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Abstract. Long-range weather forecasts provide predictions
of atmospheric, ocean and land surface conditions that can
potentially be used in land surface and hydrological models
to predict the water and energy status of the land surface or
in crop growth models to predict yield for water resources or
agricultural planning. However, the coarse spatial and tem-
poral resolutions of available forecast products have hin-
dered their widespread use in such modelling applications,
which usually require high-resolution input data. In this
study, we applied sub-seasonal (up to 4 months) and seasonal
(7 months) weather forecasts from the latest European Centre
for Medium-Range Weather Forecasts (ECMWF) seasonal
forecasting system (SEAS5) in a land surface modelling
approach using the Community Land Model version 5.0
(CLM5). Simulations were conducted for 2017–2020 forced
with sub-seasonal and seasonal weather forecasts over two
different domains with contrasting climate and cropping con-
ditions: the German state of North Rhine-Westphalia (DE-
NRW) and the Australian state of Victoria (AUS-VIC). We
found that, after pre-processing of the forecast products
(i.e. temporal downscaling of precipitation and incoming
short-wave radiation), the simulations forced with seasonal
and sub-seasonal forecasts were able to provide a model out-
put that was very close to the reference simulation results
forced by reanalysis data (the mean annual crop yield showed
maximum differences of 0.28 and 0.36 t ha−1 for AUS-VIC

and DE-NRW respectively). Differences between seasonal
and sub-seasonal experiments were insignificant. The fore-
cast experiments were able to satisfactorily capture recorded
inter-annual variations of crop yield. In addition, they also
reproduced the generally higher inter-annual differences in
crop yield across the AUS-VIC domain (approximately 50 %
inter-annual differences in recorded yields and up to 17 %
inter-annual differences in simulated yields) compared to the
DE-NRW domain (approximately 15 % inter-annual differ-
ences in recorded yields and up to 5 % in simulated yields).
The high- and low-yield seasons (2020 and 2018) among the
4 simulated years were clearly reproduced in the forecast
simulation results. Furthermore, sub-seasonal and seasonal
simulations reflected the early harvest in the drought year
of 2018 in the DE-NRW domain. However, simulated inter-
annual yield variability was lower in all simulations com-
pared to the official statistics. While general soil moisture
trends, such as the European drought in 2018, were captured
by the seasonal experiments, we found systematic overesti-
mations and underestimations in both the forecast and refer-
ence simulations compared to the Soil Moisture Active Pas-
sive Level-3 soil moisture product (SMAP L3) and the Soil
Moisture Climate Change Initiative Combined dataset from
the European Space Agency (ESA CCI). These observed bi-
ases of soil moisture and the low inter-annual differences in
simulated crop yield indicate the need to improve the repre-
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sentation of these variables in CLM5 to increase the model
sensitivity to drought stress and other crop stressors.

1 Introduction

Reliable high-resolution seasonal weather forecasting sys-
tems can provide important information for a multitude of
weather-sensitive sectors, especially for agricultural regions
with high inter-annual variability of rainfall patterns that are
strongly influenced by El Niño events (Ash et al., 2007;
McIntosh et al., 2007; Troccoli, 2010). Information on sea-
sonal rainfall and temperature development can influence
agricultural management decisions at the beginning of the
growing season and potentially mitigate yield losses related
to droughts. However, the relevance and usability of such
seasonal forecasts depend on the predicted variables, their
accuracy and their lead time as well as whether they are
supplied in a user-friendly and content-specific format, e.g.
in combination with other model applications (e.g. crop or
land surface models), to assess the expected benefits to the
economy or natural resources (Cantelaube and Terres, 2005;
Hansen et al., 2006; Ash et al., 2007; McIntosh et al., 2007;
Meza et al., 2008). Sub-seasonal (1 to 3 months) and seasonal
(up to 7-month lead times) forecasts bridge the gap between
short-range weather forecasts and climate predictions and are
the most important time periods for model applications and
planning purposes, e.g. in agriculture or risk management
(Monhart et al., 2018). In the last decade, substantial im-
provements have been made in numerical weather prediction,
especially in short- and medium-range weather forecasts by
further model development, data assimilation methods and
the incorporation of ensemble prediction into seasonal fore-
casting systems (Coelho and Costa, 2010; Bauer et al., 2015;
Monhart et al., 2018).

In spite of these substantial improvements, there are still
considerable challenges in interfacing forecast information
from climate to systems science (Coelho and Costa, 2010).
For instance, deficiencies remain in the definition and com-
munication of forecast uncertainties (e.g. due to discrep-
ancies between the spatial and temporal resolutions of the
global weather forecasting system and the regional or local
land surface models) and in the lack of available tools, lit-
erature and experience for correct usage and data processing
(Coelho and Costa, 2010). Seasonal and sub-seasonal fore-
casts do not reflect day-to-day weather statistics but rather
project general weather trends of the predicted season. This
leads to high-precipitation biases compared to observations,
which is a major limitation for crop models that usually op-
erate on sub-daily time steps in response to precipitation and
corresponding soil moisture dynamics. In their study, Mon-
hart et al. (2018) conducted a verification of sub-seasonal
forecasts (with a 1-month lead time) from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) against

ground-based observational time series of 20 years across
Europe for precipitation and temperature and performed two
different bias-correction techniques. They found generally
better skill for temperature than precipitation and that the ac-
curacy of both variables improved significantly after station-
based bias correction (Monhart et al., 2018). However, McIn-
tosh et al. (2007) evaluated the potential of different forecast-
ing systems for wheat growth in Victoria, Australia, and con-
cluded that even a perfect forecast of the total rainfall amount
throughout the growing season is not enough to explain even
half of the overall potential of an ideal forecasting system.

The major aim of this study was to evaluate the efficacy
and applicability of this state-of-the-art forecasting product
for physical and biogeochemical land surface responses and
regional crop production in an ecosystem process model ap-
proach. To this end, we tested the combination of the Com-
munity Land Model version 5 (CLM5) (Lawrence et al.,
2018, 2019) and seasonal forecasts from the ECMWF’s latest
seasonal forecasting system, SEAS5 (Johnson et al., 2019).
Regional simulations were conducted for two domains with
different climate regimes and agricultural characteristics, one
covering the state of North Rhine-Westphalia in Germany
(DE-NRW) and one the state of Victoria in Australia (AUS-
VIC), using sub-seasonal and seasonal forecasts with differ-
ent lead times as input. In our evaluations we focused on
(1) the model’s sensitivity to seasonal changes in weather
patterns and their effect on regional vegetation properties,
e.g. leaf area index (LAI), evapotranspiration (ET), and crop
yield; (2) the representation of the surface soil moisture con-
tent; and (3) the overall applicability and potential of sea-
sonal weather forecasts for the prediction of regional agri-
cultural production in model applications such as CLM5. In
addition, we address the pre-processing steps required for the
usage of the SEAS5 product in this model application and
briefly discuss the importance of temporal downscaling.

The long-range forecast product generated by the
ECMWF SEAS5 system, the fifth-generation seasonal fore-
cast system that became operational in November 2017
(Johnson et al., 2019), represents one of the most sophisti-
cated seasonal products available to date. Studies that evalu-
ated the quality of the SEAS5 product globally and for spe-
cific regions concluded that it outperforms earlier versions
of ECMWF forecast products and can provide useful infor-
mation for regional agriculture (e.g. Johnson et al., 2019;
Wang et al., 2019; Gubler et al., 2020). The prediction per-
formance was found to be highest for maximum tempera-
ture over South America (with an up to 70 % probability
that the predictions will correctly capture the observed out-
comes in the tropics during austral summer) (Gubler et al.,
2020) and Australia (Wang et al., 2019). For precipitation,
the performance was considerably lower and more variable
(spatially and temporally) than for temperature (Wang et al.,
2019; Gubler et al., 2020). The best forecast performance
was observed over regions that are influenced by El Niño,
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where SEAS5 outperformed predictions from statistical rela-
tionships at the seasonal scale (Gubler et al., 2020).

