provided as output of the Bayesian
linear regression function. Since the principal components
are orthogonal, the error propagation equation for linear
combinations (Ku, 1966) simplifies to

σ
X̂
=

√√√√ 2∑
i

(
∂X

∂V i

)2

σ 2
V i
=

√√√√ 2∑
i

(3iU i)2σ
2
V i
, (4)

where σ
X̂

is the total error of the estimated return values,
X̂; σV i

is the standard errors of the ith principal component,
V i ; and U i and 3i are the ith eigenvector and eigenvalue,
respectively (see Eqs. 1 and 3).

2.5 Comparison with other methods

The IDF curves estimated with Bayesian inference of prin-
cipal components, as described above, were compared with
the simple approximate formula for estimating return values
derived by Benestad et al. (2021):

XL = αµ

(
L

24

)ζ
lnfwτ, (5)

where XL is the return value (unit: mm) for the duration
L (unit: h); µ (unit: mm d−1) and fw (unit: fraction of
days) are the wet-day mean precipitation and wet-day fre-
quency, respectively, calculated from daily precipitation ob-
servations; and α and ζ are empirical correction factors that
vary with the return period τ (unit: years). The value of α
varies linearly with the logarithm of the return period ac-
cording to α = 1.256+ 0.064ln(τ ). Values of ζ have been
fitted for a range of return periods (0.4251593, 0.4185929,
0.4161947, 0.4147515, 0.4144257, 0.4137387, 0.4134449,
and 0.4134594 for 2-, 5-, 10-, 20-, 25-, 50-, 100-, and 200-
year return periods) and are obtained by interpolation for
other values of τ . Equation (5) has been implemented in the
R package “esd” (Benestad et al., 2015), where it is available
as the function day2IDF().

3 Results

3.1 PCA of the IDF curves

As mentioned earlier, principal component analysis was ap-
plied to the IDF statistics as described in Sect. 2.2 with the
purpose of reducing the dimensionality of the data. The five
leading principal components explained 74 %, 9 %, 3 %, 3 %,
and 2 % of the variability of the IDF statistics, respectively.
At least two PCs need to be retained in order to explain 80 %
of the variance or five PCs for the cumulative explained vari-
ance to exceed 90 %. In the Scree diagram (Fig. 3a), an elbow
was identified between V 2 and V 3, suggesting that the two
leading PCs represent the most relevant information. How-
ever, based on the comparison between the IDF shapes U i

and the original return values, statistically significant corre-
lations (with p < 0.01) were found for i ∈ [1,4], suggesting
that the leading four PCs all hold information of some im-
portance.

The spatial pattern associated with the first principal com-
ponent, V 1, was characterised by a west–east and south–
north gradient, with a strong contrast between the west-
ern and southern coasts of Norway on the one hand and
the inland and middle–northern Norway on the other hand
(Fig. 3c). The values of V 1 were of the same sign (nega-
tive) at all stations, meaning that it described a pattern with
positive correlations among all stations. The second princi-
pal component, V 2, spanned both positive and negative val-
ues and displayed a gradient from the inland region, where
V 2 < 0 at most stations, to the western and southern coast,
where V 2 > 0 (Fig. 3d). The higher-order spatial patterns
had less coherent spatial structures, also spanning positive
and negative values (Fig. 3e and f).

A reconstruction of the IDF statistics (Fig. S8) from only
the first PC showed that it determined the basic slope and
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Figure 3. Summary figure describing different aspects of the PCA of the IDF curves. Panel (a) shows a Scree diagram with the rank of the
eigenvalues (abscissa) plotted against the explained variance (ordinate). Panel (b) displays the IDF shapes (U in Eq. 1) associated with the
leading four principal components, and panels (c, d, e, f) show the associated spatial patterns (V in Eq. 1) for PC1, PC2, PC3, and PC4,
respectively.

level of the IDF curves. The second PC altered the curva-
ture: in the stations where V 2 > 0, the second PC made the
IDF curve more convex, i.e. decreased return values for short
to intermediate durations and increased them for long dura-
tions. In stations where V 2 < 0, PC2 had the opposite influ-
ence, making the curve more flat or concave instead. This
can also be understood by looking directly at the IDF shapes
(U in Eq. 1) associated with the leading principal compo-
nents, displayed in Fig. 3b. For U1, the curves decreased
smoothly with increasing duration and return period, which
makes sense as V 1 was negative at all stations. For U2, there
was a maximum at 24 h duration and a minimum around 1–

2 h duration. This explains why positive values of V 2 give
more convex shapes and positive values more concave. The
higher-order modes (U3 and U4) had shapes with local min-
ima and maxima at various durations, but because of their
small eigenvalues (Fig. 1a) they had little visible influence
on the IDF curves, only slightly tweaking their shapes.

