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Abstract. Assessing eutrophication in lakes is of key impor-
tance, as this parameter constitutes a major aquatic ecosys-
tem integrity indicator. The trophic state index (TSI), which
is widely used to quantify eutrophication, is a universal
paradigm in the scientific literature. In this study, a method-
ological framework is proposed for quantifying and mapping
TSI using the Sentinel Multispectral Imager sensor and field-
work samples. The first step of the methodology involves
the implementation of stepwise multiple regression analysis
of the available TSI dataset to find some band ratios, such
as blue/red, green/red and red/red, which are sensitive to
lake TSI. Trained with in situ measured TSI and match-up
Sentinel images, we established the XGBoost of machine
learning approaches to estimate TSI, with good agreement
(R2
= 0.87, slope= 0.85) and fewer errors (MAE= 3.15 and

RMSE= 4.11). Additionally, we discussed the transferabil-
ity and applications of XGBoost in three lake classifications:
water quality, absorption contribution and reflectance spec-
tra types. We selected XGBoost to map TSI in 2019–2020
with good-quality Sentinel-2 Level-1C images embedded in
the ESA to examine the spatiotemporal variations of the lake
trophic state. In a large-scale observation, 10 m TSI products
from 555 lakes in China facing eutrophication and unbal-
anced spatial patterns associated with lake basin characteris-
tics, climate and anthropogenic activities were investigated.
The methodological framework proposed herein could serve
as a useful resource for continuous, long-term and large-scale
monitoring of lake aquatic ecosystems, supporting sustain-
able water resource management.

1 Introduction

Lakes, as valid sentinels of global or regional responses,
are sensitive to anthropogenic activities and climate change
(Mortsch and Quinn, 1996; Quayle et al., 2002; Tranvik et
al., 2009). The commonly used paradigm for studying eco-
environmental monitoring and controlling of lakes is the sta-
tus of eutrophication (Carlson, 1977). It is a combination of
light, heat, hydrodynamics and nutrients, such as nitrogen
and phosphorus, which occurs through a series of biologi-
cal, chemical and physical processes of lakes (Guo et al.,
2020). As a result of eutrophication, nutrient loading and pro-
ductivity grow sharply, and even hypoxia and frequent out-
breaks of harmful algal blooms are likely to produce toxins
(Paerl, 2008; Paerl et al., 2011). These processes can cause
serious degradation of water quality and are detrimental to
the ecosystem service functionality of lakes and the reliable
supply of drinking water (OECD, 1982). Once the eutrophi-
cation phenomenon becomes intense, ecological imbalances
generally follow (Smith et al., 2006). Hence, knowledge of
eutrophication processes can provide us with an understand-
ing of the structure and function of lake ecosystems that give
rise to environmental changes. We can then predict future
trends and develop appropriate mitigation strategies.

Several lakes experience eutrophication processes because
of excessive nutrient enrichment (Lund, 1967; Smith et al.,
1999; Wetzel, 2001). At the global scale, 63.1 % of lakes
larger than 25 km2, 54 % of Asian lakes (Wang et al., 2018)
and 53 % of European lakes (ILEC et al., 1994) are eutrophic.
Lake eutrophication has become a global water quality is-
sue affecting most freshwater ecosystems (Matthews, 2014).
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Currently, many pollution control measures and management
strategies have been implemented that are specific to individ-
ual lakes or to lakes in general. However, there is still insuf-
ficient information to address lake eutrophication related to
environmental disturbances or changes. Realization of lake
eutrophication has been a serious situation for some lakes;
therefore, we provided some reasons to suggest the need
for large-scale research. First, different environmental factors
control the trophic status of lakes at local and multiple scales
(e.g., Wiley, 1997). Specifically, biotic factors may dominate
the eutrophic state of individual lakes, and we can understand
the mechanism processes by lake-specific sampling. In con-
trast, abiotic factors and their linkages are pivotal factors that
determine lake biogeochemistry at multiple scales (Sass et
al., 2007). It is often necessary to study a number of lakes
with different characteristics and catchments to understand
the mechanisms of spatiotemporal patterns. Therefore, an up-
scaling study of trophic status is required to understand the
evolution prospects of lakes in response to changes in global
and regional environments. Second, multiyear environmental
and climatic conditions require long-term field studies and
observations to understand the temporal pattern in important
trophic status processes. In addition, relatively large datasets
are needed considering the spatial extent because environ-
mental factors are integrated to determine the trophic status
of lakes. It can promote data organization and enable us to
address an emergency and establish scientific measures for
water resource management (Cunha et al., 2013; Smith and
Schindler, 2009). Thus, eutrophication should be rapidly as-
sessed using easy-to-analyze indices and enforcement meth-
ods for large-scale and high-frequency applications.

Evaluating the trophic state of lakes has been an impor-
tant topic for decades (Carlson, 1977; Smith and Schindler,
2009). The traditional method uses chlorophyll a, trans-
parency, nutrients and other variables as water quality indi-
cators by field in situ sampling and laboratory measurements
(Rodhe, 1969). Subsequently, Carlson (1977) introduced a
numerical trophic state index (TSI) that should have replaced
descriptive values like “oligotrophic”, “mesotrophic” or “eu-
trophic”. The replacement has not occurred, but the TSI pro-
posed by Carlson is a common method to determine the
trophic state level of aquatic environments (Aizaki, 1981).
The traditional method for calculating TSI is based on col-
lected in situ data. The sampling itself and subsequent labo-
ratory measurements are labor-intensive, expensive and often
also logistically difficult to perform. This limits our capabil-
ity to monitor hundreds or thousands of lakes for eutrophica-
tion, not speaking about the majority of the 117 million lakes
on Earth (Verpoorter et al., 2014). Moreover, the TSIs calcu-
lated for one or a few discrete samples do not represent the
spatial distribution of TSIs within (especially larger) lakes.
This could limit the large-scale assessment of eutrophication
and the understanding of biogeochemical cycles.

Satellite remote sensing is a useful tool for monitoring
inland waters (Palmer et al., 2015). Ocean water-color sen-

sors, such as the Medium Resolution Imaging Spectrometer
(MERIS) or the Ocean and Land Colour Instrument (OLCI),
have too low a spatial resolution (300 m) for the majority of
lakes on Earth. Land remote-sensing sensors like the Landsat
Operational Land Imager (OLI), the Sentinel-2 Multispectral
Imager (MSI; 10–60 m) and the Satellite pour l’Observation
de la Terre (SPOT) with a high spatial resolution (5–30 m) are
not designed for water remote sensing (lack of critical spec-
tral bands, signal-to-noise ratio (SNR) not being sufficient
for water, etc.). Compared to the OLI and SPOT sensors, the
MSI has a more adequate radiometric resolution (12 bits) and
13 spectral bands, including four visible and shortwave in-
frared (SWIR) channels (Drusch et al., 2012). Inland water
TSI has been produced for large lakes using the MODIS sen-
sor (Wang et al., 2018). However, this study is for more than
2000 large lakes (due to the spatial resolution of the sensor).
The Copernicus Land Monitoring Service has started to pro-
duce TSI for lakes large enough to be mapped with 100 m
pixel size using the Sentinel-2 MSI. However, this product is
available only for Europe and some parts of Africa.

Instead of individual parameters, several studies (e.g.,
Morel and Prieur, 1977; Gurlin et al., 2011; Huang et al.,
2014; Sass et al., 2007; Thiemann and Kaufmann, 2000; Yin
et al., 2018) have also provided empirical relationships ex-
pressed as band combinations or baseline methods to ac-
quire Chl a, transparency or nutrients related to potential
TSI calculations in regional lakes. However, the accuracy
of these empirical relationships for transferring knowledge
from some representative lakes to large-scale lake groups is
limited by large uncertainties (i.e., in areas with different wa-
ter quality concentrations and atmospheric component influ-
ences, fewer lakes can be used with more heterogeneous in-
fluences and uniform algorithms) (Oliver et al., 2017). Con-
sidering the requirement of a uniform and universal relation-
ship to quantify the trophic status of lakes, an alternative
method using a high frequency and high spatial resolution
of the sensor is a significant challenge. Recently, technologi-
cal developments, such as machine learning algorithms, have
allowed the usage of remotely sensed imagery to success-
fully investigate water quality parameters using artificial in-
telligence (Reichstein et al., 2019; Pahlevan et al., 2020; Cao
et al., 2020). The potential application and development of
machine learning for remote quantification of water quality
are attributed to the following advantages: little prior knowl-
edge is required, rich features can be captured, and robust
relationships can be obtained. These processes avoid bias
and uncertainty from the regional environmental background
as well as complications due to atmospheric components of
traditional remote-sensing-derived relationships over a large
scale, i.e., for multiple lakes. Given the novel application of
remote sensing and machine learning, this is a gap to fill for
large-scale research of monitoring trophic states.

Environmental issues fueled by rapid economic growth
in China have significantly increased in the last 3 decades.
Lake eutrophication is a serious issue, with large variability
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in terms of trophic status and optical properties. However,
most studies (Jin and Hu, 2003; Jin et al., 2005; Fragoso Jr. et
al., 2011; Huang et al., 2014) have addressed eutrophication
concerns in only a single lake or two lakes since the 1990s.
It is acknowledged that a rapidly growing economy and an-
thropogenic activities (e.g., elevated nutrient loading and in-
creasing air pollution) accelerate the aging process of lakes
(Wu et al., 2011; Shi et al., 2020). Therefore, it is critical to
objectively assess the trophic status and pay attention to pro-
tect the aquatic environment. We aim to provide a robust ma-
chine learning algorithm and remote-sensing flowchart from
simultaneously retrieved TSI over a wide range of bio-optical
compositions in different lakes. The objectives of our study
were to (1) examine biogeochemical parameters and assess
trophic status, (2) calibrate and validate the TSI model using
different machining learning algorithms from MSI-imagery-
derived remote-sensing reflectance spectra (Rrs) with differ-
ent lake classifications, and (3) quantify and map the trophic
status of 555 typical lakes in five Chinese limnetic regions.

2 Materials and methods

2.1 Study area and sampling process

China is located in the east of Asia with a land area of
9 600 000 km2 and a population of over 1.4 billion. The ter-
rain of China descends from west to east in three steps. Due
to a vast territory span, this country has diverse climatic, ge-
ographical and geological conditions. There are 2693 natu-
ral lakes (with area > 1.0 km2) that are distributed in China
(Ma et al., 2011). Protection and sustainable management of
these lakes have been priorities, considering the degradation
of water quality over several decades. In this study, a total of
45 lakes were visited and 431 samples were collected in early
April 2016 to late October 2019 (Table S1 in the Supplement
and Fig. 1), which was the highest productive season, as iden-
tified by Carlson’s TSI model. These datasets were analyzed
and published in Li et al. (2021) and Song et al. (2020). Our
lake dataset was collected from various types of lakes across
China, and efforts were made to examine lake trophic sta-
tus from a wide range of water quality parameters, lake sizes
(0.5 to 4, 256 km2), lake elevations (10 to 4, 525 m) and cli-
matic zones (Song et al., 2019). In the field, some small-sized
lakes were sampled in the middle, and a signal sample was
used to represent the water qualities, while others were sam-
pled at multiple locations evenly distributed over the lake.
The water samples were collected approximately 0.5 m be-
low the surface and then stored in 1 L amber HDPE (high-
density polyethylene) bottles and kept in a portable refriger-
ator (4 ◦C) before being transported to the laboratory. During
the sampling process, the Secchi disk depth (SDD, m) was
measured using a black-and-white Secchi disk. The pH and
electrical conductivity (EC, µs cm−1) were recorded using a

portable multiparameter water quality analyzer (YSI 6600,
170 U.S.).

