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Abstract. Large datasets of long-term streamflow measure-
ments are widely used to infer and model hydrological pro-
cesses. However, streamflow measurements may suffer from
what users can consider anomalies, i.e. non-natural records
that may be erroneous streamflow values or anthropogenic
influences that can lead to misinterpretation of actual hydro-
logical processes. Since identifying anomalies is time con-
suming for humans, no study has investigated their propor-
tion, temporal distribution, and influence on hydrological in-
dicators over large datasets. This study summarizes the re-
sults of a large visual inspection campaign of 674 streamflow
time series in France made by 43 evaluators, who were asked

to identify anomalies falling under five categories, namely,
linear interpolation, drops, noise, point anomalies, and other.
We examined the evaluators’ individual behaviour in terms of
severity and agreement with other evaluators, as well as the
temporal distributions of the anomalies and their influence on
commonly used hydrological indicators. We found that inter-
evaluator agreement was surprisingly low, with an average
of 12 % of overlapping periods reported as anomalies. These
anomalies were mostly identified as linear interpolation and
noise, and they were more frequently reported during the
low-flow periods in summer. The impact of cleaning data
from the identified anomaly values was higher on low-flow
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indicators than on high-flow indicators, with change rates
lower than 5 % most of the time. We conclude that the iden-
tification of anomalies in streamflow time series is highly de-
pendent on the aims and skills of each evaluator, which raises
questions about the best practices to adopt for data cleaning.

1 Introduction

Water is essential for the wellbeing of our societies, as it sup-
ports recreational activities, biodiversity, agriculture, indus-
trial development, and fresh water supply. Yet water, and also
lack of water, can become a threat during extreme events
such as floods (Merz et al., 2021) and droughts (Blauhut
et al., 2022). This highlights the importance of management
strategies based on scientific understanding of hydrological
processes in order to mitigate their impacts. The starting
point of the learning framework proposed by Dunn et al.
(2008) is the acquisition of field data (e.g. river streamflow)
to hypothesize and conceptualize the functioning of a catch-
ment before making predictions.

Acquiring long-term data is a crucial step in studying the
water cycle and its interactions with natural (i.e. without
human influences) and anthropogenic drivers in the atmo-
sphere, biosphere, and lithosphere (Gaillardet et al., 2018).
A well-distributed monitoring network is required to cover
the spatial heterogeneity of these interactions within large
territories and to improve the robustness of statistical analy-
ses and models by increasing the number of available obser-
vations from a wide range of probability distributions (An-
dréassian et al., 2006; Gupta et al., 2014; Lloyd et al., 2014).

High-quality streamflow measurements are needed for de-
tecting non-stationarity in river flow regimes due to global
change. Long-term streamflow monitoring has enabled data
analyses that revealed increasing trends in the frequency of
severe floods (Hisdal et al., 2001; Kundzewicz et al., 2013;
Blöschl et al., 2019; Gudmundsson et al., 2021; Hannaford
et al., 2021), drought intensification (Vicente-Serrano et al.,
2014, 2019; Blauhut et al., 2022), and changes in intermit-
tent river flow regimes (Sauquet et al., 2021). In addition,
Meerveld et al. (2020) highlighted inconsistencies between
the proportion of potential temporary streams and the oc-
currence of zero flows reported over 730 gauging stations.
Thus, checking flow records before applying statistical tests
is a crucial but delicate task for which there are no common
technical guidelines to date, especially for large datasets.

Beyond data analysis, streamflow datasets have been used
to set up, calibrate, and evaluate hydrological models through
a variety of studies. For example, Chauveau et al. (2013) de-
scribed the Explore2070 project that used more than 1000
gauging stations to simulate changes in surface water in
France by 2065. Forzieri et al. (2014) used a large set of 446
gauging stations to evaluate their model before addressing
the future of streamflow drought characteristics across Eu-

rope. de Lavenne et al. (2019) used streamflow time series
of 1305 French gauged catchments to evaluate a constrained
calibration method of semi-distributed hydrological models.

However, measurements may suffer from flaws that lead to
streamflow values that do not reflect the reality (Beven and
Westerberg, 2011; McMillan et al., 2012; Wilby et al., 2017).
First, instruments are subject to surrounding factors, such as
extreme temperatures or humidity that may alter their func-
tionality. In addition, errors can occur when there is infre-
quent instrument maintenance because of access issues, for
example, which can lead to bias in the measurement. More-
over, streamflow is estimated from the conversion of the river
water level with respect to a rating curve (Herschy, 2008),
which is only valid for given conditions. Thus, measurement
errors can occur when the river water level is outside the mea-
surement range of the instrument or the rating curve. Besides,
the riverbed may change during extreme events, which can
compromise the validity of the rating curve. Finally, missing
data are often filled using interpolation methods during post-
processing. Streamflow time series may also include anthro-
pogenic influences (known or unknown to data users), such
as agricultural practices with artificial drainage or irrigation,
river management with compensation flows, industry with
water intakes/releases, and reservoir management for hydro-
electric power plants (Wilby et al., 2017).