3.2 Statistical modelling

Statistical models were fitted for the first two principal com-
ponents of the IDF statistics, V 1 and V 2, using Bayesian lin-
ear regression as described in Sect. 2.3. The posterior inclu-
sion probability of the coefficients suggested that the most
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Table 1. Marginal posterior inclusion probability (pip) of the coef-
ficients for different predictor variables in the statistical models for
the three leading principal components of the IDF curves, V 1, V 2
and V 3. A pip higher than 0.5 (shown in bold font) indicates that
the coefficient is included in the Median Probability Model (MPM),
which is the model selection approach used in this study. The in-
cluded predictor variables are the wet-day mean precipitation in the
warm and cold season (µwarm, µcold), the wet-day frequency in the
warm and cold season (fwwarm , fwcold ), the mean summer tempera-
ture (t2 mJJA ), the latitude, the altitude, and the distance to the ocean
(docean).

Predictor pip V 1 pip V 2 pip V 3

Intercept 1.0000 1.0000 1.0000
µwarm 1.0000 0.1089 0.0220
µcold 0.1638 1.0000 0.0221
fwwarm 0.1114 0.0830 0.0617
fwcold 0.1533 0.0796 0.0870
t2 mJJA 0.1621 0.9756 0.0285
Latitude 0.2854 0.0815 0.0223
Altitude 0.1225 0.1108 0.0252
docean 0.8426 0.0850 0.0542

important predictors for V 1 were µwarm and docean and for
V 2 µcold and t2 mJJA (Table 1; Figs. S9–S10). An attempt was
made to fit a model for V 3, but no predictors could be iden-
tified that gave a better prediction than a model consisting of
only the intercept (Fig. S11). As no model could be found
for V 3, and previous analysis indicated that it had a limited
influence on the IDF shapes, it was excluded from further
statistical modelling and analysis. The models for V 1 and
V 2 were refitted with the selected predictors to keep the size
of the predictor set small and reduce the risk of over-fitting
(Wilks, 1995).

Figures 4 and S13 demonstrate the effect of the predic-
tor variables on the estimated 200-year return values for the
station Hamar II. Similar results were seen at other stations
and for other return periods. The two predictors included in
the model of V 1 (µwarm and docean) had the most notable
influence on the basic shape and level of the IDF curves.
An increase in µwarm or decrease in docean gave an overall
increase in return values but more for long durations than
short durations, hence increasing the slope of the IDF curves
(Fig. 4a and b). A decrease in µwarm or increase in docean
had the opposite effect, decreasing return levels and the slope
of the curves. The predictor variables that were involved in
the model of V 2 (µcold, and t2 mJJA ) altered the curvature of
the estimated IDF curves. An increase in µcold or decrease
in t2 mJJA lowered return values for low to intermediate dura-
tions (< 6 h) and increased return values for long durations
(> 6 h), resulting in a more concave upwards curve (Fig. 4c
and d). A decrease in µcold or increase in t2 mJJA had the op-
posite effect, resulting in a more convex downward curve.

A new set of IDF curves was constructed by combin-
ing the predicted principal components V̂ 1 and V̂ 2 with the
corresponding eigenvectors and eigenvalues (Eq. 3). Cross-
validation (Sect. 2.4.1) showed that the estimated return val-
ues were robust in the sense that they were very similar
whether a station was included in model fitting or not: com-
paring return values estimated by models tuned with all data
and by cross-validation, the RMSE was only 0.9 mm or 3 %
in relative terms (see examples in Fig. S14). At the eight ex-
ample stations, the confidence intervals of the original IDF
statistics and of the estimated return values overlapped for all
durations and return periods (Fig. 5). The deviation between
estimated and original return values was generally larger in
stations with more steep and curved slopes (i.e. large differ-
ences between short and long durations as in Fig. 5c, d, and
e) compared to the stations with flatter IDF curves.