2.2 Laboratory analysis

A transferred portion of each bulk water sample was im-
mediately filtered with 0.45 µm pore size Whatman cellu-
lose acetate membrane filters in the laboratory. It should be
noted that some remote Tibet and Qinghai lake samples had
to be filtered during fieldwork. Chlorophyll a (Chl a) was
extracted from the filters using a 90 % buffered acetone so-
lution at 4 ◦C under 24 h dark conditions. According to the
SCOR-UNESCO equations (Jeffrey and Humphrey, 1975),
the concentration of Chl a (µg L−1) was determined using a
UV-2600PC spectrophotometer at 750, 663, 645 and 630 nm.
Dissolved organic carbon (mg L−1) concentrations were de-
termined using a total organic carbon analyzer. Total nitro-
gen (TN) and total phosphorus (TP) concentrations (mg L−1)
were measured using a continuous-flow analyzer (SKALAR,
San Plus System, the Netherlands) and a standard procedure
(APHA/AWWA/WEF, 1998). In addition, total suspended
matter (TSM, mg L−1) concentrations were obtained gravi-
metrically using precombusted 0.7 µm pore size Whatman
GF/F filters. All preprocesses (e.g., filtration and concen-
tration quantification) of all water samples were undertaken
within 2 d in the laboratory. The procedures are provided in
detail in Li et al. (2021).

The bulk samples were again filtered through a 0.7 µm
pore size glass-fiber membrane (Whatman, GF/F 1825-047)
to retain particulate matter. The water from particulate mat-
ter measurements was then filtered through a 0.22 µm pore
size polycarbonate membrane (Whatman, 110606) in or-
der to measure the chromophoric dissolved organic matter
(CDOM) absorption of each sample. According to the quan-
titative membrane filter technique (Cleveland and Weide-
mann, 1993), the light absorption of total particulate matter
ap(λ) can be separated into phytoplankton pigment absorp-
tion aph(λ), non-algal particles ad (λ) and CDOM absorption
aCDOM(λ). The optical density (OD) of the particulate mat-
ter retained in the filters was measured using a UV-2600PC
spectrophotometer at 380–800 nm, with a blank membrane
as a reference at 380–800 nm. The filters were then bleached
using a sodium hypochlorite solution to remove phytoplank-
ton pigment and measured again using a spectrophotometer.
Finally, the phytoplankton pigment absorption aph(λ) was
calculated by subtracting ad (λ) from the total particulate
matter ap(λ). The absorption coefficients of the optical ac-
tive substances (OACs) were calculated according to Song et
al. (2013a).
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Figure 1. Locations of the lake sites.

2.3 Trophic status assessment of lakes

Several studies have proposed different indices of the lake
trophic state (Aizaki, 1981; Carlson, 1977). Carlson’s trophic
state index used five variables, such as Chl a, TP, TN, SDD
and chemical oxygen demand (COD), to characterize the
trophic state. However, there are no optical characteristics for
TN, TP and COD to manifest in changes in remote-sensing
reflectance, which may bring more uncertainties or errors.
Thus, Chl a, TP and SDD were selected to assess the trophic
status according to the modified Carlson TSI. The TSI can
be calculated using individual TSIM(Chl a), TSIM(SDD) and
TSIM(TP) using the following equations:

TSIM(Chl a)= 10×
(

2.46+
lnChl a
ln2.5

)
, (1)

TSIM(SDD)= 10×
(

2.46+
3.69− 1.52× lnSDD

ln2.5

)
, (2)

TSIM (TP)= 10×
(

2.46+
6.71+ 1.15× ln(TP)

ln2.5

)
, (3)

TSI=0.54×TSIM(Chl a)+ 0.297×TSIM(SDD)

+ 0.163×TSIM(TP), (4)

where the TSI below 30 corresponds to oligotrophic waters,
the TSI above 50 is eutrophic, and the TSI between 30 and
50 is mesotrophic (Carlson, 1977).

2.4 Multispectral imagery and atmospheric correction

Sentinel-2A and Sentinel-B MSI imagery was acquired from
the Copernicus Open Access Hub of the European Space
Agency. Altogether, 210 scenes of cloud-free Level-1C im-
ages covering the lakes were downloaded with a time win-
dow of±7 d from in situ measurements. The Case 2 Regional
Coast Color processor (C2RCC) was used to remove atmo-
spheric effects. An average of 3× 3 pixels centered at each
in situ sampling station was used in the further analysis. All
the processes were performed using the Sentinel Application
Platform (SNAP) version 7.0.0. A flowchart of the process is
shown in Fig. 2.

2.5 Machine learning algorithms

As a branch of artificial intelligence, the application of ma-
chine learning is growing in the field. Machine learning can
automatically analyze huge chunks of data, develop opti-
mal models, generalize algorithms and make predictions.
These approaches have been applied in a variety of eco-
environmental and remote-sensing fields (Mountrakis et al.,
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Figure 2. Workflow of the Sentinel-2 MSI data and machine learning algorithms for estimating TSI.

2011; Pahlevan et al., 2019). Hence, we employed four rep-
resentative machine learning algorithms, i.e., linear regres-
sion (LR), support vector machine (SVM), XGBoost (XGB)
and random forest (RF) (S1), to establish a TSI model. To
strengthen the robustness, band combinations sensitive to
TSI were determined by LR (Fig. 2) and were added to the
procedure of machine learning algorithms as input variables.
Subsequently, the output variable was the predicted TSI. The
in situ measured samples were then randomly divided into a
calibration dataset (70 %, 287 lake samples) and validation
dataset (30 %, 144 lake samples) using MATLAB software.
The TSI modeling procedure considering machine learning
and multiple linear regression (MLR) was processed using
the R software.

2.6 Classifications of lakes

In order to provide further feasibility for the application and
availability of the TSI model, the in situ measured samples
were classified in three ways (Fig. 3).

a. They were based on water quality: salinity classifica-
tion referred to the threshold value of electrical con-
ductivity (named EC, EC= 1000 µS cm−1) (Duarte et
al., 2008), following which the lakes were divided
into brackish lakes (N = 100 samples) and freshwa-
ter lakes (N = 331 samples). Dissolved organic carbon
(DOC) in global lake water classification referred to the
volume-weighted averaged DOC level of global lakes
(3.88 mg L−1) according to Toming et al. (2020), fol-
lowing which lakes were divided into high-DOC lake

(N = 224 samples) and low-DOC lake (N = 207 sam-
ples).

b. They were based on optical absorption contribution:
optical absorption classification referred to Prieur and
Sathyendranath (1981), where the total light absorp-
tion of water can be separated from phytoplankton pig-
ment absorption, non-algal particles and CDOM ab-
sorption, respectively. The relative percentage of the
absorption contribution of OACs can be divided into
phytoplankton-type (Phy-type) lakes (N = 54 samples),
non-algal-particle-type (NAP-type) lakes (N = 109
samples), CDOM-type lakes (N = 177 samples) and
mix-type lakes (N = 91 samples).

c. They were based on reflectance spectra: in order to dis-
cern the different optical characteristics of lakes, the de-
rived MSI reflectance was clustered using the k-means
clustering approach with a gap statistic (Neil et al.,
2019). We identified 431 MSI reflectance Rrs(λ) spec-
tra for three branches (Table S3), and the Rrs(λ) spectra
are shown in Fig. 3.

2.7 Statistical analyses and accuracy assessment

Statistical analysis, including descriptive statistics, correla-
tion (r), regression (R2) and ANOVA analyses, were imple-
mented with the Statistical Program for Social Science soft-
ware (version 16.0; SPSS, Chicago, IL, USA). Correlation
and regression analyses were used to examine the relation-
ships between the water quality parameters and absorption
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Figure 3. Lake classifications considering three types, i.e., water quality, optical absorption contribution and reflectance spectra. ANOVA
analysis was conducted in different classifications (p < 0.001) (Table S3).

coefficients of OACs as well as the TSI model calibration
and validation. The differences in trophic status, EC classi-
fication, DOC classification, absorption coefficients of OAC
classification and MSI reflectance spectra classification for
TSI model validation were assessed using one-way ANOVA.
The significance level was set at p < 0.05∗. The mean nor-
malized error (MAE) and root mean square error (RMSE)
were used to assess the performance of the TSI model (S9–
10).

3 Results

3.1 Aquatic environmental scenery

The water qualities and bio-optical properties of our sam-
ples covered a wide range, revealing different geographical
environmental scenery (Tables S1 and S2–4). The EC and
DOC concentration showed high variability, ranging, e.g.,
from 3345.31 µs cm−1 (TuoSu, TS20) in the Tibet–Qinghai
region to 0.17 µs cm−1 (Qingnian, QN2) in the northeastern
region. For the water quality parameters to characterize TSI,
the Chl-a concentration ranged from 0.12 to 100.22 µg L−1,
with the highest value recorded in TaiPingChi (TPC5) and
the lowest value in NamoCo (NMC36). The range of TP
was from 0.003 mg L−1 (Erlong, EL8) to 2.17 mg L−1 (Dali,
DL7), and SDD ranged from 0.17 m (Chalhu, CH32) to

9.47 m (NMC36) for surveyed lakes, respectively. Overall,
the maximum values of EC, DOC, turbidity, Chl a, TSM and
SDD were 196 782.35-, 948.4-, 723.3-, 770.92-, 614.58- and
55.71-fold greater than the minimum values, respectively, in-
dicating that our dataset was representative of diverse water
qualities.

Lake samples were grouped into different classifications
based on water quality (e.g., EC and DOC), optical absorp-
tion contribution and reflectance spectra (Table 1 and Fig. 3).
The results indicated that all water qualities showed signif-
icant differences (p < 0.05) under different lake classifica-
tions. For example, brackish lakes showed higher average
values of SDD, TP, DOC and optical attributions of OAC
values than those of freshwater lakes, but the turbidity, Chl-a
and TSM concentrations were lower. Lakes equipped with
low DOC levels had a lower average value of SDD than
that of lakes with high DOC levels. NAP-type lakes exhib-
ited the highest average Chl-a and DOC values, whereas
Phy-type lakes had the highest average turbidity and TSM
values, and the highest average SDD and TP values were
recorded in CDOM-type and mix-type lakes, respectively.
For reflectance spectra classifications (Fig. 3), the highest av-
erage EC, SDD and DOC were recorded in cluster-1 lakes,
the highest average turbidity and TP were shown in cluster-3
lakes, and the highest average TSM was found in cluster-2
lakes.
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Table 1. (a) Averaged values (“Avg”) of water quality and bio-optical properties considering lake classifications and (b) ANOVA (F value)
among them.