The relevance and value of meteorological forecasting sys-
tems for agriculture have been evaluated by a number of
studies (e.g. Cantelaube and Terres, 2005; Marletto et al.,
2007; McIntosh et al., 2007; Semenov and Doblas-Reyes,
2007). In their study, Semenov and Doblas-Reyes (2007)
used a stochastic weather generator to obtain site-specific
daily weather from seasonal DEMETER (European Devel-
opment of a European Multimodel Ensemble system for sea-
sonal to inTERannual climate prediction) predictions. They
found that dynamical seasonal forecasts did not improve
single-site yield predictions with the wheat simulation model
compared to approaches based on historical climatology due
to their low skill for latitudes higher than 30◦ for the North-
ern Hemisphere and Southern Hemisphere. Cantelaube and
Terres (2005) evaluated an ensemble of seasonal weather
forecasts from the DEMETER project in a multi-model ap-
proach with a crop growth modelling system (CGMS), show-
ing encouraging results for the usage of seasonal forecasts for
weather-sensitive decision-making. Wang et al. (2020) inves-
tigated the impact of pre-season and early season El Niño–
Southern Oscillation (ENSO)-related large-scale climate sig-
nals on wheat yields in Australia. They found that these
ENSO signals can have a significant impact on wheat yields
in the Australian wheat belt and could explain up to 21 % of
the yield variation. In another study by Potgieter et al. (2022),
the lead time and skill of Australian wheat yield forecasts
using seasonal climate forecasts derived from a statistical
ENSO-analogue system were compared with using a dy-
namic general circulation model (GCM). They found that
ENSO-derived forecasts showed higher skills at a longer lead
time (6 months), with a higher correlation coefficient of 0.48
compared to 0.37 for GCM forecasts, while GCM forecasts
provided higher skill at shorter lead times (1–3 months), with
a higher correlation coefficient of 0.44 compared to 0.35 for
ENSO-analogue forecasts.

Thus, although seasonal weather forecasts have immense
potential for the agricultural sector, i.e. for individual farm-
ing decisions, risk management and adaptation strategies for
increasing climate variability, and extreme weather events in
the context of climate change (Calanca et al., 2011), they
need to be combined with a measurable system response via
e.g. crop models or Earth system models. Land surface mod-
els are our primary tools for simulating water, energy and
nutrient fluxes in the terrestrial ecosystem and are broadly
applied for different scientific purposes (e.g. Niu et al., 2011;
Lawrence et al., 2018, 2019; Lombardozzi et al., 2020; Naz
et al., 2019). CLM5 is the latest version of the land com-
ponent in the Community Earth System Model and offers the
possibility of prognostic vegetation state and yield prediction
with its new biogeochemistry module (Lawrence et al., 2018,
2019). CLM5 includes a representation of crops and agri-
cultural management (fertilization, irrigation, different crop
types) essential for studying the impact of climate change

on yield as well as the implications of agriculture for cli-
mate change (Lombardozzi et al., 2020). In CLM5, crop pro-
ductivity is a dynamic non-linear interaction between meteo-
rological conditions, crop phenology, nutrient dynamics and
water availability in the soil. Thus, a reliable prediction of
the soil moisture regime is also essential for the relevance of
land surface model applications for climate change research
and is a major source of uncertainty for the simulation of the
terrestrial carbon cycle (Trugman et al., 2018).

Another major limitation of the usage of seasonal and sub-
seasonal forecasting products for crop or land surface mod-
elling is their coarse spatial and temporal resolution. This
problem can be addressed by disaggregating forecast vari-
ables using stochastic weather generators (e.g. Hansen et al.,
2006), which has already been done for several crop model
approaches (see the reviews in Cantelaube and Terres, 2005;
Ash et al., 2007; Meza et al., 2008).

Despite their potential economic value for agricultural
production systems, the quantitative adoption of seasonal cli-
mate forecasts by farmers is low, both in Victoria and NRW
(e.g. Parton et al., 2019). The Australian Bureau of Meteo-
rology attributed this to insufficient data and evidence about
their value and conducted a series of studies of the poten-
tial value of a forecast based on a particular production sys-
tem and for specific regions and timescales (Hansen, 2002;
Hansen et al., 2006). Furthermore, the challenges highlighted
above have hindered widespread application of such long-
range forecasts for agriculture, particularly for larger (not
site-specific) scales (Coelho and Costa, 2010; Calanca et al.,
2011). The lack of user-friendly tools and services that can
provide tropic-specific information based on seasonal fore-
casts and account for other economic factors (e.g. political
choices, outlook for crop markets) represents another con-
straint.

A thorough review of the economic value of seasonal
weather forecasts for agriculture can be found in Meza et
al. (2008), Klemm and McPherson (2017), and references
therein. For an improved understanding of the value of sea-
sonal forecasts for the agricultural sector, more studies are
needed that explore state-of-the-art forecast products and for
a larger range of regions (i.e. high seasonal predictability,
large areas of extensive management, rain-fed). Here, we
provide a first feasibility study of the combination of sea-
sonal forecasts from SEAS5 with CLM5, focusing on crop
yield and soil moisture predictions on a regional scale.

2 Material and methods

2.1 Regional domains and surface input data

The CLM5 simulations were carried out in two regional do-
mains, one in western Europe covering the state of North
Rhine-Westphalia in Germany (DE-NRW) and one that cov-
ers large parts of the state of Victoria in Australia (AUS-
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Figure 1. (a) AUS-VIC simulation domain extent. (b) Dominant land use type based on VLUIS data, modified after the Victorian Government
Data Directory (2018). (c) Percentage of sand content (averaged throughout the soil profile) based on SoilGrids data. (d) Percentage of
clay content (averaged throughout the soil profile) based on SoilGrids. The locations of CosmOz network (Hawdon et al., 2014) stations
15 (Hamilton), 18 (Bishes), and 19 (Bennets) are indicated in panel (a).

VIC) (Fig. 1). The DE-NRW domain is characterized by a
very diverse land cover with urban, natural and mixed agri-
cultural areas that are mostly fed by rainwater. The agricul-
tural land cover in DE-NRW is especially abundant in the
northern and western parts of the domain along with nat-
ural vegetation and urban areas. Winter wheat, winter bar-
ley, corn, sugar beet and rape seed are the most important
cash crops in DE-NRW, which are mostly rain-fed (Fig. 2,
BMEL, 2020, 2022). In the southern part of the domain over
the Eifel region, forests and grasslands are the dominant land
cover. Recently, agricultural yield in this area was impacted
in 2018 and 2019 by a late cold spell (late February to early
March 2018) and extreme heat and dry spells in both sum-
mers which led to an unusually high spatial variability of
yield, especially for cereals (NRW Gov., 2020; BMEL, 2020,
2022). The AUS-VIC domain covers large parts of the Aus-
tralian wheat belt in the state of Victoria (Fig. 1). The land
cover is dominated by rain-fed agricultural areas with large
paddock sizes of mostly cereal cultivation, with winter wheat

being the most important crop, followed by barley and canola
(ABARES, 2020; Morse-McNabb et al., 2015), along with
large patches of naturally vegetated areas (i.e. pasture, grass-
lands, and native woody cover) and woody horticulture and
wood plantations. Unfavourable weather conditions for win-
ter crop farming (i.e. the timing and intensity of early season
rainfall events) are clearly reflected in the relatively low re-
gional production and yield per area (ABARES, 2020).

For the DE-NRW domain, land cover information was
derived from the crop and land cover dataset by Grif-
fiths et al. (2019) that covers Germany at 30 m resolution.
This dataset was generated from the Sentinel-2A MultiSpec-
tral Instrument and the Landsat-8 Operational Land Im-
ager (OLI) observation data from the NASA Harmonized
Landsat–Sentinel dataset for the year 2016 (Claverie et al.,
2018). Comparison of the derived crop type and land cover
map with agricultural reference data showed a very good
overall accuracy of > 80 %, especially for crop types with
high abundances, e.g. cereals, maize and canola (Griffiths et
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al., 2019). For the AUS-VIC domain, the 500 m resolution
Moderate Resolution Imaging Spectroradiometer (MODIS)
land cover product (Friedl and Sulla-Menashe, 2019) was ag-
gregated to the coarser resolution of 1 km and masked with
information from the latest Victorian Land Use Information
System (VLUIS) product for the year 2016 (Victoria Govern-
ment Data Directory, 2018; Morse-McNabb et al., 2015). The
VLUIS dataset covers the whole state of Victoria and con-
tains information on land use and land cover for each cadas-
tral parcel. It is a product of time series analysis of remote-
sensing data (MOD13Q1 or MYD13Q1 by NASA) and an-
nually collected field data (Morse-McNabb et al., 2015).

For both domains, we used soil texture and soil organic
matter information from the global SoilGrids database that
provides soil information at seven depths (0, 0.05, 0.15, 0.30,
0.60, 1 and 2 m) at 250 m spatial resolution (Hengl et al.,
2017). Other soil parameters, such as the saturated hydraulic
conductivity and soil retention parameters, were calculated
within CLM5 with the pedotransfer function after Cosby et
al. (1984). Additional properties of each of the sub-grid land
fractions (e.g. properties of urban land cover) were derived
from the global CLM5 surface dataset (see Lawrence et al.,
2018).

