
Hydrol. Earth Syst. Sci., 27, 3547–3563, 2023
https://doi.org/10.5194/hess-27-3547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Dynamic rainfall erosivity estimates derived
from IMERG data
Robert A. Emberson1,2

1Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States
2GESTAR-II, University of Maryland Baltimore County, Baltimore, MD 21250, United States

Correspondence: Robert A. Emberson (robert.a.emberson@nasa.gov)

Received: 25 November 2022 – Discussion started: 6 February 2023
Revised: 14 August 2023 – Accepted: 28 August 2023 – Published: 9 October 2023

Abstract. Soil degradation is a critical threat to agriculture
and food security around the world. Understanding the pro-
cesses that drive soil erosion is necessary to support sustain-
able management practices and to reduce eutrophication of
water systems from fertilizer runoff. The erosivity of pre-
cipitation is a primary control on the rate of soil erosion,
but to calculate erosivity high-frequency precipitation data
are required. Prior global-scale analysis has almost exclu-
sively used ground-based rainfall gauges to calculate ero-
sivity, but the advent of high-frequency satellite rainfall data
provides an opportunity to estimate erosivity using globally
consistent gridded satellite rainfall. In this study, I have tested
the use of IMERG (Integrated Multi-satellitE Retrievals for
GPM, Global Precipitation Mission) rainfall data to calcu-
late global rainfall erosivity. I have tested three different ap-
proaches to assess whether simplification of IMERG data
allows for robust calculation of erosivity, finding that the
highest-frequency 30 min data are needed to best replicate
gauge-based estimates. I also find that in areas where ground-
based gauges are sparse, there is more disparity between the
IMERG-derived estimates and the ground-based results, sug-
gesting that IMERG may allow for improved erosivity esti-
mates in data-poor areas. The global extent and accessibility
of IMERG data allow for regular calculation of erosivity in
a month-to-month time frame, permitting improved dynamic
characterization of rainfall erosivity across the world in near-
real time. These results demonstrate the value of satellite data
to assess the impact of rainfall on soil erosion and may ben-
efit practitioners of sustainable land management planning.

1 Introduction

Topsoil is a key component of the Earth’s critical zone, act-
ing to sequester carbon, filter pollutants from water and sup-
port the growth of plants. Agricultural topsoil in particu-
lar is the fundamental basis upon which food security re-
lies, and sustainable management of topsoil is one of the de-
fined UN sustainable development goals (UN, 2015). How-
ever, land management practices around the world have led
to significant degradation of topsoils, with global analyses
suggesting that the “majority of soils are in only fair, poor, or
very poor condition” (FAO, 2015). Soil degradation threat-
ens communities around the world with food insecurity in the
next decades, alongside limits to water supply for irrigation
(Hanjra and Qureshi, 2010). Across large parts of global agri-
cultural zones, the rate of topsoil loss far exceeds the replen-
ishment rate (FAO, 2015). Soil loss costs hundreds of billions
of dollars each year (GSP, 2017) and given that it may lead
to significant declines in productive agricultural land area by
2050, preservation of topsoil is essential to ensure a sustain-
able future (Steffen et al., 2015).

Degradation of soil is driven by many factors including
cover by impermeable materials, physical compaction, wind-
and rain-driven erosion, salinization, and chemical degrada-
tion (Ferreria et al., 2022. Of these, liquid precipitation is a
major driver of soil erosion. Rainfall washes off loose soil,
and determining the erosivity of rainfall is a major compo-
nent of soil loss calculations. The widely used Revised Uni-
versal Soil Loss Equation (Renard, 1997; USDA, 2013) in-
corporates rainfall erosivity as the main dynamic factor de-
termining soil loss. Calculating and measuring rainfall ero-
sivity is therefore imperative to support models and obser-
vations of soil degradation. Some global-scale analyses have
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relied upon ground-based rainfall gauges to provide observa-
tions of rainfall intensity and duration (Panagos, 2015; Bor-
relli et al., 2016; Yin et al., 2017), including the widely used
Global Rainfall Erosivity Database (GloREDa, Panagos et
al., 2017), but there is major geographic variability in the
availability of rainfall gauge data around the world (Panagos
et al., 2017), and gauge sparsity is particularly pronounced
for gauges that record at sufficient temporal frequency to
characterize erosivity.

Gridded rainfall data represent an alternative to interpo-
lating gauge data, with several recent studies employing na-
tional or global-scale gridded precipitation data. Padulano
et al. (2021) use ERA-5 reanalysis rainfall data and Euro-
pean gridded rainfall data (E-OBS) to calculate erosivity over
Italy, Matthews et al. (2022) tested other datasets including
EMO-5 and UERRA MESCAN-SURFEX data across Eu-
rope, and Raj et al. (2021) used the Indian IMDAA data to
estimate erosivity across India. Reanalysis data were also
employed globally by Bezak et al. (2020) and on the Ti-
betan plateau by Chen et al. (2022). These studies have
demonstrated the value of a more consistent gridded dataset,
which can help limit errors from interpolation of widely
spaced gauges. However, many of the global-scale reanalysis
datasets are only available at hourly (e.g. ERA-5) or lower
frequency, creating potential issues for erosivity estimation
which benefits from high-frequency rainfall data.

Recent studies have utilized gridded satellite rainfall data
to provide global spatially consistent estimates of erosivity,
offering an alternative to other gridded data to help with fill-
ing in gaps in areas that are sparse in terms of ground-based
gauges. Bezak et al. (2022) have used data from the National
Oceanic and Atmospheric Administration (NOAA) Climate
Data Record (CDR) Climate Prediction Center MORPH-
ing (CMORPH) dataset, which offers global-scale data at a
30 min resolution. Li et al. (2020) utilized the Tropical Rain-
fall Measurement Mission (TRMM) data to estimate erosion,
but these data are only available at 3 h resolution, which is
not widely considered to be sufficiently high frequency to re-
liably estimate erosivity.