Lake classifications N EC Turbidity SDD Chl a TP DOC TSM aph(440) ad (440) aCDOM(440)

(a) Water quality Brackish 100 12 986.28 8.83 2.21 4.18 0.45 33.31 8.42 0.23 0.27 0.42
Fresh 331 302.39 21.75 1.43 8.58 0.07 4.28 19.52 0.56 1.13 0.57
High DOC 224 5988.93 23.90 1.39 10.42 0.25 19.07 21.50 0.68 1.14 0.65
Low DOC 207 276.19 12.45 1.85 4.46 0.06 2.29 11.98 0.27 0.71 0.41

Optical absorption NAP-type 54 5156.02 11.28 1.58 14.26 0.09 18.75 15.99 1.29 0.41 0.55
contribution Phy-type 109 825.48 43.28 0.65 6.85 0.10 4.75 37.18 0.46 2.74 0.49

CDOM-type 177 4081.96 4.44 2.43 3.64 0.13 9.70 4.99 0.13 0.15 0.51
Mix-type 91 3424.07 19.40 1.17 12.05 0.34 16.48 16.22 0.70 0.60 0.62

Reflectance Cluster-1 87 6948.28 4.46 2.38 2.64 0.08 17.92 5.76 0.26 0.17 0.28
spectra Cluster-2 215 2728.71 6.18 2.05 8.57 0.07 7.18 5.81 0.35 0.36 0.52

Cluster-3 129 1626.05 46.68 0.36 9.19 0.37 12.73 42.59 0.84 2.39 0.73

(b) Water quality Brackish 100 – 18.7∗∗ 21.8∗∗ 12.0∗∗ 68.9∗∗ 486.5∗∗ 20.4∗∗ 16.6∗∗ 29.8∗∗ 9.6∗

Fresh 331
High DOC 224 93.8∗∗ 19.8∗∗ 10.0∗∗ 32.2∗∗ 23.3∗∗ – 21.0∗∗ 38.0∗∗ 10.0∗ 39.3∗∗

Low DOC 207

Optical absorption NAP-type 54 7.4∗∗ 71.6∗∗ 46.0∗∗ 21.0∗∗ 7.1∗∗ 13.5∗∗ 73.0∗∗ – – –
contribution Phy-type 109

CDOM-type 177
Mix-type 91

Reflectance Cluster-1 87 220.9∗∗ 17.9∗∗ 25.2∗∗ 312.7∗∗ 11.0∗∗ 18.5∗∗ 18.9∗∗ 26.1∗∗ 171.4∗∗ 33.5∗∗

spectra Cluster-2 215
Cluster-3 129

The unit of TN, TP, DOC and TSM is milligram per liter. The unit of EC is microseconds per centimeter. The unit of Chl a is microgram per liter. The unit of turbidity is NTU
(nephelometric turbidity unit). Significance levels are reported as significant, ∗ 0.05>p > 0.01, or highly significant, ∗∗ p < 0.01.

3.2 Trophic status assessment

The trophic status of 45 lakes across China, from where in
situ samples were collected, was evaluated (Fig. 4a). Our re-
sults showed that there were 13 oligotrophic (3.02 %), 199
mesotrophic (46.17 %) and 219 eutrophic (50.81 %) sam-
ples. Because our samples were collected in different sea-
sons and eutrophication is time-dependent, the TSI values
of samples within a lake were averaged. It can be shown that
only 5 lakes accounting for 11.1 % of investigated lakes were
characterized by an oligotrophic status, 17 lakes account-
ing for 37.8 % were mesotrophic, and 23 lakes accounting
for 51.1 % were characterized by eutrophic status. These eu-
trophic lakes were distributed in the eastern region of China
(Fig. 4b) and were associated with a highly concentrated
human population and economic development. Moreover,
the ANOVA results showed that the TSIs of lake samples
were significantly different considering lake classifications
(Fig. 4c and d).

3.3 Calibration and validation of the TSI model

In this section, multiple linear regression was used to
identify significantly sensitive spectral variables related
to TSI (Table 2 and Fig. 2). Of the band combina-
tions validated in the study (N = 144), the blue/red[
Rrs(443)/Rrs(740),Rrs(492)/Rrs(740)

]
and green/red[

Rrs(560)/Rrs(704),Rrs(665)/Rrs(704)
]

band ratios
showed a good regression coefficient (R2 > 0.59) with

TSI (Table S5). These band combinations provided certain
sensitive spectral variables that responded to the lake
eutrophic status. Hence, to strengthen the robustness of the
three machine learning models, the blue/red and green/red
combinations above were considered as input variables
together with six spectral variables (Rrs(λ) at 443, 492, 560,
665, 709 and 740 nm). Likewise, the output variables were
estimated using TSI to examine the performances (Fig. 5).
The results showed that when XGBoost was applied to the
validation data (N = 144), the performance of the model
was excellent (R2

= 0.87, slope= 0.85) with low errors
(MAE= 3.15, RMSE= 4.11). The support vector machine
(R2
= 0.71, slope= 0.77, MAE= 4.67, RMSE= 6.11)

and random forest (R2
= 0.85, slope= 0.84, MAE= 3.31,

RMSE= 4.34) models also showed significant performance.
These results demonstrate the potential of using XGBoost by
considering band combinations to derive TSI from Sentinel
products.

3.4 TSI model application to lake classifications

The TSI model calculated by XGBoost was assessed by
comparing derived and in situ TSI considering different
lake classifications (Fig. 6). We aimed to provide a uni-
versal TSI model and evaluate its feasibility in different
aquatic environments. Significant agreement (slope> 0.91,
R2 > 0.91) between derived and in situ TSI was observed
in lakes with high DOC levels (DOC> 3.88 mg L−1) and
EC values (EC> 1000 µS cm−1) with low errors. For lakes
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Figure 4. Panel (a) shows the averaged TSI in collected samples from lakes across China and their spatial distribution. The number of lakes
can be found in Table S1. Box plots of the TSI for different classifications of water quality (b), optical absorption contribution types (c)
and reflectance spectra (d). The balls beside the boxes are the lake samples, and the black balls in the boxes represent the mean values. The
horizontal edges of the boxes denote the 25th and 75th percentiles; the whiskers denote the 10th and 90th percentiles.

classified by different absorption contributions, the NAP-
type (slope= 0.98, R2

= 0.88) and Phy-type (slope= 0.82,
R2
= 0.92) samples generally showed a more positive de-

rived performance than those of Phy-type, CDOM-type and
mix-type, respectively. In addition, a significant relation-
ship between derived and in situ TSI can be described for
lakes with cluster-1 reflectance spectra, with slope= 0.91,
R2
= 0.87, RMSE= 2.87 and MAE= 2.29.

3.5 Spatial and seasonal patterns of trophic states: five
lake limnetic regions

Previous studies have demonstrated that some lakes disap-
peared or increased numbers recently according to statistics
from Ma et al. (2011). Thus, we selected some represen-
tative and stable lakes (N = 555) to qualify spatial trophic
states using the XGBoost algorithm. The preprocessing of

MSI data was referred to in Fig. 2, and a total of 139 cloud-
free images in spring (April and May), summer (July and
August) and autumn (September and October) covering the
investigated lakes was acquired. According to the different
geographic and limnological types in China, lakes were di-
vided into five limnetic regions (Wang and Dou, 1998, Early
National Investigation): the Eastern Plain Limnetic Region
(EPLR, N = 123), Northeast Plain Limnetic Region (NPLR,
N = 37), Inner Mongolia–Xinjiang Plateau Limnetic Region
(IMXPLR, N = 56), Yungui Plateau Limnetic Region (YG-
PLR, N = 15) and Tibet–Qinghai Plateau Limnetic Region
(TQPLR, N = 324) (Figs. 1 and S3).

In general, there were significant seasonal variations in
the eutrophic state for lakes from the EPLR (F = 39.56,
p < 0.001) and TQPLR (F = 5.0, p < 0.05) (Fig. 7). The
averaged TSIs in EPLR were 56.37 (spring), 57.73 (sum-
mer) and 54.26 (autumn), indicating serious eutrophication
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Figure 5. Relationships between the in situ and derived TSI for both model training and testing samples by a support vector machine (a),
XGBoost (b), random forest (c), as well as their errors (d).

Table 2. Multiple linear regression between the measured and estimated TSI from the MSI spectral bands after using the C2RCC processor.

Band combinations Datasets N Fitting equation R2 Errors Plot figures

Band 1/band 6 Calibration 287 TSI=−8.51ln [Rrs(B1) /Rrs(B6)]+ 63.47 0.76 MAE= 6.45
(blue/red) RMSE= 5.85

Validation 144 TSIderived = 0.73×TSIin situ+ 11.868 0.61 MAE= 6.26
RMSE= 7.48

Band 2/band 6 Calibration 287 TSI=−8.87ln [Rrs(B2) /Rrs(B6)]+ 67.91 0.77 MAE= 4.57
(blue/red) RMSE= 5.74

Validation 144 TSIderived = 0.74×TSIin situ+ 11.751 0.60 MAE= 6.32
RMSE= 7.57

Band 3/band 5 Calibration 287 TSI=−13.63ln [Rrs(B3) /Rrs(B5)]+ 67.26 0.77 MAE= 4.55
(green/red) RMSE= 5.70

Validation 144 TSIderived = 0.72×TSIin situ+ 12.44 0.59 MAE= 6.39
RMSE= 7.66

Band 4/band 5 Calibration 287 TSI=−44.15× [Rrs(B4) /Rrs(B5)]+ 108 0.80 MAE= 4.39
(red/red) RMSE= 5.43

Validation 144 TSIderived = 0.72×TSIin situ+ 12.32 0.59 MAE= 6.85
RMSE= 7.94
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Figure 6. Scatter plots of the derived and in situ TSI by XGBoost for validation samples (N = 144) according to lake classifications, such as
water quality (DOC and EC) (a–b), absorption contribution (c) and reflectance spectra (d) with the 1 : 1 line (solid red) and errors (e).

of the investigated lakes consistent with the results from Li
et al. (2022). Recognizing that over 94 % of the Chinese pop-
ulation lives in eastern watersheds with great demands of
water use, this may be due to different water quality man-
agement on provincial scales. Likewise, we found that there
was spatial heterogeneity of TSI results in TQPLR, some of
which were the widespread saline lakes in the Qinghai–Tibet
Plateau with high reflectance in satellite images. By contrast,
there were no seasonal differences in TSI for lakes from
IMXPLR, NPLR and YPLR, respectively. The eutrophic
lakes dominated the proportions of the investigated lakes in
the EPLR (93.5 %), followed by the NPLR (89.2 %), YGPLR
(86.7 %), IMXPLR (69.6 %) and TQPLR (3.7 %) (Fig. 8). It
was also found that mesotrophic lakes were found in the de-
creasing order of TQPLR (45.7 %), IMXPLR (30.4 %), YG-
PLR (13.3 %), NPLR (10.8 %) and EPLR (6.5 %), respec-
tively. In comparison, most oligotrophic lakes (50.6 %) were
distributed in the TQPLR.

