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Abstract. Stable isotopes (δ18O) and tritium (3H) are fre-
quently used as tracers in environmental sciences to estimate
age distributions of water. However, it has previously been
argued that seasonally variable tracers, such as δ18O, gener-
ally and systematically fail to detect the tails of water age
distributions and therefore substantially underestimate water
ages as compared to radioactive tracers such as 3H. In this
study for the Neckar River basin in central Europe and based
on a >20-year record of hydrological, δ18O and 3H data, we
systematically scrutinized the above postulate together with
the potential role of spatial aggregation effects in exacer-
bating the underestimation of water ages. This was done by
comparing water age distributions inferred from δ18O and 3H
with a total of 21 different model implementations, including
time-invariant, lumped-parameter sine-wave (SW) and con-
volution integral (CO) models as well as StorAge Selection
(SAS)-function models (P-SAS) and integrated hydrological
models in combination with SAS functions (IM-SAS).

We found that, indeed, water ages inferred from δ18O with
commonly used SW and CO models are with mean transit
times (MTTs) of ∼ 1–2 years substantially lower than those
obtained from 3H with the same models, reaching MTTs of
∼ 10 years. In contrast, several implementations of P-SAS
and IM-SAS models not only allowed simultaneous repre-
sentations of storage variations and streamflow as well as
δ18O and 3H stream signals, but water ages inferred from
δ18O with these models were, with MTTs of ∼ 11–17 years,

also much higher and similar to those inferred from 3H,
which suggested MTTs of ∼ 11–13 years. Characterized by
similar parameter posterior distributions, in particular for pa-
rameters that control water age, P-SAS and IM-SAS model
implementations individually constrained with δ18O or 3H
observations exhibited only limited differences in the magni-
tudes of water ages in different parts of the models and in the
temporal variability of transit time distributions (TTDs) in
response to changing wetness conditions. This suggests that
both tracers lead to comparable descriptions of how water is
routed through the system. These findings provide evidence
that allowed us to reject the hypothesis that δ18O as a tracer
generally and systematically “cannot see water older than
about 4 years” and that it truncates the corresponding tails in
water age distributions, leading to underestimations of water
ages. Instead, our results provide evidence for a broad equiv-
alence of δ18O and 3H as age tracers for systems character-
ized by MTTs of at least 15–20 years. The question to which
degree aggregation of spatial heterogeneity can further ad-
versely affect estimates of water ages remains unresolved as
the lumped and distributed implementations of the IM-SAS
model provided inconclusive results.

Overall, this study demonstrates that previously reported
underestimations of water ages are most likely not a result
of the use of δ18O or other seasonally variable tracers per
se. Rather, these underestimations can largely be attributed
to choices of model approaches and complexity not consid-
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ering transient hydrological conditions next to tracer aspects.
Given the additional vulnerability of time-invariant, lumped
SW and CO model approaches in combination with δ18O to
substantially underestimate water ages due to spatial aggre-
gation and potentially other still unknown effects, we there-
fore advocate avoiding the use of this model type in combi-
nation with seasonally variable tracers if possible and instead
adopting SAS-based models or time-variant formulations of
CO models.

1 Introduction

Age distributions of water fluxes (transit time distributions,
TTDs) and water stored in catchments (residence time dis-
tributions, RTDs) are fundamental descriptors of hydrolog-
ical functioning (Botter et al., 2011; Sprenger et al., 2019)
and catchment storage (Birkel et al., 2015). They provide
a way to quantitatively describe the physical link between
the hydrological response of catchments and physical trans-
port processes of conservative solutes. While the former are
largely controlled by the celerities of pressure waves propa-
gating through the system, the latter, in contrast, occur at ve-
locities that can be up to several orders of magnitude lower
(McDonnell and Beven, 2014; Hrachowitz et al., 2016).

Water age distributions cannot be directly observed. In-
stead, they can, in principle, be inferred from observed tracer
breakthrough curves. While practically feasible at lysime-
ter (e.g. Asadollahi et al., 2020; Benettin et al., 2021) and
small hillslope scales (e.g. Kim et al., 2022), lack of ade-
quate observation technology and logistical constraints make
this problematic at scales larger than that. At the catchment
scale, estimates of water age distributions are therefore typi-
cally inferred from models that describe the relationships be-
tween time series of observed tracer input and output signals.