2.2 Agricultural statistics

The mild climate in Victoria is favourable to a range of win-
ter crops, especially cereals (wheat, barley, oats), oilseeds
(canola) and pulses (lentils, beans, chickpeas) contributing
to Australia’s total annual winter crop yield of ∼ 5 million
tons on average. Most of the crop production in Victoria is
from the western and northern regions, expanding to high-
rainfall zones of southern Victoria. Wheat varieties represent
the most commonly sown winter crop in Victoria, with an
average operated area of 1.3 million hectares (2015 to 2019
average) (ABARES, 2020). The production of summer crops
such as grain sorghum, cotton or rice in Victoria is negligi-
ble, with an average total production of 2000 t per year (2015
to 2021 average) (ABARES, 2020). The main cropping sea-
son in Victoria is from April to November. Regional aver-
age farming yield in the Victoria domain is highly influenced
by seasonal rainfall patterns. In 2018, Victoria experienced
substantial yield losses due to long dry spells and high tem-
peratures after the first seasonal rainfalls, while record grain
yields were recorded for the year 2020 (ABARES, 2020).

In the state of NRW, the most relevant cash crops are grain
crops such as cereals (especially winter cereals) and corn,
followed by canola, sugar beet and potatoes (BMEL, 2020,
2022). The main cropping season in Germany occurs dur-
ing the spring and summer months until the beginning of
autumn from April to the end of October. The European
drought of 2018 led to local yield losses, especially for the
crops corn, potatoes and sugar beet and slightly for canola,
and to unusually high spatial wheat yield variability within
the region. The spatial variability was strongly related to soil

type (IT.NRW, 2019; NRW state government, 2020). Regions
with clay-rich soils that have high water-holding capacities
saw unexpectedly high wheat yields in 2019, while regions
dominated by less fertile sandy soils in the north-western
part of the state experienced yield losses due to water deficits
(NRW state government, 2020). In general, the annual crop
yield of the main cash crops varies more in Victoria than in
NRW, where, on a regional average, there is only small vari-
ation between the annual yields of the respective crops (Ta-
ble 2; for a complete list of cropland areas and production of
major cash crops in Victoria and NRW, please see Tables S1
and S2 in the Supplement).

2.3 Land surface model

Land surface models such as CLM5 are essential tools for
the study and prediction of terrestrial processes (e.g. energy,
water and nutrient fluxes) and climate feedbacks in the terres-
trial ecosystem and are broadly applied in different scientific
disciplines (e.g. Baatz et al., 2017; Lu et al., 2017; Chang et
al., 2018; Han et al., 2018; Lawrence et al., 2018, 2019; Naz
et al., 2019; Lombardozzi et al., 2020). In this study, the land
surface model simulations were carried out with the latest
version of CLM5, which includes an adopted version of the
prognostic crop module from the Agro-Ecosystem Integrated
Biosphere Simulator (Kucharik and Brye, 2003; Lawrence et
al., 2018). CLM5 is forced by atmospheric states at a given
time step and simulates the exchange of water, energy, carbon
and nitrogen between land and the atmosphere, their stor-
age and transport on the land surface and in the sub-surface,
as well as the biomass and respective yield of crops upon
harvest (Lawrence et al., 2019; Lombardozzi et al., 2020).
In CLM5, the plant hydraulic stress routine simulates water
transport through the soil–root–stem–leaf system based on
Darcy’s law for porous media flow and adapts the vegetation
water potential according to the water supply with transpi-
ration demand. Water stress for plants is based on leaf wa-
ter potential, which is used for the attenuation of photosyn-
thesis in a transpiration loss function relative to maximum
transpiration (Lawrence et al., 2018). The leaf stomatal con-
ductance and leaf photosynthesis are modelled for sunlit and
shaded leaves separately based on the approaches of Medlyn
et al. (2011) and Farquhar et al. (1980) for C3 plants and Col-
latz et al. (1992) for C4 plants (Lawrence et al., 2018) respec-
tively. Adapted from Medlyn et al. (2011), the leaf stomatal
resistance is calculated using the net leaf photosynthesis, the
vapour pressure deficit and the CO2 concentration at the leaf
surface with plant-specific slope parameters (Lawrence et al.,
2018).

With its biogeochemistry module, CLM5 is fully prognos-
tic regarding crop phenology (e.g. grain yield, leaf area in-
dex or crop height) as well as carbon and nitrogen in the
soil, vegetation and litter. The crop module includes a to-
tal of 78 plant and crop functional types, including an ir-
rigated and non-irrigated C3 crop and crops such as win-
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Figure 2. (a) DE-NRW simulation domain extent, (b) dominant land use type based on Griffiths et al. (2018, 2019), (c) percentage of sand
content (averaged throughout the soil profile) based on SoilGrids data, and (d) percentage of clay content (averaged throughout the soil
profile) based on SoilGrids. The locations of the COSMOS-Europe (Bogena et al., 2022) stations Merzenhausen, Heinsberg, Selhausen, and
Aachen are indicated in panel (a).

ter wheat, spring wheat, canola temperate and tropical corn,
temperate and tropical soybean, cotton, rice and sugarcane
(Lawrence et al., 2018). Fertilization dynamics and annual
fertilizer amounts in CLM5 depend on the crop functional
types and vary spatially and yearly based on the land use
and land cover change time series from the Land Use Model
Intercomparison Project (Lawrence et al., 2016). Mineral
fertilizer application starts during the leaf emergence phase
of crop growth and continues for 20 d, and manure nitro-
gen is applied at slower rates of 0.002 kg N m−2 yr−1. For
a more detailed description of the features and formulations
of CLM5, the reader is referred to the technical description
and the latest literature (Lawrence et al., 2018, 2019).

Here, we used a modified version of CLM5 that includes
a winter cereal representation, an updated parameter set for
several cash crops (winter wheat, sugar beet and potatoes)
and a new sub-routine that allows the simulation of cover
cropping and a more flexible crop rotation (Boas et al., 2021).
The modified CLM5 version led to significantly improved

simulations of LAI, net ecosystem exchange, crop yield and
energy fluxes at several central European sites (Boas et al.,
2021).

2.4 Seasonal weather forecasts

In this study, we used long-range meteorological forecasts
from the ECMWF’s fifth-generation seasonal forecasting
system, SEAS5, which has been operational since Novem-
ber 2017 (Johnson et al., 2019). The SEAS5 forecasts are
based on a coupled atmosphere–ocean model and provide
forecasts of numerous meteorological variables at either 6-
hourly or daily time steps at a horizontal resolution of 1◦. For
the seasonal forecast, an ensemble of 51 members is initial-
ized on the first day of a month and integrated for 7 months
(Johnson et al., 2019). Furthermore, SEAS5 provides a set of
retrospective seasonal hindcasts from 25 ensemble members
for the years 1981 to 2016 that are used to calibrate and ver-
ify the forecasts compared to other datasets. While the whole
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period of hindcasts is used to verify the system, a subset from
the years 1993 to 2016 is used in the calculation of forecast
anomalies to avoid unreasonable effects from long-term cli-
mate trends on the forecast product (Johnson et al., 2019).
A detailed description of the SEAS5 forecasting system and
an overview of its performance are presented in Johnson et
al. (2019). The SEAS5 forecasting product provides all the
variables needed to force CLM5 at daily or 6-hourly time
steps: accumulated daily precipitation amounts, daily short-
wave and long-wave radiation fluxes, wind speed, air tem-
perature, dew point temperature and mean sea level pressure.
In this study, we used the years 2017 to 2020 for our simu-
lation experiments, in accordance with the availability of the
forecasting product.

We used different sets of SEAS5 forecast data, seasonal
forecasts with a 7-month lead time and sub-seasonal fore-
casts with 3- and 4-month lead times. Those variables avail-
able at only a daily time step (incoming short-wave radia-
tion and precipitation) were temporally disaggregated to a
6-hourly time step using the Meteorology Simulator (Met-
Sim) (Bennett et al., 2020) to provide realistic informa-
tion on atmospheric states. MetSim is based on algorithms
from the Mountain Microclimate Simulation Model (MT-
CLIM) (Hungerford et al., 1989; Thornton and Running,
1999; Thornton et al., 2000; Bohn et al., 2013) and the
Variable Infiltration Capacity (VIC) macroscale hydrologic
model (Liang et al., 1994). MetSim can be used to either
generate spatially distributed sub-daily time series of meteo-
rological variables from a smaller number of input variables
(daily minimum and maximum temperatures and elevation
data) or to disaggregate meteorological data from a coarse
temporal resolution to a finer one (Bennett et al., 2020).

In addition to the necessary meteorological input and
calibration variables, MetSim also requires a grid de-
scription file that comprises information like spatial loca-
tion (latitude and longitude), size of the grid cells and
topography. Here, elevation data at a spatial resolution
of 1 arcsec from the ASTER Global Digital Elevation
Model were used (NASA/METI/AIST/Japan Spacesystem
and U.S./Japan ASTER Science Team, 2019).