In this study, I use the 30 min data from the NASA IMERG
(Integrated Multi-satellitE Retrievals for GPM, Global Pre-
cipitation Mission) dataset, which covers the time period
from 2000 until the present, to estimate rainfall erosivity at
a global scale. I have also tested several approaches to cal-
culating erosivity from rainfall time series, and the compar-
ison with the ground-based GloREDa dataset (Panagos et
al., 2017) provides insight into the value of high temporal-
frequency rainfall data for erosivity estimation. This applica-
tion of IMERG data provides an additional method for cal-
culating erosivity at a global scale and allows for dynamic
estimates of erosivity at various time intervals, depending on
the calculation method chosen.

2 Methods

2.1 Rainfall data

In this study, three methods employed in previous studies are
employed to calculate rainfall erosivity using the IMERG
rainfall dataset. IMERG version v06B is the latest version
of the long-running IMERG rainfall dataset (Huffman et al.,
2019). IMERG utilizes observations from several different
satellites to estimate precipitation across most of the sur-
face of Earth. The IMERG algorithm uses microwave ob-
servations from the Global Precipitation Monitoring (GPM)
satellite (2014–present) and also the earlier Tropical Rain-
fall Measuring Mission (TRMM) satellite (2000–2015). Mi-
crowave observations are included from a range of other
satellites, and a series of merging methods are used to inter-
polate between these observations (Joyce et al., 2011; Huff-
man et al., 2010; Hong et al., 2004), including the CMORPH-
KF algorithm (Joyce et al., 2011). Infrared observations are
also used to support the interpolation of results (Huffman et
al., 2019). While a near-real-time product is available, the re-
search grade IMERG-Final uses data from the Global Precip-
itation Climatology Center (GPCC) ground-based gauges to
correct the initial IMERG-Late results. In this study, I use the
final IMERG v06B product, at three different temporal reso-
lutions: monthly, 3-hourly, and the highest-frequency 30 min
product. All three of these are available from 2000 to the
present, since the algorithm processing starts after 1 January
2000, I have started the analysis from 1 January 2001–31 De-
cember 2021. IMERG has a grid cell of 0.1 decimal degrees
(approximately 9 km at the Equator), and so all erosivity out-
puts maintain this grid cell size.

IMERG v06B does distinguish between liquid and non-
liquid precipitation (rain and snow), and I use the estimate
of liquid precipitation proportion to calculate only the liquid
precipitation. IMERG-Final data include a specific field that
estimates the fraction of liquid precipitation in each grid cell
for each data point. The liquid precipitation was therefore
calculated by multiplying the total precipitation field by the
fraction of liquid precipitation field. Although across most of
the latitude range studied here (60◦ N–60◦ S) rainfall, rather
than snow, is the dominant precipitation type, but since rain-
fall is the key type of precipitation that determines erosion of
surface material, I suggest it is important to perform this cor-
rection to exclude non-liquid precipitation when calculating
rainfall totals.

2.2 Calculating rainfall erosivity

Rainfall erosivity depends on both the intensity and duration
of rainfall at a given location. The United States Department
of Agriculture (USDA) has developed the Revised Universal
Soil Loss Equation (RUSLE) which utilizes rainfall erosivity
as a key factor (USDA, 2013). The relationships developed
for RUSLE have been widely tested and are considered the
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standard set of equations to determine erosivity from ground-
based data. The most recently revised version of the RUSLE
model (USDA, 2013) converts rainfall into erosivity using
the following series of steps. First, the rainfall time series is
divided into specific storm events, each separated by periods
of 6 h or greater where rainfall was less than 1.27 mm. Rain-
fall events with less total rainfall than 12.7 mm (0.5 in.) are
excluded from calculations (Brown and Foster, 1987); this
was initially to reduce computational load, but studies have
shown that rainfall events with lower totals than this do not
significantly contribute to overall erosivity.

Once the rainfall events have been isolated, the specific ki-
netic energy ek (units of MJ ha−1 mm−1) is calculated. Dif-
ferent studies have used a variety of coefficients for this equa-
tion; in this study, I have used the current USDA RUSLE 2
model coefficients (USDA, 2013). I have also tested the older
RUSLE 1 coefficients for comparison with older studies for
one of the rainfall erosivity calculation approaches, with lim-
ited differences observed. RUSLE 2 is as follows:

ek = 0.29 · (1− 0.72 · e(−0.082 · I )), (1)

where I is rainfall intensity in millimetres per hour. To cal-
culate erosivity, first the total kinetic energy of the rainfall
event is calculated:

E = ek · I ·1t, (2)

where E is the total kinetic energy and 1t is the time interval
in hours. The erosivity is then calculated:

R =

∑
nE · I30

N
, (3)

where I30 is the maximum 30 min rainfall intensity of rain-
fall event n, which occurred over a time span of N years. R

therefore has units of MJ mm ha−1 h−1 yr−1.
Using these equations, and the separation of the rainfall

record into storms as described above, I have calculated R

from the 30 min IMERG rainfall record from January 2001
until December 2021. This provides a single value for R in
the 3600× 1800 cells of the IMERG record, which I have
then reduced to only global land areas between 60◦ N and
60◦ S, to exclude areas where the IMERG record is incom-
plete. Additionally, I have calculated the monthly values for
R for the year 2020, to demonstrate the applicability of this
method to estimate erosivity dynamically.

This approach has been successfully and widely used with
ground-based gauge analysis of erosivity using the RUSLE
model since 1987, but alternative approaches have also been
developed. Earlier iterations of satellite rainfall products
from the TRMM satellite constellation were available only
at a 3 h time interval, which precluded the calculation of
30 min intensity. Prior studies utilizing TRMM products to
calculate erosivity have used two other methods: the Mod-
ified Fournier Index (MFI) and a consideration of each 3-
hourly rainfall window as an individual storm (Vrieling et al.,

2010). Because analysing 20 years of 30 min IMERG data
is computationally intensive (over 9 TB of data are analysed
in total), I have also tested these two methods using global
IMERG data to assess whether their performance would war-
rant the use of these simplified approaches. I have also used
the 30 min IMERG data to calculate R according to Eqs. (1)–
(3) above. The details for the MFI and 3 h storm approaches
are described next.