A comparison between the original return values and val-
ues estimated from the two leading original PCs (Fig. 6a and
b) showed that there was some loss of information from dis-
carding higher-order modes of variability, but the RMSE was
rather low (2.3 mm or, in relative terms, 9 %) and the PCA
added no bias. The Bayesian statistical modelling of the two
leading PCs (Fig. 6b) added uncertainty to the return value
estimates (RMSE= 5.9 mm, 23 %) but was still more precise
than the simple equation by Benestad (RMSE= 9 mm; 35 %)
(Figs. 6c and S19). There was no obvious spatial pattern in
the RMSE of the return values obtained by the Bayesian ap-
proach (not shown here; see Fig. S20). For the simple for-
mula, the largest biases occurred for short return periods, for
which there was a tendency to overestimate the return val-
ues, while there was little bias for longer return periods. For
the Bayesian modelling of the first two PCs, there was a ten-
dency to underestimate high return values, and the bias was
similar for all return periods. The Bayesian modelling ap-
proach was notably better for low to medium return values
(< 100 mm), but the discrepancies associated with the two
methods were of similar magnitude for higher return val-
ues. The improved representation of the IDF statistics by the
Bayesian modelling was not surprising since it involved an
optimisation process that found the best slope and curvature
of the IDF shapes, whereas the estimates based on the sim-
ple formula only used the two parameters µ and fw. In the
simple formula, the shapes of the IDF curves were fixed in
terms of a fractal describing inter-scalar dependencies. Nev-
ertheless, the two different strategies gave somewhat similar
results, albeit with substantial scatter.

New IDF curves were generated by applying the statistical
models to meteorological and geographical data for 240 sta-
tions in Norway, including Svalbard and Jan Mayen (Fig. 7).
Many of these stations lack long time series of high-quality
sub-daily precipitation data, and thus IDF curves cannot be
calculated by ordinary measures.

Comparing the original return values (Figs. 1 and S3) to
the estimated values (Figs. 7 and S22), the estimated IDF
curves are smoother than the original curves. There are ob-
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Figure 4. Demonstration of the effect of the model parameters (a) µwarm, (b) docean, (c) µcold, and (d) t2 mJJA on the estimated 200-year
return values for the station Hamar II. The plots show return values estimated with parameter values from observations (black lines and dots),
as well as with increased (dashed purple lines) and decreased (dotted orange lines) parameter values.

vious regional differences in the shapes of the IDF curves:
towards the west coast, the IDF curves reach the highest val-
ues, and the curvature tends to be strong (i.e., a large dif-
ference between the intensity of short and long durations)
compared to stations inland and up north. At northern loca-
tions, the IDF curves are lower with a moderate slope. These
regional differences were more emphasised in the estimated
return values. Most notably, in the southeast region (south
of 62◦ N, east of 9◦ E), the range of estimated return values
was considerably more narrow compared to the original IDF
data, even though the estimated values represent more sta-
tions covering a larger area.

4 Discussion

The regression results presented in Table 1 and Fig. 4 indi-
cated that the mean precipitation intensity in the warm season
is connected to increased intensity over all timescales exam-
ined, whereas a similar increase in the cold season suggested
reduced short-term intensity but increased long-term inten-
sity. A similar increase over all timescales in the warm sea-
son is consistent with Eq. (5)

(
δxτ = α(L/24)ζ ln(fwτ)δµ

)
,

assuming a constant value for ζ , but the deviation from this

in winter may suggest that ζ is not necessarily constant. The
difference in seasonal response is likely related to the dom-
inance of different precipitation-generating processes: strati-
form in winter and convective in summer. It could also pos-
sibly be connected to the warm and cold initiation of precip-
itation (Rogers and Yau, 1989). The locations with intense
winter precipitation, which tend to have high return values
for long durations and relatively low return values for shorter
durations, are found along the west coast (Figs. 1, 7, S3 and
S22). The climate of this region is characterised by the North
Atlantic storm tracks, bringing a steady stream of cyclones
that often meet land here in autumn and winter, giving rise
to heavy-precipitation events with a long duration, and a rel-
atively cold climate in summer, which is not conducive to
convection. Further inland, the heavy-precipitation events of-
ten occur in summer as a result of convection, which is in
line with the relatively high return values for shorter dura-
tions. Furthermore, there is a degree of orographically forced
precipitation along the mountain ranges. The influence of the
distance to the ocean and temperature in summer (Fig. 4) also
supports this picture, with the curvature of the IDF curves de-
creasing with increasing t2 mJJA and docean.