4 Discussion

4.1 Remote-sensed and machine-learning-based TSI
model

Traditional approaches to quantitatively characterize trophic
status rely on field measurements of trophic parameters, e.g.,
Chl a, nutrients and SDD, to calculate TSI (Carlson, 1977).
It is difficult and costly to make field measurements in lakes
in remote locations. The TSI calculation does not need all of
these trophic parameters, but just one, e.g., Chl a (Thiemann
and Kaufmann, 2000), SDD (Olmanson et al., 2008; Song
et al., 2020), TP (Kutser et al., 1995) and total absorption
coefficients (Lee et al., 1999; Shi et al., 2019). There have
been many lake studies (Chl a and SDD, Sheela et al., 2011;
Chl a, SDD and TP, Song et al., 2012) where two or three
water quality parameters were mapped, which would allow
us to subsequently gather them to calculate a comprehensive
TSI. Although these studies provided the potential to eval-
uate the trophic status of lakes, TSI is a synthetic indicator
that is affected by biological, physical and chemical factors
that co-vary in most instances. Huang et al. (2014) also tried
to derive TSI using remote-sensing spectrum reflectance, but
the accuracy was not completely usable. It shows that the
variability in remote-sensing estimates of the TSI is not bad.
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Figure 7. Box plots of the TSI derived from the XGBoost model in the investigated lakes from the five limnetic regions (Wang and Dou,
1998), i.e., (a) EPLR, (b) IMXPLR, (c) YPLR, (d) TQPLR and (e) NPLR. The black line and balls in the boxes represent the median and
mean values, respectively. The horizontal edges of the boxes denote the 25th and 75th percentiles; the whiskers denote the 10th and 90th
percentiles.

Figure 8. The proportions of lake numbers (%) for different trophic states in the five limnetic regions (Wang and Dou, 1998), i.e., (a) EPLR,
(b) IMXPLR, (c) YPLR, (d) TQPLR and (e) NPLR. N represents the lake numbers.
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With advances in artificial intelligence technology and
the increasing use of computer applications in recent years,
machine learning has become a useful tool for monitor-
ing aquatic environments by remote sensing (Mountrakis et
al., 2011). It allows us to develop and evaluate a machine-
learning-based TSI model that addresses quality and accu-
racy problems more effectively (Li et al., 2021). Hence, we
propose a new approach to directly characterize the trophic
status and accurately reflect spatial variations in this study,
but this should also be conveniently available for the differ-
ent lake classifications (Figs. 5, 6). Using machine learning
algorithms, in order to improve the robustness and appli-
cability of the TSI model, a sufficient database of trophic
state parameters (N = 431) was collected from lakes with
different biogeochemical characteristics, such as water qual-
ity, absorption contributions of different optically active sub-
stances and reflectance spectra (Table 1). We first used B1–
B6 reflectances as input variables of machine learning al-
gorithms, and XGBoost showed a significant performance
with R2 and a slope of 0.85 (Fig. S1). The SVM per-
formed worse than XGBoost and random forest and did
not produce sufficient performance. This is because the lat-
ter models are integrated algorithms with trees that are un-
pruned and diverse, signifying the high resolution in the
feature space and the smoother decision boundary. There
were no optical response bands or appropriate band ratios
for TSI. We thus used a multiple linear regression to find
some suitable sensitive band combinations responding to
TSI, which made it possible to develop a robust machine-
learning-based TSI model. It is important to note that
the blue/red

[
Rrs(443)/Rrs(740),Rrs(492)/Rrs(740)

]
and

green/red
[
Rrs(560)/Rrs(704),Rrs(665)/Rrs(704)

]
band

ratios were significantly correlated with TSI (Table 2). This
result indicated that the blue/red and green/red band ratios
were more sensitive to TSI, although the nutrients and SDD
had no optical response. It was known for decades that the
blue part of the spectrum is useless when water itself is not
blue (i.e., outside of the ocean or very oligotrophic mountain
lakes), owing to the noneffective atmospheric correction and
complex reflectance signals. However, our dataset to train
TSI models contains the samples from blue and oligotrophic
Tibetan lakes, which are like the oceanic environments (Liu
et al., 2021). The blue bands responding to TSI were thus
used in this study. Most empirical Chl-a estimation studies
adopted red or near-infrared (NIR) band ratios to calibrate
models using reflectance signatures (Gitelson et al., 1992).
Similarly, empirical SDD retrieval models provided by previ-
ous studies that used empirical algorithms or models to figure
out which bands should work best considered the following
ratios: blue/green, red/blue plus red/green, red/blue plus
blue (Bindling et al., 2007) and Red/Blue plus blue (Kloiber
et al., 2002). Kutser et al. (1995) also built a TP retrieval
model using the red and NIR ratios, which is consistent with
the Chl-a empirical models. Overall, it is not surprising for
our TSI model to have strong correlations with the blue/red

and green/red band ratios because the TSI incorporates the
optical properties.

For this reason, we used MSI bands in the visible band
ratios at six bands, considering the comprehensive spectrum
information about the trophic status of lakes as an input vari-
able (Fig. 2). The three representative machine learning TSI
models improved the accuracy of the traditional linear re-
gression (Table 2 and Fig. 5), and the results were better than
those obtained with B1–B6 reflectances as input variables
(Fig. S1). As a type of supervised machine learning algo-
rithm, linear regression can be used to obtain certain learning
criteria as expressions (y = w0+w1×x1+. . .+wp×xp) of the
optimal wi solution. However, for complex targeted tasks,
the fitting ability of linear regression is limited, and it can-
not represent the real situation well. For example, a support
vector machine can map data to another space, which can
use a linear regression to distinguish the categories well. In
complex environments (real world in machine learning), such
as our large-scale database collected from different lakes
(Fig. 1), there are various environmental factors as well as
different seasons within a lake that have an impact on the
trophic parameters and optical characteristics of lakes (Wen
et al., 2016). Likewise, we found that the enhanced input
variables, like the band ratios, if appropriately corrected for
the TSI, resulted in a better performance (Fig. S1). This is
consistent with some applications of machine learning algo-
rithms (Cao et al., 2020) in which the performance of ma-
chine learning was reduced when covariances of input fea-
tures were incorporated. This allows us to find more interest-
ing TSI-correlated band ratios for MSI imagery in machine
learning.

Several machine learning algorithms generally have dif-
ferent advantages and applicability owing to their different
main principles (Cao et al., 2020; Li et al., 2021). This can be
found in our results of the validation exercise, which showed
that XGBoost provided stable TSI estimates, with a slope
close to 1 and a good fitting coefficient of the measured
and derived values (R2

= 0.87, slope= 0.85, MAE= 3.15,
RMSE= 4.11) (Fig. 4). Similarly, we can also find ex-
cellent performance (R2

= 0.85, slope= 0.84, MAE= 3.31,
RMSE= 4.34) for estimating TSI values by the random for-
est algorithm. This was likely because it is a summation of
all weak learners weighted by the native log odds of error.
In the case of boosting, we make decision trees into weak
learners by allowing every tree to make only one decision
before prediction (Chen et al., 2016). In some cases, XG-
Boost outperformed random forest. In addition, the support
vector machine performed worse than XGBoost and ran-
dom forest (Fig. 4). Li et al. (2021) used a support vec-
tor machine to estimate Chl-a concentrations with a rela-
tively small dataset of 32 samples and 273 samples, respec-
tively. This is consistent with the recent process in the de-
velopment of support vector machines and has many advan-
tages for remote-sensing applications with a small number of
training datasets. Overall, the remote-sensing- and machine-
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learning-based TSI model aims to reduce the dependence of
traditional field measurements while also providing a cost-
effective approach to rapidly quantifying the trophic state.

4.2 TSI model for lake classifications

We validated the XGBoost TSI model considering differ-
ent scenarios of lake classification, e.g., water quality, op-
tical absorption contributions and reflectance spectra (Figs. 2
and 6). The results indicate three application scenarios for
our model with low errors. The first one is of the XGBoost
TSI model, which in particular performed well (slope> 0.91,
R2> 0.91) in high-DOC (> 3.88 mg L−1) and high-EC
(> 1000 µS cm−1) lakes (Fig. 6). We found that lakes with
a high EC level correspondingly showed a high DOC level
(Table 1), e.g., a high average EC value of 5156.02 µS cm−1

and a high average DOC value of 18.75 mg L−1 for NAP-
type lakes. These brackish or saline lakes were distributed
in the Tibet–Qinghai Plateau Region (e.g., KLK20, TS21,
QHH22, SLC32, BMC34, ZRNMC36 or NMC37) and In-
ner Mongolia–Xinjiang Plateau Limnetic Region (e.g., DL8,
HSH10, DH17, HL18 or WLSH16) (Table S1). Our results
are in agreement with those of previous studies that the DOC
and EC of inland waters located in semi-arid regions can be
attributed to the evapoconcentration and accumulation pro-
cesses (Curtis and Adams, 1995) as well as anthropogenic
activities. Further, it can be observed that oligotrophic lakes
accounting for 11.1 % were also distributed in the Tibet–
Qinghai Plateau Region (Fig. 4).

Secondly, we found that our XGBoost TSI model per-
formed well if the trophic parameters that correlated with the
TSIM(Chl a) or TSIM(SDD) dominated the lake classifica-
tions. Specifically, the high Chl-a (averaged 14.26 µg L−1)
and aph(440) (averaged 0.26 m−1) levels in NAP-type lakes
showed the best performance (slope= 0.98, R2

= 0.88) over
those of other optical absorption contribution classifica-
tions (Fig. 6). In fact, there was a negligible difference
in the performance for application in Phy-type and NAP-
type lakes. For the third scenario, for the reflectance spec-
trum classification, cluster-1 lakes with low TSM (averaged
5.76 mg L−1), turbidity (averaged 4.46 NTU), and ad (440)
(averaged 0.26 m−1) levels and a high SDD level (aver-
age 2.38 m) also showed good performance (slope= 0.91,
R2
= 0.87) (Fig. 6). In general, TSI, as a comprehensive

index incorporating the optical properties of itself, was
calculated using trophic state parameters: TSIM(Chl a),
TSIM(SDD) and TSIM(TP) in Eq. 7. Our XGBoost TSI
model performed best in the present study, which confirmed
that the performance was mostly determined by biogeochem-
ical environments in larger-scale regions. We cannot explain
the dependence of the TSI model on the physico-optical
properties. From another point of view, it can be inferred that
the XGBoost TSI model applications mostly correlated with
the Chl a and SDD because of their high weight allocation in
the TSI equation.

Although we conducted a large-scale TSI observation
across Chinese lakes, whether or not XGBoost could also
perform well for a signal lake should be evaluated. Hence,
the in situ measured samples were classified in three scenar-
ios, and the XGBoost TSI model was analyzed. Overall, in
future work, for lakes mainly located in a high-elevation and
arid region with high DOC or EC levels, the input band com-
binations responding to CDOM (Green/Red) could be added
to the XGBoost TSI model. This is because the CDOM and
DOC generally showed positive correlations for investigated
lakes (Song et al., 2013b), and CDOM is one of the optical
active substances. This also confirmed that non-algal parti-
cles could cover the reflectance signals and impact the model
performance in the second and third scenarios. More classi-
fications based on reflectance spectra (Spyrakos et al., 2018)
and the water color index (Wang et al., 2018) should first be
used and corresponding models for high-turbidity lakes then
developed.