The Fournier index (Fournier, 1960; FI) was an early
model to describe rainfall erosivity that relied on only low-
frequency recording of rainfall. It is defined as

FI=
p2

P
, (4)

where p is the average rainfall of the month with the high-
est rainfall and P is the average annual rainfall. Arnoldus
(1977) revised this index to create the Modified Fournier In-
dex (MFI), defined as follows:

MFI=
1
P

∑12
i=1

p2
i , (5)

where pi is the average rainfall in month i. Arnoldus (1977)
demonstrated significantly better agreement between short-
term rainfall observations of erosivity and the MFI val-
ues than FI values, and it has been used by other authors
since (Renard and Freimund, 1994), including with satellite
rainfall data (Vrieling et al., 2010). The units for both of
these indices are millimetres (mm2 mm−1), and prior stud-
ies have demonstrated it is most effective when applied to
homogenous climatic regions (Arnoldus, 1977; Renard and
Freimund, 1994). To convert between MFI and R values,
various strategies have been applied, with different coeffi-
cients derived for various climatic zones. Disagreement re-
mains in the literature surrounding the appropriate equations
to use and which exact units were used by Arnoldus (1977)
(see Majhi et al., 2022; Chen and Bezak, 2022; Mahji et
al., 2021; Renard and Freimund, 1994). In this study I have
not converted the raw MFI values, since the intention is to
contrast the relative correlations with the R factor estimates
from higher-frequency rainfall data and ground-based anal-
yses. Given the relative limitations on the MFI calculation
(see below), the alternative methods presented here may of-
fer more promising solutions for future studies. Nevertheless,
MFI values are widely used and still maintain some advan-
tages, in particular given their relatively low computational
level and applicability to more temporally sparse data. I have
calculated MFI values both for the entire IMERG record as
well as the interannual variability.

Vrieling et al. (2010) tested an alternative method to cal-
culate R using 3 h satellite rainfall data, prior to the advent
of the 30 min IMERG rainfall data. The specific kinetic en-
ergy of rainfall is defined as in Eq. (1) (although Vrieling
et al., 2010, use different coefficients). Because of the lower
temporal resolution of the 3 h data, under this approach it is
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not considered justified to define the start and end of a storm
event in the rainfall records. As such, each 3 h window is re-
garded as a storm event, and the kinetic energy for each 3 h
window is calculated as such:

E3h= ek × 3I, (6)

with I meaning the rainfall intensity, in millimetres per hour.
To calculate R according to Eq. (3), the maximum 30 min
intensity of the storm is required, but since that information is
unavailable with the 3-hourly data, Vrieling et al. (2010) used
the average intensity of the 3 h rainfall period as a multiplier.
However, with the 30 min IMERG data, I am able to calculate
the maximum in each 3 h window, so in this estimate, R is
defined as

R =
∑N

j=1
E3hj × I30j . (7)

In Eq. (7), j represents the j th storm, from 1−N .
As with the 30 min version, the units are as follows:
MJ mm ha−1 h−1 yr−1, and as such these estimates are di-
rectly comparable with those of the 30 min estimates as well
as ground-based estimates. Since several published estimates
for the coefficients for specific kinetic energy are available, I
have tested the RUSLE 2, RUSLE 1 and Vrieling et al. (2010)
coefficients for this estimate of R. This is because the lower
computational requirement of this estimate allows for testing
of multiple coefficients. These are discussed below.

2.3 Ground-based comparison

Rainfall erosivity analysis has typically been conducted at a
local or regional scale, but fortunately recent work by Pana-
gos et al. (2017) derived the first global-scale erosivity esti-
mate, the Global Erosivity Database (GloREDa). This model
uses 3625 ground-based stations, with rainfall records av-
eraging 17 years, to calculate a global estimate of erosivity
based on the equations described above (Eqs. 1, 2 and 3) and
using a Gaussian regression model to interpolate between
stations. The density of stations significantly varies, with
48 % in Europe and only 5 % in South America and Africa.
I have used the GloREDa data as an independent compari-
son for the IMERG-derived erosivity estimates for this study.
The GloREDa estimates are available at a higher spatial res-
olution (30 arcsec) than the IMERG-derived estimates, so I
have downsampled the GloREDa data to the native IMERG
resolution (0.1◦) using a bilinear interpolation method. This
avoids creating additional data from the IMERG-based ap-
proaches. I compare the results of the IMERG and GloREDa
estimates both at a cell-by-cell scale but also in terms of over-
all statistics, including mean, median and standard deviation
values.

3 Results

3.1 Thirty-minute erosivity

The 20-year average erosivity values estimated using
IMERG 30 min rainfall data are shown in Fig. 1a. The global
map highlights critical hotspots for rainfall erosivity as well
as areas where low rainfall levels lead to very low erosiv-
ity. Significant areas where erosivity is elevated include the
areas of Central America and the northern part of South
America, the Himalayas (with particularly high rates in the
Indus–Yarlung Suture Zone at the Eastern Himalayan Syn-
taxis), the Indonesian Archipelago and Papua New Guinea,
and Bangladesh. Low erosivity values are estimated for much
of the global desert regions, with a broad belt of low ero-
sivity spreading from the western Sahara across the Arabian
Peninsula and through into southern Siberia. An interest-
ing emergent trend is for very high erosivity values in some
coastal areas, including the Sub-Andean coast of Colombia;
the Pacific North-west of the United States and Canada; the
coasts of Guinea-Bissau, Guinea and Sierra Leone; the West-
ern Ghats of India; and much of the Bangladeshi–Myanmar
coast. Many of these coastal zones are impacted by infre-
quent but extreme tropical storm rainfall events, and it is pos-
sible that these contribute to the high erosivity values calcu-
lated in these areas.