An advantage of the proposed method, applying PCA to
the IDF data, is that all durations and return periods are con-
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Figure 5. Estimated 200-year return values for eight example stations: (a) Hamar II, (b) Oslo – Blindern Plu, (c) Kristiansand – Sømskleiva,
(d) Time – Lye, (e) Bergen – Sandsli, (f) Kristiansand – Karihola, and (g) Bodø – Skivika. The plots show the original IDF curves (black)
as well as return values estimated by Bayesian inference as described in this paper (coral). Dashed lines show the confidence interval (2
standard errors) of the original (dashed black) and estimated (dashed coral) IDF curves.

sidered together. This is not only computationally efficient
but also reduces the influence of uncertain or erroneous in-
dividual return levels. There are also some potential pitfalls
with this approach. First of all, only the first two PCs could be
modelled, which could have too much of a smoothing effect
on the IDF curves. There could also be nonlinear effects that

were not captured by the linear models, which could result in
underestimated variations in the estimated PCs. The quality
of the estimated return levels was limited by the quality of
the IDF data that they were based on. A different set of IDF
statistics would likely result in statistical models with similar
predictors and coefficients, but the PCA and ultimately the
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Figure 6. Original return values plotted against the error of the estimated return values (original–estimated) calculated (a) from the two
leading PCs of the original return values, (b) by Bayesian modelling of the two leading PCs of the return values, and (c) using the equation
presented in Benestad et al. (2021). The colours represent different return periods (see legend in panel a). Points show individual return
values, and dashed lines show linear regressions for each return period. The RMSE and relative RMSE of the estimated and original return
values are displayed in the lower-left corner of each panel.

estimated IDF curves would be defined by the shape of the
IDF data.

IDF statistics tend to have large uncertainties attached to
them, as illustrated by the confidence intervals in Fig. 5. It
can therefore be difficult to evaluate what constitutes a skil-
ful estimation of return values. Although the IDF statistics
used in this paper (Lutz et al., 2020) are referred to as the
“original” return values, they too were estimated and not di-
rectly observed. Is it enough that the confidence intervals of
the two estimates overlap? If so, the regionalisation approach
presented here is “good enough”. On the other hand, the con-
fidence intervals of the PCA-based estimates are for sure un-

derestimated because they represent only the distribution of
the Bayesian regression coefficients, without taking into ac-
count the uncertainties of the IDF statistics or climatological
information that went into the modelling.

A more direct evaluation of model skill might be between
the original return values (that were also obtained as median
values of a distribution; see Lutz et al., 2020) and the confi-
dence intervals of the estimated return values. Using this met-
ric, the statistical modelling was successful at most but not
all stations. For the 24 h duration and 200-year return period,
which is where the largest discrepancies occurred (Fig. 6b),
there were five stations at which the original return values
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Figure 7. Estimated return values for 240 Norwegian stations for the (a) 20-year and (b) 200-year return period, calculated using statistical
models applied to temperature and precipitation data that were not used for model calibration. The map (c) shows which locations the colours
in the return value plots represent.

were outside of the confidence interval of the estimated re-
turn values (Fig. S15): four stations along the southern coast
of Norway, at which the return values were underestimated
compared to the original values, and one station on the west
coast, where the return value is overestimated instead. A
closer examination revealed that at two of the stations where
the return values were underestimated (Grimstad – Hia and
Time – Lye), the problem could be traced to the discarding
of higher-order PCs, as PC4 had a notable influence on the
shape of the IDF curves (not shown). At the other stations
with large discrepancies, the explanation was not as easy to
find but likely connected to the Bayesian regression.