The daily variables were disaggregated to sub-daily reso-
lution. The total daily precipitation was split into four equal
amounts of precipitation and then spread across the sub-
daily time steps (6-hourly). Similar approaches were used for
the National Centre for Environmental Prediction (NCEP)
dataset (Viovy, 2018) and in Hudiburg et al. (2013). Unfor-
tunately, this deterministic approach cannot characterize the
diurnal cycle of precipitation properly. The incoming short-
wave radiation is disaggregated by multiplying the total daily
short-wave radiation by the fraction of radiation that is cal-
culated by the solar geometry module of MetSim. The solar
geometry module within MetSim computes the daily poten-
tial radiation, day length and transmittance of the atmosphere
based on the algorithms from MTCLIM (Thornton and Run-
ning, 1999). The influence of the temporal resolution of forc-

ing data on simulation results and the quality of MetSim-
disaggregated data for the CLM5 model performance relative
to hourly forcing data is illustrated and discussed for an ex-
ample at point scale in Appendix A1 and in the Supplement.

2.5 Simulation experiments

We conducted simulation experiments using different sets of
seasonal (up to a 7-month lead time) and sub-seasonal (up to
a 4-month lead time) forecasts in order to assess a potential
difference for the prediction of annual crop yields and gen-
eral model system responses for different forecast lead times.
For the seasonal experiments (CLM-S), forecasts with a lead
time of 7 months covering the main growing season (1 April
to 31 October) were used. The seasonal simulations started
on 1 April and continued for 7 months until the end of Oc-
tober of the same year. The same timescale was used for the
sub-seasonal experiments (CLM-SUB) that were forced with
a combined set of forecasts with lead times of 3 and 4 months
(from 1 April until the end of June and from 1 July until
31 October) (Fig. 3). Seasonal and sub-seasonal experiments
were conducted for the years 2017, 2018, 2019 and 2020 in
order to assess the ability of the model to portray inter-annual
differences in crop production for both domains. Further-
more, reference simulations (CLM-WFDE5) were conducted
for the years 2017, 2018 and 2019 using the bias-adjusted
global reanalysis dataset WFDE5 (Cucchi et al., 2020). The
WFDE5 dataset was generated from the ERA5 reanalysis
product (Hersbach et al., 2020) using the WATCH Forcing
Data (WFD) methodology (Cucchi et al., 2020). It is pro-
vided at 0.5◦ spatial resolution and at an hourly time step for
the period from 1979 to 2019.

An 850-year spin-up was performed prior to production
runs for both domains in order to reach equilibrium condi-
tions for soil carbon and nitrogen pools, soil water storage
and other ecosystem variables. The global CRUNCEP atmo-
spheric forcing dataset (Viovy, 2018) was used to force the
spin-up simulations. The CRUNCEP dataset is a combina-
tion of the CRU TS3.2 0.5× 0.5◦ monthly data covering the
period 1901–2002 (Harris et al., 2014) and the NCEP reanal-
ysis 2.5× 2.5◦ 6-hourly data covering the period 1948–2016
(Kalnay et al., 1996).

In order to evaluate the quality of the simulation results,
we used the root mean square error (RMSE), the mean bias
error (MBE) and the squared correlation coefficient (R2) as
statistical validation metrics:

RMSE=

√√√√1
n

n∑
i=1

(Xi − yi)
2, (1)

MBE=

n∑
i=1

(Xi − yi)

n
, (2)
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Figure 3. Schematic visualization of experimental simulation design.

R2
= 1−

n∑
i=1

(yi −Xi)
2

n∑
i=1

(yi − y)2
, (3)

where n is the total number of time steps; Xi and yi are the
simulated and observed values of a given variable at every
time step i; and the overbar represents the mean value.

2.6 Validation data

For the validation of CLM5-simulated surface soil mois-
ture, we compared simulation results with the Soil Mois-
ture Active Passive (SMAP) mission Enhanced Level-3 ra-
diometer soil moisture product (SMAP L3) (Entekhabi et
al., 2016) and with the Soil Moisture CCI combined dataset,
version 05.2 (ESA-CCI), from the European Space Agency
(ESA) Soil Moisture Essential Climate Variable (ECV) Cli-
mate Change Initiative (CCI) project (Dorigo et al., 2017;
Gruber et al., 2017, 2019). The global SMAP L3 product
comprises soil moisture retrievals at both 06:00 and 18:00 LT
at a spatial resolution of 9 km (Entekhabi et al., 2016). The
ESA-CCI soil moisture combined product provides global
daily volumetric soil moisture data at a spatial resolution of
0.25◦ from 1978 to 2019. It was created by merging mul-
tiple scatterometer and radiometer soil moisture products
(from the AMI-WS, ASCAT, SMMR, SSM/I, TMI, AMSR-
E, WindSat, AMSR2, SMOS and SMAP satellites) and cov-
ers the period from 1978 to 2019 (Dorigo et al., 2017; Gruber
et al., 2017, 2019).

In addition, simulation results were compared to avail-
able soil moisture content (SMC) measurements from three
cosmic-ray neutron sensor (CRNS) measurements. For AUS-
VIC we used measurement data from the stations Hamil-
ton (station 15), Bishes (station 18) and Bennets (station 19)
that are part of the CosmOz network (Hawdon et al., 2014).
For DE-NRW, CRNS measurements were obtained from the
four COSMOS-Europe stations Selhausen, Merzenhausen,
Aachen and Heinsberg (Bogena et al., 2022). For this com-
parison, simulation outputs from the closest grid point to
the respective station were averaged with the weighting ap-
proach after Schrön et al. (2017).

In order to validate the regional LAI and ET simulation
results, we used the latest MODIS satellite data product
(MCD15A3H version 6). This includes the Combined Frac-
tion of Photosynthetically Active Radiation (FPAR) and LAI
product (Myneni et al., 2015) as well as the MODIS ET/La-
tent Heat Flux (LH) (MOD1A2 version 6) product (Running
et al., 2017). The MODIS LAI product is a 4 d composite
dataset (combined acquisitions of both MODIS sensors lo-
cated on NASA’s Terra and Aqua satellites) on a 500 m global
grid (Myneni et al., 2015). The MODIS ET product is an 8 d
composite at 500 m global resolution (Running et al., 2017).
We compared simulated LAI and ET with monthly mean val-
ues from MODIS for cropland-dominated land units through-
out both domains.

An overview of the abbreviations used in this study is pro-
vided in the Appendix (Table A1).

3 Results

3.1 Comparison of seasonal forecasts to recorded
weather statistics

In a first step, the forecasts for both domains were compared
to official weather statistics and trends.

In 2017, the weather in Victoria was generally slightly
drier and warmer than average. However, the winter season
was unusually cool, with record minimum temperatures in
July and August (BOM, 2021). Annual rainfall was below
average in most months, especially in June and July, which
resulted in the driest winter season since 2006.

However, early growing season rainfall in April was more
than 50 % above average for large parts of the state (BOM,
2021). The year 2018 continued with drier and warmer-
than-average weather, with the lowest annual rainfall amount
since 2006 and an annual mean temperature of more than
1 ◦C above average (reference period of 1980–2010) (BOM,
2021). In the south-west and south of Victoria, winter sea-
son rainfall was close to average, while below-average rain-
fall amounts were recorded across the north and east of the
state (BOM, 2021). Similarly to the previous years, 2019
was generally warmer and drier than average. Winter sea-
son rainfall showed high variability throughout the state: it
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was below average for large parts of Victoria in the north and
east and above average in the south (BOM, 2021). The year
2020 continued with close-to-average rainfall and tempera-
tures (BOM, 2021). The recorded weather pattern in Victoria
is to a certain extent represented in the SEAS5 seasonal fore-
cast data. The predicted state-wide average rainfall amount
was highest for the autumn and winter seasons (from April
to October) of 2020 and 2017, where recorded early season
rainfall was 50 % above average, and lowest for 2018, where
extremely low winter season rainfall was predicted. In NRW,
the weather in 2017 was slightly warmer than the 30-year
average with close-to-average rainfall. The year 2018 was
characterized by an exceptional heat and drought wave dur-
ing summer (Graf et al., 2020; DWD, 2021). Overall sum-
mertime rainfall in 2018 was below average, which, in com-
bination with high temperatures, led to exceptional drought
conditions in NRW and most of Europe that represent the
largest annual soil moisture anomaly in the period 1979–
2019 (Graf et al., 2020, and references therein). The same
pattern, though less extreme, was observed in 2019, where
a heat wave occurred during summer in combination with
long dry spells. Total summertime rainfall was slightly be-
low average. The year 2020 continued with above-average
summertime temperatures and below-average rainfall, mak-
ing it the third too dry and too warm year in a row (DWD,
2021). The trend of the recorded weather patterns is to a cer-
tain extent reflected in the SEAS5 forecasts for NRW. The
predicted total rainfall over 7 months was lowest in the 2018
forecasts. The heat wave in 2018 is reflected in the forecasts
of the predicted mean daily temperature, which is more than
1 ◦C higher than in 2017, 2019 and 2020.