3.2 Alternative erosivity estimates from IMERG

The IMERG-derived erosivity estimates calculated for the
3 h and MFI storm approaches are shown in Fig. 1b and
c. While the overall global patterns are broadly similar to
those produced by the 30 min version (Fig. 1a), including the
trend of high erosivity values observed in many coastal ar-
eas, the absolute values differ quite significantly. While the
MFI values (Fig. 1c) are not directly comparable to the R

values calculated via the other metrics, prior studies have
suggested a non-linear scaling relationship with exponents of
∼ 1.5 (Arnoldus, 1977); the large spread of values observed
when comparing cell-by-cell values for the MFI and 30 min
R values (Fig. 2a) do not support a single, consistent scal-
ing relationship. Instead, this likely supports a scaling rela-
tionship dependent on local climatic conditions, as has been
emphasized by other authors (Smithen and Schulze, 1982;
Renard and Freimund, 1994).

The values obtained with the 3 h storm model (Fig. 1b) are
directly comparable to the 30 min version since they have the
same units. As with the MFI values, the overall patterns that
emerge globally are similar, but once again there are differ-
ences in absolute values. The Pearson correlation coefficient
of the cell-by-cell values of the 30 min and 3 h estimates is
high (R2

= 0.923), but this is not a perfect correlation nor
an exactly linear relationship (Fig. 2b). Particularly at high
erosivity values, the estimates diverge to a greater degree,
with the 30 min model generally producing higher values.
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Figure 1. Global map of erosivity estimates derived from the three different approaches. (a) Erosivity calculated using 30 min IMERG data.
(b) Erosivity calculated using the 3 h IMERG data and storm simplification. (c) Modified Fournier Index of erosivity. Note that the colour
schemes for (a) and (b) are the same, while the MFI colour scheme has been selected to highlight the similarity in spatial patterns rather than
absolute values with the other two estimates. The overall colour scheme is selected to ensure readability to colour-blind readers.

The linear estimate of the best-fit line between the two mod-
els is has a scaling relationship (slope) of 1.8, implying the
30 min versions are markedly higher. Although the 3 h rain-
fall approach includes all 3 h windows rather than exclud-
ing smaller rainfall events (as described in the section on
methodology above), the 30 min approach captures rainfall
events with larger short-term rainfall intensity, which will re-
sult in larger erosivity estimates since the scaling between
rainfall intensity and erosivity is non-linear.

3.3 Comparison with ground-based data

I have compared the results from the three different IMERG-
based estimates of erosivity with the ground-based observa-
tion estimates from GloREDa (Panagos et al., 2017). Since
the IMERG analyses are not applied above 60◦ N, the in-
tercomparison is only for the IMERG region, although Glo-
REDa covers the entirety of the Northern Hemisphere. Maps
of the ratio of erosivity estimates derived from the 30 min
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Figure 2. Comparison between cell-by-cell values of the 30 min IMERG estimate of erosivity (y axis) and the two other methods; (a)
shows comparison between 30 min IMERG estimate and MFI, while (b) shows the comparison between 30 min IMERG estimate and the
3 h IMERG data estimate. Note that the red lines in both figures show the 1 : 1 line, with values above that line indicating higher erosivity
estimates in the 30 min version. The 1 : 1 line in (a) does not have any physical meaning, since MFI has different units, but is shown for
illustrative purposes.

IMERG data, the 3 h IMERG data and the MFI estimate are
shown in Fig. 3a, b and c. Note that the values shown for the
30 min and 3 h data are directly comparable to the GloREDa
data (identical units), but the MFI estimate represents a dif-
ferent unit, and so Fig. 3c is only appropriate to assess spatial
patterns in the ratios, rather than absolute values.

Across all three IMERG methods, similar patterns emerge.
There is a strong degree of agreement between GloREDa and
the 30 min and 3 h IMERG estimates across much of Europe
and northern Asia but a much more marked differences else-
where. In particular, GloREDa shows higher values across
the Sahara, central Asian deserts, and the North American
west. IMERG estimates are, however, clearly higher in the
immediate vicinity of extremely dry areas where no rain-
fall is recorded, i.e. in parts of the northern Sahara and Ara-
bian Desert. In wetter areas, differences between IMERG and
GloREDa also emerge; significantly greater values in erosiv-
ity from IMERG are observed in the several coastal areas, in-
cluding the Western Ghats of India; the coasts of Bangladesh,
Myanmar, and Thailand; and the Pacific coasts of Colombia
and British Columbia in Canada.

To simplify the comparison between each of the datasets,
I have plotted the probability density functions of the cell
values for each in Fig. 4. Of the IMERG-based assessments,
the 30 min estimate most closely matches that of GloREDa.
Even if the MFI values are normalized by the maximum val-
ues (Fig. 1 in the Supplement), they still do not provide a

close approximation of the GloREDa values, with a much
lower variability in the values. In Fig. 4, both the 30 min
and 3 h estimates show a similar peak around the modal
values as the GloREDa, but the second peak in values is
somewhat lower in both IMERG-based estimates than Glo-
REDa. The 30 min output also shows a longer-tailed distribu-
tion, with a greater proportion of values at very low erosiv-
ity and some at higher erosivity than GloREDa. In essence,
the 30 min model produces more low-erosivity estimates than
GloREDa, and while the most commonly observed erosivity
values (between 200–600 MJ mm ha−1 h−1 yr−1) are broadly
similar to GloREDa, there is a larger degree of disagreement
at higher erosivity values. I discuss the possible reasons for
discrepancy in Sect. 4, below. It is notable also that there
is a large degree of difference in the cell-by-cell values even
within different continents (Fig. S2) when they are compared
to one another; there is significant dispersion between all
of the IMERG-derived estimates and the GloREDa values.
The Pearson R2 values for each are shown in Table 1, while
continent-by-continent values for mean, median and standard
deviation for the 30 min IMERG data and GloREDa values
are shown in Table 2.