4.3 Trophic status in five limnetic regions

According to this study, more than 50 % of lakes were eu-
trophic, indicating a long-standing status of eutrophication
(Fig. 4), as seen by the mapping of 555 lakes by our XGBoost
TSI model (Fig. 7). Some lake investigations undertaken ear-
lier in China concluded that during 1978–1980 41.2 % of
lakes were eutrophic in China (Jin and Hu, 2003), during
1988–1992 51.2 % of lakes were eutrophic (Wang and Dou,
1998), during 2001–2005 84.5 % of lakes were eutrophic,
and during 2011–2019 50 % of lakes (Wen et al., 2019) were
eutrophic or undergoing eutrophication. In our study, some
historical records of Chl a, SDD and TP from a compar-
ison to an earlier national investigation by Wang and Dou
(1998) were collected in typical lakes, e.g., Lake Dongting,
Lake Poyang, Lake Chaohu, Lake Taihu and Lake Jingpo,
respectively (Table S6). Evidently, Chinese lakes have dete-
riorated considerably in terms of water quality at an alarming
rate for typical lakes, e.g., Lake Jingpo, Lake Dongting and
Lake Poyang, during the past∼ 22 years (Table S6). Lake eu-
trophication is influenced by both natural (hydrological pro-
cesses, topography, lake depth and buffer capacity) factors
as well as anthropogenic factors (land-use changes, urban-
ization construction as well as domestic and industrial pol-
lution) (Müller et al., 1998). A large-scale overview of lake
eutrophication indicated that there was a significant differ-
ence (ANOVA, F = 255.2, p < 0.001) in the five limnetic
regions (Wang and Dou, 1998). Owing to the imbalanced de-
velopment of the economy (Fig. S2, gross domestic product
and population), geological topography (Fig. S3, solar radi-
ation intensity and sunshine hours) and climate (Fig. S4, an-
nual temperature and precipitation), it was not surprising that
the eutrophic lakes were generally distributed in the East-
ern Plain Limnetic Region and Northeast Plain Limnetic Re-
gion nor that the oligotrophic lakes were found in the Tibet–
Qinghai Plateau Limnetic Region (Figs. 4 and 7).
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Considering the natural factors for the distributions of Chi-
nese lake eutrophication, we could suppose some possibility
that lake depth and lake hydrological processes cause the eu-
trophication of lakes in China. Previous studies (Wang and
Dou, 1998; Huang et al., 2014) have demonstrated that lakes
with mean depths > 5 m in China are mainly located in the
Yungui Plateau Limnetic Region, Inner Mongolia–Xinjiang
Plateau Limnetic Region and Tibet–Qinghai Plateau Lim-
netic Region, whereas almost all lakes located in the East-
ern Plain Limnetic Region are shallow. Both these lakes in
the Eastern Plain Limnetic Region are hydraulically con-
nected with the Yangtze River, with a temporary residence
time of approximately 30 d (Fig. S7). In shallow lakes, due
to wind waves or disturbance by fishes, the phosphorus and
nitrogen nutrients stored in the sediment can be easily re-
suspended and released into the overlying water (Niemistö
et al., 2008). Consequently, an increased frequency of algal
blooms can be found in the Eastern Plain Limnetic Region in
lakes such as Taihu, Chaohu and Hongze (Qin et al., 2019;
Yao et al., 2016). Instead, deeper lakes, such as the ones in
the YGPLR and TQPLR, possess a relatively good buffer ca-
pacity for wastewater runoff (Huang et al., 2014). Carvalho
et al. (2009) found that Chl-a levels decreased with lake
water depth and geographic location. Qin et al. (2020) and
Tong et al. (2006) demonstrated that phosphorus reduction
can mitigate eutrophication in deep lakes, and more efforts
to reduce both N and P need to be undertaken in shallow
lakes. This can be demonstrated in our case of Lake Fuxian
with changeable eutrophication levels, with an average depth
of 87 m, which was the deepest lake in southwestern China
(Fig. S7). In addition, the annual precipitation and air temper-
atures were relatively high in the EPLR (Fig. S4). Hydrologi-
cal and meteorological processes can scour land surfaces and
bring nutrients into lakes via rivers. Therefore, lake ecosys-
tems were strongly related to the lake basin morphology and
its hydrologic characteristics, which were higher in shallow
lakes than in deep ones (Köiv et al., 2011).

On the other hand, human-induced eutrophication, e.g.,
agricultural fertilization (Carpenter et al., 2008; Huang et
al., 2017), aquaculture (Guo and Li, 2003) and sewage dis-
charge (Paerl et al., 2011), is increasing terrestrial nutrient
phosphorus but not nitrogen concentration inputs (Schindler
et al., 2008). We suspected that two interactive factors, such
as land-use and nutrient variations, cause lake eutrophication,
because this can be found in our investigation of distributed
lakes in the EPLR in comparison to an earlier national inves-
tigation by Wang and Dou (1998). Many lakes in the EPLR
that were naturally connected with rivers have been modified
to paddy fields, and some small lakes have become isolated
for lake aquaculture. For instance, Lake Dongting was artifi-
cially shifted from being river-fed to being dammed or iso-
lated. Logically, a dam should settle suspended matter and
nutrients via river inputs. However, the shallow characteris-
tic and wind-mixing influence process significantly increased
the probability of eutrophication (Liu et al., 2019). In the

EPLR and NPLR, 94 % of China’s population lives in 43 %
of its eastern region, which visually demonstrates the distri-
bution of the gross domestic product (GDP) with a densely
populated east (Fig. S2). Owing to the requirements of water
source utilization, the EPLR has lost one-third of its original
lake areas to cropland since 1949 (Yin and Li, 2001). Lake
aquaculture is highly active in these areas. These processes
could lead to terrestrial nutrient loading into lakes, from ei-
ther agriculture or aquaculture, and thereby alter the trophic
state levels of a lake ecosystem. In 2019, the total fish catch
in Hubei was 4695 t, in Jiangxi it was 432, 25 t, in Anhui it
was 588 135 t, and in Anhui and Jiangsu it was 2 314 603 and
4 841 159 t in the east, respectively (China Rural Statistical
Yearbook, 2021).

Although we have not systematically analyzed the effects
of environmental factors on trophic status, some of the sparse
existing comparative literature supported certain spatiotem-
poral patterns. It should be emphasized that China has been
facing serious lake eutrophication and unbalanced distribu-
tions. Almost invariably, lake ecosystem health would still
be impacted by stresses integrating anthropogenic and over-
exploitation of catchment resources. Consequently, address-
ing the issue of worsening eutrophication will require a better
understanding of the environmental interactive mechanisms
in the future.

4.4 Limitations, uncertainties and future

In pursuit of the United Nation’s Sustainable Development
Goal (SDG) 6.3.2, satellite imagery and machine learning
still provide great potential for evaluating water quality states
from global observations, particularly in developing coun-
tries. Machine learning algorithms could serve as good al-
ternatives for empirical and semi-analytical algorithms to
quantify large-scale spatial applications, which could avoid
or minimize the errors. Our results further demonstrated that
machine learning algorithms could improve the accuracy of
water quality models (e.g., TSIs) when the linear regression
was used to find sensitive band combinations with red/red
edge bands. Previous studies (Li et al., 2021, 2022) found
that a red/red edge band could help us to quantify the spatial
and temporal changes in Chl-a concentration or a synthetic
parameter – such as TSI with a high Chl-a weight ratio –
from regional lakes. It enables us to use Sentinel-2 or similar
sensors equipped with these bands to capture records of TSI
dynamics.

As a medium-resolution (10–60 m) satellite, Sentinel-2
MSI offers the potential to monitor small-sized lakes and
produce reliable TSI estimates. However, there are signif-
icant obstacles in generating a Sentinel-2 (∼ 10 m) lake
TSI distribution, including the acquisition of high-quality
atmospheric-corrected Rrs(λ) and massive computational
overhead by the C2RCC processor (Li et al., 2023). The
C2RCC processor designed for waters based on neural net-
works is a data-driven approach and uses huge datasets col-
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lected from in situ and simulation measurements. In situ re-
flectance measurements were not conducted in these inves-
tigated Chinese lakes when sampling. Our recently study
reported that the C2RCC (SNAP 8.0) and Polymer (v4.13)
processors both performed best with in situ field radiometry
in typical lakes across China (Li et al., 2023), but the latter
could work better when all bands are pooled together in de-
rived algorithms. Considering the growing requirements of
TSI products, more in situ measurements would be required
to be added to the already-implemented processors in future
work.

In addition, there is a need for a robust model developed
from different locations and optical water types that accounts
for the interplay of different water quality parameters. The
machine learning TSI model required a highly calibrated
dataset, including high nutrients (e.g., TP> 2.50 mg L−1 in
this study) and Chl-a concentrations (> 100 µg L−1 in this
study). Likewise, for our developed universal TSI model,
the feasibility application performances were different con-
sidering lake classifications. Hence, the extensive field–lab
materials with complex source variations would be required
first, and water optical typologies further are a good com-
promise to develop groups of optimized algorithms in the
future. Nevertheless, we aim to provide a technical opera-
tion approach that could prompt more analysis responding
to warming climate and anthropogenic activities. The strong
linkages between reflectance and several trophic states defin-
ing indexes further underscore the potential of remote sens-
ing for resource-limited countries to meet their SDG goals.

5 Conclusions

Our study presents a novel remote-sensing- and machine-
learning-based algorithm that allows us to retrieve lake TSI
from Sentinel-2 MSI imagery. We used a match-up database
(N = 431) over a diverse range of bio-optical regimes to train
machine learning algorithms and validated it against in situ
data. The trophic states of 555 lakes were then evaluated.
These results provide a better understanding of how remote-
sensing- and machine-learning-based models allow us to es-
timate eutrophication over a large scale of different lakes.
Our main findings can be summarized as follows.

1. Linear regression enabled us to find certain band
combinations sensitive to TSI (R2 > 0.59), e.g., the
blue/red

[
Rrs(443)/Rrs(740),Rrs(492)/Rrs(740)

]
and

green/red
[
Rrs(560)/Rrs(704),Rrs(665)/Rrs(704)

]
band ratios.

2. The XGBoost algorithm resulted in optimum perfor-
mance with R2

= 0.87 and slope= 0.85, considering
the low errors (MAE= 3.15, RMSE= 4.11), compared
to the support vector machine and random forest algo-
rithms.

3. If there are some preliminary data available from the
study area, one can improve the performance of the ma-
chine learning by dividing the lakes based on high DOC
or EC, NAP-type, Phy-type and cluster-1 reflectance
spectra.

4. The trophic states of 555 lakes were evaluated in five
limnetic regions: eutrophic lakes dominated in the East-
ern Plain Limnetic Region and Northeast Plain Limnetic
Region, and most lakes in the Tibet–Qinghai Plateau
Limnetic Region were mesotrophic or oligotrophic.

In our subsequent research and management, qualification
and mapping of TSI will be implemented as a remote-sensing
and machine learning model in a large-scale study, allow-
ing for improved performance. In the future, Sentinel-2 MSI
data could be used to reveal spatiotemporal variations in lake
trophic states in long-term time series responding to climate
and anthropogenic activities.