3.2 Model performance with long-range forecasts

3.2.1 Soil moisture content

In general, the SMAP L3 dataset depicts much stronger fluc-
tuations in the SMC than the ESA-CCI product over both do-
mains. Over the DE-NRW domain, SMAP L3 is drier in the
early growing season and shows a slightly wetter trend to-
wards the end of the season compared to ESA-CCI (Fig. 4).
Large differences in SMC can be observed for the AUS-VIC
domain, where SMAP L3 shows much higher magnitudes of
SMC compared to ESA-CCI, in July–September in particu-
lar. Overall, the simulated SMC shows lower fluctuations for
the DE-NRW domain than for AUS-VIC. While the CLM5-
simulated SMC for AUS-VIC corresponds better to the ESA-
CCI product, for the DE-NRW domain, the CLM5-simulated
SMC shows larger fluctuations and correlates better with
the SMAP L3 product. For AUS-VIC, the CLM5-simulated
SMC shows a wet trend towards the end of the winter sea-
son (August, September, October), especially for 2018 and
2019, compared to ESA-CCI (Fig. 4). The reference runs for
CLM-WFDE5 generally correlated better with the ESA-CCI
data (R2 > 0.8) than the seasonal and sub-seasonal runs (R2

values between 0.2 and 0.64) for AUS-VIC (Table 1). Over-
all, the fluctuations of the SMAP L3 product are not well
represented in CLM5-simulated SMC over AUS-VIC. Both
the forecast experiments and the reference simulations un-
derestimated the SMC in comparison to SMAP L3 during the
middle of the growing season for all the years while overes-
timating early and late growing season SMCs (Fig. 4).

A different trend can be observed for the DE-NRW do-
main (Fig. 4). While simulation results from CLM-S and
CLM-SUB show a slight overestimation of the surface SMC
in the beginning of the growing season (April to June) of
2017 and 2019 compared to the ESA-CCI product, a clear
negative bias can be observed over summer and towards the
end of the growing season (July to October) of 2017 and
2020 compared to ESA-CCI (Fig. 4). This is also true for
the CLM-WFDE5 run in 2018 and 2019. For 2017, CLM-
WFDE5 overestimated the early season surface SMC but
captured it relatively well towards the end of the season in
reference to ESA-CCI (Fig. 4). Compared to the SMAP L3
product, CLM5 overestimated early growing season SMC
for all the years except 2020, where a systematic underes-
timation of simulated SMC can be observed throughout the
whole season. For the years 2018 and 2019, the SMAP L3
product seems to capture the recorded drought conditions in
DE-NRW better compared to the ESA-CCI product, show-
ing much lower SMCs. In the late growing season of 2019
(September and October), the SMAP L3 data and the ESA-
CCI product show a prominent increase in SMC that is to
a certain extent captured in the reference simulations but
not in the seasonal and sub-seasonal experiments. Overall,
the CLM-WFDE5 simulations correlated better with both
SMAP L3 and ESA-CCI (R2 > 0.54 for all years) compared
to forecast experiments (R2 values between 0.12 and 0.42).

Only minor differences between the seasonal and sub-
seasonal experiments can be observed for AUS-VIC, while
for DE-NRW, the sub-seasonal experiment yielded lower
mean soil moisture contents compared to the seasonal model
runs in the late growing season, especially in August and
September of 2017.

Because of the large differences between the two valida-
tion datasets ESA-CCI and SMAP L3 over AUS-VIC, we
also compared the simulated SMC to available SMC mea-
surements from three CRNS stations (station 15: Hamilton;
station 18: Bishes; station 19: Bennets) (Hawdon et al., 2014)
for the years 2017 and 2018 (Fig. A2). A relatively good
correlation is reached for Hamilton during the early growing
seasons of 2017 and 2018, while later in the season the SMC
is underestimated. The simulated SMC is relatively high at
the Bennets and Bishes stations (Fig. A2) compared to CRNS
data. We note that this comparison can only serve as an im-
pression to give a tendency of model performance as simu-
lation results and measurements may differ in soil types. For
instance, Bishes and Bennets have a very sandy soil com-
position, while in the SoilGrids dataset the sand content is
between 20 % and 40 % (Fig. 1). Station Hamilton is char-
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Figure 4. CLM seasonal(CLM-S), sub-seasonal (CLM-SUB) and CLM-WFDE5 (for 2017, 2018 and 2019) simulated daily soil moisture
content in the surface layer (0–0.05 m) from April to October 2017, 2018, 2019 and 2020 averaged over (a, c, e, g) the AUS-VIC domain and
(b, d, f, h) the DE-NRW domain, compared to the ESA-CCI surface soil moisture product and SMAP L3 data for the same time period and
domain respectively. Corresponding statistics (RMSE and bias) are listed in Table 1.

acterized by soils with a high water-holding capacity, which
explains the high SMCs in the middle and towards the end
of the wet season (Fig. A2) and which is not to the extent
represented in the CLM5 simulations and underlying Soil-
Grids data. Single precipitation and/or flooding events that
are reflected in the CRNS data are not represented in the
forecasts and, thus, are naturally not captured in the simu-
lation results. However, the reference simulations were also
not able to represent these fluctuations (Fig. A2). For DE-
NRW, CLM5 simulations correspond better to SMAP L3
and show more fluctuations in day-to-day SMC. Here, the
forecast experiments performed reasonably well in captur-
ing the drought conditions, with very low soil moisture con-
tents throughout summer and autumn in 2018 and 2019. We
compared CRNS measurements from four stations within
DE-NRW (Selhausen, Merzenhause, Aachen and Heinsberg)
(Bogena et al., 2022) to the simulated SMC at the closest
grid point. The comparisons showed that the reference sim-
ulations forced with reanalysis generally produced higher
SMCs than the forecast simulations and corresponded better
to CRNS measurement in terms of fluctuation intensity and

magnitudes than SMCs from forecast simulations for single
sites (Fig. A3).

3.2.2 Leaf area index and evapotranspiration

For AUS-VIC, the simulated LAI from seasonal and sub-
seasonal experiments corresponds well to MODIS data, es-
pecially for the years 2017 and 2018. Only minor differences
can be observed for 2017 and 2018 between the seasonal
and sub-seasonal experiments and reference simulations. For
2019, CLM-S and CLM-SUB performed better than the re-
analysis run, which shows a systematic underestimation of
LAI compared to MODIS throughout most of the cropping
season. This is also reflected in CLM-WFDE5-simulated
ET, which is strongly underestimated for 2019 compared to
MODIS. CLM5 simulation results for AUS-VIC generally
show a systematic negative bias in simulated ET compared
to MODIS data from April to August (Fig. 5). The simu-
lated inter-annual differences in LAI and ET are relatively
small. For the DE-NRW domain, CLM5 overestimated the
LAI compared to MODIS, in particular for the months June
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Table 1. RMSE, MBE and R2 of CLM-S-, CLM-SUB- and CLM-WFDE5-simulated surface soil moisture (m3 m−3) (0–0.05 m) from 1 April
to 31 October 2017, 2018, 2019 and 2020, compared to the ESA-CCI and SMAP L3 soil moisture products for the AUS-VIC and DE-NRW
domains.

2017 2018 2019 2020

RMSE MBE R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE R2

AUS-VIC

SMAP L3

CLM-S 0.102 0.012 0.450 0.089 0.015 0.797 0.100 0.027 0.567 0.049 0.002 0.045
CLM-SUB 0.101 0.009 0.448 0.105 0.028 0.475 0.109 0.032 0.295 0.048 0.001 0.124
CLM-WFDE5 0.094 0.009 0.629 0.086 0.012 0.708 0.085 0.014 0.751 – – –

ESA-CCI

CLM-S 0.038 0.018 0.233 0.043 0.031 0.635 0.054 0.038 0.452 0.079 0.074 0.226
CLM-SUB 0.036 0.014 0.288 0.058 0.048 0.477 0.059 0.045 0.392 0.077 0.071 0.200
CLM-WFDE5 0.022 0.014 0.886 0.033 0.023 0.846 0.029 0.019 0.881 – – –

DE-NRW

SMAP L3

CLM-S 0.068 −0.011 0.186 0.056 −0.010 0.420 0.065 −0.016 0.190 0.079 −0.047 0.123
CLM-SUB 0.083 −0.023 0.259 0.058 −0.016 0.412 0.071 −0.024 0.199 0.075 −0.044 0.404
CLM-WFDE5 0.053 0.030 0.521 0.057 0.014 0.523 0.053 0.009 0.473 – – –

ESA-CCI

CLM-S 0.068 −0.033 0.161 0.071 −0.051 0.458 0.071 −0.046 0.164 0.079 −0.047 0.123
CLM-SUB 0.092 −0.053 0.266 0.076 -0.060 0.464 0.085 −0.057 0.174 0.075 −0.044 0.404
CLM-WFDE5 0.040 0.029 0.583 0.058 −0.010 0.621 0.049 −0.011 0.548 – – –

and July (Fig. 6). For 2017 and 2018, CLM-WFDE5 resulted
in very similar LAI values compared to CLM-S and CLM-
SUB, while for 2019 the CLM-WFDE5-simulated LAI curve
peaked later (highest LAI in August) compared to forecast
simulations (highest LAI in July). Both CLM-S and CLM-
SUB captured lower LAI magnitudes in August 2018 com-
pared to the other years. In general, CLM-S and CLM-SUB
show only minor differences in terms of LAI and ET. An ex-
ception is the year 2017, where CLM-SUB resulted in very
similar LAI values compared to MODIS in September and
October while at the same time also resulting in a smaller
underestimation of ET compared to CLM-S. Similarly to the
results for the other domain, the simulated inter-annual dif-
ferences in LAI and ET are relatively small.

