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Abstract. An innovative tool for modeling the specific flood
volume was presented that can be applied to assess the
need for stormwater network modernization as well as for
advanced flood risk assessment. Field measurements for a
catchment area in Kielce, Poland, were used to apply the
model and demonstrate its usefulness. This model extends
the capability of recently developed statistical and machine
learning hydrodynamic models developed from multiple runs
of the US Environmental Protection Agency (EPA) Storm
Water Management Model (SWMM). The extensions en-
able the inclusion of (1) the characteristics of the catchment
and its stormwater network, calibrated model parameters ex-
pressing catchment retention, and the capacity of the sewer
system; (2) extended sensitivity analysis; and (3) risk anal-
ysis. Sensitivity coefficients of calibrated model parameters
include correction coefficients for percentage area, flow path,
depth of storage, and impervious area; Manning roughness
coefficients for impervious areas; and Manning roughness
coefficients for sewer channels. Sensitivity coefficients were
determined with respect to rainfall intensity and character-
istics of the catchment and stormwater network. Extended
sensitivity analysis enabled an evaluation of the variability in
the specific flood volume and sensitivity coefficients within
a catchment, in order to identify the most vulnerable areas
threatened by flooding. Thus, the model can be used to iden-

tify areas particularly susceptible to stormwater network fail-
ure and the sections of the network where corrective action
should be taken to reduce the probability of system failure.
The simulator developed to determine the specific flood vol-
ume represents an alternative approach to the SWMM that,
unlike current approaches, can be calibrated with limited
topological data availability; therefore, the aforementioned
simulator incurs a lower cost due to the lower number and
lower specificity of data required.

Highlights.

– A simulator to determine the specific flood volume is devel-
oped as an alternative to the SWMM model.

– A sensitivity analysis extension considering rainfall and catch-
ment topological data is employed.

– The probability of failure of the stormwater system is used as a
criterion to determine the necessity for corrective action under
conditions of uncertainty.

1 Introduction

Climate change and urbanization are the main factors in-
creasing the pressure on the functioning of sewer networks,
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in particular the components responsible for stormwater
management (Miller et al., 2014; Hettiarachchi et al., 2018;
Lama et al., 2021a; Khan et al., 2022). This results in an in-
crease in the frequency and volume of stormwater flooding,
a deterioration in the living standards of the inhabitants, and
pipe abrasion (Jiang et al., 2018; Zhou et al., 2019; Chang et
al., 2020; Lense et al., 2023). Data from the literature (Siek-
mann et al., 2011) show that the basis for making decisions
regarding the necessity for corrective action (replacement of
a pipe, removal of sediments, construction of a reservoir, etc.)
is the specific flood volume, which represents the volume of
stormwater flooding on a unit of impervious surface. Lim-
iting values for the specific flood volume have been deter-
mined by Siekmann and Pinnekamp (2011), based on simu-
lations for urban catchments, as the basis for the maintenance
of the sewage network and the criteria for making decisions
regarding modernization or the necessity for corrective ac-
tion.

In order to obtain the required hydraulic efficiencies, sim-
ulation models are typically used to plan corrective action
(Kirshen et al., 2015). For this purpose, mechanistic mod-
els (MCMs) are used, such as the US Environmental Pro-
tection Agency (EPA) Storm Water Management Model
(SWMM), which accounts for surface runoff, drainage of
the sewage network, and stormwater flooding during sys-
tem overload (Guo et al., 2021; Yang et al., 2022; Lama et
al., 2021b). As is the case with other mechanistic models
(e.g., MOUSE, PCSWMM, and MIKE URBAN), SWMM
can incorporate the spatial characteristics and hydraulic con-
ditions of a sewage network into calculations that predict
and characterize stormwater flooding (Martins et al., 2018;
Yang and Chui, 2021; Ma et al., 2022). However, such mod-
els are characterized by high specificity (one model can be
used for one catchment), and they require the collection of
detailed data and measurements (rainfall and runoff), which
is labor-intensive and generates a high cost. Moreover, there
are a strong interactions between the calibrated parameters
(Wu et al., 2013; L. Chen et al., 2018; Sonavane et al., 2020;
Shrestha et al., 2022; Ray et al., 2023), leading to uncertainty
in simulation results (Ball, 2020; Kobarfard et al., 2022; Sun
et al., 2022) and, thus, complicating the selection of speci-
fied corrective action (Kim et al., 2015; Babovic et al., 2018;
Hung and Hobbs, 2019). To solve this problem, an important
step in the development of the computational algorithm is
the implementation of sensitivity analysis (Fraga et al., 2016;
Cristiano et al., 2019; Razavi and Gupta, 2019). Simulations
by Szeląg et al. (2021a) have shown the influence of uncer-
tainty in calibrated SWMM parameters on the calculation of
the specific flood volume and degree of flooding; this find-
ing has also been confirmed by the simulations of Fraga et
al. (2016) and Kelleher et al. (2017).

To overcome the limitations of MCMs, the implementa-
tion of statistical and/or machine learning (ML) methods is
a prospective alternative (Rosenzweig et al., 2021; Lei et al.,
2021; Bui et al., 2018; Shafizadeh-Moghadam et al., 2018;

Chen et al., 2019; Yang and Chui, 2021; Mohammad et
al., 2023). ML methods can estimate the specific stormwa-
ter flood volume for a catchment area with different topol-
ogy. So far, however, no simulator model based on statis-
tical and/or machine learning has been developed to simu-
late the specific stormwater flood volume while also consid-
ering the factors included in MCMs (Mignot et al., 2019;
Guo et al., 2021; Rosenzweig et al., 2021). Nevertheless,
some progress in the application of ML methods to the sim-
ulation of stormwater flooding has been made. Thorndahl
(2009), based on simulation results of flooding from sewer
utility holes, including the uncertainty in calibrated param-
eters, developed a model using the FORM (first-order relia-
bility model) method. Jato-Espino et al. (2018) and Li and
Willems (2020), conducting simulations with MCMs, pre-
sented (logistic regression) models for the identification of
flooding from a single sewer utility hole based on rainfall
frequency and catchment and stormwater network character-
istics. Therefore, Szeląg et al. (2022a, b) proposed a model
to calculate estimates of stormwater flooding in a catchment;
however, due to the insufficient data used to construct the
model, its application is limited. In the aforementioned mod-
els, interactions between land use, catchment and stormwater
network characteristics, and system capacity were neglected.
However, omitting these factors at the spatial planning stage
reduces the applicability of the model.

Another important indicator of proper sewage network
management is the assessment of the risk of system failure
(exceedance of the maximum specific flood volume). Reli-
able risk assessment requires the integration of mechanis-
tic models, a statistical approach, and simulation of rainfall
data (Fu et al., 2011; Zhou et al., 2019; Venvik et al., 2021).
Most of the methods (Ursino, 2014; Cea and Costabile, 2022;
Taromideh et al., 2022) focus on determining the impact of
changes in rainfall due to climate change on the efficiency
of the sewage system and include the impact of parameters
expressing terrain and sewer retention. Currently, there is no
effective method of risk analysis that considers the uncer-
tainty in the calibrated parameters used to simulate the spe-
cific flood volume for the different urban catchments.

