Catchment data loading
data("B222001001", package = "airGRdatasets")

Data processing for GR4J (with Q for calibration)
prep <- PrepGR(DatesR = ts_obs$Date,
 Precip = ts_obs$Ptot,
 PotEvap = ts_obs$Evap,
 Qobs = ts_obs$Qmmd,
 HydroModel = "GR4J",
 CemaNeige = FALSE)

Calibration using NSE score on raw Q
cal_raw <- CalGR(PrepGR = prep,
 CalCrit = "NSE",
 transfo = "",
 WupPer = c("1999-01-01", "2001-12-31"),
 CalPer = c("2002-01-01", "2016-12-31"))

Calibration using NSE score on sqrt(Q)
cal_sqrt <- CalGR(PrepGR = prep,
 CalCrit = "NSE",
 transfo = "sqrt",
 WupPer = c("1999-01-01", "2001-12-31"),
 CalPer = c("2002-01-01", "2016-12-31"))

Calibration using NSE score on log(Q)
cal_log <- CalGR(PrepGR = prep,
 CalCrit = "NSE",
 transfo = "log",
 WupPer = c("1999-01-01", "2001-12-31"),
 CalPer = c("2002-01-01", "2016-12-31"))

Combination of simulated streamflow

Computation of regime streamflow
tab_sim_reg <- SeriesAggreg(tab_sim_trsf,
 Format = "%m",
 ConvertFun = rep("mean", ncol(tab_sim_trsf) - 1))

Graphical comparison between simulated and observed streamflow regimes
col_trsf <- c("black", rep("orangered", 3))
lty_trsf <- c(1, 1:3)

Graphical comparison between simulated and observed streamflow regimes