3.2.3 Regional crop yield predictions

CLM5 was able to reproduce the higher annual total crop
yield for the DE-NRW domain compared to AUS-VIC
(Fig. 7, Table 2). For AUS-VIC, the simulations resulted
in similar magnitudes of overall annual yield compared to
statistics from the Australian Department of Agriculture, Wa-
ter and Environment (ABARES) (Fig. 7, Table 2). CLM-S
and CLM-SUB systematically underestimated the crop yield
of all crops for the years 2017, 2019 and 2020 while overesti-
mating crop yields for 2018 in comparison to official records.
Still, the annual trends of recorded crop yield were to a cer-

tain extent captured in the simulations. CLM-S and CLM-
SUB showed the lowest yields in 2018 and slightly higher
yields in 2017, 2019 and 2020, with 2020 being the most
productive year in terms of total crop yield (Fig. 7). Thus, for
AUS-VIC, both the high-yield year of 2020 and the low-yield
year of 2017 are well captured in the simulations. However,
both the forecast experiments as well as the reference sim-
ulations resulted in a slightly lower overall yield for 2019
compared to 2017, which is contrary to the records. CLM5
simulations generally showed lower inter-annual differences
in crop yield compared to the records. While the recorded
annual crop yield varies by up to 50 %, simulations resulted
in differences of up to 17 % for the years 2017–2020. Inter-
annual differences in the mean annual crop yield (averaged
for the regarded crops) of up to 1.31 t ha−1 can be observed
in the records, while crop yield simulated by CLM5 showed
only differences of up to 0.30 t ha−1 in the forecast simula-
tions (0.28 t ha−1 for CLM-SUB) and up to 0.24 t ha−1 in the
reference simulations. In addition, we observed a difference
in the spatial distribution of crop productivity between the
forecast experiments and reference simulations. While in the
forecast experiments the highest crop productivity is simu-
lated in the central and north-eastern parts of the domain,
the highest crop productivity in the reference simulations is
located in the southern part of the domain closer to the coast-
line (Fig. 8).
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Figure 5. (a, c, e, g) Monthly mean LAI and (b, d, f, h) monthly mean ET derived from MODIS for April–October 2017–2020 compared
to corresponding CLM-S and CLM-SUB simulation results, averaged over all land units with more than 70 % cropland within the AUS-VIC
domain.

For the DE-NRW domain, the simulated crop yields are
relatively close to recorded yields in terms of magnitudes
for all of the analysed cash crops wheat, corn and canola
(Fig. 7, Table 2). The seasonal experiments were able to cap-
ture the high-yield year of 2020 and the yield loss in 2018.
In addition, the second- and third-highest yield years are cap-
tured in CLM-S and CLM-WFDE5 simulation results but not
in CLM-SUB simulation, which had higher yields in 2019
than in 2017 (Fig. 7). CLM-S performed slightly better than
CLM-SUB for all years in terms of total yields compared to
records, except for 2018, where the CLM-SUB yield is lower
and closer to records. CLM5 simulations resulted in smaller
inter-annual differences in the total annual crop yield, with
up to 6 % variation compared to a recorded inter-annual dif-
ference of up to 15 % from 2017 to 2020. While inter-annual
differences in crop yield of up to 1.23 t ha−1 were observed
in official records, CLM5 simulations resulted in smaller dif-
ferences of up to 0.45 t ha−1 in CLM-S, 0.35 t ha−1 in CLM-
SUB and 0.38 t ha−1 in reference simulations on average for
the regarded crops. There are no apparent spatial differences
in simulated agricultural productivity between the different
experiments (Fig. 9). Despite earlier enhancements to the
model code and parameterization scheme (see Boas et al.,

2021), the crop module of CLM5 does not include a proper
representation of root crops. Here, we focus on the analysis
of simulation results for wheat, corn and canola (Fig. 7). An
evaluation of simulation results for root crops can be found
in the Supplement (Sect. 4).

4 Discussion

Overall, annual crop yield predictions from the forecast ex-
periments were close to results from the reference simula-
tions, with maximum differences between mean annual crop
yield simulated with forecasts and with reanalysis of 0.28 and
0.36 t ha−1 for AUS-VIC and DE-NRW respectively. The
forecast experiments were able to reproduce the recorded
inter-annual trends of a high-yield year (2020) and a low-
yield year (2018). In addition, the forecast experiments and
the reference simulations were also able to reproduce the
generally higher total values of annual crop yield for DE-
NRW compared to Victoria. The lower recorded crop yields
in Victoria can be explained by less productive soils, lim-
ited water availability and different crop varieties. This is
to a certain extent also represented in CLM5 by a different
parameterization and classification of Northern Hemisphere
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Figure 6. (a, c, e, g) Monthly mean LAI and (b d, f, h) monthly mean ET derived from MODIS for April–October 2017–2020 compared to
corresponding CLM-S and CLM-SUB simulation results, averaged over all land units with more than 70 % cropland within the DE-NRW
domain.

Figure 7. CLM-S-, CLM-SUB- and CLM-WFDE5-simulated crop yield compared to corresponding official production records (a) from
ABARES (2020), averaged for all analysed winter crops (wheat, barley and canola) within the AUS-VIC domain, and (b) from BMEL (2020,
2022), averaged for all analysed crops (wheat, corn and canola) within the DE-NRW domain, for the years 2017 to 2020. Corresponding data
are listed in Table 2.
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Table 2. Simulated crop yields (t ha−1) for the main cash crops with CLM-S, CLM-SUB and CLM-WFDE5 forcing data for the years 2017
to 2020, compared to official crop statistics from ABARES (2020) for the AUS-VIC domain and from BMEL (2020, 2022) for the DE-NRW
domain. The lowest (italics) and highest (bold) yields amongst the respective years are indicated.

AUS-VIC DE-NRW

2017 2018 2019 2020 2017 2018 2019 2020

Wheat Wheat

ABARES 2.54 1.62 2.48 2.98 BMEL 7.92 7.91 8.14 8.66
CLM-S 2.15 2.05 2.15 2.23 CLM-S 7.96 7.59 7.61 8.19
CLM-SUB 2.15 2.03 2.19 2.23 CLM-SUB 7.57 7.24 7.76 7.67
CLM-WFDE5 2.48 2.12 2.26 – CLM-WFDE5 8.04 7.41 7.67 –

Barley Corn

ABARES 2.50 1.50 3.05 3.2 BMEL 10.74 7.80 8.44 10.49
CLM-S 2.46 2.15 2.17 2.47 CLM-S 9.27 9.12 9.27 9.68
CLM-SUB 2.47 2.12 2.20 2.47 CLM-SUB 9.21 9.06 9.34 9.29
CLM-WFDE5 2.61 2.38 2.45 – CLM-WFDE5 9.72 9.31 9.26 –

Canola Canola

ABARES 1.73 1.23 1.69 2.11 BMEL 3.90 3.48 3.69 3.74
CLM-S 1.20 1.03 1.13 1.35 CLM-S 4.73 4.49 4.52 4.69
CLM-SUB 1.21 1.02 1.18 1.35 CLM-SUB 4.53 4.28 4.54 4.63
CLM-WFDE5 1.42 1.29 1.56 – CLM-WFDE5 4.62 4.59 4.46 –

Average Average

ABARES 2.26 1.45 2.41 2.76 BMEL 7.52 6.40 6.76 7.63
CLM-S 1.94 1.74 1.81 2.02 CLM-S 7.32 7.07 7.13 7.52
CLM-SUB 1.94 1.72 1.86 2.02 CLM-SUB 7.10 6.86 7.21 7.20
CLM-WFDE5 2.17 1.93 2.09 – CLM-WFDE5 7.46 7.08 7.16 –