The aim of this article was to develop an innovatory simu-
lator, considering rainfall data and catchment characteristics
and topology, that could be combined with risk assessment
and sensitivity analyses to calculate the specific flood vol-
ume. Recognition of the above factors enabled the applica-
tion of the proposed logistic regression model to the iden-
tification of stormwater flooding in catchments with differ-
ent characteristics, as an alternative approach to the SWMM
model. An important aspect of the proposed approach was
the risk assessment of system failure (a specific flood volume
exceeding 13 m3 ha−1) and sewage system operation under
uncertainty. Moreover, the methodology presented here, in-
tegrated with the stormwater flooding simulator, enabled the
identification of the impact of calibrated SWMM parameters
on the results of the sensitivity analysis in catchments with

Hydrol. Earth Syst. Sci., 27, 3329–3349, 2023 https://doi.org/10.5194/hess-27-3329-2023



F. Fatone et al.: An advanced tool for novel modeling of the stormwater flood volume 3331

different characteristics. This feature enables the construc-
tion of a mechanistic model, thereby allowing the appropriate
selection of techniques for measuring input data, which can
ultimately reduce the cost of applying the model. The devel-
oped methodology also enables the appropriate selection of
devices for measuring the flow rate as well as their location
in the sewage network in the context of calibrating the catch-
ment model and reducing the cost of flow measurements.

2 Case study

The analyzed urban catchment is located in the southeastern
part of Kielce in the Świętokrzyskie region, central Poland
(Fig. 1). Residential districts, public buildings, and main and
side streets are located in the study area. The catchment area
covers 63 ha and consists of 40 % impervious and 60 % per-
meable areas. The road density is 108 m ha−1 (Wałek, 2019),
and the terrain denivelation is 11.20 m (the ordinates of the
highest and the lowest points of the terrain are 271.20 and
260 m above sea level, respectively).

The length of the main interceptor channel in the stormwa-
ter network is 1569 m, with an average slope of 0.71 %. The
diameter of the main interceptor channel expands from 600
to 1250 mm, while the diameters of side sewers vary between
300 and 1000 mm. The slopes of the sewers vary between
0.04 % and 3.90 %. The analyzed stormwater system is sep-
arated from the municipal sewage. Stormwater flows to the
division chamber (DC); it then flows into a stormwater treat-
ment plant (STP) after reaching a depth of 0.42 m. During
heavy rainfall, when the stormwater level in the DC exceeds
the overflow level (OV), it is discharged by the storm over-
flow into the S1 channel, which transports the stormwater di-
rectly to the Silnica River (without treatment). At a distance
of 3.0 m from the inlet of the main interceptor channel to the
DC, the MES1 flow meter is installed; this flow meter mea-
sures the flow rates during heavy rainfall with a resolution of
1 min. Analysis of data from 2010 to 2020 showed that the
measured flow rates varied between 1 and 9 dm3 s−1 during
dry periods, indicating that infiltration occurs in the stormwa-
ter network. Measurements of stormwater network operation
carried out between 2008 and 2019 indicated that stormwa-
ter flooding occurs in the analyzed catchment. Considering
159 episodes of rainfall–runoff within four catchments, 23
cases of flooding were observed. At a distance of 2.5 km from
the catchment boundary, a rainfall measurement station is lo-
cated that provides constant measurement of rainfall, with a
1 min temporal resolution.

Subcatchment division and characteristics

The analyzed catchment was divided into subcatchments
(Szeląg et al., 2022a) that constituted the study areas for
the identification of stormwater flooding. Due to the limited
number of rainfall data, the obtained model for the simula-

tion of stormwater overflow did not include all of the impor-
tant factors, such as the dry-period duration between rain-
fall events and catchment retention, that impact flooding phe-
nomenon; this meant that the model had a limited predictive
capability. A detailed description of the subcatchments used
for the construction of the flooding identification model and
the justification of their selection were presented in Szeląg et
al. (2022b). In reference to the approach proposed by Duncan
et al. (2012), Jato-Espino et al. (2018), and Li and Willems
(2020), the number of subcatchments used for the develop-
ment of a logit model was increased to eight in the current
analysis (Fig. 2). The subcatchments’ boundaries and data
on the spatial development and stormwater network (Table 1)
were determined based on maps for design purposes, which
were discussed in detail in Szeląg (2013).

Data were verified using an independent analysis per-
formed by Wałek (2019), who used the QGIS program to
construct a spatial development model and stormwater net-
work for Kielce. The location of closing cross-sections of
subcatchments (J, K, L, M, M, O, P, R, and S) along the main
interceptor channel were additionally supported by the sim-
ulation results of outflow hydrographs developed by Wałek
(2019), with use of the Hydrologic Engineering Center – Hy-
drologic Modeling System (HEC-HMS) model, as well as by
Szeląg et al. (2016, 2022b), with use of the SWMM.

3 Methodology

3.1 A criterion for stormwater system operation and
modernization

The value of the specific flood volume was defined as the
stormwater flooding per unit paved area, which can be ex-
pressed using the following formula (Siekmann and Pin-
nekamp, 2011):

κ =

K∑
i=1
Vt (i)

Apav
. (1)

Here, Vt is the volume of stormwater flooding from the ith
sewer utility hole of the stormwater network, K is the num-
ber of sewer utility holes, and Apav is paved area. Siek-
mann and Pinnekamp (2011), based on continuous simu-
lations with hydrodynamic models for three urban catch-
ments, found that the specific flood volume ranged from 0
to > 20 m3 ha−1.

On this basis, they established a limiting κ value that
expressed the need to improve the operating conditions of
the drainage system. Specifically, they showed that a κ >
13 m3 ha−1 inferred that the drainage system requires adapta-
tion. This was also confirmed by the calculations of Kotowski
et al. (2013) for a catchment in Wroclaw and by Szeląg et
al. (2021a) for a catchment in Kielce. This allows us to con-
clude that the κ value quoted above can be used as a decision-
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Figure 1. Study catchment area (Wałek, 2019).

Table 1. Characteristics of subcatchments.

Label F Imp Vk Gk R.t. Vkp dH1 dHp Lk Jkp Hst Impd Gkd Vrd Vkd
(ha) (–) (m3) (m ha−1) (m) (m3) (m) (m) (m) (–) (m) (–) (m ha−1) (m3) (m3)

J 12.66 0.37 157.0 0.0079 1.74 33.2 0.24 0.25 96.5 0.0036 1.42 0.40 0.0072 2159.4 2577.2
K 18.92 0.38 360.4 0.0084 1.69 28.4 0.31 1.05 56.5 0.0055 2.36 0.40 0.0063 1886.8 2373.7
L 27.15 0.36 557.4 0.0074 2.74 29.6 0.34 1.75 59.0 0.0058 2.36 0.42 0.0053 1496.0 2176.7
M 29.78 0.36 678.8 0.0068 4.49 48.7 0.38 1.15 62.0 0.0061 2.32 0.43 0.0050 1373.3 2055.3
N 36.78 0.37 712.2 0.0081 4.49 48.7 0.38 1.15 62.0 0.0061 2.32 0.44 0.0040 1061.4 2022.0
O 41.31 0.32 858.2 0.0079 5.32 16.1 0.21 1.28 20.5 0.0102 2.31 0.49 0.0037 825.9 1876.0
P 45.42 0.37 981.9 0.0082 5.64 16.1 0.21 1.28 20.5 0.0102 2.31 0.46 0.0027 682.2 1752.3
R 48.31 0.37 981.9 0.0088 5.64 16.1 0.21 1.28 20.5 0.0102 2.31 0.47 0.0023 553.1 1752.3
S 55.41 0.41 1240.2 0.0092 8.47 67.5 0.67 1.8 86.0 0.0078 2.31 0.55 0.0011 258.4 1493.9

The characteristics listed in the table are as follows: F – catchment surface area; Imp – impervious area; Vk – volume of stormwater channel; Gk – length of stormwater channel per
impervious area of the catchment; R.t. – height difference of the channel; Vkp – volume of the channel above the cross-section of a catchment; dH1 – height difference of the terrain at
section above cross-section r; dHp – height difference at section above cross-section; Lk – length of channel above cross-section of a catchment; Jkp – channel slope above cross-section of a
catchment; Hst – the height of a sewer utility hole at cross-section; Imp – impervious area of downstream area; Gkd – length of a channel per impervious area below cross-section; Vrd –
catchment retention above the cross-section, calculated as Vrd=F · (Imp · dimp + (1− Imp) · dper); and Vkd – total retention of a catchment.

making criterion for urban catchments (e.g., in Poland and
Germany) with respect to the necessity for corrective action
on the drainage network.