Expanding IDF curves from gauged to ungauged locations
or from current to future periods leans on the assumption that
the transfer functions are stationary and the climate data that
go into the analyses are representative of the location/period
that they are associated with. This is not always true. If the
reference period is shorter than the relevant cycles of natural
climate variability or if there is a trend or large interannual
variability, the outcome will likely be sensitive to the pre-
cise period of the input data. Dyrrdal et al. (2021) found sig-
nificant changes in heavy precipitation in the Nordic–Baltic
region and concluded that return level calculations were sen-
sitive to the time period of available data. One strategy, sug-
gested by Fadhel et al. (2017), is to investigate and quantify
the uncertainty related to this issue by repeating the analyses
with input data from varying periods. To test the robustness
of the proposed method, we applied the statistical models to
climatological data from two different periods (1970–1995
and 1995–2020) at 36 stations with long, complete observa-
tional records. The results (Fig. S24) showed that for long

durations, the estimated return values could differ as much
as 10–20 mm at some stations depending on the reference
period. This uncertainty should ideally have been included
in the confidence intervals of the estimated IDF curves, but
short observational records made it difficult to do this at most
locations. In future studies, additional sources of informa-
tion such as high-resolution gridded products may be helpful
to fill in the gaps of the observational network in space and
time.

Given that the IDF statistics in Norway are estimated for
each duration separately and often based on short time series
(Lutz et al., 2020), the smoother shapes of the IDF curves es-
timated by PCA-based Bayesian regression may, at some sta-
tions, be more representative of the precipitation climate than
the original return values which they are based on. Hence,
the PCA-based approach with Bayesian inference can be re-
garded as another “tool” together with the traditional ap-
proach for estimating IDFs and the simple formula proposed
by Benestad et al. (2021). They are based on different as-
sumptions and have different strengths and weaknesses, and
together they can capture salient information and smooth
over errors from single sites, as the different approaches to
predicting IDF curves are based on independent methods, for
example, modelling the return values (Dyrrdal et al., 2015),
estimating future IDF curves based on changes in the precip-
itation intensity (Zhu et al., 2012), and downscaling rainfall
intensity with respect to timescale (Rodríguez et al., 2014;
Benestad et al., 2021).

As an alternative to PCA, we tried using a weighted set
of polynomials to represent the shapes of the IDF curves,
fitting return values against time intervals (Fig. S6). This
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method was not successful. First- and second-order poly-
nomials were not a good fit, and higher-order polynomials,
while fitting the data reasonably well for the time intervals
for which return value data were available, had wiggly shapes
with local minima and maxima that did not make sense as
IDF curves.

One interesting question is how to use the IDF modelling
approach presented here in the context of climate change pro-
jections. For the case of Norway, the key variables expected
to change are µwarm, µcold, and t2 mJJA . By downscaling them,
statistically or dynamically, we may be able to infer changes
in the IDF through predicting new values for the PCs, as-
suming that their shapes will be valid in a future climate and
the calibrated dependency holds. One limitation is our ability
to get reliable estimates for the wet-day mean precipitation in
the future, which can be challenging in the case of empirical–
statistical downscaling. We can also use this approach to
provide hypothetical IDF curves for stress testing (Benestad
et al., 2019a). Other caveats may be that these results only ap-
ply to Norway and that similar analyses for different regions
may find that different factors are important for the shape of
the IDF curves. We expect that the shapes of the IDF curves
depend on physical aspects such as mesoscale convection,
synoptic frontal systems and cyclones, orographic precipita-
tion, and atmospheric rivers and that they will be sensitive to
changes in their occurrence relative to each other.

5 Conclusions

We obtained predictions of the shape of IDF curves in Nor-
way with Bayesian inference applied to a PCA representation
of the IDF data and conclude that it provides a useful strat-
egy that can be utilised for regionalisation and downscaling
of future climate projections.

Appendix A: Skill statistics

Statistical measures of the discrepancy between original re-
turn values x and fitted values y were calculated as follows:

RMSE=
1
N

N∑
i=1

√
(yi − xi)2 (A1)

RMSErel =
RMSE
x

. (A2)
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lytė, V., and Mäkelä, A.: Observed changes in heavy daily pre-
cipitation over the Nordic-Baltic region, J. Hydrol., 38, 100965,
https://doi.org/10.1016/j.ejrh.2021.100965, 2021.