Figure 8. Spatial and inter-annual differences in the simulated annual crop yield (averaged) from (top panels) CLM-S, (middle panels)
CLM-SUB and (bottom panels) CLM-WFDE5 simulations throughout the AUS-VIC domain for the years 2017 to 2020.
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Figure 9. Spatial and inter-annual differences in the simulated annual crop yield (averaged) from (top panels) CLM-S, (middle panels)
CLM-SUB and (bottom panels) CLM-WFDE5 simulations throughout the DE-NRW domain for the years 2017 to 2020.

and Southern Hemisphere crops. Furthermore, we used the
CLM5 version and parameterization that were optimized for
several European cropland sites and crops in an earlier study
(Boas et al., 2021). The same study revealed a significant
limitation of the default CLM5 phenology module and de-
fault crop parameterization in accurately representing Euro-
pean cropland sites, especially in terms of crop phenology
(LAI magnitudes and seasonality) and grain yield (Boas et
al., 2021). Still, the inter-annual differences are lower in the
CLM5 simulations compared to official yield statistics. On
the one hand, this could be due to the limited resolution and
quality of the forecasts that predict general meteorological
trends rather than realistic weather patterns (especially for
precipitation). Although seasonal and sub-seasonal forecasts
correctly predicted drier and hotter trends (e.g. for 2018),
the 2018 drought was less pronounced in the forecast than
in the observations. In addition, we observed a difference in
the spatial pattern of crop productivity over the AUS-VIC do-
main simulated with forecasts and reanalysis. Reference sim-
ulations resulted in a higher crop production in the southern
part of the domain than forecast experiments (Fig. 8). This
is related to the influence of near-coastal precipitation events
that are not well represented in the forecasts.

We found that the simulated LAI and ET corresponded
reasonably well to data from MODIS in terms of magni-
tudes and fluctuations for the AUS-VIC domain, while for
the DE-NRW simulations simulated LAI and ET were larger
than the observed values, in particular for the months of May,
June and July. The better correlation between the simulated
LAI and ET with observed values in the AUS-VIC domain,
compared to DE-NRW, can be partly attributed to the larger

paddock sizes and more homogeneous land cover in Victo-
ria. The land cover in the state of NRW is more diverse, with
numerous urban areas and fallow lands between croplands
that are not considered to the same extent by CLM5. More-
over, agricultural management practices and the variety of
crop types and cultivars are more diverse in DE-NRW, which
is more challenging to represent accurately in simulations
due to limitations in the input data and model structure. Sev-
eral studies over European forest sites found lower absolute
LAI values for MODIS compared to ground-based measure-
ments as well as different seasonal dynamics that were partly
explained by understory or herbal-layer greening together
with cryptophytes and microphytes in the understory that are
not included in the measurements (e.g. Wang et al., 2005;
Sprintsin et al., 2009). Earlier studies with CLM5 showed
relatively good correspondence between CLM5-simulated
LAI and field measurements for several crops (Boas et al.,
2021). For 2018, the seasonal experiments showed a rela-
tively steep decline in LAI towards the end of the growing
season that occurred earlier than for other years. The de-
cline in LAI reflects the early simulation onset of harvest.
The early harvest in a large part of the cropland in 2018 is
closely linked to the recorded yield losses in NRW (Reiner-
mann et al., 2019).

In general, the inter-annual differences in simulated LAI
and ET were relatively low in the forecast experiments and in
the reference simulations. This is also reflected in low inter-
annual differences in simulated crop yields. The seasonal ex-
periments were able to reproduce the generally higher inter-
annual differences in crop yield throughout the AUS-VIC do-
main (up to 50 % in records and 17 % in simulated yields)
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compared to the DE-NRW domain (up to 15 % in records and
5 % in simulated yields). After weather conditions, regional
agriculture and crop yield are largely impacted by agricul-
tural management decisions (e.g. on crop varieties, planting
dates, irrigation, and fertilizer types and application tech-
niques) and other environmental factors such as pests and
crop damage from wildlife, which are not sufficiently well
represented by CLM5. In addition, the crop module of CLM5
lacks parameterizations for most crop types and varieties, and
the fertilizer application routine is highly simplified. These
deficiencies in the model structure led to considerable uncer-
tainties in the crop phenology simulated by CLM5.

Thus, the inter-annual variability in crop yield simulated
by CLM5 is primarily influenced by the variability of model
forcing data and soil moisture states, as it does not con-
sider further anthropogenic or economic factors affecting
crop yield, as discussed above. Consequently, the small inter-
annual differences in simulated yield suggest that the CLM5
crop module has limited sensitivity to changes in climate
conditions. Uncertainties in the simulated annual crop pro-
ductivity and its low inter-annual differences can be partly
explained by the observed systematic biases of the simulated
soil moisture content compared to satellite-derived soil mois-
ture products, i.e. ESA-CCI and SMAP L3, and CRNS mea-
surements for both domains.

The reference simulations showed higher correlations be-
tween the simulated and observed surface soil moisture than
the forecast experiments, which could be expected given
the wrong timing of precipitation events in the seasonal
weather predictions while still showing similar systematic
differences compared to all the products. Earlier studies with
CLM3.5 (e.g. Zhao et al., 2021; Hung et al., 2022) and CLM5
(e.g. Strebel et al., 2022) found pronounced discrepancies
in CLM-simulated soil moisture contents and field measure-
ments. In this context, data assimilation has proven to be a
valuable technique for reproducing better soil moisture dy-
namics (Strebel et al., 2022). While the assimilation of soil
moisture and groundwater level data into the Terrestrial Sys-
tems Modeling Platform (TSMP), which includes an earlier
version of CLM (version 3.5), significantly improved sim-
ulated soil moisture properties and groundwater levels, it
had only limited effects on the resulting evapotranspiration
(Hung et al., 2022). Whether a better representation of soil
moisture within the model, i.e. through data assimilation, can
significantly improve crop yield predictions with CLM5 re-
mains to be evaluated.

The systematic uncertainties in the simulated soil mois-
ture content as well as the low inter-annual differences in
predicted crop yield and vegetation parameters (e.g. LAI and
ET) show the need to improve the representation of these
variables at the technical model level and to improve the
model sensitivity to drought stress and other stressors (e.g.
frost, pests, hail and wind). A sophisticated representation
of crops and agricultural management in Earth system mod-
els is essential in order to better assess the impact of cli-

mate change on yield in land surface models and specifi-
cally CLM5 (Lombardozzi et al., 2020). This includes e.g.
the consideration of different types of fertilizers and appli-
cation strategies as well as a more detailed representation of
root crops. It is crucial for the model to be sensitive enough
to respond to changes in seasonality, drought stress and ex-
treme events and realistically reflect these in resulting crop
yields in order to study future yield scenarios. A better char-
acterization of plant physiological and hydraulic properties,
e.g. via plant trait information, is one suggestion for future
model improvements. Studies over longer simulation periods
are needed to confirm whether this low inter-annual differ-
ence in CLM5-simulated crop yield is a systematic problem.

One major challenge in applying long-range forecast prod-
ucts in land surface models stems from the extensive pre-
processing that is needed, including the temporal downscal-
ing of certain meteorological variables (especially incom-
ing short-wave radiation and precipitation). Simplifications
in physical model formulations and uncertainties in the forc-
ing data (e.g. due to coarse spatial and temporal resolution)
may have impacted the simulated states. A more sophis-
ticated temporal downscaling of precipitation, e.g. through
machine-learning techniques, could help improve the appli-
cability of forecasting products for model applications and
improve the quality of model system responses. This be-
comes especially relevant when studying the impact of ex-
treme events on agricultural productivity and other land sur-
face processes. However, more sophisticated downscaling
approaches often require further datasets that are not read-
ily available. A clearer statement about the SEAS5 seasonal
forecasting product regarding its overall quality for land sur-
face modelling can be made once it is available for longer
timescales. A performance analysis of available hindcasts
over longer timescales and for further domains could pro-
vide a further systematic evaluation of the accuracy of the
products in combination with CLM5. This could also ben-
efit the creation of appropriate tools for end-users in order
to increase the user-friendliness of the respective products.
For future studies, we additionally propose a benchmarking
study of different forecasting products, e.g. from the German
Weather Service (DWD), NCEP or CMCC Seasonal Predic-
tion System, in combination with different land surface mod-
els like CLM5 that can point towards the relative differences
and limitations of each product in terms of applicability and
overall skill. We believe that such a study, in addition to pro-
viding a better representation of the current state of the art in
this field, will also benefit the exchange of knowledge at the
interface between science and society.