All these flaws, hereafter called “anomalies” (Leigh et al.,
2019), are considered disinformative data (Beven and West-
erberg, 2011) that may not reflect the natural streamflow dy-
namics, eventually leading to misinterpretation of hydrolog-
ical processes. Wright et al. (2015) found that the leverage
effect of individual influential data points could substantially
influence streamflow predictions depending on the catchment
and the model structure. Lamontagne et al. (2013) argue that
outliers (i.e. unusually small values compared to the rest of
the data) might compromise the accuracy and validity of
flood quantile estimation. Therefore, it is crucial to carefully
examine the data before trying to make inferences about hy-
drological processes.

Promising techniques exist for detecting anomalies in wa-
ter quality and urban water networks (Leigh et al., 2019).
These methods often use multivariate analyses that include
multiple covariates (when available) or a combination of
methods to better detect short- and long-term anomalies in
water quality time series (Muxika et al., 2007; Leigh et al.,
2019; Rodriguez-Perez et al., 2020) and water level time se-
ries (van de Wiel et al., 2020). However, visual inspection of
data is still highly recommended (Barthel et al., 2022) be-
cause automatic methods can suffer from misclassification
of data points that may require user intervention afterward
(Leigh et al., 2019; van de Wiel et al., 2020). In addition,
choosing the most appropriate methods for anomaly detec-
tion depends on the goal and expertise of end users (Leigh
et al., 2019). Sebok et al. (2022) used experts’ knowledge
to qualitatively evaluate the ability of models to predict fu-
ture hydrological and climate conditions and concluded that
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expert elicitation can help to weight and thus decrease the
influence of improbable hydrological models. Crochemore
et al. (2015) compared numerical criteria of model perfor-
mance with experts’ visual evaluations of hydrographs and
concluded that none of the numerical criteria can fully re-
place expert judgement when rating hydrographs. Yet, identi-
fying anomalies for a large dataset is time consuming, and, as
far as we know, no study has focused on the identification of
such data in a large dataset of streamflow time series. There-
fore, questions remain on their proportion, temporal distribu-
tion, and influence on classic hydrological indicators.

This study aims at exploring the results of a large cam-
paign of visual inspection of hundreds of daily streamflow
time series in order to detect anomalies: (1) we evaluated
the subjectivity of the individual evaluators in terms of the
quantity of data reported as anomalies and the agreement
with other evaluators; (2) we analysed the frequency and
the temporal changes for each type of anomaly; and (3) we
evaluated the influence of the anomalies on the calculation
of classic high- and low-flow hydrological indicators. This
study provides useful insights into disinformative hydrologi-
cal data that might help researchers assess the quality of their
datasets, in addition to drawing the attention of data produc-
ers on how streamflow monitoring could be improved in the
future.

2 Methods

2.1 Data

An initial number of 674 gauged stations were selected in
the French HydroPortail database (https://hydro.eaufrance.
fr/, last access: 1 September 2021). The ultimate goal of
this catchment set is to serve as a reference streamflow net-
work for the Explore2 project (https://professionnels.ofb.fr/
fr/node/1244, last access: 1 June 2023) that aims to assess
the impact of future climate change on water resources in
France during the 21st century. Consequently, it is neces-
sary to identify a large set of streamflow stations that provide
uninfluenced daily data both for qualifying the natural hy-
drology and for assessing the performance of daily rainfall-
runoff models that are used to simulate future streamflows
from climate projections. The criteria of selection of these
stations, based on information given in different national
databases, were as follows: (1) low and no anthropogenic in-
fluence displayed in the database; (2) good data quality for all
flow regimes displayed in the database (Leleu et al., 2014);
(3) available length of the time series greater than 26 years at
a daily time step between 1976 and 2019, to mitigate decadal
variability; and (4) a drained area larger than 64 km2, which
corresponds to the area of a pixel from the French SAFRAN
reanalysis (Vidal et al., 2010b).

The catchment set covers metropolitan France well with
a variety of hydrological, geological, topographical, and cli-

Figure 1. (a) Locations and (b) number of available observed
streamflow data (per day) for the 674 gauged stations in France.

matic contexts, except for the western part because of the
high agricultural influence on streamflow (Fig. 1a). The
catchment area of the 674 selected gauged stations ranges
from 64 to 111 570 km2 (mean and median of 1278 and
263 km2). The available length of streamflow time series
ranges from 26 to 44 years (mean of 39.5 years). The num-
ber of available streamflow observations for each day ranges
from 503 to 667 stations between 1976 and 2019 (mean of
605 stations, Fig. 1b).