3.2 Simulator structure and development

The concept of the proposed tool – a simulator integrated
with risk assessment and a sensitivity analysis – to evaluate
the operation of a sewage system is presented in Fig. 2. Ap-
plying the MCM of an urban catchment with separate sub-
catchments (varying land use and topology), a specific flood
volume simulator was developed as an alternative approach
to the SWMM. A logistic regression model simulator based
on rainfall data, catchment and stormwater network charac-
teristics, and SWMM parameters (width of runoff path, re-

tention depth of impervious areas, the Manning roughness
coefficient of impervious areas, the correction coefficient of
impervious areas, and the Manning roughness coefficient of
channels) was proposed. The resulting tool enables fast anal-
ysis of sewer network performance, even with limited data
access, and can be applied to other catchments. The pro-
posed methodology is based on the extension of algorithms
given by Szeląg et al. (2021a, 2022a). In contrast to previous
studies (Szeląg et al., 2022b), the current approach considers
the retention of the catchment and the sewer network, and
the performance criterion of the sewer network was the vol-
ume of flooding, not just the fact that it occurred. Integration
of the simulator with an analytical relationship for sensitiv-
ity coefficient calculations for logistic regression allows fast
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evaluation of the impact of MCM parameters on flooding for
arbitrary catchment characteristics and topological data.

In order to provide more reliable simulation results, the
proposed risk assessment considered the uncertainty in the
SWMM parameters and enabled the optimization of the op-
eration of the sewer network based on the maximum allow-
able values of the channel Manning roughness coefficients.

3.3 Algorithm structure

The proposed computation algorithm consists of eight mod-
ules. Modules 1, 2, 3, and 4 include identical steps to those
in the work of Szeląg et al. (2021a, 2022a). In the present
study, the scope of the analyses was extended: in addition
to precipitation data and SWMM parameters (Szeląg et al.,
2022a), the characteristics of the catchment and the stormwa-
ter network of the separated subcatchments were also in-
cluded (module 1), which were used to determine the com-
putational model. On the basis of spatial data (module 1a
and 1b), a mechanistic model of the catchment was built
(module 2), which allowed one to perform an uncertainty
analysis using the generalized likelihood uncertainty esti-
mation (GLUE) method (module 3). On this basis, simula-
tions were performed in separated subcatchments for rainfall
events (module 1e) under uncertainty (module 4). Based on
the simulation results, a logistic regression model was devel-
oped (module 5) to calculate the local sensitivity coefficients
for calibrated SWMM parameters, with respect to rainfall in-
tensity and catchment characteristics (module 6). Modules 1,
2, 3, and 4 included analyses to determine a specific flood
volume simulator that could be applied to any catchment.
Thus, future algorithm implementation for the new catch-
ment will ultimately only include modules 6, 7, and 8. Us-
ing adopted rainfall data, the sensitivity coefficients of the
SWMM model parameters for subcatchments are computed,
and maps showing sensitivity changes at the catchment scale
are drawn (module 6). While the model is applied to iden-
tify stormwater flooding, the possible methods to improve
stormwater network operation are analyzed inside modules 7
and 8. Computations using the developed algorithm consist
of the following steps and substeps:

1. Input data are collected (catchment characteristics –
module 1a; stormwater network characteristics – mod-
ule 1b; rainfall–runoff episodes – module 1c), indepen-
dent rainfall episodes are separated (module 1d), and the
characteristics of subcatchments are divided and deter-
mined (module 1e).

2. A hydrodynamic model is developed (module 2) based
on catchment characteristics (module 1a) and stormwa-
ter network characteristics (module 1b).

3. An uncertainty analysis is conducted with the GLUE
method (Sect. 3.3.3) using a hydrodynamic model of
a catchment based on rainfall–runoff episodes (mod-
ule 1d).

4. Using independent rainfall events (module 1d), simu-
lations with a hydrodynamic model, including the un-
certainty in the calibrated parameters, are conducted ac-
cording to the following points (4a, 4b, and 4c).

a. SWMM parameters (a posteriori distribution),
shown in Table S1, are simulated using the results
of uncertainty analysis.

b. Stormwater network operation during independent
rainfall events is simulated (module 1d) including
uncertainty (module 4a).

c. Specific flood volume in each sample of indepen-
dent rainfall events in subcatchments is computed,
and the determined κ values are transformed to
classification data (Sect. 4a).

5. The logistic regression simulator SWMM of the specific
flood volume is determined as an alternative to MCMs
based on the results of the computations undertaken in
point 4c.

6. A sensitivity analysis is carried out according to the fol-
lowing points (6a and 6b).

a. Sensitivity coefficients (with respect to SWMM pa-
rameters) are computed for assumed rainfall data
and catchment characteristics.

b. Sensitivity coefficients for subcatchments (J, K, L,
M, N, O, P, R, and S) are computed.

7. The developed logistic regression model for the amelio-
ration of stormwater network operation is applied.

a. The impact of corrective variants on sensitivity co-
efficients in subcatchments is analyzed.

8. An analysis of failures occurrence is carried out.

3.3.1 The determination of independent rainfall events
(module 1e)

The determination of independent rainfall events for the
2010–2021 period was based upon criteria defined in the Ger-
man Association for Water, Wastewater, and Waste (DWA)
guidelines (DWA-A118E, 2006). The minimum time period
between independent rainfall events was set as 4.0 h. Com-
putation of stormwater flooding was performed for rainfall
events with a minimum depth of Pt = 5.0 mm (Fu and But-
ler, 2014) and only for those events that resulted from con-
vectional rainfall (i.e., rainfall duration of less than 120 min).
For the analyzed catchment, it was indicated that stormwa-
ter flooding occurs for C = 2, 3, and 5 and rainfall duration
tr = 120 min (Szeląg et al., 2021a). The computed value of
the specific flood volume (the upper limit of the 95 % confi-
dence interval) was κ = 45 m3 ha−1. Analyzing of the rain-
fall data, it was observed that the number of rainfall events
with depths of Pt = 5.2–42 mm ranged from 12 to 30 each
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Figure 2. Algorithm for developing an advanced tool to simulate the specific flood volume (situation maps in module 1a and 1b by Walek,
2019).

year (210 rainfall events altogether), while the rainfall dura-
tion was between tr = 15–120 min.

3.3.2 Hydrodynamic catchment model (module 2)

Stormwater flood volume calculations were performed with
the SWMM using the “Flooding” function (Szeląg et al.,
2021b). Based on the results of Q(t) for j – sewer utility
holes (j = 1, 2, 3 . . . , k) in the subcatchments (J, K, L, M, N,
O, P, R, and S), the total flood volume Vj =

∫
Q(t)dt was

determined, which allowed specific flood volume (κ) values
to be determined from Eq. (1).