Since GloREDa is an interpolated dataset based on gauge-
derived estimates of erosivity, the specific values in a given
grid cell will not always represent the exact gauge-derived
value for a given pixel. To account for this, and to com-
pare the IMERG-derived values with those of ground-based
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Figure 3. Global maps of the ratio between the IMERG-derived estimates of erosivity and the ground-based gauge estimates from GloREDa
(Panagos et al., 2017). The three panels show the comparison between GloREDa and (a) erosivity calculated using 30 min IMERG data, (b)
erosivity calculated using the 3 h IMERG data and storm simplification, and (c) the Modified Fournier Index of erosivity. Note that the scales
for (a) and (b) are identical, since they have the same units; however, the values in C are lower since the MFI has not been scaled to the other
values. The scale is thus lowered to allow for comparison of spatial patterns with (a) and (b).

gauges used to calibrate GloREDa, I have compared the
model-derived erosivity values with those recorded from the
REDES gauge dataset. The Rainfall Erosivity Database on
the European Scale (REDES; Panagos et al., 2015) is an
openly available dataset of gauge-derived estimates of ero-
sivity. In Fig. 5, the values from the IMERG-based estimates
for Europe are shown in comparison with the values from the
REDES dataset. Spatially, the IMERG-based analysis per-
forms well in several European countries, including Greece,

the Iberian Peninsula, east Germany, France, Switzerland and
parts of Italy. IMERG overestimates erosivity in compari-
son with gauges in the western parts of the United Kingdom
and Ireland and to some extent in western Germany and the
Low Countries, while underestimating erosivity in Hungary
and parts of Bulgaria and Romania. Given that the gauges
that make up REDES are not uniformly distributed, a statis-
tical comparison of the two datasets will be dominated by
countries with a higher gauge density (like Belgium, Italy,
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Figure 4. Probability density function for the cell-by-cell values for each of the IMERG erosivity estimates and the GloREDa estimate. MFI
values are not shown since they are not the same units as the other erosivity estimates. In Fig. S1, the normalized values are shown, which
allows comparison of the MFI values.

Table 1. Pearson R2 values for the comparison between GloREDa
and IMERG-based estimates for erosivity.

Comparison Pearson Slope
pair R2 value

GloREDa – 30 min IMERG 0.498 0.56
GloREDa – 3 h IMERG 0.633 0.34
GloREDa – MFI 0.656 0.02

and Slovakia). The slope of the relationship between the two
datasets is 0.26, while the slope of the relationship with Glo-
REDa is 0.5 – although given that this dataset is used to cal-
ibrate GloREDa, this is not unexpected. Although the spa-
tial patterns in Italy are reproduced by the IMERG data, the
values obtained are in some cases an underestimation across
much of Italy, which has a very high number of gauges rep-
resented in the REDES dataset. IMERG and other satellite
rainfall datasets have lower accuracy in topographically com-
plex settings, and worse performance of IMERG in captur-
ing intense rainfall in the mountainous parts of Italy and the
Carpathians may be one of the reasons for the underestima-
tion of the IMERG-based erosivity estimates, although fur-
ther research and comparison with ground-based gauges is

certainly warranted. Recent research has shown that satellite
rainfall datasets, including IMERG, may consistently under-
estimate the total amounts of heavy and storm rainfall (Marc
et al., 2022; Chen et al., 2023).

3.4 Monthly estimates

The month-by-month estimates for erosivity for the year
2020 using the 30 min data are shown in Fig. 6, separated
by continent. The violin plots in Fig. 6 show the range of the
data as well as the mean (red bars) and median (black bars).
Given the large size of each continent, there is a significant
degree of variability across all continents; Europe and Aus-
tralia show lower mean and median values across the year
than the other continents, but across the entire dataset there
is enormous variability in each month, and only limited vari-
ability is observed from month to month as a result of sea-
sonal rainfall variability.

Since the scale of each continent is so large that interan-
nual variability may be difficult to observe, I have subset the
monthly data to areas where cropland is present. Using the
cropland data of Ramankutty et al. (2008), I have selected
only the cells from each continent where the cropland propor-
tion exceeds 80 % (Fig. 7). Much more significant variability
is observed on a month-to-month basis, with larger peaks in
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Table 2. Statistics of the erosivity estimates for each continent for the GloREDa and 30 min IMERG data. Units for all values are
MJ mm ha−1 h−1 yr−1.

Continent 30 min 30 min 30 min IMERG GloREDa GloREDa GloREDa
IMERG mean IMERG median standard deviation mean median standard deviation

North America 839.2 361.9 1358.9 1676.3 744.8 2072.3
South America 3367.1 2656.4 3138.4 5895.4 6266.3 3361.5
Europe 484.1 350.8 525.6 550.5 402.9 414.4
Asia 1313.6 153.5 2978.1 1856.7 398.6 2927.3
Africa 1231.5 708.3 1487.2 3356.8 2619.3 2977.6
Australia 659.5 215.7 1099.4 1533.9 950.7 1596.2
Oceania 4802.1 2375.7 5127.0 4100.8 2254.1 4539.9

Figure 5. Comparison of gauge-derived erosivity estimates. (a) R values from the gauge-based REDES database (Panagos et al., 2015). (b)
R values from the 30 min IMERG-derived estimates. The colour scheme for both datasets is the same, allowing for comparison of spatial
results.

erosivity observed in Africa and Asia in June–July–August
and in South America from January to March and smaller
peaks in erosivity in North America and Europe. Note that
there are insufficient data in Oceania with cropland higher
than 80 % to show statistics. By subsetting the gridded data
to areas with significant cropland, I highlight the impact of
erosivity on agricultural areas and the months of the year
where erosivity is of greater concern for farmers and plan-
ners across those continents.

4 Discussion

4.1 Divergence from ground-based data

It is clear that although there are some areas, particularly in
northern Europe, where the 30 min IMERG-based estimates
and those of GloREDa broadly agree, there are large areas
of the world where the ratio of the two estimates remains
well under 1 : 1. Moreover, there are a range of other areas
– in particular several coastal areas – where the IMERG-

based estimates are much larger than those of GloREDa. It
is likely that multiple systematic effects lead to these differ-
ences, and it is informative to examine the divergence be-
tween the two estimates in more detail to assess the robust-
ness of the IMERG-derived estimates of erosivity.