2.2 Visual inspection of streamflow time series

The Explore2 project focuses on natural streamflow to eval-
uate the hydrological models. However, the streamflow time
series could be affected by errors or influences, even though
they have been marked as having low anthropogenic influ-
ence and good quality. Thus, the first objective of the vi-
sual inspection of the dataset was to identify stations that
were largely influenced by anthropogenic activity (i.e. hy-
dropower production, low-water level support, and reservoir
management). The visual inspection involved the participa-
tion of 43 evaluators, mostly academic (80 %) and opera-
tional (20 %) hydrologists of varying levels of experience
(24 %, 38 %, and 38 % were considered novice, advanced,
and senior, respectively). Each evaluator analysed different
number of time series (later on specified in Fig. 3), based on
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(1) their availability and willingness to analyse a given num-
ber of time series; (2) their preference for some hydrographic
zones, linked to their expertise, when pertinent; and (3) ran-
domness to attribute the remaining time series. The first step
led to the exclusion of 63 stations from the analysis, based
on the general feedback given by the evaluators. For these
excluded stations, the evaluators mentioned time series that
contained too many anomalies to be reported individually,
inconsistency of data over several years compared to the rest
of the time series, the absence of any clean summer period,
or too large a proportion of missing data filled in by linear
interpolation. In addition, data producers helped to identify
the potential presence of anthropogenic influences for some
of these time series.

The second objective was to visually identify anomalies,
i.e. periods when the dynamics of streamflows does not seem
natural (e.g. due to dam operation, water withdrawal, instru-
ment failures, unit conversion, or post-processing errors), for
the remaining 611 stations. All subsequent analyses were
conducted with these 611 stations and the remaining 42 eval-
uators (since one of the evaluators only analysed stations
among those that were excluded).

An evaluation protocol was established in order to allow
evaluators to report anomalies. All evaluators participated in
online meeting sessions, the main objectives of which were
to remind them of the goal of the work and of the evalu-
ation protocol for the time series, to answer any questions
about the work, and to enable discussions around any diffi-
culties encountered. Each evaluator had access to a batch of
streamflow time series (in HTML format; see an example in
Fig. A1) and to a spreadsheet to report the period and type of
anomaly as well as to provide any additional comments that
they deemed necessary.

The HTML file was composed of three dynamic pan-
els displaying the time series of (1) catchment-aggregated
solid and liquid precipitation, and air temperature based on
the SAFRAN analysis; (2) streamflow time series in a lin-
ear scale; and (3) streamflow time series in a logarithmic
scale to highlight potential anomalies for low flows. In or-
der to help identify anomalies, simulated streamflow time se-
ries were also displayed, although we emphasized that sim-
ulated streamflow could also be flawed and should not be
considered an absolute reference. We used the GR5J lumped
rainfall–runoff model (Pushpalatha et al., 2011) together with
the CemaNeige snow accumulation and melt model (Valéry
et al., 2014) calibrated on the original time series of stream-
flows in the airGR package (Coron et al., 2017, 2020) to pro-
duce these simulations.

One spreadsheet was provided to each evaluator for every
analysis session (usually consisting of a set of 5–10 time se-
ries to analyse). This spreadsheet comprised one tab per sta-
tion that each evaluator had to fill in. The required fields for
each anomaly identified were its start date, its end date, and
the type of anomaly. In addition, the evaluator could provide
a general comment on the station. We proposed five types

Table 1. Examples of union and intersection of anomalies at a single
time step.

Evaluator 1 Evaluator 2 Union Intersection Case

Anomaly A Anomaly A Anomaly A Anomaly A (1)
Anomaly B Anomaly A Disagreement Disagreement (2)
Anomaly A – Anomaly A – (3)
– Anomaly A Anomaly A – (4)
– – – – (5)

of anomaly, namely, linear interpolation, drops, noise, point
anomalies, and other (Fig. 2). Linear interpolation consists
of periods showing a straight line often due to a filling in
of a period with missing data. Noise consists of a periodic
pattern in the streamflow time series that may be related to
hydro-electricity production or an unknown perturbation in
the measurements. Drops consist of a sudden decrease in the
measured streamflow that may be due to water management
or technical failures of the instrument. Point anomalies are
short-term variations of the streamflow that may be related
to the maintenance of the instrument or, for example, to the
presence of debris in the river. Evaluators could assign the
rating of “other” when an anomaly did not fit any of the four
previous types or was a combination of several of them.

We estimated the time needed to evaluate one station
to be approximately 10–15 min per evaluator, although we
have not set a time limit. Since this exercise is subjective,
each time series was analysed by two different evaluators.
This allowed a comparison to be made of the subjectivity in
anomaly detection between each evaluator, as well as a better
coverage of anomalies in the time series.

2.3 Data analysis

2.3.1 Combining the feedback

We tested two methods for combining the analyses from
the pairs of evaluators for each station: the union and the
intersection of the anomalies (Table 1). The union of the
anomalies consists of considering a streamflow value to be
an anomaly in the time series if at least one of the evaluators
identified it as an anomaly. The type of union of anomaly
attributed to a value is either the anomaly type identified
by both evaluators if they agree (or if the second type of
anomaly is “other”, case 1), the anomaly type identified by
one evaluator if the other one identified no anomaly (Table 1,
cases 3 and 4), or “disagreement” if both evaluators identi-
fied different types of anomaly (Table 1, case 2). A value is
considered valid if none of the two evaluators identified an
anomaly (Table 1, case 5). The pros of using the union of
the anomalies is a better confidence in the number of anoma-
lies detected in the time series, at the expense of an increased
number of potentially false-positive anomalies detected.
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Figure 2. Actual examples of the four types of anomalies that could be detected in the dataset.