The model of the analyzed catchment covers 62 ha and
is divided into 92 subcatchments with areas varying from
0.12 to 2.10 ha and impervious areas ranging from 5 % to
95 %. The model comprises 82 nodes and 72 sections of
channels. At the “trial-and-error” stage of the calibration
method, the mean retention of the catchment was 4.60 mm.
The Manning coefficient of impervious areas was found to be
0.025 m−1/3 s, whereas this value was 0.10 m−1/3 s for per-
meable areas. The flow path width was determined using the

following formula: W = α ·A0.50, where α = 1.35. Catch-
ment model calibration performed by Szeląg et al. (2021a)
indicated that a very good fit of modeling outflow hydro-
graphs to measurement results was obtained for six rainfall–
runoff events (Nash–Sutcliffe coefficient of 0.85–0.98, coef-
ficient of determination of 0.85–0.99, and hydrograph vol-
umes and maximum flows did not exceed 5 % compared to
measurement data).

3.3.3 Uncertainty analysis – GLUE (module 3)

In the GLUE method, the identification of model parame-
ters was considered to be a probabilistic task due to the large
number of parameters characterizing processes occurring in
urban catchments (e.g., runoff, infiltration, flow in stormwa-
ter conduits, and flooding) (Szeląg et al., 2021a; Kiczko et
al., 2018). The identification of model parameters in the
GLUE method depends on the transformation of an a pri-
ori distribution to an a posteriori distribution by means of
a likelihood function L(Q/θ) that determines the probabil-
ity of a combination of parameters depending on the qual-
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ity of the fit of the calculation result to the measured val-
ues. A uniform distribution of the SWMM parameters was
assumed (Table S1). Mathematical models used for the de-
scription of surface runoff usually do not include the runoff
distribution; at most, they include the range of admissible
values of parameters resulting from their physical interpre-
tation (Dotto et al., 2014; Knighton et al., 2016). The iden-
tification of distributions a posteriori and the determination
of likelihood functions for the rainfall–runoff episodes on
30 May 2010 and 8 July 2011 were used, and the episodes on
15 September 2010 and 30 July 2010 were applied for verifi-
cation. Subsequent computation steps of the GLUE analysis
are discussed in detail in the Supplement (Sect. S1).

3.3.4 The simulation of stormwater network operation
with respect to uncertainty (module 4)

Based on the results of the GLUE method (a posteriori distri-
bution of the SWMM parameters, 5000 samples), the com-
putation of the stormwater network was performed separately
for 175 independent rainfall events and 9 subcatchments; 35
events were used to validate the model. The specific flood
volume values for subcatchments (J, K, L, M, N, O, P, R, and
S) were calculated, and zero–one variables were established
to develop the logistic regression model. For the computed
specific flood volume values (κ ≥ 13 m3 ha−1), the variable
value was denoted as one, whereas this value was zero in the
opposite case (Siekmann and Pinekamp, 2011).

3.3.5 Developing a logistic regression model (simulator)
to identify the specific flood volume (module 5)

A logistic regression model (LRM) is a tool used for clas-
sification. This model has already been applied to model
stormwater flooding (Szeląg et al., 2020), identify stormwa-
ter flooding from sewer utility holes (Jato-Espino et al.,
2018), and determine the technical condition of sewage sys-
tems (Salman and Salem, 2012). The logistic regression
model is described by the following equation:

pm =
exp(α0+α1 · x1+α2 · x2+α3 · x3+ . . .+αi · xi)

1+ exp(α0+α1 · x1+α2 · x2+α3 · x3+ . . .+αi · xi)

=
exp(X)

1+ exp(X)

=
exp(Xrain+XSWMM+XCatchm)

1+ exp(Xrain+XSWMM+XCatchm)
. (2)

Here, pm is the probability of a specific flood volume (un-
derstood as the need for corrective action on the stormwater
network); α0 is an absolute term; α1, α2, α3, and αi are val-
ues of coefficients estimated with the maximum likelihood
method; X is the vector describing the linear combination of
the independent variables; Xrain/XSWMM/XCatchm is the vec-
tor describing linear combination of statistically significant

1. rainfall characteristics (Xrain =
t∑
s=1

αs · xs),

2. SWMM parameters (XSWMM =
m∑
k=1

αk · xk),

3. and catchment and stormwater network characteristics

(confidence level− 0.05 (XCatchm =
r∑

p=1
αp · xp)); and

xi represents independent variables describing rainfall
characteristics, such as rainfall depth, rainfall duration,
the parameters calibrated in the SWMM, and the catch-
ment characteristics (e.g., permeability; terrain reten-
tion; density of stormwater network; and length, slope,
and retention in stormwater channels).

Independent variables in the LRM were calculated using the
forward stepwise algorithm, recommended for the creation
of such models. At the same time, this also ensures the elim-
ination of correlated independent variables (Harrell, 2001).
The estimation of the αi coefficients in Eq. (2) and, thus,
the determination of the LRM involved two stages: learning
(80 %) and testing (20 %). Optimization of the pm thresh-
old and equations for determining measures of fit between
computational results and measurements are provided in the
Supplement (Sect. S2). In this study, 35 independent rainfall
events, for which Pt = 6.0–15.0 mm and tr = 30–120 min,
were assumed for model validation. For validation of the
LRM, catchments J, O, and S were selected; in these catch-
ments, the catchment (Imp and Impd) and topology network
(Gk, Gkd, and Jkp) characteristics were varied in the interac-
tion scheme. At the variant-generation step, combinations of
two inputs were used to verify the model, the values of which
were changed using a three-point scheme,−0.2, 0, and+0.2.

3.3.6 Sensitivity analysis (module 6)

According to data from the literature (Morio, 2011), despite
simplifications, local sensitivity analysis is widely applied at
the calibration stage and while analyzing the hydrodynamic
catchment models. In our study, the sensitivity coefficient
was calculated from the following equation (Petersen et al.,
2002):

Sxi =
∂pm

∂xi
·
xi

pm
. (3)

Here, knowing that ∂pm
∂xi
= βi ·pm · (1−pm), after transfor-

mations, the following formula was obtained (Fatone et al.,
2021):

Sxi = βi · xi · (1−pm). (4)

The value of Sxi was calculated for calibrated SWMM pa-
rameters (Table S1) while simultaneously analyzing the im-
pact of rainfall duration (tr = 30–90 min) for a rainfall depth
of Pt = 10 mm (representative value for analyzing stormwa-
ter network functioning according to DWA-A118E, 2006,
corresponding to a heavy-rainfall event). For the above as-
sumptions, Sxi was determined for different catchment char-
acteristics, which helped to evaluate the interactions between
rainfall data and the SWMM parameters.
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The probability of a specific flood volume (pm) was com-
puted using the LRM for the subcatchment characteristics
defined in Table 2 and SWMM parameters established dur-
ing calibration (Szeląg et al., 2016) for a maximum convec-
tional rainfall intensity for tr = 30 min and Pt = 9.62 mm for
Kielce (Sect. S4). The calculations of Szeląg et al. (2022b)
proved that there is a hydraulic overload of the stormwater
system due to convective rainfall in the urban catchment in
question. At the same time, the sensitivity coefficients for
the calibrated SWMM model parameters were calculated. On
this basis, the spatial variability in Sxi for the subbasins was
determined.

3.3.7 Application of the LRM to analyze stormwater
operation and catchment management (module 8)

If the stormwater network ceases to function properly and the
threshold value of pm is exceeded, some possible improve-
ments have been suggested, including the following: (a) in-
creasing the retention depth of impervious areas, i.e., an in-
crease of dimp from 2.50 to 3.50 mm, while concurrently rais-
ing the Manning roughness coefficient from nimp = 0.025 to
0.035 m−1/3 s and (b) increasing the hydraulic capacity by
reducing the Manning roughness coefficient for stormwater
channels from nsew = 0.018 to 0.012 m−1/3 s. In addition,
the possible change in the spatial development of the urban
catchment area was taken into consideration. Finally, com-
binations of the abovementioned computation variants were
analyzed. When the values of independent variables (catch-
ment characteristics) adopted for the calculations exceeded
the lower/upper limit of applicability of the determined LRM
(e.g., for Imp= 0.32–0.41), the simulation results were veri-
fied with the MCM. The verification procedure consisted of
three steps:

a. The probability of a specific flood volume for rainfall
with durations in the range of tr = 30–90 min was com-
puted to assess stormwater network operation.

b. Simulation was carried out with a calibrated hydrody-
namic model for rainfall data as in step a.

c. A comparison of the computation results obtained in
steps a and b was undertaken; in the event of a good fit,
i.e., proper identification of the specific flood volume,
the results obtained from the LRM can be accepted.
Three specific corrective variants have been defined, as
presented in Table S2.