5 Conclusion

The effects of climate change and the growing demand
for food production entail vulnerability and challenges for
regional agriculture and food security across all scales.
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Reliable high-resolution seasonal weather forecasting sys-
tems can provide important information for a multitude of
weather-sensitive sectors when combined with a measurable
model system response.

Here, we evaluated the quality and applicability of SEAS5
long-range meteorological forecasts in combination with
CLM5 for two different regions. Our analysis illustrated that
simulations forced with long-range forecasts were able to
generate a model system response that was close to reference
simulations, which is an encouraging result for future stud-
ies. Both forecast- and reanalysis-forced models captured the
inter-annual differences in yield, at least in sign (increase
or decrease). The low- and high-yield seasons of 2018 and
2020 are clearly indicated for both simulated regions. The
inter-annual differences in crop yield and other vegetation
parameters (LAI and ET) were comparably low. Still, simula-
tion results represented the higher inter-annual differences in
crop yield across the AUS-VIC domain compared to the DE-
NRW domain. While general trends of soil moisture such as
the drought in 2018 were reproduced in the simulations, we
found systematic overestimations and underestimations com-
pared to different validation datasets and site observations in
both the forecast and reference simulations that cannot be
explained by uncertainties in the forecasting product alone.
These systematic uncertainties in the simulated soil moisture
and the low inter-annual differences in simulated vegetation
parameters indicate the need for further technical model im-
provements.

Overall, this study provides a first impression of the utility
and skill of the relatively new SEAS5 forecasting system for
land surface models and provides an evaluation of the CLM5
crop module potential for regional-scale agricultural yield
prediction in two different climate zones. Our evaluation and
analysis of the CLM5 crop model performance set the stage
for further model evaluation and improvements. A strong
conclusion about the SEAS5 seasonal forecasting product re-
garding its overall quality for land surface modelling can be
drawn once this is available for longer timescales. This re-
search underlines the value of combining seasonal forecasts
with land surface models such as CLM5 or similar model
applications (i.e. crop models).
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Appendix A

Table A1. List of abbreviations used in this study, their descriptions and their references.

Abbreviation Description Reference

AUS-VIC Simulation domain covering large parts of the state of
Victoria, Australia

CLM5 Community Land Model, version 5.0

CLM-S Seasonal experiments forced with 7-month lead time
forecasts

CLM-SUB Sub-seasonal experiments forced with a combined set of
forecasts with lead times of 3 and 4 months

CLM-WFDE5 Reference simulations forced with reanalysis

CRNS Cosmic-ray neutron sensor for measuring neutron count
density, from which soil moisture is estimated

CRUNCEP Combined dataset of the CRU TS3.2 0.5× 0.5◦ monthly Viovy (2018)
data covering the period 1901–2002 (Harris et al., 2014)
and the NCEP reanalysis 2.5× 2.5◦ 6-hourly data covering
the period 1948–2016

DE-NRW Simulation domain covering the state of North Rhine-
Westphalia, Germany

ECMWF European Centre for Medium-Range Weather Forecasts

ESA-CCI Soil Moisture Climate Change Initiative Combined dataset Dorigo et al. (2017)
from the European Space Agency

MetSim Meteorology Simulator Bennett et al. (2020)

MODIS Satellite data product (MCD15A3H version 6) including Myneni et al. (2015),
the LAI product and the MODIS Running et al. (2017)
ET/LH (MOD1A2
version 6) product

SEAS5 Fifth-generation seasonal forecasting system from the Johnson et al. (2019)
ECMWF

SMC Soil moisture content

SMAP L3 Soil Moisture Active Passive Level-3 soil moisture product Entekhabi et al. (2016)

VLUIS Victorian Land Use Information System Morse-McNabb et al. (2015)

WFDE5 Bias-adjusted global reanalysis dataset generated from the Cucchi et al. (2020)
ERA5 reanalysis product (Hersbach et al.,
2020) using the WATCH Forcing Data (WFD) methodology
(Cucchi et al., 2020)
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A1 Effect of temporal forcing data resolution – a
synthetic experiment

In order to analyse the overall effect of temporal forcing data
resolution on model outputs and to assess the general need
for temporal disaggregation from daily variables for CLM5
simulations, we performed a synthetic simulation experiment
for a high-resolution dataset at the point scale. We used a
continuous-measurement dataset at an hourly time step for
5 consecutive years from the cropland study site Selhausen
(DE-RuS) located in the western part of Germany. Selhausen
(50.86589◦ N, 6.44712◦ E) is part of the TERENO (TER-
restrial ENvironment Observatories) Rur Hydrological Ob-
servatory (Bogena at al., 2018), the TERENO Eifel/Lower
Rhine Valley Observatory (Zacharias et al., 2011) and the
Integrated Carbon Observation System (ICOS, 2020). Con-
tinuous measurements of meteorological variables and land–
atmosphere exchange fluxes are available via the respective
data portals (Kunkel et al., 2013; ICOS, 2020; TERENO,
2020). The original measurement data were first averaged to
daily values and then temporally disaggregated to a 6-hourly
time step using MetSim. Hence, simulations for a consecu-
tive cycle of spring wheat over 5 years (hypothetical) were
conducted with the reference observation data at an hourly
time step, with daily averaged observations, and with the
disaggregated 6-hourly forcing dataset. A spin-up was con-
ducted prior to this trial in order to balance ecosystem carbon
and nitrogen pools, gross primary production and total water
storage in the system (see Lawrence et al., 2018).

As expected, the 6-hourly disaggregated data performed
significantly better for all individual output variables than the
daily data, which performed poorly compared to the refer-
ence forcing. The effect is especially prominent for the soil
water content and the surface runoff. Here, the 6-hourly dis-
aggregated forcing was able to capture more realistic mag-
nitudes of both soil moisture content and runoff, resulting
in only a small wet bias compared to the reference forc-
ing (see Table S5). The 6-hourly forcing resulted in a grain
yield of 4.71 t ha−1, which is relatively close to the grain
yield with an hourly forcing of 4.9 t ha−1, while the simu-
lated grain yield with a daily forcing of 4.12 t ha−1 is slightly
lower. The soil moisture content (in the surface layers and
the root zone) plays an important role in the simulation of
reasonable crop productivity, especially when trying to sim-
ulate inter-annual differences in crop yield and crop growth
in response to e.g. drought conditions. However, in the given
simulation example for the DE-RuS site, water availability
in the root zone does not represent the main limiting factor
for plant growth for the simulated years. This explains the
small variations of simulated grain yield and LAI with the
different forcing datasets despite the profound differences in
simulated soil water contents (Fig. A1). The results from this
trial underline the importance of an adequate temporal res-
olution for forcing data. For the seasonal weather forecast
data, the temporal disaggregation of the product to an ade-
quate temporal resolution is crucial in order to make the data
suitable for comparable model applications. A more detailed
overview of this experiment and the corresponding statistics
is provided in the Supplement.
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A2 Comparison with CRNS data

Figure A1. (a–e) Comparison of simulation results for a cycle of (hypothetical) spring wheat cropping (averaged over 5 years) at DE-
RuS with different temporal resolutions of the forcing data: reference simulations forced with hourly observation data (light blue), daily
averaged forcing data at a 24 h time step (orange) and disaggregated forcing data at 6-hourly resolution (navy) for (a) LAI, (b) latent heat
flux, (c) ground evaporation, (d) surface runoff and (e) SMC (in an upper soil layer of 0.12 to 0.20 m depth). (f–j) The difference in the
simulation results for each variable. Results from the reference simulation forced with hourly data minus the daily forcing (orange) and
6-hourly disaggregated forcing (blue) respectively. Corresponding statistics are listed in Table S5.

Figure A2. Comparison of CRNS data (level 4) from the stations 15 (Hamilton), 18 (Bishes) and 19 (Bennets) available from the CosmOz
network (Hawdon et al., 2014) with simulated SMCs at the closest grid point for the years 2017 and 2018. Corresponding statistics can be
found in the Supplement.
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Figure A3. Comparison of CRNS data from the COSMOS-Europe sites Selhausen, Merzenhausen, Aachen and Heinsberg (Bogena et al.,
2022) with simulated SMCs at the closest grid point for the years 2017–2020. Corresponding statistics can be found in the Supplement.
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that was used in this study is publicly accessible at
https://doi.org/10.5281/zenodo.3978092 (Sacks, 2020).

Data availability. All underlying research data used for this
study are publicly accessible. The seasonal forecast are avail-
able as daily and subdaily data on single levels via the Cli-
mate Data Store (https://doi.org/10.24381/cds.181d637e, Coperni-
cus Climate Change Service, 2018). Soil information from Soil-
Grids are publicly accessible via the International Soil Refer-
ence and Information Centre (ISRIC) – World Soil Information
data hub (https://www.isric.org/explore/soilgrids, ISRIC, 2023).
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