The intersection of the anomalies consists of considering
a streamflow value to be an anomaly in the time series only
if both evaluators identified an anomaly, even if the types of
anomaly were different (Table 1, cases 1 and 2). A value is
considered valid if at least one of the evaluators did not iden-
tify an anomaly (Table 1, cases 3–5). The pros of using the
intersection of the anomalies is having better confidence in
the anomaly of the values identified, at the expense of miss-
ing potential anomaly values in the time series (false neg-
ative). These two methods for combining feedback will be
compared later, and the union method will be ultimately kept
for further analyses (see Sect. 3.1).

2.3.2 Analysis by evaluator

We analysed the individual behaviour of each evaluator in
terms of sensitivity and agreement in the identification of
anomalies with other evaluators. First, we computed the per-
centage of time identified as an anomaly by each evaluator
and by station (Eq. 1) in order to assess the variability among
evaluators.

Pa =
Da

DQ
, (1)

where Pa is the percentage of anomaly, Da and DQ are the
duration (in days) of anomalies and available discharge time
series. Second, we estimated the individual agreement of
each evaluator with their associated pair when an anomaly
was detected. We computed this inter-evaluator agreement
for each station as the ratio between the sum of the intersec-

tion of anomalies and the union of anomalies (Eq. 2).

Ae =
Di

a
Du

a
, (2)

where Ae is the inter-evaluator agreement, and Di
a and

Du
a are the duration of the anomaly considering the intersec-

tion and the union of evaluators feedbacks, respectively. The
inter-evaluator agreement ranges from 0 % for no agreement
at all to 100 % for a total agreement between the two evalu-
ators. We attributed an inter-evaluator agreement of 100 % if
none of the pairs of evaluators found any anomaly in a time
series.

2.3.3 Analysis by type of error

We compared the inter-evaluator agreement for each type
of anomaly by looking at the associated distribution of all
anomaly types (i.e. how many times linear interpolation is as-
sociated with linear interpolation, noise, drops, point anoma-
lies, other, and none). The proportional distribution of each
type of anomaly was computed as the ratio between the
length of the union of a specific type of anomaly and the
length of union of all types of anomaly. We also computed
the monthly and yearly temporal distributions for each type
of union of anomalies.

2.3.4 Analysis by station

We assessed the impact of the detected anomalies by com-
puting some hydrological indicators on initial time series and
cleaned time series (i.e. time series for which the anomalies
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were set as missing data). The change rates have been esti-
mated following Eq. (3) for each time series.

Cr =
Ic− Io

Io
, (3)

where Cr is the change rate of hydrological indicators us-
ing initial (Io) and cleaned (Ic) discharge time series. We
opted for nine hydrological indicators that reflect different
parts of the hydrological regime of each river. The sea-
sonal behaviour was computed as the monthly mean interan-
nual streamflow. Low-flow periods were evaluated with the
first and fifth quantiles of the total flow duration curve, the
annual minimum monthly flow with a return period of 5 years
(noted QMNA5), and the annual minimum of a 30 d moving
average of flow with a 5-year return period (noted VCN305).
High flows were evaluated with the 95th and 99th quantiles
of the total flow duration curve and the annual maximum
daily flow with a 10-year return period (noted QJXA10).

3 Results

3.1 Individual behaviour of the evaluators

Each evaluator analysed from 5 to 111 time series, with
a mean of 29 stations per evaluator. The percentage of
time identified as an anomaly ranges from 0 % to 45 % de-
pending on the station and the evaluator, with a median
of 0.7 % (Fig. 3a), showing a high variability among eval-
uators. The median time reported as anomalies ranges be-
tween 0.04 % and 2.92 % according to the different evalua-
tors (Fig. 3a). These median values seem to stabilize around
0.77 %± 0.26 % (mean± standard deviation) for the evalua-
tors who analysed more than 40 stations in comparison with
the other evaluators (0.86 %± 0.72 %). The percentages of
agreement between evaluators were unexpectedly low, with
medians ranging from 0 % to 43 % with a mean of 12 %
for all the evaluators (Fig. 3b). Regarding the proportion of
error identified, the inter-evaluator agreement seems more
stable for evaluators who analysed more than 40 stations
(12 %± 4 %) than for the other evaluators (12 %± 10 %).

The low percentage of inter-evaluator agreement was ob-
served for every type of anomaly. Indeed, when an evalua-
tor identified an anomaly, there was no anomaly identified
by the second evaluator 59 %–74 % of the time (“none” type,
Fig. 4). The higher agreement rates (i.e. both evaluators iden-
tified the same type of anomaly) were for the linear interpo-
lation, noise, and drops with 20, 19, and 11 %, respectively.
The type of anomaly that was the most often associated with
the “other” type was noise (16 %), while the agreement rate
for “other” was only 5 %. Even worse, the agreement rate of
the point anomalies was the lowest of all types with only 2 %
(Fig. 4).