3.3.8 Probability of stormwater network failure
(module 9)

The probability of failure (Sun et al., 2022; Karamouz and
Nazif, 2013) was used to analyze the performance of the
sewage network during a rainfall event. In the calculations,
a failure was defined as an episode (assumed rainfall data,

catchment characteristics, sewer network, and SWMM pa-
rameters described by the a posteriori distribution – GLUE
results discussed in Sect. 3.3.3) in which κ ≥ 13 m3 ha−1

(pm ≥ pm,cr) is exceeded. However, the probability of fail-
ure was calculated using the following equation:

pF =

N∑
j=1

Zj

N
, where Zj =

{
1; pm ≥ pm,cr
0; pm < pm,cr .

(5)

Here, pm is the probability of a specific flood volume (ex-
ceedance of this value indicates a failure), pF is the proba-
bility of stormwater network failure in the event of rainfall,
and Zj is a function describing stormwater network opera-
tion. For the latter, Zj = 1 denotes that the drainage system
requires modernization, whereas Zj = 0 denotes that mod-
ernization is not necessary.

Based on Eq. (5) for the assumed characteristics (rain-
fall, catchment, and drainage network), the operating con-
ditions of the stormwater network were determined. Hence,
an algorithm is given to calculate the performance improve-
ment of a sewer network in the context of failure probability
(pF) reduction. The above effect was obtained by introduc-
ing thresholds for the maximum permissible values of the
Manning roughness coefficients of sewers (nsew(m)). It was
assumed that, if the value of nsew (the value from the a pos-
teriori distribution) exceeds the maximum permissible value
(nsew(m)) and determines the occurrence of failure (Zj = 1)
and the need to modernize the sewers, it should be corrected
in such a way that pm < pm,cr. The above calculations were
reduced to the following steps:

a. The a posteriori distribution of the calibrated SWMM
model parameters was established (N = 5000 samples).

b. The probability of a specific flood volume for N items
and the establishment of failure probability were com-
puted.

c. The Manning roughness coefficient for channels when
pm > pm,cr was computed as

nsew =
1

αnsew

·

[
ln
(

pm,cr

1−pm,cr

)
−

(
m−1∑
k=1

αk · xk

)
−Xrain−XCatchm] , (6)

where k = 1, 2, 3, . . . , m represents the calibrated
SWMM model parameters; k = 1, 2, 3, . . . ,m; and αnsew

represents the estimated coefficient in the LRM for the
Manning roughness coefficient for channels (the deriva-
tion of Eq. 6 is presented in Sect. S4 in the Supplement).

d. An empirical distribution describing the nsew values cal-
culated from Eq. (6) is established.

e. The nsew values from Eq. (6) for nsew(un) ≤ nsew(m)
are computed. Here, nsew(un) represents the Manning
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roughness coefficients of channels computed in step a,
and nsew(m) denotes the maximal boundary (threshold)
value of the Manning roughness coefficient for chan-
nels, when nsew(un) ≥ nsew(m) to nsew = nsew(un).

f. The probability of a specific flood volume and the prob-
ability of failure (pF) are computed.

g. The empirical distribution (cumulative distribution
function, CDF) for nsew is computed.

h. Steps e to g are repeated; r = 1, 2, 3, . . . , z for differ-
ent values of nsew,max, and median values of nsew(0.5) =

f (nsew(m), r) are denoted based on empirical distribu-
tions.

i. Steps a to h are conducted for different catchment char-
acteristics.

j. A graph of pF = f (nsew(0.5)) is drawn.

4 Results

4.1 Uncertainty analysis – GLUE (module 3)

Based on SWMM simulation results including the uncer-
tainty in the calibrated parameters (Table S1), the likelihood
functions were determined (Kiczko et al., 2018). For the ob-
served events (30 May 2010 and 8 July 2011) used to identify
the SWMM parameters, it was found that 96 % of the mea-
surement points included the calculated confidence interval.
For the validation sets, 90 % of the observation points fall
within the bands for the 15 September 2010 event and 70 %
fall within the bands for the 30 July 2010 event (Fig. S1).
The results of the likelihood function calculations for the cal-
ibrated SWMM model parameters are given in Figs. S2 and
S3 in the Supplement.

4.2 Simulations of stormwater network operation with
respect to uncertainty (module 4)

The results of variation in the specific flood volume for the
separate subcatchments are presented in Fig. 3. Based on
the obtained curves, it was stated that the uncertainty in the
SWMM parameters influenced the simulation results, which
was confirmed by the great variability in the 1st and 99th
percentile values for each subcatchment. The median values
enabled one to identify that the largest specific flood volume
was for subcatchment J (14.90 m3 ha−1), followed by sub-
catchment S (8.29 m3 ha−1) (Fig. 3). The simulation results
for the 1st percentiles showed that, for the adopted rainfall
events (Pt > 5.0 mm and tr < 150 min), stormwater flooding
occurred in all subcatchments.

It was demonstrated that problems with the operation of
the stormwater network are present in each subcatchment, as
the calculated values of the (75th and 99th) percentiles are

Figure 3. Variability in the specific flood volume for the subcatch-
ments.

Figure 4. Comparison of LRM and SWMM simulation results for
the number of episodes in which the specific flood volume was
greater than 13 m3 ha−1. In this figure, NF(SWMM) represents the
prediction of SWMM; NF(LRM) represents the prediction of LRM;
∗ denotes the minimum and maximum values of the catchment char-
acteristics, representing the topology of the stormwater network in
Table 1, where yellow is the upper limit of the model and blue is the
lower limit of the model.

higher than 13 m3 ha−1. This indicates that the stormwater
network requires modernization.

4.3 Determination of the LRM (module 5)

An LRM was built based on the operational simulation of
the stormwater network. The model can be used to identify
the specific flood volume and for decision-making regarding
corrective action on the stormwater system. The relationship
from Eq. (2) was described by the following linear combina-
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Figure 5. The impact of rainfall duration (tr) and catchment characteristics (Imp, Impd, Vk , and Jkp) on sensitivity coefficients: (a) Sβ and
(b) Snimp .

tion:

Xrain = 4.05 ·Ptot− 0.18 · tr− 54.15, (7)

XSWMM = 0.23 ·α− 79.40 · nimp+ 6.23 ·β + 0.33 · γ

+ 234.12 · nsew, (8)

XCatchm = 76.72 · Imp+ 40.77 · Impd− 0.01 ·Vk
− 1967.04 ·Gk− 1169.00 ·Gkd− 20.33 · Jkp. (9)

For other independent variables (Table S2), the deter-
mined coefficients were statistically insignificant in predic-
tion confidence band 0.05. Standard deviations in the co-
efficients estimated from the LRM and the test probabil-
ities are presented in Table S2. The best fit of the com-
puted results to the measurement data was obtained for
pm,cr = 0.75. For the test data set (20 %), the following val-
ues were obtained: SPEC= 95.24 %, SENS= 84.62 %, and
Acc= 87.87 % (where SPEC, SENS, and Acc denote speci-
ficity, sensitivity, and accuracy, respectively).