While the IMERG-based estimates use the coefficients for
erosivity defined by the USDA (2013) for the updated ver-
sion of RUSLE, GloREDa uses the earlier coefficients. I have
calculated the 3 h erosivity estimate for both equations to
test whether this would lead to major systematic differences.
The difference in coefficients does not lead to large diver-
gences, and the two estimates are extremely highly corre-
lated (Fig. S3). The updated RUSLE gives values that are
slightly larger than the earlier equation (approximately 1.1
times larger). With all else being equal, this would suggest
the 30 min IMERG data should give a value approximately
1.1 times larger than GloREDa; however, the IMERG re-
sults are in fact systematically lower (global slope: 0.56).
As such, although this might explain some of the dissimi-
larity between GloREDa and the 30 min IMERG values, it
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Figure 6. Monthly variability in erosivity calculated using IMERG 30 min data, for each continent for the year 2020–2021. Median values
are shown in black, and mean values are shown with a red bar. Note that the despite the data being shown at a monthly interval, the units
remain the same as for the annual erosivity, since the erosivity values are calculated for a standard annual time period, even though the data
are drawn from monthly data only; this allows for consistent comparison across months of different lengths as well as with annual data.

does not explain the overall lower values of the IMERG esti-
mates. Since research has demonstrated that the coefficients
in RUSLE version 2 better match independent observations
of erosivity in contrast to RUSLE version 1 (McGregor et al.,
1995), I consider it a justified approach to calculate erosivity
in this study.

There are large regional differences in the ratio of the
30 min IMERG estimates and the GloREDa values. In Fig. 8,
I have plotted the spread of values for each continent for the
two estimates, with the red line indicating the line of best
fit, and the black line indicating the 1 : 1 line. It is notable
that continent where the values most closely fit the 1 : 1 line
is Europe, followed by Asia. Elsewhere, the IMERG esti-
mates are significantly lower. The GloREDa estimates are
derived from a global set of rainfall gauges, but the highest
density of gauges by a significant degree is in Europe (Pana-
gos et al., 2017). The higher degree of agreement between
the IMERG and GloREDa estimates for erosivity is found in
the areas with the highest density of gauges – in other words,
where the ground-based estimates have the highest degree of
calibration and validation. IMERG uses the Global Precip-
itation Climatology Center gauges to calibrate the satellite-
derived estimates (Huffman et al., 2019); the Global Precip-
itation Climatology Center has a higher density of gauges in

North and South America, Africa, and Southeast Asia than
the gauges used in the GloREDa analysis (Panagos et al.,
2017). While both IMERG and GloREDa use spatial inter-
polation techniques, IMERG weighs the satellite inputs more
heavily in areas where gauge density is lower (like Africa
and South America), whereas GloREDa does not. Given that
the two estimates have better agreement in terms of abso-
lute values where GloREDa has the highest gauge density, I
suggest that the disagreement elsewhere may be due to the
lower number of available data from ground-based sources,
whereas the satellite data provide a globally consistent esti-
mate, which may be more robust for calculating erosivity.

In several desert areas around the world, including
the Atacama and Namib deserts, GloREDa values exceed
100 MJ mm ha−1 h−1 yr−1, but given that in some of these
areas annual rainfall is lower than 10 mm, the high values
in GloREDa are physically implausible. While some studies
have shown IMERG v06 can overpredict rainfall in the Ara-
bian Desert (Alsumaiti et al., 2020), the exclusion of storm
events with less than 12.5 mm of rainfall in total would also
exclude the small systematic error from satellite overpre-
diction of very low rainfall totals in desert zones from in-
fluencing erosivity estimates. This further supports the use
of IMERG over sparse-gauge-based estimates for erosivity.
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Figure 7. Monthly variability in erosivity calculated using IMERG 30 min data, for each continent for the year 2020–2021. In this figure,
only grid cells where the proportion of cropland exceeds 80 % are shown. Median values are shown in black, and mean values are shown
with a red bar. Note that the despite the data being shown at a monthly interval, the units remain the same as for the annual erosivity, since
the erosivity values are calculated for a standard annual time period, even though the data are drawn from monthly data only; this allows for
consistent comparison across months of different lengths as well as with annual data.

Conversely, IMERG may miss highly local peaks in oro-
graphic precipitation – one example is the island of Maui
in the Hawaiian island chain, where local maxima in rainfall
can exceed 5000 mm of annual rainfall; however, this is not
captured by the coarse IMERG data. As such, the satellite-
derived estimates may be outperformed by gauge-based es-
timates where gauge density is very high or able to capture
localized maxima.

It is important to note that GloREDa is also an interpo-
lated dataset and as such may have inaccuracies if gauge den-
sity is low. When directly compared with the REDES gauge-
based dataset, the IMERG data reproduce some of the spa-
tial patterns but clearly have other limitations. The signifi-
cant overestimation of erosivity in the coastal Atlantic areas
of the UK, Ireland and Portugal (Fig. 5) supports the anal-
ysis of prior work (e.g. Tian and Peters-Lidard, 2010) that
shows that satellite rainfall products have larger uncertainties
in coastal regions, and as such the use of IMERG-derived
results in such areas may not provide accurate estimates in
these areas.

As well as continent-by-continent differences, there are
other clear zones of divergence between the IMERG and
GloREDa estimates. As mentioned above, these include sev-
eral coastal areas in India, in Southeast Asia, and along

the Pacific coastlines of Colombia and Canada, where the
IMERG estimates exceed those of GloREDa by a significant
degree (Fig. 3). Although these areas may be subject to the
coastal biases associated with all satellite rainfall products,
these areas are all areas where both IMERG (Fig. S4) and
GPCC-gauged rainfall is extremely high (Schneider et al.,
2014), and the IMERG-derived erosivity estimates broadly
mirror the spatial patterns observed in the annual gauged
rainfall totals. Further research is needed to determine the
erosivity of rainfall in these areas with lower gauge density
to determine whether satellite-based estimates can be relied
upon.