Ideally, evaluators would identify roughly the same doubt-
ful periods, and the intersection of anomalies should be rec-
ommended to clean up the time series, but the surprisingly

low inter-evaluator agreement that we observed would lead
to marginal cleaning of the dataset. For this reason, we will
focus on the union of the anomalies in the next sections.

3.2 Distribution of the anomalies

The most represented anomalies were the linear interpola-
tions (35 % of the anomalies, Fig. 5a), followed by noise
(23 %), other (20.5 %), disagreement (10.2 %), drops (8.2 %),
and point anomalies (3.1 %). The seasonal distribution of
the anomalies shows that they occur more frequently dur-
ing summer than winter months, especially for linear inter-
polations and noise (Fig. 5b). The long-term evolution of
the annual frequency of anomalies seems to decrease from
1976 to 2019 (Fig. 5c), mostly due to a decreasing number
of days identified as linear interpolations and noise. A few
years showed a higher number of anomalies, such as 1976,
1978, 1985, 1989, and 2003 (relative to surrounding years).

3.3 Changes in the length of the time series

The initial length of available data from 1976 to 2019 ranges
between 26 and 44 years with a mean and median of 39.6
and 42 years, respectively (Fig. 6a). The average percentage
of time series identified as an anomaly ranges between 0 %
(for 14 stations) and 46 %, with a mean and median of 2.4 %
and 1.3 %, respectively (Fig. 6b). Cleaning the time series
from these anomalies resulted in a decrease of the mean and
median length of the time series by 1 and 1.45 years, re-
spectively. The length of the clean time series ranges be-
tween 23.5 and 44 years, with a mean and median of 38.6
and 40.6 years, respectively (Fig. 6a).

3.4 Changes in hydrological indicators

We assessed the impact of removing anomalies from the
dataset on hydrological indicators by calculating change
rates in hydrological indicators before and after cleaning the
time series. Removing the anomalies had little or no impact
on the high-flow indicator values, while those of low-flow
indicators could slightly increase.

The higher impacts were observed for Q1, Q5, VCN305,
and QMNA5, with most (first to third quartiles) of the change
rates being between 0 % and 6.4 %, 0 % and 3.9 %, 0 %
and 2.1 %, and 0 % and 3.0 %, respectively (Fig. 7a), while a
substantial proportion of the stations showed higher change
rates for those indicators. Removing the anomalies from the
time series had a lower impact on Q50 with most of the
changes rates being between 0 % and 2.7 % and a negligible
impact on Q95, Q99, and QJXA10 with most of the change
rates lower than 1 %. The change rates of monthly mean
streamflow were also negligible overall (Fig. 7b). Most of the
stations showed change rates in the monthly mean stream-
flow from 0 % to 1 % in winter months and from 0 % to 2.6 %
during summer months; i.e. the monthly mean streamflow in-
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Figure 3. Individual statistics on (a) the percentage of time reported as an anomaly and (b) the inter-evaluator percentage of agreement for
time steps with an anomaly detection. Statistics are displayed by box plots, where the lower and upper hinges correspond to the 25th and
75th quantiles, the vertical bar is the median, the upper and lower whiskers extend up to 1.5 times the interquartile distance from the 25th and
75th quantiles, and the dots are the outliers beyond the end of the whiskers. Each row relates to one evaluator and the number of time series
they analysed. The vertical blue line is the median value considering all evaluators.

creased by less than 2.6 % after we removed the anomalies
from the time series.

4 Discussion

4.1 Subjectivity of the evaluators

One of the main results of our study is the high subjectiv-
ity in detecting anomalies, as reflected by the variability in
the percentage of time identified as anomalies, as well as
in the low inter-agreement on the timing and on the type of
anomaly identified among evaluators. We assessed the rela-
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Figure 4. Percentage of agreement between evaluators for each type of anomaly. Each bar displays the distribution of the type of anomaly
identified by one evaluator when the other evaluator identified the type of anomaly indicated in the bar label. Self-associations (i.e. the same
anomaly identified by the two evaluators) are indicated by black-bordered bars (n= 78 025, 60 108, 21 639, 10 695, and 59 305 d identified
by one evaluator as linear interpolation, noise, drops, point anomalies, and other, respectively).

Figure 5. Distribution of the types of anomalies (a) in percentage of total time identified as anomalies, (b) with respect to month, and (c) with
respect to year for the 611 stations. Each colour relates to a type of error such as displayed in (a).

tionship between these subjective statistics with the level of
experience of the evaluators. The percentage of anomaly re-
ported seems to decrease as the experience of the evaluator
increases; however, the variability between individuals is too
high to conclude a strong relationship.