For the determined independent variables (Eqs. 7, 8), cal-
culations were performed with the LRM and SWMM models
(for 35 rainfall events, Pt ≥ 5 mm and tr ≤ 120 min), assum-
ing values of catchment characteristics and topological data
within ±0.2 in the separated subcatchments. The results of
the validation of the developed model for the identification
of the specific flood volume are given in Tables S5–S11 in
the Supplement. The results obtained confirm that the de-
termined LRM model can be applied to a wider range than
that shown in Table 1. In the range of NF(SWMM) = (0–6),
the relative difference in the number of episodes when κ ≥
13 m3 ha−1 did not exceed 20 %; for NF(SWMM) = 〈6,19〉,
the corresponding value was 15 %–33 % (Fig. 4).

The maximum difference between the LRM and SWMM
simulations (NF(SWMM)−NF(LRM) = 4) was obtained for
Imp= 0.49, Impd= 0.66, Gk= 0.011 m ha−1, and Vk =

1500 m3, which correspond to the extreme values of the
catchment characteristics and the topology of the sewer
network. Verification results showed that the maximum
difference in the number of events when κ > 13 m3 ha−1

using the ML model and SWMM for Imp= 0.26–
0.50, Impd= 0.32–0.66, Gk= 0.0068–0.011 m3 ha−1, and
Gkd= 0.0009–0.0013 m3 ha−1 did not exceed four episodes
(Fig. 4). The calculations performed confirm the good fit
of the calculations with measurements of the number of
episodes when the specific flood volume exceeds 13 m3 ha−1.

4.4 Sensitivity analyses (module 6)

For a rainfall depth of Ptot = 10 mm and rainfall duration of
tt = 30–90 min, the sensitivity coefficients for the SWMM
were determined based on Eq. (4). For the calculation of
Sxi , the values established during calibration were adopted
(Kiczko et al., 2018). The computation results for two pa-
rameters of the SWMM (β and nimp) are presented in Fig. 5.

These two parameters appeared to have the most signif-
icant impact on the specific flood volume and, at the same
time, they present a vastly different impact on the dynamics
of changes regarding Sxi = f (tr, Imp, Impd, Vk , and Jkp);
the calculation results for the other SWMM model parame-
ters are given in Figs. S4–S8 in the Supplement. Figures 5
and S4–S8 indicated that, for the adopted values of tr, Imp,
Impd, Vk , and Jkp, the highest values of Sxi were obtained
for correction coefficient percentage of impervious areas (β),
the Manning roughness coefficient for sewer channels (nsew),
and the Manning roughness coefficient for impervious areas
(nimp). The retention depth of impervious areas (dimp) had
the lowest impact on the results of the specific flood volume.
An increase in the rainfall duration results in higher values of
Sβ and Snimp (Fig. 5). The lowest sensitivity coefficients were
obtained for tr = 30 min, whereas the highest values were ob-
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tained for tr = 90 min. An increase in the Imp and Impd re-
sults in a decrease in the Sβ and Snimp sensitivity coefficients.
For instance, an increase in Imp from 0.34 to 0.36 results
in a decrease in Sβ from 1.23 to 0.28; identical values were
obtained for Impd (Fig. 5). Moreover, an increase in Vk , Jkp,
and Gk leads to an increase in the Sβ and Snimp sensitivity co-
efficients. Among the analyzed catchment characteristics, the
density of the stormwater network (Gk) had the highest im-
pact on the sensitivity coefficients, whereas the longitudinal
slope of the canal (Jkp) was of the lowest significance; these
results are confirmed by the variability in the obtained curves
for the subsequent SWMM parameters (Fig. 5). For exam-
ple, when Vk increased from 400 to 500 m3, Sβ increased
from 0.29 to 0.82. Additionally, a 10 % growth in Sβ was
observed due to a change from Jkp= 0.004 to Jkp= 0.010.
Finally, when Gk increased from 0.0075 to 0.009, Sβ also
increased from 0.29 to 3.03 (Fig. 5).

4.5 Implementation of logit model to analyze the
operation of the stormwater network and
catchment management (module 7 and 8)

Due to the fact that an exceedance of specific flood volume
was observed in the analyzed stormwater network, possi-
ble improvements to the network were considered in terms
of correcting catchment imperviousness (Imp) and enhanc-
ing terrain retention and channel capacity. The results of pm
computations are presented in Fig. 6, while Fig. 7 shows Sβ
for variants I, II, and III for subcatchments.

Simulation results for the sensitivity coefficients of other
SWMM model parameters (Table S1) and the probability of
specific flood volumes are presented in Figs. S9–S17 in the
Supplement. A 10 % decrease in Imp in subcatchment J has
a negligible impact on the pm value, whereas it results in
a 10 % decrease in the specific flood volume probability in
subcatchment S (Fig. 6a, b). It was found that a decrease in
catchment imperviousness (variant I) leads to improvement
in stormwater system operation (Fig. 6).

The greatest reduction in flooding volume was obtained
for variant III: pm values decreased by 2 % and 36 % for
subcatchments J and S (Fig. 6d). Based on the pm values
for catchments J, M, N, and S for corrective action vari-
ant III, it was found that, despite the increase in retention
depth and channel capacity and the reduction in the imper-
viousness of the catchments, there was hydraulic overload-
ing (κ > 13 m3 ha−1) in the subcatchments. This indicates
the need for further changes in both the catchment and the
stormwater network than were assumed. For variants I and
III, the Imp values for the subcatchment were below the ap-
plicability range of the LRM; therefore, MCM simulations
were performed to verify the results (Table S4). The results
of the model calculations confirm their high agreement: out
of 72 cases, identical results were obtained in 68 cases. The
calculations performed (variants I, II, and III) for the sub-
catchments showed a greater influence of changes in terrain

retention and channel capacity on the sensitivity coefficients
than on the influence of the probability of a specific flood
volume (Fig. 7). For catchments J and S, a 10 % decrease in
Imp (variant I) increased Sβ by 7.55 times and 17.50 times
(Fig. 7a, d). For variant II (increasing catchment retention),
sensitivity coefficients were found to be higher than 51 %
(catchment S) and 59 % (catchment J) compared with vari-
ant I, and the highest Sβ was obtained for variant III. The
Sβ values for subcatchment S are 20.7 times, 19.3 times, and
14.7 times higher than in catchment J for variants I, II, and
III, respectively. These results provide relevant information
for planning retentive infrastructure that reduces outflow.

4.6 Probability of failure (module 9)

Based on the SWMM model parameters determined via
the MCM method (Table S1), the probability of failure
(pF) was computed for convectional rainfall in Kielce
with a duration of tr = 30 min and Ptot = 9.61 mm. The
following threshold values of nsew(m) were adopted for
calculations: nsew(m) = 0.015–0.045 m−1/3 s. This thresh-
old was coupled with three variants of catchment char-
acteristics: Imp= 0.36 and Impd= 0.40, Imp= 0.35 and
Impd= 0.40, and Imp= 0.35 and Impd= 0.42. The impact
of canal retention (Vk = 750, 850, and 950 m3) and the den-
sity of the stormwater network (Gk= 0.0075, 0.0080, and
0.0085 m ha−1; Gkd= 0.005, 0.006, and 0.007 m ha−1) in
upper and lower part of the catchment on the probability
of failure (pF) were also analyzed. The Manning rough-
ness coefficients of the channels (nsew) for the analyzed vari-
ants were presented as an empirical distribution (CDF). In
Figs. 8a and 9a, the results for Imp= 0.36, Impd= 0.40,
and Vk = 750, 850, 950 m3 are presented; other variants are
shown in Figs. S18 and S19.