Eldardiry, H., Habib, E., and Zhang, Y.: On the use of
radar-based quantitative precipitation estimates for pre-
cipitation frequency analysis, J. Hydrol., 531, 441–453,
https://doi.org/10.1016/j.jhydrol.2015.05.016, 2015.

Fadhel, S., Rico-Ramirez, M. A., and Han, D.: Uncertainty
of Intensity–Duration–Frequency (IDF) curves due to var-
ied climate baseline periods, J. Hydrol., 547, 600–612,
https://doi.org/10.1016/j.jhydrol.2017.02.013, 2017.

Fauer, F. S., Ulrich, J., Jurado, O. E., and Rust, H. W.: Flexi-
ble and consistent quantile estimation for intensity–duration–
frequency curves, Hydrol. Earth Syst. Sci., 25, 6479–6494,
https://doi.org/10.5194/hess-25-6479-2021, 2021.

Field, C., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi,
K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen,
S. K., Tignor, M., and Midgley, P. M. (Eds.): Managing the Risks
of Extreme Events and Disasters to Advance Climate Change
Adaptation, in: A Special Report of Working Groups I and II
of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, UK, and New York, NY, USA,
https://doi.org/10.1017/CBO9781139177245, 2012.

Gado, T. A., Hsu, K., and Sorooshian, S.: Rainfall
frequency analysis for ungauged sites using satel-

lite precipitation products, J. Hydrol., 554, 646–655,
https://doi.org/10.1016/j.jhydrol.2017.09.043, 2017.

IPCC: Climate Change 2021: The Physical Science Basis, Contri-
bution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge Univer-
sity Press, https://www.ipcc.ch/report/ar6/wg1/ (last access: 17
October 2023), 2021.

Jolliffe, I. T.: Principal Component Analysis, Springer Series in
Statistics, Springer, https://doi.org/10.1007/0-387-22440-8_13,
1986.

Jolliffe, I. T. and Cadima, J.: Principal component analysis: a review
and recent developments, Philos. T. R. Soc. A, 374, 20150202,
https://doi.org/10.1098/rsta.2015.0202, 2016.

Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A math-
ematical framework for studying rainfall intensity-
duration-frequency relationships, J. Hydrol., 206, 118–135,
https://doi.org/10.1016/S0022-1694(98)00097-3, 1998.

Kreklow, J., Tetzlaff, B., Burkhard, B., and Kuhnt, G.: Radar-
Based Precipitation Climatology in Germany – Develop-
ments, Uncertainties and Potentials, Atmosphere, 11, 217,
https://doi.org/10.3390/atmos11020217, 2020.

Ku, H. H.: Notes on the use of propagation of error
formulas, J. Res. Natl. Bur. Stand., 70C, 263–237,
https://doi.org/10.6028/jres.070C.025, 1966.

Lima, C. H., Kwon, H.-H., and Kim, Y.-T.: A local-regional
scaling-invariant Bayesian GEV model for estimating rain-
fall IDF curves in a future climate, J. Hydrol., 566, 73–88,
https://doi.org/10.1016/j.jhydrol.2018.08.075, 2018.

Lutz, J., Grinde, L., and Dyrrdal, A. V.: Estimating Rainfall De-
sign Values for the City of Oslo, Norway – Comparison of
Methods and Quantification of Uncertainty, Water, 12, 1735,
https://doi.org/10.3390/w12061735, 2020.

Mailhot, A., Duchesne, S., Caya, D., and Talbot, G.: As-
sessment of future change in intensity–duration–frequency
(IDF) curves for Southern Quebec using the Canadian Re-
gional Climate Model (CRCM), J. Hydrol., 347, 197–210,
https://doi.org/10.1016/j.jhydrol.2007.09.019, 2007.

Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E. N.:
Intensity–duration–frequency curves from remote sensing rain-
fall estimates: comparing satellite and weather radar over the
eastern Mediterranean, Hydrol. Earth Syst. Sci., 21, 2389–2404,
https://doi.org/10.5194/hess-21-2389-2017, 2017.

Olsson, J., Dyrrdal, A. V., Médus, E., Södling, J., An, iskeviča, S.,
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