The high variability in the percentage of time identified as
anomalies (Fig. 3a) might reflect the quality of the time series
that the evaluators had to analyse, which may be heteroge-
neous among the 611 stations. Another explanation could be
that this variability reflects differences in the level of expecta-
tions of the evaluators, therefore suggesting that the individ-
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Figure 6. Distribution of (a) length of initial observed streamflow time series and cleaned observed streamflow time series, and (b) percentage
of time identified as anomalies using the union of anomalies by station. Statistics are displayed by box plots, where the lower and upper hinges
correspond to the 25th and 75th quantiles, the vertical bar is the median, the upper and lower whiskers extend up to 1.5 times the interquartile
distance from the 25th and 75th quantiles, and the dots are the outliers beyond the end of the whiskers. The dashed blue line relates to the
mean of each population.

ual subjectivity is high during visual inspection of stream-
flow time series. This variability seems to stabilize for the
evaluators who analysed more than 40 stations, which raises
two questions: is it related to the variability of the quality
of the station time series that is better estimated over 40 sta-
tions analysed? Did the evaluators gain experience in visual
inspection during the operation, so that their expertise con-
verged toward a value similar to that of other evaluators?

The low overall values of inter-evaluator agreement
(Fig. 3b) reflect the high subjectivity in evaluators that makes
the identification of anomalies highly challenging. This is
true for the identification of the timing of anomalies, al-
though including a margin of 3 or 7 d on the start and end
date slightly increased the inter-evaluator agreement to 15 %
and 17 %, respectively. The subjectivity of evaluators also re-
flects in the attribution of a type of anomaly as shown by
the high proportions of “other” and disagreement types of
anomaly identified (Fig. 5a) and by the low percentage of
self-association of type of anomaly (Fig. 4). It seems that
each evaluator has their own intuition of what is a proper
time series of streamflow and what type of anomaly is iden-
tified. This subjectivity might reflect the variety of expertise
or the level of expectations of hydrologists. One might be
more focused on flood events, thus looking more at high-
flow periods. Another might be more interested in ground-
water flows and the seasonality of the streamflow dynamics.
And yet another might be more interested in droughts, thus
looking for the low-flow dynamics. The subjectivity of hy-
drologists has also been observed during visual evaluations

of model performance (Alexandrov et al., 2011; Crochemore
et al., 2015; Melsen, 2022) and of groundwater hydrographs
(Barthel et al., 2022).

Some anomalies appeared easier to identify than others,
such as linear interpolation and noise (Fig. 5a). One reason
that may explain why linear interpolation and noise were the
most represented anomalies is that they can last for weeks
or months, while point anomalies and drops may last a few
days (mean length of 22 and 73 d for linear interpolation and
noise, respectively), which should also make them easier to
detect, even though the inter-evaluator agreement for linear
interpolation was only 20 % (Fig. 4).

4.2 Temporal distribution and impacts of the anomalies

The annual frequency of anomalies showed a long-term de-
crease (Fig. 5c) that is not related to the number of avail-
able data (see Fig. A2 for the proportion of anomalies by
year). Thus, it may reflect an overall improvement of the
streamflow monitoring techniques or more efficient data
post-processing thanks to software improvements. Another
option is that the data supplier did not have the means to thor-
oughly verify old data that might be inherited from other ser-
vices or from old records. However, the long-term decrease
in anomalies might also be explained by the greater focus
of evaluators on streamflow analysis in the beginning of the
time series, which is supported by the decreasing number
of disagreements after 2000 (Fig. 5c), depicting a behaviour
where evaluators only picked the most obvious anomalies.
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Figure 7. Change rates of hydrological indicators after cleaning the anomalies from the streamflow time series relative to indicators calculated
with the initial streamflow time series. Panel (a) is the distribution of the change rates for quantiles (1, 5, 50, 95, and 99th), low-flow
indicators (QMNA5 and VCN305), and a high-flow indicator (QJXA10), and panel (b) is the distribution of the change rates of monthly
mean streamflows. Statistics are displayed by box plots, where the lower and upper hinges correspond to the 25th and 75th quantiles, the
vertical bar is the median, the upper and lower whiskers extend up to 1.5 times the interquartile distance from the 25th and 75th quantiles,
and the dots are the outliers beyond the end of the whiskers.

The few years showing a higher number of anomalies (1976,
1978, 1985, 1989, and 2003; Fig. 5c) reflect some climatic
events in France, such as the heatwaves and droughts in 1976
and 2003, which may have affected the proper functioning
of the instruments. Indeed, Vidal et al. (2010a) identified all
these years as major drought events related to exceptional
precipitation or soil moisture deficits.

In addition, the temporal distribution of anomaly showed
a seasonal pattern (Fig. 5b) that can be explained by many
factors. The summer months are characterized by low flows,
which are harder to monitor than the medium-to-high flows
because of the resolution of the flow measurement instru-
ments. The summer period is also traditionally a holiday pe-
riod in France, meaning that instruments can be fixed less
promptly. In addition, low-flow periods are proportionally
more impacted by anthropogenic influences such as water
withdrawal, energy production, or water releases. Another
reason might be the use of the logarithmic scale to plot the

streamflow panel of the HTML files provided to the eval-
uators. This scale might have disproportionately magnified
some anomalies that were minor in reality.