Figure 8b presents the impact of nsew = f (nsew(m)) for
percentiles 0.25 and 0.50 (based on the curves in Figs. 8b,
9b, 9c, 9d, S25, and S26 – the values of the respective per-
centiles for the analyzed nsew(m)) on the probability of fail-
ure (pF). Assuming that the Manning roughness coefficients
(nsew(un)) determined by Monte Carlo (MC) simulation ex-
ceed the threshold and trigger corrective action on sewer
pipes, resulting in a reduction in roughness below nsew(m),
following the condition under which the stormwater network
functions, pm = f (Xrain,XSWMMXCtchm) > 0.75 for an in-
dependent rainfall event; thus, it was found that an appro-
priate decrease in the percentiles (0.25 and 0.50 – median)
leads to improved network operation and to a lower failure
probability (Fig. 8a, b). It was observed that the change in
percentile 0.50 for nsew for a sample from MC simulation
leads to a decrease from 0.028 to 0.021 m−1/3 s (as a result
of correction nsew(un) < nsew(m)) and to improved stormwa-
ter network operation, understood as a lower probability of
failure (decrease in pF from 0.68 to 0.42 for Imp= 0.36
and Impd= 0.40). These results confirm the significance of
catchment characteristics (Imp and Impd) for the operability
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Figure 6. Probability of a specific flood volume in subcatchments for the (a) present state (p0) and for the (b) I, (c) II, and (d) III corrective
action variants.

of a stormwater network. For Impd= 0.40, the reduction in
catchment impervious area (Imp) from 0.36 to 0.35 at per-
centile nsew = 0.019 m−1/3 s results in a decrease in the fail-
ure probability from pF = 0.42 to pF = 0.33 (Fig. 8b).

A great impact of channel retention (Vk) and the density of
stormwater network in the upper and lower part of a catch-
ment (Gkd and Gk, respectively) on the probability of failure
pF were indicated (Fig. 9). For nsew < 0.0215 m−1/3 s, pF
reached higher values (max 0.41) than for Vk = 850 m3 and
Vk = 950 m3.

The highest failure probability (pF = 0.80) was obtained
for Vk = 750 m3 (nsew = 0.031 m−1/3 s), whereas the lowest
failure probability (pF = 0.65) was obtained for Vk = 950 m3

(Fig. 9b). Furthermore, the highest probability of failure
(pF = 0.79) was obtained for Gk= 0.0075 m ha−1 (nsew =

0.031 m−1/3 s), whereas the lowest probability of failure was
observed for Gk= 0.0085 m ha−1 (nsew = 0.0276 m−1/3 s)
(Fig. 9c). For nsew < 0.023 m−1/3 s, it was established
that computed values of pF for Gk= 0.0075 m ha−1 and
Gk= 0.0080 m ha−1 were higher than 0.41. Moreover, the

highest failure probability (pF) for nsew = 0.035 m−1/3 s was
equal to 0.82 for Gkd= 0.005 m ha−1, while it was 0.73 for
Gkd= 0.007 m ha−1 (Fig. 9d).

5 Discussion

Developing and calibrating mathematical models to simulate
stormwater network operation under hydraulic overloads is
one of the latest areas of research. In comparison to the mod-
els used so far (Li and Willems, 2020; Thorndahl, 2009), the
LRM proposed in this study includes SWMM model param-
eters describing catchment retention and, at the same time,
the characteristics of the catchment and stormwater network
(Table 2).

Apart from the model developed in this study, the above-
mentioned factors are only included in MCMs that have a
form of differential equations. Therefore, they require a large
number of simulations in order to determine the impact of
selected variables on the computation results of the specific
flood volume. Free of such drawbacks are statistical models
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Figure 7. Sensitivity coefficient (Sβ ) in subcatchments for the (a) present state and for the (b) I, (c) II, and (d) III corrective action variants.

Figure 8. (a) Empirical distributions of the threshold values of the Manning roughness coefficients of the channel (nsew). (b) The impact of
the Manning roughness coefficient of the channel on the failure probability (pF) in relation to Imp and Impd.

(Table S4) that take the form of empirical relationships. For
models developed with neural networks, there is the need to
perform additional analyses (Ke et al., 2020; Yang and Chui,
2021). Jato-Espino et al. (2018, 2019) and Li and Willems
(2020) analyzed stormwater flooding from sewer utility holes

based on catchment characteristics and stormwater network
characteristics (Table 2). Szeląg et al. (2022b) confirmed
their results and developed a model for the identification of
stormwater flooding in a catchment, but they did not con-
sider catchment retention. In this context, the approaches
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Figure 9. (a) Empirical distributions of the threshold values of the Manning roughness coefficients of the channels (nsew) for Vk = 950 m3.
The impact of the Manning roughness coefficient for the channel on the failure probability (pF) is shown in relation to the following: (b) Vk
(canal retention), (c) Gk (length of stormwater channel per impervious area in a catchment, in m ha−1), and (d) Gkd (length of a channel per
impervious area below closing cross-section, in m ha−1).

Table 2. Comparison of the model developed for the identification of the specific flood volume to literature data.

Study Criteria M I R C S P

Duncan et al. (2012) occurrence of flooding X • X X X •

Jato-Espino et al. (2018) occurrence of flooding X X X X X •

Jato-Espino et al. (2019) occurrence of flooding X • X X X •

Li and Willems (2020) occurrence flooding X X X X X •

Szeląg et al. (2021a) volume X X X X X X
Szeląg et al. (2022b) occurrence of flooding • • X X X X
Szeląg et al. (2022a) specific flood volume X X X • • X
Thorndahl et al. (2008) volume X X X • X X
Vorobevskii et al. (2020) volume X X X • • •

Fu et al. (2011) volume • • X X X X
S. Chen et al. (2018) volume • • X X X X
Fraga et al. (2016) volume • • X X X X
this study specific flood volume X X X X X X

The following abbreviations are used in the table: M – method; R – rainfall; C – catchment; S – sewer; P –
calibration parameter; and I – interpretation model (based on estimated factors, the impact of analyzed factors
on stormwater flooding can be determined). The models were divided into two groups: mechanistic (•) and
statistical (X) models.

cited above were insufficient to analyze the impact of differ-
ent types of surfaces (e.g., roof, road, and parking) on sewage
flooding. Fu et al. (2011), Thorndahl (2009), and Szeląg et
al. (2022a) analyzed the uncertainty in the identified param-
eters, which allowed them, for example, to correct for im-
pervious area retention and the roughness coefficient without
being able to correct for catchment imperviousness, which

limited the use of the models in catchment management. The
approach proposed in this study is a combination of these two
solutions, thereby providing a tool which can be successfully
implemented to manage other catchments.

The results of this study confirmed the major significance
of and strong interaction between catchment characteristics
and SWMM model parameters. This fact can be further com-
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pared to several publications (Li and Willems, 2020; Jato-
Espino et al., 2019; Zhou et al., 2019) presenting compar-
isons of flooding simulations in urban catchments. This anal-
ysis indicated that an impervious area in a catchment (Imp
and Impd) leads to an increase in flooding; an inverse de-
pendency was obtained by Jato-Espino et al. (2018) when
modeling flooding from sewer utility holes. Jato-Espino et
al. (2018) found that an increase in channel volume above the
closing cross-section of a catchment (Vk) and its longitudi-
nal slope (Jkp) results in a decrease in flooding, and this was
confirmed for Espoo catchment in Finland. An increase in
the unit of impervious area per length of the main stormwa-
ter interceptor (Gk and Gkd) results in a smaller volume of
stormwater flooding. This is due to the following relation-
ship: the longer the channel, the greater the number of sewer
utility holes. Huang et al. (2018), based on observations con-
ducted in a complex stormwater system, indicated the im-
pact of catchment location and hydrological conditions on
the peak flow of flooding. Yao et al. (2022) obtained similar
results after computations with an MCM for catchments in
Beijing and in Dresden (Reyes-Silva et al., 2020).