Over the past decades a wide spectrum of such models
has been developed. Early approaches often relied on sim-
ple lumped sine-wave (hereafter SW) or lumped-parameter
convolution integral models (hereafter CO; Małoszewski and
Zuber, 1982; Małoszewski et al., 1983; McGuire and Mc-
Donnell, 2006) originally developed for aquifers. In spite of
their widespread application, these models feature multiple
critical simplifying assumptions. Most importantly, the vast
majority of these model implementations work under the as-
sumption that water storage in catchments is at steady state
and that, as a consequence, TTDs are time-invariant and can
a priori be defined or calibrated. While the role of storage
as a first-order control on water ages was described early in
the general definition of mean turnover times (e.g. Eriksson,
1958; Bolin and Rodhe, 1973; Nir, 1973), the steady-state
assumption, i.e. constant storage, may have a limited effect
on TTDs in aquifers, as the fraction of transient water vol-
umes in such systems is typically rather low. However, given
the temporal variability in the hydro-meteorological system

drivers (e.g. precipitation, atmospheric water demand) and
the spatial heterogeneity in near-surface hydrological pro-
cesses, this assumption is violated in most surface water sys-
tems worldwide and can lead to misinterpretations of the
model results. This triggered the development of a more co-
herent framework to estimate water age distributions without
the need of an a priori definition of time-invariant TTDs. In-
stead, probability distributions, referred to as StorAge Selec-
tion (SAS) functions, are a priori defined or calibrated, and
changes in water storage are explicitly accounted for. Thus,
water fluxes within and released from the system are sam-
pled from water volumes of different ages stored in the sys-
tem according to these SAS functions (Botter et al., 2011;
Rinaldo et al., 2015). The general concept is firmly rooted
in the development of hydro-chemical routing schemes for
the Birkenes, HBV or similar models going back to at least
the 1970s (e.g. Lundquist, 1977; Christophersen and Wright,
1981; Christophersen et al., 1982; Seip et al., 1985; de Grois-
bois et al., 1988; Hooper et al., 1988; Barnes and Bonell,
1996), as illustrated by Fig. 1 in Bergström et al. (1985). Al-
though functionally very similar to CO model implementa-
tions that allow for transient, i.e. time-variant, TTDs (Nir,
1973; Niemi, 1977), the sampling procedure based on SAS
functions has the advantage of explicitly tracking the history
of water (and tracer) input to and output from the system
through the water age balance. As such it explicitly accounts
for non-steady state conditions, which in turn leads to the
emergence of time-variant TTDs and RTDs (see the review
in Benettin et al., 2022).

Irrespective of the modelling approach, two types of en-
vironmental tracers have in the past been frequently used to
estimate water age distributions with the above models. The
first type are tracers that are characterized by distinct dif-
ferences in their seasonal signals. They include stable iso-
topes of water (2H, 18O; e.g. Małoszewski et al., 1983; Vit-
var and Balderer, 1997; Fenicia et al., 2010) or solutes such
as Cl− (e.g. Kirchner et al., 2001, 2010; Shaw et al., 2008;
Hrachowitz et al., 2009a, 2015). With these tracers, water
ages and (metrics of) their distributions can be estimated by
the degree to which the seasonal amplitudes of the precipita-
tion tracer concentrations are time-shifted and/or attenuated
in the streamflow (McGuire and McDonnell, 2006; Kirch-
ner, 2016). Broadly speaking, the stronger the attenuation of
the seasonally variable tracer amplitude in streamflow (As)
as compared to its amplitude in precipitation (Ap), the older
the water age can be estimated. That is, the lower the ampli-
tude ratio As/Ap is, the older the stream water is on average.
The second type of commonly used tracers are radioactive
isotopes such as tritium (3H). Forming the basis for many
water-dating studies going back to the 1950s (e.g. Begemann
and Libby, 1957; Eriksson, 1958; Dincer et al., 1970; Stew-
art et al., 2007; Morgenstern et al., 2010; Duvert et al., 2016;
Gallart et al., 2016; Rank et al., 2018; Visser et al., 2019),
water age can be estimated with radioactive tracers based on
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Figure 1. (a) Elevation of the Neckar catchment with discharge and
hydro-meteorological stations as well as the water sampling loca-
tions used in this study. (b) The spatial distribution of long-term
mean annual precipitation in the Neckar catchment and the stratifi-
cation into four distinct precipitation zones P1–P4 (black outline);
the red outlines indicate three sub-catchments (C1: Kirchentellins-
furt; C2: Calw; C3: Untergriesheim) within the Neckar basin. (c)
Hydrological response units classified according to their land cover
and topographic characteristics.

the level of radioactive decay experienced by precipitation
input signals before they reach the stream.

The relationship between the tracer amplitude ratios
As/Ap and water age that is exploited by seasonally vari-
able tracers is highly non-linear. With increasing attenua-
tion of the tracer signal in the stream, i.e. a lower As/Ap,
water therefore not only becomes older, but the age esti-
mates also become more sensitive to changes in the ampli-
tude ratio (Kirchner, 2016). This implies that the older the
water becomes, uncertainties in the observed amplitude ra-
tios lead to increased uncertainties in water age estimates.
As a consequence, there is an upper limit to the age of wa-
ter which can be practically and feasibly determined with
seasonally variable tracers. A rare attempt to quantify this
potential upper detectible age limit was reported by De-
Walle et al. (1997). With an observed δ18O precipitation
amplitude Ap = 3.41 ‰, an assumed lowest possible δ18O
stream water amplitude that equalled the observational error
As = 0.1 ‰, and the use of a lumped, time-invariant expo-
nential TTD (“complete mixing”), they determined a maxi-
mum detectable MTT of around 5 years at their study site.
Several authors subsequently emphasized that estimates of