Our results show that the mean proportion of time series
identified as anomalies remains relatively low (Fig. 6), even
though we excluded the union of anomalies reported by eval-
uators. Excluding these periods from the initial dataset had
little influence on the length of available data for most of
the stations. It should be noted that these data were pre-
viously labelled as good-quality data in the metadata pro-
vided by the producer. This means that the time series had
been considered as valid before they were made available
in the database, which may explain the low percentage of
data identified as anomalies. However, since the anomalies
were more frequently reported during the summer months
(Fig. 5b), their removal from the time series might induce a
seasonal bias that may impact the calculation of hydrological
indicators.
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Indeed, the change rates were higher for hydrological in-
dicators from July to November and for Q1, Q5, VCN305,
and QMNA5 (Fig. 7), which could have implications from
an operational point of view. We assessed the impact of re-
moving random time steps from streamflow time series in
the same proportion as reported by evaluators (results not
shown). We observed that the change rates for these indi-
cators were larger when removing anomalies using evalua-
tors’ feedback than when removing random time steps. In
addition, the rare stations with a negative change rate sug-
gest that lower flows were more often identified as anomalies
(Fig. 7). These results suggest that wet periods were better
monitored overall than dry periods or that anomalies were
easier to detect during low-flow periods because of the log-
arithmic scale on the streamflow time series we provided to
the evaluators. Some stations displayed as outliers (dots in
Fig. 7) showed changes that are nonetheless larger than de-
scribed above. These higher change rates might be related to
specific cases in our sample of stations or to the proportion
of data removed from the time series. Indeed, a low initial
value of streamflow or few remaining data after removing the
anomalies from the time series can have a large impact on hy-
drological indicators, especially for lower quantiles such as
Q1 and Q5 and for calendar-constrained indicators such as
QMNA5.

5 Lessons and perspectives

This section provides feedback on the design of the visual in-
spection campaign and some considerations about how such
a campaign could be used to improve the use of streamflow
datasets. These comments are intended for data producers,
data users, and anyone interested in repeating a similar vi-
sual inspection campaign of streamflow time series.

5.1 Considerations for data producers

The number of available streamflow data in France is huge
and of good quality most of the time, as shown by the low
proportion of anomalies found in the time series (Fig. 6). The
data provided over large spatial and temporal scales at high
resolution are essential to build and test hypotheses on hy-
drological processes or to estimate catchment indicators. We
noticed an improvement in river monitoring in terms of quan-
tity as the available data increased from 1976 to 1990 but also
potentially in terms of quality as anomaly rates decreased
from 1976 on. Nevertheless, we observed that available data
have been decreasing slightly since 2005 and sharply since
2015 (Fig. 1b). The latter decrease might be due to a de-
lay between streamflow monitoring and publishing in the
database; nonetheless, we are concerned about the slight de-
crease, which seems to be related to a gradual closure of
gauged stations. Crochemore et al. (2020) also observed a
decrease in the availability of data worldwide for political,

economic, or privacy reasons. We would like to emphasize
that long-term data are essential for hydrologists, especially
for those studying the effect of climate or land use change
on the water cycle. In addition, we noticed that medium- to
high-flow events appear to be well monitored, perhaps due
to the aggregation of measured data to daily discharge; how-
ever, the higher rates of anomaly during the drought periods
and drought years such as 1976 and 2003 (Fig. 5) showed
that an improvement of the techniques of low-flow monitor-
ing is still possible (Horner et al., 2022). Such an improve-
ment would be very valuable to the hydrological community
(Meerveld et al., 2020).

5.2 Considerations for data users

Data analysts and modellers are aware that perfect time series
do not exist for many reasons (Wilby et al., 2017); thus pre-
processing is mandatory before any use of the data. One of
the main findings of this study is that data cleaning is highly
subjective, as shown by the large proportion of heterogene-
ity in the temporality and types of anomalies that were re-
ported by the evaluators (Fig. 3 and 4). This high subjectivity
raises questions on the best practices for data cleaning, such
as how many evaluators should be involved in the detection
of anomalies and how their feedback should be combined.
For example, we could picture a process that combines the
anomalies coming from three or more evaluators and con-
sider the periods for which at least two evaluators agree to be
actual anomalies.

Our results show that the union of anomalies of two eval-
uators had a marginal effect on high-flow hydrological indi-
cators but could impact the low-flow indicators such as Q1
and QMNA5, which could have implications for water man-
agement regulations. Low impacts were observed for most
of the stations of the large dataset we used (611 stations),
but we emphasize that the impact of data cleaning on indi-
vidual stations might still be high for particular cases, and
the awareness of data users should increase as the size of the
dataset decreases. We did not find any clear relationship be-
tween change rates in low-flow hydrological indicators and
the proportion of data removed, while the absolute change
rates in Q50, Q95, and Q99 seem to increase with the pro-
portion of data removed from the time series (see Fig. A3).

Hydrological models may also be influenced by anoma-
lies, and further studies should investigate how parameters
and simulated streamflow change when removing anomalies
from the training period data. van den Tillaart et al. (2013)
and Brigode et al. (2015) showed that systematic errors, out-
dated rating curves, or a single extreme event (e.g. extreme
flood) could affect model performance and parameter esti-
mation. Thébault et al. (2023) reported that artificially cor-
rupting time series has little effect on model calibration over
a large dataset. Nevertheless, Perrin et al. (2007) and Ayzel
and Heistermann (2021) showed that modellers can remove a
large proportion of data from the calibration set, such as po-
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tential anomalies, without compromising the estimates of the
model parameters, as long as the calibration period covers
dry and wet periods.