Code and data availability. The data used in this study are openly
available for research purposes. The MSI imagery was acquired
from the Copernicus Open Access Hub of the European Space
Agency (https://scihub.copernicus.eu/dhus/#/home, Copernicus and
ESA, 2023). The SNAP software is available at https://step.esa.int/
main/ (ESA, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-27-3581-2023-supplement.

Author contributions. SL: conceptualization, methodology, formal
analysis, visualization, funding acquisition, writing – original draft.
KS: resources, supervision, project administration, funding acquisi-
tion, writing – review and editing. TK: writing – review and editing.
GL: resources, writing – review and editing. SX: methodology. Zhi-
dan Wen: resources, writing – review and editing. YS: resources,
writing – review and editing. LL: investigation and resources. HT:
investigation and resources.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors thank all staff and students of
the Northeast Institute of Geography and Agroecology, Chinese
Academy of Sciences (IGACAS) for their persistent assistance with
both field sampling and laboratory analysis. The authors express
their gratitude to the four anonymous reviewers for their construc-
tive comments and suggestions that helped improve the paper.

https://doi.org/10.5194/hess-27-3581-2023 Hydrol. Earth Syst. Sci., 27, 3581–3599, 2023

https://scihub.copernicus.eu/dhus/#/home
https://step.esa.int/main/
https://step.esa.int/main/
https://doi.org/10.5194/hess-27-3581-2023-supplement


3596 S. Li et al.: Remote quantification of the trophic status of Chinese lakes

Financial support. The research was jointly supported by the
National Natural Science Foundation of China (grant nos.
U2243230, 42201414, 42171374, 42071336, 42171385, 42101366
and 42001311), the Land Observation Satellite Supporting Platform
of the National Civil Space Infrastructure Project (CASPLOSCCSI)
and the Youth Innovation Promotion Association of the Chinese
Academy of Sciences, China (grant no. 2020234).

Review statement. This paper was edited by Anas Ghadouani and
reviewed by two anonymous referees.

References

APHA/AWWA/WAF: Standard Methods for the Ex-
amination of Water and Wastewater, Ameri-
can Public Health Association, Washington, DC,
https://doi.org/10.1080/23267224.1919.10651076, 1998.

Aizaki, M.: Applications of Carlson’s trophic state index to
Japanese lakes and relationships between the index and other pa-
rameters, Int. Ver. Theor. Angew., 21, 675–681, https://cir.nii.ac.
jp/crid/1572543024605566976, 1981.

Binding, C. E., Jerome, J. H., Bukata, R. P., and Booty, W. G.:
Trends in water clarity of the lower Great Lakes from re-
motely sensed aquatic color, J. Great Lakes Res., 33, 828–841,
https://doi.org/10.3394/0380-1330(2007)33, 2007.

Cao, Z., Ma, R., Duan, H., Pahlevan, N., Melack, J., Shen, M., and
Xue, K.: A machine learning approach to estimate chlorophyll-a
from Landsat-8 measurements in inland lakes, Remote Sens. En-
viron., 248, 111974, https://doi.org/10.1016/j.rse.2020.111974,
2020

Carlson, R.: A trophic state index for lakes 1, Limnol. Oceanogr.,
22, 361–369, https://doi.org/10.4319/lo.1977.22.2.0361, 1977.

Carpenter, S., Brock, W., Cole, J., Kitchell, J., and Pace, M.: Lead-
ing indicators of trophic cascades, Ecol. Lett., 11, 128–138,
https://doi.org/10.1111/j.1461-0248.2007.01131.x, 2008.

Carvalho, L., Solimini, A. G., Phillips, G., Pietiläinen, O. P., Moe,
J., Cardoso, A. C., Solheim, A. L., Ott, I., Søndergaard, M., Tar-
tari, G., and Rekolainen, S.: Site-specific chlorophyll reference
conditions for lakes in Northern and Western Europe, Hydrobi-
ologia, 633, 59–66, https://doi.org/10.1007/s10750-009-9876-8,
2009.

Chen, J., Le, H. M., Carr, P., Yue, Y., and Little, J. J.: Learn-
ing online smooth predictors for realtime camera planning us-
ing recurrent decision trees, in: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 4688–4696,
https://doi.org/10.1109/IJCNN.2016.7727431, 2016.

Cleveland, J. and Weidemann, A.: Quantifying absorption
by aquatic particles: A multiple scattering correction
for glass-fiber filters, Limnol. Oceanogr., 38, 1321–1327,
https://doi.org/10.4319/lo.1993.38.6.1321, 1993.

Copernicus and ESA: Copernicus Data Hubs, https://scihub.
copernicus.eu/dhus/#/home, last access: August 2023.

Cunha, D. G. F., do Carmo Calijuri, M., and Lam-
parelli, M.: A trophic state index for tropical/sub-
tropical reservoirs (TSItsr), Ecol. Eng., 60, 126–134,
https://doi.org/10.1016/j.ecoleng.2013.07.058, 2013.

Curtis, P. and Adams, H.: Dissolved organic matter quan-
tity and quality from freshwater and saltwater lakes
in east-central Alberta, Biogeochemistry, 30, 59–76,
https://doi.org/10.1007/bf02181040, 1995.

Duarte, C., Prairie, Y., Montes, C., Cole, J., Striegl, R., Melack, J.,
and Downing, J.: CO2 emissions from saline lakes: A global esti-
mate of a surprisingly large flux. J. Geophys. Res.-Biogeo., 113,
G04041, https://doi.org/10.1029/2007jg000637, 2008.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez,
V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Marti-
mort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and
Bargellini, P.: Sentinel-2: ESA’s optical high-resolution mission
for GMES operational services, Remote Sens. Environ., 120, 25–
36, https://doi.org/10.1109/igarss.2007.4423394, 2012.

ESA: Science Toolbox Exploitation Platform, https://step.esa.int/
main/, last access: April 2022.

Fragoso Jr., C., Marques, D. M. M., Ferreira, T., Janse, J., and van
Nes, E.: Potential effects of climate change and eutrophication
on a large subtropical shallow lake, Environ. Modell. Softw., 26,
1337–1348, https://doi.org/10.1016/j.envsoft.2011.05.004, 2011.

Gitelson, A., Dall’Olmo, G., Moses, W., Rundquist, D., Bar-
row, T., Fisher, T., Gurlin, F., and Holz, J.: A simple semi-
analytical model for remote estimation of Chlorophyll a in tur-
bid waters: Validation, Remote Sens. Environ., 112, 3582–3593,
https://doi.org/10.1080/01431169208904125, 1992.

Gurlin, D., Gitelson, A., and Moses, W.: Remote estimation of chl-
a concentration in turbid productive waters – Return to a simple
two-band NIR-red model?, Remote Sens. Environ., 115, 3479–
3490, https://doi.org/10.1016/j.rse.2011.08.011, 2011.

Guo, L. and Li, Z.: Effects of nitrogen and phosphorus from fish
cage-culture on the communities of a shallow lake in mid-
dle Yangtze River basin of China, Aquaculture, 226, 201–212,
https://doi.org/10.1016/S0044-8486(03)00478-2, 2003.

Guo, M., Li, X., Song, C., Liu, G., and Zhou, Y.: Photo-
induced phosphate release during sediment resuspension
in shallow lakes: A potential positive feedback mech-
anism of eutrophication, Environ. Pollut., 258, 113679,
https://doi.org/10.1016/j.envpol.2019.113679, 2020.

Huang, C., Wang, X., Yang, H., Li, Y., Wang, Y., Chen, X.,
and Xu, L.: Satellite data regarding the eutrophication re-
sponse to human activities in the plateau lake Dianchi in
China from 1974 to 2009, Sci. Total Environ., 485, 1–11,
https://doi.org/10.1016/j.scitotenv.2014.03.031, 2014.

Huang, J., Xu, C., Ridoutt, B., Wang, X., and Ren, P.: Nitrogen and
phosphorus losses and eutrophication potential associated with
fertilizer application to cropland in China, J. Clean. Prod., 159,
171–179, https://doi.org/10.1016/j.jclepro.2017.05.008, 2017.

ILEC: Lake Biwa Research Institute: 1988–1993 survey of the state
of the world’s lakes Volumes I-IV (International Lake Environ-
ment Committee, Otsu and United Nations Environment Pro-
gramme: Nairobi, Kenya), 1994.

Jeffrey, S. and Humphrey, G.: New spectrophotometric equations
for determining chlorophylls a, b, c1 and c2 in higher plants, al-
gae and natural phytoplankton, Biochem. Physiol. Pfl., 167, 191–
194, https://doi.org/10.1016/S0015-3796(17)30778-3, 1975.

Jin, X. and Hu, X.: A comprehensive plan for treating the major
polluted regions of Lake Taihu, China, Lake Reserv. Manage.,
8, 217–230, https://doi.org/10.1111/j.1440-1770.2003.00220.x,
2003.

Hydrol. Earth Syst. Sci., 27, 3581–3599, 2023 https://doi.org/10.5194/hess-27-3581-2023

https://doi.org/10.1080/23267224.1919.10651076
https://cir.nii.ac.jp/crid/1572543024605566976
https://cir.nii.ac.jp/crid/1572543024605566976
https://doi.org/10.3394/0380-1330(2007)33
https://doi.org/10.1016/j.rse.2020.111974
https://doi.org/10.4319/lo.1977.22.2.0361
https://doi.org/10.1111/j.1461-0248.2007.01131.x
https://doi.org/10.1007/s10750-009-9876-8
https://doi.org/10.1109/IJCNN.2016.7727431
https://doi.org/10.4319/lo.1993.38.6.1321
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://doi.org/10.1016/j.ecoleng.2013.07.058
https://doi.org/10.1007/bf02181040
https://doi.org/10.1029/2007jg000637
https://doi.org/10.1109/igarss.2007.4423394
https://step.esa.int/main/
https://step.esa.int/main/
https://doi.org/10.1016/j.envsoft.2011.05.004
https://doi.org/10.1080/01431169208904125
https://doi.org/10.1016/j.rse.2011.08.011
https://doi.org/10.1016/S0044-8486(03)00478-2
https://doi.org/10.1016/j.envpol.2019.113679
https://doi.org/10.1016/j.scitotenv.2014.03.031
https://doi.org/10.1016/j.jclepro.2017.05.008
https://doi.org/10.1016/S0015-3796(17)30778-3
https://doi.org/10.1111/j.1440-1770.2003.00220.x


S. Li et al.: Remote quantification of the trophic status of Chinese lakes 3597

Jin, X., Xu, Q., and Huang, C.: Current status and future tendency
of lake eutrophication in China, Sci. China Ser. C, 48, 948–954,
https://doi.org/10.1007/BF03187133, 2005.

Kloiber, S., Brezonik, P., Olmanson, L., and Bauer, M.: A pro-
cedure for regional lake water clarity assessment using Land-
sat multispectral data, Remote Sens. Environ., 82, 38–47,
https://doi.org/10.1016/S0034-4257(02)00022-6, 2002.

Köiv, T., Nõges, T., and Laas, A.: Phosphorus retention as a func-
tion of external loading, hydraulic turnover time, area and rela-
tive depth in 54 lakes and reservoirs, Hydrobiologia, 660, 105–
115, https://doi.org/10.1007/s10750-010-0411-8, 2011.