4.2 Limitations of IMERG-based erosivity estimates

Although IMERG provides a globally consistent estimate of
rainfall, limitations remain both with the rainfall data and
the calculation of erosivity. Since satellite observations of in-
tense rainfall depend upon the satellite overpasses coinciding
with the time of the local rainfall, it is possible that large and
particularly intense short peaks in rainfall (particularly when
associated with infrequent tropical storms) may be missed by
satellite rainfall products (Marc et al., 2022). Although ero-
sivity of rainfall does not scale in a strongly non-linear man-
ner with rainfall intensity, these extreme storms may con-
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Figure 8. Comparison of cell-by-cell values for GloREDa (x axis) and the 30 min IMERG-derived erosivity estimate (y axis) for each
continent. The black line in each figure shows the 1 : 1 relationship, while the red line is the linear regression estimate of the best fit line for
the data. Below each figure, the slope and intercept of the best-fit line are shown. All values have units of MJ mm ha−1 h−1 yr−1.

tribute a large proportion of overall annual rainfall in some
settings (Khouakhi et al., 2017; Marc et al., 2022), so if these
rainfall peaks are missed by the satellite observations, then
rainfall erosivity may still be underestimated. It is notable
that the IMERG-derived results are lower than the gauge-
derived results in a number of locations and are lower on
average in all continents except Oceania (Table 2), and so
underestimation of rainfall events driving erosivity may be
a reason for this. Bezak et al. (2022) highlighted that 11 %
of all rainfall events contribute 50 % of the erosivity, so it
is particularly relevant not to miss these very large events.
Since IMERG may miss very short-lived rainfall events, it
is especially important if rainfall driving erosion is from ex-
tremely short-lived rainfall events rather than longer storms.
To explore this, I have analysed storm histories from four
locations around the world; two in areas of concern for soil
erosion (near Wichita, USA, and Lucknow, northern India);
one in a critical region of degradation where the IMERG esti-

mate exceeds GloREDa (central Sierra Leone); and one near
San Pedro de Atacama, in the dry desert of northern Chile. In
Chile, only three rainfall events are observed over the entire
2000–2021 interval. In the other locations, I tested what pro-
portion of the storm events in each location is formed by the
30 min period of rainfall and compared that to the total storm
rainfall. Storms where the most intense short bursts of rain-
fall make up most of the total rainfall are likely to be more
underestimated by IMERG in comparison with storms where
more consistent rainfall is observed. In Fig. S5a–d, I show
the fraction of total rainfall in each storm from the 30 min
peak rainfall vs. the cumulative kinetic energy from rainfall.
In Sierra Leone and Lucknow, more than 80 % of rainfall
kinetic energy is derived from storms where the 30 min in-
terval of peak intensity is less than 50 % of total rainfall. In
Wichita, the storms are more dominated by the short-term in-
tense rainfall: 80 % of kinetic energy is derived from storms
where the maximum 30 min rainfall forms up to 80 % of to-
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tal storm rainfall. I suggest that in locations like Wichita,
IMERG may be more subject to missing short-term bursts
of rainfall. This may explain why IMERG is lower than Glo-
REDa in Wichita and the US south-east.

In addition, the spatial resolution of IMERG data is large
(0.1 decimal degrees), and so observations of local variabil-
ity in rainfall totals as a result of orographic boundaries or
other microclimatic differences will be limited by resolution.
However, agricultural zones with relatively low topographic
variability are more likely to be represented fairly, and these
zones may be more critical for the socio-economic impacts
of soil degradation by rainfall erosion. I have compared the
30 min IMERG-derived erosivity estimates with the ground-
based estimates from GloREDa and plotted the ratio of the
two estimates in comparison with the maximum topographic
slope calculated in each grid cell (Fig. S6). The maximum
slope is calculated from the NASA SRTM data (Farr et al.,
2007). There is not a significant change in the difference be-
tween IMERG and GloREDa as slope increases, which sug-
gests that slope does not significantly control the differences
between satellite and ground-based estimates.

As noted above, there are limitations with the simplifica-
tions used to generate the MFI and 3 h erosivity estimates.
The MFI value is only appropriately applied to climatically
homogenous zones, which suggests a global MFI value is un-
likely to be appropriate; moreover, the conversion from MFI
to R factor is neither consistent nor agreed upon in the pub-
lished literature. Despite the lower computational require-
ments to calculate MFI, I suggest that the limitations asso-
ciated with it mean that the 30 min version should be con-
sidered superior and used wherever data and computational
capacity are available. While there is a good degree of agree-
ment between the 3 h estimate and GloREDa, prior research
has shown that the 3 h simplification of TRMM-era satellite
rainfall data may reduce the accuracy of the results (Vrieling
et al., 2010), and the 30 min data are the only data source that
can provide the appropriate temporal resolution (Bezak et al.,
2022).

Other satellite-derived rainfall products are available, in-
cluding GSMaP (Kubota et al., 2007, 2020) and the hybrid
MSWEP (Beck et al., 2017), but since GSMaP is available
only at a 1 h temporal resolution and MSWEP at 3 h maxi-
mum temporal resolution, neither of these products are ap-
propriate to calculate rainfall erosivity. Bezak et al. (2022)
have used CMORPH to calculate rainfall erosivity glob-
ally, since it is available at 30 min temporal resolution. Both
IMERG and CMORPH use passive microwave observations
which are spatially propagated before infrared precipitation
observations are incorporated. Both algorithms use a variety
of methods to interpolate observations, and in fact IMERG
uses the CMORPH Kalman filter Lagrangian time interpo-
lation scheme (Joyce et al., 2004, 2011). The two prod-
ucts perform comparably when compared with observations
(Alsumaiti et al., 2020; Llauca et al., 2021; Mekonnen et
al., 2021; Montes et al., 2021; Nwachukwu et al., 2020),

although several studies have suggested that version 6 of
IMERG performs better than CMORPH across a diverse set
of climatological regimes (Llauca et al., 2021; Mekonnen et
al., 2021; Montes et al., 2021; Tang et al., 2020). It is not my
intention in this study to adjudicate which of the two satellite
products performs better but instead to demonstrate the use
of IMERG data to estimate erosivity in the same manner as
Bezak et al. (2022) did with CMORPH.