The calculation results obtained in this study confirmed
the relevant impact of rainfall data, catchment characteris-
tics, and stormwater network characteristics on sensitivity
coefficients (the relationships between SWMM parameters
and the specific flood volume). For rainfall data and catch-
ment characteristics (assumed to be constant), it was proved
that the correction coefficient of impervious area (β) and the
Manning roughness coefficient for channels (nsew) have the
greatest impact on the specific flood volume. The results of
these computations were consistent with Thorndahl (2009),
who simulated flooding from a single sewer utility hole in
the Frejlev catchment (Belgium), based on rainfall data and
the calibrated parameters of an MCM. These findings were
confirmed by calculations carried out by Fu et al. (2011)
and Prodanovic et al. (2022) for respective catchments of
400 and 8 ha. Szeląg et al. (2021a, 2022a), based on simu-
lations with an MCM including uncertainty in the SWMM
parameters, proved the key impact of the Manning rough-
ness coefficient of sewers on the specific flood volume (for
a rainfall event with tr = 30 min and Pt = 15.25 mm). Fraga
et al. (2016) used the GLUE+ GSA (global sensitivity analy-
sis) method for a road catchment and indicated the impact of
rainfall data (rainfall duration, depth, and temporal distribu-
tion) on the sensitivity analysis results. This was confirmed
in computations of stormwater flooding using a LRM (Szeląg
et al., 2022b) and specific flood volume calculations with the
SWMM (Freni and Oliveri, 2005). Xing et al. (2021) used
an MCM to determine the impact of spatial development and
stormwater characteristics in Chongqing catchment (China)
on the depth of stormwater flooding. The aforementioned
studies indicate the impact of rainfall data, catchment charac-
teristics, and stormwater network characteristics on the sen-
sitivity of a hydrodynamic simulation model for stormwater
flooding.

The sensitivity analysis development proposed in this
study enabled its application to catchments with different
characteristics, which is an improvement compared with pre-
viously applied, more specific, approaches (Cristiano et al.,
2019; Fatone et al., 2021). Differences in the probability of
occurrence/sensitivity coefficients indicate the influence of
downstream catchments on the conditions in the catchment
above. The variation in the sensitivity coefficients does not
account for local conditions within the side channels. Due
to the creation of successive subcatchments by combining
them, the conditions of the sewer system in its area are av-
eraged out, making the interpretation of the results difficult.
Using the developed tool, catchment management may be-
come difficult when there is a particularly hydraulically over-
loaded area within the catchment that impacts neighboring
subcatchments.

As in the case of the sensitivity analysis, the extension
of the sewer system failure assessment has been adapted in
this study to enable its implementation in a random catch-
ment (for a sewer system without pump stations). The cal-
culations’ outputs showed the influence of the catchment and
sewage network characteristics on the failure probability. The
introduction of the maximum allowable value of the Man-
ning roughness coefficient for the sewer channel enabled one
to model the improvement in the operating conditions of the
sewage network under uncertainty. A similar approach was
used in the study of Fu et al. (2011) by limiting the analy-
sis to probabilistic rainfall characteristics (Del Giudice et al.,
2013) and using an MCM to simulate the drainage system.
Fu et al. (2011) modified the above approach by focusing
on the impact of uncertainty in the calibrated parameters on
flooding; however, it was not possible to analyze the effect of
retention or channel capacity on system performance.

6 Conclusions

In this study, a novel simulator of logistic regression includ-
ing an advanced risk assessment extension was developed for
modeling stormwater systems’ operation under uncertainty.
The proposed model is an alternative approach to MCMs,
which can be used at the preliminary stage of analyses re-
lated to spatial planning, urban development and expansion,
etc. This is of major significance because, at the prelimi-
nary stage, the data set for building catchment models is lim-
ited, and urgent demand for a simulation algorithm to assist
decision-making is present. Assuming a Manning roughness
coefficient (nsew(un)) estimation that exceeds the threshold
triggers corrective action on sewer pipes, resulting in a reduc-
tion in roughness below nsew(m), following the condition of
proper functioning of the stormwater network (pm > pm,cr).
An appropriate decrease in the percentiles (0.25 and 0.50 –
median) led to improved network operation and to a lower
failure probability requirement.
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In the adopted hydrodynamic (LRM-based) model, the
impact of rainfall data, catchment characteristics (impervi-
ous areas in the downstream and upstream regions), and
stormwater network characteristics (the length of channel per
unit of impervious area, the channel slope, and the volume)
as well as the SWMM parameters (roughness coefficient for
sewer channel, correction coefficient for percentage imper-
vious area, and Manning roughness coefficients for impervi-
ous area) were included simultaneously. The obtained simu-
lation results show the strong interaction between the above-
listed parameters. This is extremely relevant in the context of
model calibration that can be applied to analyze stormwater
network operation and to support the decision-making pro-
cess (management of stormwater in an urban catchment). As
the proposed solution analyses the spatial distribution of sen-
sitivity coefficients, it is possible to identify the most vulner-
able areas inside a catchment that require specific attention
while also identifying SWMM model parameters that could
be considered when locating measuring facilities.
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Appendix A: List of symbols

Apav Area of paved surface (ha)
dH1 Height difference of the terrain at section above closing cross-section (m)
dHp Height difference at section above closing cross-section (m)
dimp Retention depth of impervious areas (mm)
dper Retention depth of pervious areas (mm)
F Catchment surface area (ha)
Gk Length of stormwater channel per impervious area in a catchment (m ha−1)
Gkd Length of a channel per impervious area below closing cross-section (m ha−1)
GLUE Generalized likelihood uncertainty estimation
Hst The height of a sewer utility hole at closing cross-section (m)
Imp Impervious area (–)
Impd Impervious area of a catchment of downstream area (–)
J Average rainfall intensity (L s−1 ha−1)
Jkp Channel slope above closing cross-section of a catchment (–)
K Total number of sewer utility holes (–)
Lk Length of channel above closing cross-section of a catchment (m)
L(Q/θ) Likelihood function (–)
nimp Manning roughness coefficient for impervious areas (m−1/3 s)
nperv Manning roughness coefficient for pervious areas (m−1/3 s)
Qz Denotes the zth value from the times series of observed and computed discharges (m3 s−1)
Pt Maximum depth of rainfall (mm)
p Cumulative distribution function (CDF)
pm Probability of a specific flood volume
P(θ) The a priori parameter distribution
R.t. Height difference of the channel (m)
Sxi Sensitivity coefficient (–)
xi Independent variables
SWMM Storm Water Management Model
tr Duration of rainfall (minutes)
V () Variance
Vk Volume of stormwater channel (m3)
Vkd Total retention of a catchment (m3)
Vkp Volume of the channel above the closing cross-section of a catchment (m3)
Vrd Catchment retention above the closing cross-section (m3)
Vt (i) Flood volume from the ith sewer utility hole (here, i = 1, 2, 3, . . . , k) (m3)
W Width of the runoff path in a subcatchment (m)
α Coefficient for flow path width (–)
β Correction coefficient for percentage of impervious areas (–)
γ Correction coefficient for subcatchment slope (–)
ε A scaling factor for the variance of model residual, used to adjust the width of the confidence intervals
κ Specific flood volume (m3 ha−1)
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Szeląg, B., Suligowski, R., Drewnowski, J., De Paola, F.,
Fernandez-Morales, F. J., and Bąk, Ł.: Simulation of the
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