Kutser, T., Herlevi, A., Kallio, K., and Arst, H.: A hyperspec-
tral model for interpretation of passive optical remote sens-
ing data from turbid lakes, Sci. Total Environ., 268, 47–58,
https://doi.org/10.1016/S0048-9697(00)00682-3, 2001.

Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., and Patch, J.
S.: Hyperspectral remote sensing for shallow waters: 2. Deriving
bottom depths and water properties by optimization, Appl. Opt.,
38, 3831–3843, https://doi.org/10.1364/AO.38.003831, 1999.

Li, S., Song, K., Wang, S., Liu, G., Wen, Z., Shang, Y.,
Lyu, L., Chen, F., Xu, S., Tao, H., Du, Y., Fang, C.,
and Mu, G.: Quantification of Chlorophyll a in typical
lakes across China using Sentinel-2 MSI imagery with ma-
chine learning algorithm, Sci. Total Environ., 778, 146271,
https://doi.org/10.1016/j.scitotenv.2021.146271, 2021.

Li, S., Chen, F., Song, K., Liu, G., Tao, H., Xu, S., Wang,
X., Wang, Q., and Mu, G.: Mapping the trophic state in-
dex of eastern lakes in China using an empirical model
and Sentinel-2 imagery data, J. Hydrol., 608, 127613,
https://doi.org/10.1016/j.jhydrol.2022.127613, 2022.

Li, S., Song, K., Li, Y., Liu, G., Wen, Z., Shang, Y., and
Fang, C.: Performances of Atmospheric Correction Pro-
cessors for Sentinel-2 MSI Imagery Over Typical Lakes
Across China, IEEE J. Sel. Top. Appl., 16, 2065–2078,
https://doi.org/10.1109/JSTARS.2023.3238713, 2023.

Liu, D., Duan, H., Yu, S., Shen, M., and Xue, K.: Human-
induced eutrophication dominates the bio-optical composi-
tions of suspended particles in shallow lakes: Implica-
tions for remote sensing, Sci. Total Environ., 667, 112–123,
https://doi.org/10.1016/j.scitotenv.2019.02.366, 2019.

Lund, J.: Eutrophication, Nature, 214, 557–558,
https://doi.org/10.1038/214557a0, 1967.

Ma, R., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., Li, A.,
Kong, F., Xue, B., Wu, J., and Li, S.: China’s lakes at present:
Number, area and spatial distribution, Science China Earth Sci-
ences, 54, 283–289, https://doi.org/10.1007/s11430-010-4052-6,
2011.

Matthews, M.: Eutrophication and cyanobacterial blooms
in South African inland waters: 10 years of MERIS
observations, Remote Sens. Environ., 155, 161–177,
https://doi.org/10.1016/j.rse.2010.04.013, 2014.

Mortsch, L. and Quinn, F.: Climate change scenarios for Great
Lakes Basin ecosystem studies, Limnol. Oceanogr., 41, 903–911,
https://doi.org/10.4319/lo.1996.41.5.0903, 1996.

Morel, A. and Prieur, L.: Analysis of variations in
ocean color 1, Limnol. Oceanogr., 22, 709–722,
https://doi.org/10.4319/lo.1977.22.4.0709, 1977.

Müller, B., Lotter, A., Sturm, M., and Ammann, A.: Influence of
catchment quality and altitude on the water and sediment com-

position of 68 small lakes in Central Europe, Aquat. Sci., 60,
316–337, https://doi.org/10.1007/s000270050044, 1998.

Mountrakis, G., Im, J., and Ogole, C.: Support vector machines in
remote sensing: A review, ISPRS J. Photogramm., 66, 247–259,
https://doi.org/10.1016/j.isprsjprs.2010.11.001, 2011.

Neil, C., Spyrakos, E., Hunter, P., and Tyler, A.: A global approach
for Chlorophyll a retrieval across optically complex inland wa-
ters based on optical water types, Remote Sens. Environ., 229,
159–178, https://doi.org/10.1016/j.rse.2019.04.027, 2019.

Niemistö, J., Holmroos, H., Pekcan-Hekim, Z., and Horppila, J.: In-
teractions between sediment resuspension and sediment quality
decrease the TN: TP ratio in a shallow lake, Limnol. Oceanogr.,
53, 2407–2415, https://doi.org/10.4319/lo.2008.53.6.2407,
2008.

OECD (Organization for Economic Cooperation and Develop-
ment): Eutrophication of waters: monitoring, assessment and
control, Organisation for Economic and Cooperative Develop-
ment, Paris, France, 1982.

Oliver, S., Collins, S., Soranno, P., Wagner, T., Stanley, E., Jones, J.,
Stow, C., and Lottig, N.: Unexpected stasis in a changing world:
Lake nutrient and chlorophyll trends since 1990, Glob. Change
Biol., 23, 5455–5467, https://doi.org/10.1111/gcb.13810, 2017.

Olmanson, L., Bauer, M., and Brezonik, P.: A 20-year Landsat water
clarity census of Minnesota’s 10 000 lakes, Remote Sens. Envi-
ron., 112, 4086–4097, https://doi.org/10.1111/jawr.12138, 2008.

Palmer, S. C., Kutser, T., and Hunter, P. D.: Remote
sensing of inland waters: Challenges, progress and
future directions, Remote Sens. Environ., 157, 1–8,
https://doi.org/10.1016/j.rse.2014.09.021, 2015.

Paerl, H.: Nutrient and other environmental controls of harm-
ful cyanobacterial blooms along the freshwater–marine contin-
uum, in: Cyanobacterial harmful algal blooms: State of the sci-
ence and research needs Springer, New York, NY, 217–237,
https://doi.org/10.1007/978-0-387-75865-7_10, 2008.

Paerl, H., Xu, H., McCarthy, M., Zhu, G., Qin, B., Li, Y., and Gard-
ner, W.: Controlling harmful cyanobacterial blooms in a hyper-
eutrophic lake (Lake Taihu, China): the need for a dual nutri-
ent (N & P) management strategy, Water Res., 45, 1973–1983,
https://doi.org/10.1016/j.waters.2010.09.018, 2011.

Pahlevan, N., Chittimalli, S., Balasubramanian, S., and Vellucci, V.:
Sentinel-2/Landsat-8 product consistency and implications for
monitoring aquatic systems, Remote Sens. Environ., 220, 19–29,
https://doi.org/10.1016/j.rse.2018.10.027, 2019.

Pahlevan, N., Smith, B., Schalles, J., Binding, C., Cao, Z., Ma,
R., Alikas, K., Kangro, K., Gurlin, D., Hà, N., Matsushita,
B., Moses, W., Greb, S., Lehmann, M., Ondrusek, M., Oppelt,
N., and Stumpf, R.: Seamless retrievals of Chlorophyll a from
Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal
waters: A machine-learning approach, Remote Sens. Environ.,
240, 111604, https://doi.org10.1016/j.rse.2019.111604, 2020.

Prieur, L. and Sathyendranath, S.: An optical classification of
coastal and oceanic waters based on the specific spectral absorp-
tion curves of phytoplankton pigments, dissolved organic matter,
and other particulate materials 1, Limnol. Oceanogr., 26, 671–
689, https://doi.org/10.4319/lo.1981.26.4.0671, 1981.

Qin, B., Paerl, H. W., Brookes, J. D., Liu, J., Jeppesen, E.,
Zhu, G.,Zhang, Y., Xu, H., Shi, K., and Deng, J.: Why Lake
Taihu continues to be plagued with cyanobacterial blooms

https://doi.org/10.5194/hess-27-3581-2023 Hydrol. Earth Syst. Sci., 27, 3581–3599, 2023

https://doi.org/10.1007/BF03187133
https://doi.org/10.1016/S0034-4257(02)00022-6
https://doi.org/10.1007/s10750-010-0411-8
https://doi.org/10.1016/S0048-9697(00)00682-3
https://doi.org/10.1364/AO.38.003831
https://doi.org/10.1016/j.scitotenv.2021.146271
https://doi.org/10.1016/j.jhydrol.2022.127613
https://doi.org/10.1109/JSTARS.2023.3238713
https://doi.org/10.1016/j.scitotenv.2019.02.366
https://doi.org/10.1038/214557a0
https://doi.org/10.1007/s11430-010-4052-6
https://doi.org/10.1016/j.rse.2010.04.013
https://doi.org/10.4319/lo.1996.41.5.0903
https://doi.org/10.4319/lo.1977.22.4.0709
https://doi.org/10.1007/s000270050044
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.rse.2019.04.027
https://doi.org/10.4319/lo.2008.53.6.2407
https://doi.org/10.1111/gcb.13810
https://doi.org/10.1111/jawr.12138
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.1007/978-0-387-75865-7_10
https://doi.org/10.1016/j.waters.2010.09.018
https://doi.org/10.1016/j.rse.2018.10.027
https://doi.org/10.4319/lo.1981.26.4.0671


3598 S. Li et al.: Remote quantification of the trophic status of Chinese lakes

through 10 years (2007–2017) effort, Sci. Bull., 64, 354–356,
https://doi.org/10.1016/j.scib.2019.02.008, 2019.

Qin, B., Zhou, J., Elser, J., Gardner, W., Deng, J., and Brookes,
J.: Water depth underpins the relative roles and fates of nitrogen
and phosphorus in lakes, Environ. Sci. Technol., 54, 3191–3198,
https://doi.org/10.1021/acs.est.9b05858, 2020.

Quayle, W., Peck, L., Peat, H., Ellis-Evans, J., and Harri-
gan, P.: Extreme responses to climate change in Antarc-
tic lakes (Climate Change), Science, 295, 645–646,
https://doi.org/10.1126/science.1064074, 2002.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler,
J., Carvalhais, N., and Prabhat, F.: Deep learning and process
understanding for data-driven Earth system science, Nature, 566,
195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.

Rodhe, W.: Crystallization of eutrophication concepts in northern
Europe, in: Eutrophication: Causes, consequences, and correc-
tives, National Academy of Sciences Natural Resource Council
USA Publ., 1700, 50–64, 1969.

Sass, G., Creed, I., Bayley, S., and Devito, K.: Understanding vari-
ation in trophic status of lakes on the Boreal Plain: A 20 year ret-
rospective using Landsat TM imagery, Remote Sens. Environ.,
109, 127–141, https://doi.org/10.1016/j.rse.2006.12.010, 2007.

Schindler, D., Hecky, R., Findlay, D., Stainton, M., Parker, B., Pa-
terson, M., Beaty, K., Lyng, M., and Kasian, S.: Eutrophication of
lakes cannot be controlled by reducing nitrogen input: results of
a 37-year whole-ecosystem experiment, P. Natl. Acad. Sci., 105,
11254–11258, https://doi.org/10.1109/ICASSP.2002.5745032,
2008.

Sheela, A., Letha, J., Joseph, S., Ramachandran, K., and Sanalku-
mar, S. P.: Trophic state index of a lake system using IRS (P6-
LISS III) satellite imagery, Environ. Monit. Assess., 177, 575–
592, https://doi.org/10.1007/s10661-010-1658-2, 2011.