5.3 Feedback on the visual inspection campaign

This section aims at providing suggestions to those inter-
ested in reproducing such a campaign of visual inspection of
streamflow time series. The objective of our campaign was
to analyse a large dataset of streamflow time series in or-
der to remove anomalies that could impact the evaluation of
hydrological models. The dataset comes from a wide range
of catchment conditions with different responses to rainfall
events, hence the need to simultaneously compare tempera-
ture, precipitation, and streamflow time series. The first sug-
gestion is that the number of anomaly types provided should
be as low as possible to avoid confusion. Indeed, our re-
sults suggest potential confusion between the drops and point
anomaly types (Fig. 4). If the types of anomaly are not well
defined, each evaluator can picture different kinds of anoma-
lies for a given period or may consider that the proposed
types share similarities, which makes it difficult to choose
one type or another. A phase of inter-calibration of evalua-
tors, and even better with the data producer when possible,
is highly recommended as it could reduce the subjectivity of
such an exercise. This calibration phase could be completed
by assessing the ability of the evaluator to detect fictitious
anomalies in streamflow time series. Furthermore, we sug-
gest adding a confidence rate in addition to the periods and
type of anomaly, which would encourage evaluators to iden-
tify more doubtful periods, therefore increasing the intersec-
tion of identified anomalies. Including the confidence rate in
a study such as ours might also make it possible to deepen
the investigation on the subjectivity of each evaluator.

One important feature of visual inspection is the figure lay-
out of the time series provided to the evaluators, as also noted
by Barthel et al. (2022). Indeed, using a logarithmic scale for
the streamflow axis might have facilitated the identification
of anomalies in low-flow conditions; thus it may have artifi-
cially increased the anomaly frequency during low-flow pe-
riods (Fig. 5). In addition, evaluators seemed to lose focus
when analysing long time series (44 years). Consequently,
one should consider splitting streamflow time series to inves-
tigate and perhaps avoid this potential effect of weariness or
consider simplifying the anomaly-reporting procedure with
an interface that allows one to select the period and type with
a mouse click.

An automatic detection of anomalies could avoid these is-
sues of subjectivity and weariness. As a first step, an auto-
matic detection could identify suspicious parts of streamflow
time series that would be the subject of a visual inspection
afterwards, instead of inspecting the whole time series. Us-
ing the bias between model simulations and measured time
series could be a starting point for identifying these poten-
tial anomalies. Unfortunately, to our knowledge, these tech-

niques still require improvements. Such an algorithm should
be flexible regarding the types of anomaly to identify and
might be trained for each study to avoid the risk of removing
data of interest (e.g. using a visual inspection such as the one
reported in this study). Ideally, hydrologists should share a
common library of anomaly types such as those suggested by
Wilby et al. (2017). Promising perspectives in anomaly de-
tection could be using covariates, such as biogeochemistry,
conductivity, or water temperature time series, in addition of
streamflow, since they may reflect the hydrological condi-
tions and flow paths, or using paired catchment and compar-
ing their double-mass curves of discharge time series.

6 Conclusions

This study explored the results of a large visual inspection
campaign of streamflow time series in France that aimed at
detecting non-natural records. The objectives of this study
were to evaluate the subjectivity of evaluators in detecting
anomalies, to analyse the frequency and temporal distribu-
tions of anomalies, and to assess their impact on commonly
used hydrological indicators.

Each of the 611 time series was visually inspected by 2 out
of 42 evaluators in order to report doubtful periods such as
linear interpolation, noise, drops, point anomalies, or other.
The feedback was combined using the union and the inter-
section of the periods of anomaly reported.

The main result of this study is the high subjectivity of
the evaluators’ behaviour in detecting anomalies. Indeed, the
surprisingly low inter-evaluator agreement rates (mean value
of 12 %) reflect the variety of feedback by the hydrologists.
Evaluators more frequently reported periods of anomaly dur-
ing summer, which could be related to low flows that are
more difficult to monitor than high flows but also to relatively
higher anthropogenic influences during this period. Conse-
quently, we observed higher impacts of the anomalies when
analysing low-flow indicators calculated on the initial time
series and on time series where the anomalies were removed,
although the change rates remained low overall, below 5 %
for most of the time series in our large dataset.

This study also provided recommendations for future cam-
paigns of visual inspection of time series. We strongly sug-
gest setting up a phase of inter-calibration of evaluators in
order to assess their subjectivity, as well as adding a con-
fidence rate to the reported anomalies in order to identify
more doubtful periods. Ideally, the development of automatic
detection of anomalies, or at least doubtful periods, could
greatly improve data cleaning stage.
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Appendix A

Figure A1. Example of an HTML file displaying streamflow time series that was sent to evaluators.
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Figure A2. Proportion of anomalies (100 times the number of anomalies divided by the number of available Qobs) with respect to year for
the 611 stations.

Figure A3. Absolute change rates of hydrological indicator vs. the proportion of anomalies for the 611 stations.
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