4.3 Erosivity in arable zones

The implications of these erosivity estimates for geomorpho-
logical processes vary depending on the location. In steep,
mountainous regions, the dominant process of erosion is
bedrock landsliding (e.g. Hovius et al., 1997; Marc et al.,
2019), while the impact of overland flow and rain splash on
erosion of surficial materials contributes a smaller propor-
tion of overall erosional fluxes. RUSLE-based approaches
do not consider bedrock landsliding, and as a result these
erosivity estimates are not as relevant in steep, upland ar-
eas. The extremely high erosivity values observed in, for ex-
ample, Papua New Guinea and the Eastern Himalayan Syn-
taxis may therefore not be directly correlated with overall
erosional fluxes from these regions where bedrock landslid-
ing is more dominant (Hovius and Stark, 2006).

Soil loss by purely rain-driven processes is highly rele-
vant in areas of agricultural cultivation, in part due to broadly
lower topographic steepness but also because of the potential
impact of soil degradation on agricultural productivity. As
such, I have compared the 30 min IMERG erosivity estimates
with datasets on the location of cropland and pastures around
the world (Ramankutty et al., 2008) to assess whether highly
agriculturally productive areas experience high erosivity val-
ues or not.

At low crop densities, there is a somewhat higher variabil-
ity in erosivity values than at higher crop densities (Fig. 9).
This is especially pronounced in Asia and North America.
At higher crop densities, erosivity values are more consis-
tent. The mean value of erosivity remains relatively consis-
tent across all crop densities, with the exception of Europe,
where at moderate to high crop density, erosivity declines.
This suggests that the location of cropland is subject to lower
rainfall erosivity in Europe but not elsewhere. Ramankutty
et al. (2008) also generated estimates of pastureland, which
is also a critical area for soil loss as a result of erosion. I
have compared pasture area with the 30 min IMERG estimate
of erosivity (Fig. S7). Unlike cropland, in both North Amer-
ica and Asia as the proportion of pastureland increases, the
erosivity decreases. This suggests that pastureland may be
less vulnerable to highly erosive rainfall than cropland across
these two continents. Although these are very spatially coarse
assessments, by cross-comparing where highly erosive rain
falls with agricultural zones, it is possible to highlight areas
of concern for soil degradation. It is notable that the vari-
ability in erosivity is significantly greater across continents
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Figure 9. Two-dimensional histogram of the cell-by-cell values of the 30 min IMERG estimate (y axis, note logarithmic scale) and the
fraction of cropland in that cell (Ramankutty et al., 2008). The colour scale indicates the number of cells with those values. The figure shows
the values distributed across each continent; continent labels are shown in the legend. The red line in each figure indicates the moving mean
for different crop fractions.

when agricultural zones are subset (compare Figs. 6 and 7
for South America and Africa, for example), which likely re-
flects the seasonality of rainfall in agricultural areas. Highly
seasonal rainfall patterns would naturally drive variability in
agricultural productivity but also erosivity; planning for the
growing season and the erosion season must therefore be
considered side by side. However, it is also critical to note
that soil erosion is not entirely dependent on rainfall erosiv-
ity, and to fully contrast areas of concern for erosion and
agricultural areas, further research will need to incorporate
the other parameters in RUSLE including topography, land
cover and land management practices.

While the probability density functions of the 30 min
IMERG erosivity and GloREDa erosivity estimates (Fig. 4)
show a broadly similar two-peak distribution (albeit with the
higher erosivity peak in the GloREDa estimates offset some-
what to higher values), when I limit the data to only the areas

with cropland greater than 80 % (Fig. S8) or pasture greater
than 80 % (Fig. S9), there is a significantly larger proportion
of values in the GloREDa estimates at higher erosivity val-
ues. For areas with 80 % or more cropland, the lower peak
in erosivity values overlaps for the IMERG and GloREDa
data (although mean values are higher for GloREDa, and the
modal value is found in the second peak rather than the first
as in the IMERG results), but for areas with 80 % or more
pastureland, the entire density function of GloREDa results
is significantly higher than that of the IMERG-derived ero-
sivity. This comparison shows that the satellite estimates of
erosivity suggest that global cropland and pasture areas are
subject to lower rainfall erosivity than the ground-based esti-
mates previously indicated.
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5 Conclusions

In this study, I have used the IMERG satellite-derived pre-
cipitation product to generate a global estimate of rainfall
erosivity. I have tested three methods, including two simpli-
fications of high temporal-frequency data, and while these
do produce similar global patterns of erosivity to the 30 min
data I suggest that the estimate derived from the 30 min data
is the most appropriate global model, not only because it pro-
vides a closer approximation of ground-based values in areas
where the density of ground-based gauges used by GloREDa
(Panagos et al., 2017) is greatest but also since it allows for
the equations used in the standard formulation of the widely
used RUSLE to be fully applied without simplification. A
further benefit of this approach is that it allows for rapid cal-
culation of monthly erosivity estimates, allowing researchers
and practitioners to assess the peaks and troughs in erosivity
across each year rather than a single static value.

When contrasted with ground-based estimates, the
IMERG-derived erosivity estimates are more similar in Eu-
rope, where the density of gauges used to calculate the
ground-based estimate is higher, but in many other areas –
and in particular areas of high cropland and pasture density
– the IMERG estimates show lower erosivity values. Further
research is necessary to ground-truth the IMERG-based esti-
mates of erosivity in these data-poor areas and to test whether
satellite-derived erosivity can be used in place of gauges, thus
maximizing the use this globally consistent dataset for ero-
sivity.

Code and data availability. The IMERG data were provided by the
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develop and compute IMERG version 06B as a contribution to the
Global Precipitation Monitoring mission, and archived at the NASA
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found in the text. Datasets on global crop production and yield are
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