Shi, K., Zhang, Y., Song, K., Liu, M., Zhou, Y., Zhang, Y., Li,
Y., Zhu, G., and Qin, B.: A semi-analytical approach for re-
mote sensing of trophic state in inland waters: Bio-optical mech-
anism and application, Remote Sens. Environ., 232, 111349,
https://doi.org/10.1016/j.rse.2019.111349, 2019.

Shi, K., Zhang, Y., Zhang, Y., Qin, B., and Zhu, G.: Un-
derstanding the long-term trend of particulate phospho-
rus in a cyanobacteria-dominated lake using MODIS-
Aqua observations, Sci. Total Environ., 737, 139736,
https://doi.org/10.1016/j.scitotenv.2020.139736, 2020.

Smith, V. and Schindler, D.: Eutrophication science: where
do we go from here?, Trends Ecol. Evol., 24, 201–207,
https://doi.org/10.1016/j.tree.2008.11.009, 2009.

Smith, V., Tilman, G., and Nekola, J.: Eutrophication: im-
pacts of excess nutrient inputs on freshwater, marine,
and terrestrial ecosystems, Environ. Pollut., 100, 179–196,
https://doi.org/10.1016/j.rse.2019.111349, 1999.

Smith, V., Joye, S., and Howarth, R.: Eutrophication of freshwa-
ter and marine ecosystems, Limnol. Oceanogr., 51, 351–355,
https://doi.org/10.4319/lo.2006.51.1_part_2.0351, 2006.

Song, K., Li, L., Tedesco, L. P., Li, S., Clercin, N. A., Hall, B. E.,
Li, Z., and Shi, K.: Hyperspectral determination of eutrophica-
tion for a water supply source via genetic algorithm–partial least
squares (GA–PLS) modeling, Sci. Total Environ., 426, 220–232,
https://doi.org/10.1016/j.scitotenv.2012.03.058, 2012.

Song, K. S., Zang, S. Y., Zhao, Y., Li, L., Du, J., Zhang, N. N.,
Wang, X. D., Shao, T. T., Guan, Y., and Liu, L.: Spatiotemporal

characterization of dissolved carbon for inland waters in semi-
humid/semi-arid region, China, Hydrol. Earth Syst. Sci., 17,
4269–4281, https://doi.org/10.5194/hess-17-4269-2013, 2013a.

Song, K., Li, L., Tedesco, L. P., Li, S., Duan, H., Liu, D., Hall,
B. E., Du, J., Li, Z., Shi, K., and Zhao, Y.: Remote estima-
tion of Chlorophyll a in turbid inland waters: Three-band model
versus GA-PLS model, Remote Sens. Environ., 136, 342–357,
https://doi.org/10.1016/j.rse.2013.05.017, 2013b.

Song, K., Liu, G., Wang, Q., Wen, Z., Lyu, L., Du, Y., Sha, L.,
and Fang, C.: Quantification of lake clarity in China using Land-
sat OLI imagery data, Remote Sens. Environ., 243, 111800,
https://doi.org/10.1016/j.rse.2020.111800, 2020.

Spyrakos, E., O’Donnell, R., Hunter, P. D., Miller, C., Scott,
M., Simis, S. G., Neil, C., Barbosa, C. C. F., Binding, C.
E., Bresciani, S., Dall’Olmo, G., Giardino, C., Gitelson, A.
A., Kutser, T., Li, L., Matsushita, B., Martinez-Vicente, V.,
Matthews, M., Ogashawara, I., Ruiz-Verdú, A., Schalles, J.
F., Tebbs, E., Zhang, Y., and Tyler, A. N.: Optical types of
inland and coastal waters, Limnol. Oceanogr., 63, 846–870,
https://doi.org/10.1002/lno.10674, 2018.

Thiemann, S. and Kaufmann, H.: Determination of chloro-
phyll content and trophic state of lakes using field spec-
trometer and IRS-1C satellite data in the Mecklenburg Lake
District, Germany, Remote Sens. Environ., 73, 227–235,
https://doi.org/10.1016/S0034-4257(00)00097-3, 2000.

Toming, K., Kotta, J., Uuemaa, E., Sobek, S., Kutser, T., and Tran-
vik, L.: Predicting lake dissolved organic carbon at a global
scale, Sci. Rep., 10, 8471, https://doi.org/10.1038/s41598-020-
65010-3, 2020.

Tong, S. T. and Liu, A. J.: Modelling the hydrologic ef-
fects of land-use and climate changes, International Jour-
nal of Risk Assessment and Management, 6, 344–368,
https://doi.org/10.1504/IJRAM.2006.009543, 2006.

Tong, Y., Zhang, W., Wang, X., Couture, R. M., Larssen, T., Zhao,
Y., Li, J., Liang, H., Liu, X., Bu, X., Zhang, Q., and Lin, Y.:
Decline in Chinese lake phosphorus concentration accompa-
nied by shift in sources since 2006, Nat. Geosci., 10, 507–511,
https://doi.org/10.1038/ngeo2967, 2017.

Tranvik, L., Downing, J., Cotner, J., Loiselle, S., Striegl, R., Bal-
latore, T., Dillon, P., Finlay, K., Fortino, K., Knoll, L., Korte-
lainen, P., Kutser, T., Larsen, S., Laurion, I., Leech, D., Mc-
Callister, S., McKnight, D., Melack, J., Overholt, E., Porter, J.,
Prairie, Y., Renwick, W., Roland, F., Sherman, B., Schindler, D.,
Sobek, S., Tremblay, A., Vanni, M., Verschoor, A., Wachenfeldt,
E., and Weyhenmeyer, G.: Lakes and reservoirs as regulators of
carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314,
https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.

Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L.
J.: A global inventory of lakes based on high-resolu-
tion satellite imagery, Geophys. Res. Lett., 41, 6396–6402,
https://doi.org/10.1002/2014GL060641, 2014.

Wang, S. and Dou, H.: Chinese Lake Records. Chinese Lake
Records, Science Publishing, Beijing, 1998 (in Chinese).

Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A., Shen, Q.,
Zhang, F., Kutser, T., Lehmann, M., Wu, Y., and Peng, D.:
Trophic state assessment of global inland waters using a MODIS-
derived Forel-Ule index, Remote Sens. Environ., 217, 444–460,
https://doi.org/10.1016/j.rse.2018.08.026, 2018.

Hydrol. Earth Syst. Sci., 27, 3581–3599, 2023 https://doi.org/10.5194/hess-27-3581-2023

https://doi.org/10.1016/j.scib.2019.02.008
https://doi.org/10.1021/acs.est.9b05858
https://doi.org/10.1126/science.1064074
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1016/j.rse.2006.12.010
https://doi.org/10.1109/ICASSP.2002.5745032
https://doi.org/10.1007/s10661-010-1658-2
https://doi.org/10.1016/j.rse.2019.111349
https://doi.org/10.1016/j.scitotenv.2020.139736
https://doi.org/10.1016/j.tree.2008.11.009
https://doi.org/10.1016/j.rse.2019.111349
https://doi.org/10.4319/lo.2006.51.1_part_2.0351
https://doi.org/10.1016/j.scitotenv.2012.03.058
https://doi.org/10.5194/hess-17-4269-2013
https://doi.org/10.1016/j.rse.2013.05.017
https://doi.org/10.1016/j.rse.2020.111800
https://doi.org/10.1002/lno.10674
https://doi.org/10.1016/S0034-4257(00)00097-3
https://doi.org/10.1038/s41598-020-65010-3
https://doi.org/10.1038/s41598-020-65010-3
https://doi.org/10.1504/IJRAM.2006.009543
https://doi.org/10.1038/ngeo2967
https://doi.org/10.4319/lo.2009.54.6_part_2.2298
https://doi.org/10.1002/2014GL060641
https://doi.org/10.1016/j.rse.2018.08.026


S. Li et al.: Remote quantification of the trophic status of Chinese lakes 3599

Wen, Z., Song, K., Liu, G., Shang, Y., Fang, C., Du, J., and Lyu, L.:
Quantifying the trophic status of lakes using total light absorption
of optically active components, Environ. Pollut., 245, 684–693,
https://doi.org/10.1016/j.envpol.2018.11.058, 2019.

Wen, Z. D., Song, K. S., Zhao, Y., Du, J., and Ma, J. H.: In-
fluence of environmental factors on spectral characteristics of
chromophoric dissolved organic matter (CDOM) in Inner Mon-
golia Plateau, China, Hydrol. Earth Syst. Sci., 20, 787–801,
https://doi.org/10.5194/hess-20-787-2016, 2016.

Wetzel, R.: Limnology: lake and river ecosystems, Gulf profes-
sional publishing, https://doi.org/10.1086/380040, 2001.

Wiley, C.: What motivates employees according to over 40
years of motivation surveys, Int. J. Manpower, 18, 263–280,
https://doi.org/10.1108/01437729710169373, 1997.

Wu, G. and Xu, Z.: Prediction of algal blooming using EFDC
model: Case study in the Daoxiang Lake, Ecol. Model., 222,
1245–1252, https://doi.org/10.1016/j.ecolmodel.2010.12.021,
2011.

Yao, Y., Wang, P., Wang, C., Hou, J., Miao, L., Yuan,
Y., Wang, T., and Liu, C.: Assessment of mobilization
of labile phosphorus and iron across sediment-water inter-
face in a shallow lake (Hongze) based on in situ high-
resolution measurement, Environ. Pollut., 219, 873–882,
https://doi.org/10.1016/j.envpol.2016.08.054, 2016.

Yin, H. and Li, C.: Human impact on floods and flood dis-
asters on the Yangtze River, Geomorphology, 41, 105–109,
https://doi.org/10.1016/S0169-555X(01)00108-8, 2001.

Yin, H., Douglas, G., Cai, Y., Liu, C., and Copetti, D.: Remedi-
ation of internal phosphorus loads with modified clays, influ-
ence of fluvial suspended particulate matter and response of the
benthic macroinvertebrate community, Sci. Total Environ., 610,
101–110, https://doi.org/10.1016/j.scitotenv.2017.07.243, 2018.

https://doi.org/10.5194/hess-27-3581-2023 Hydrol. Earth Syst. Sci., 27, 3581–3599, 2023

https://doi.org/10.1016/j.envpol.2018.11.058
https://doi.org/10.5194/hess-20-787-2016
https://doi.org/10.1086/380040
https://doi.org/10.1108/01437729710169373
https://doi.org/10.1016/j.ecolmodel.2010.12.021
https://doi.org/10.1016/j.envpol.2016.08.054
https://doi.org/10.1016/S0169-555X(01)00108-8
https://doi.org/10.1016/j.scitotenv.2017.07.243

	Abstract
	Introduction
	Materials and methods
	Study area and sampling process
	Laboratory analysis
	Trophic status assessment of lakes
	Multispectral imagery and atmospheric correction
	Machine learning algorithms
	Classifications of lakes
	Statistical analyses and accuracy assessment

	Results
	Aquatic environmental scenery
	Trophic status assessment
	Calibration and validation of the TSI model
	TSI model application to lake classifications
	Spatial and seasonal patterns of trophic states: five lake limnetic regions

	Discussion
	Remote-sensed and machine-learning-based TSI model
	TSI model for lake classifications
	Trophic status in five limnetic regions
	Limitations, uncertainties and future

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