MTTs and in particular of maximum detectable MTTs such
as reported by DeWalle et al. (1997) are specific to Ap at
individual study sites (McGuire and McDonnell, 2006) and
highly sensitive to choices in the modelling process (Stew-
art et al., 2010; Seeger and Weiler, 2014; Kirchner, 2016).
For example, multiple previous studies demonstrated that the
use of gamma distributions with a shape parameter α ∼ 0.5
as a TTD produces model results that are more consistent
with observed tracer data than the use of exponential distribu-
tions (i.e. α = 1) in a wide range of contrasting environments
worldwide (Kirchner et al., 2001; Godsey et al., 2010; Hra-
chowitz et al., 2010a, b). Merely replacing the exponential
distribution by a gamma distribution with α = 0.5 as a TTD
at the study site of DeWalle et al. (1997) leads, in a quick
back-of-the-envelope calculation, to a substantial increase in
the maximum MTT from the reported 5 years to ∼ 90 years.
This is exacerbated by the potential presence of spatial ag-
gregation bias in the lumped implementation of that model,
which may cause further considerable underestimation of an
MTT as demonstrated by Kirchner (2016).

The relevance of the above assumptions is often over-
looked and, in spite of little additional quantitative evidence,
it remains widely assumed that water ages in systems charac-
terized by MTTs> 4–5 years cannot be meaningfully quan-
tified with seasonally variable tracers. Most notably, Stewart
et al. (2010, 2012) argued that water older than that remains
hidden to stable water isotopes and other seasonally variable
tracers, which inevitably results in a misleading truncation
of water age distributions. Such a pronounced and system-
atic underestimation of water ages would have far-reaching
consequences for estimates of water storage (e.g. Birkel et
al., 2015; Pfister et al., 2017) and the associated turnover
times of nutrients and contaminants in catchments (e.g. Har-
man, 2015; Hrachowitz et al., 2015). Stewart et al. (2012)
further argue that the use of radioactive tracers, such as 3H,
can largely avoid the truncation of the long tails of TTDs.
This is mostly due to the 3H half-life of T1/2 = 12.32 years.
Even with the current atmospheric 3H concentrations that, af-
ter peaking in the early 1960s, have been converging back to-
wards pre-nuclear bomb-testing levels, precipitation 3H sig-
nals can be detected in the system for several decades, mak-
ing 3H an effective tracer now and for the foreseeable fu-
ture (Michel et al., 2015; Harms et al., 2016; Stewart and
Morgenstern, 2016). Indeed, a range of studies based on 3H
and often in conjunction with lumped-parameter convolu-
tion integral approaches suggests that many catchments and
larger river basins worldwide are characterized by MTTs that
are decadal or higher (e.g. Stewart et al., 2010, and refer-
ences therein). It is further rather remarkable that such ele-
vated water ages are largely absent in estimates derived from
lumped-parameter convolution integral studies based on sea-
sonally variable tracers, which often indicate MTTs between
1 and 3 years (e.g. McGuire and McDonnell, 2006, and ref-
erences therein; Hrachowitz et al., 2009b; Godsey et al.,
2010), as correctly and importantly pointed out by Stewart
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et al. (2010). This in itself could be supporting evidence for
the failure of seasonally variable tracers to detect long tails
of TTDs, as postulated by Stewart et al. (2012). However,
it could just as well be a mere artifact arising from a sample
bias due to the different catchments analysed or from choices
in the modelling process. There are only a few studies that
have directly and systematically compared estimates of water
age derived from both seasonally variable (2H, 18O) and ra-
dioactive tracers (3H) at the same study site and based on (at
least partly) comparable model approaches (Małoszewski et
al., 1983; Uhlenbrook et al., 2002; Stewart et al., 2007; Stew-
art and Thomas, 2008). The MTT estimates derived from sea-
sonally variable tracers in these comparative studies are con-
sistently but to varying degrees lower than estimates based
on 3H. However, these studies are nevertheless subject to
limitations that may weaken the generality of the conclu-
sion that seasonally variable tracers underestimate catchment
water ages. More specifically, tracer data were available for
only rather short time periods of about 2–3 years, including,
for some studies, only a handful of 3H data points. Many of
these studies relied on lumped-parameter convolution inte-
gral approaches with time-invariant TTDs whose pre-defined
functional form when applied with seasonally variable trac-
ers was limited to shapes (e.g. exponential) that already a
priori precluded the representation of heavy tails and thus a
meaningful representation of old ages. In addition, the mod-
els to estimate water ages in these studies were implemented
in a spatially lumped way, which further exacerbates the po-
tential for underestimating water ages due to spatial aggrega-
tion effects in environments that are likely subject to consid-
erable heterogeneity in hydrological functioning (Kirchner,
2016).

Addressing some of the concerns above, a recent study by
Rodriguez et al. (2021) compared catchment water ages in-
ferred from 2-year data records of a seasonally variable tracer
(2H; 1088 data points) and 3H (24 data points) using a spa-
tially lumped implementation of a previously developed sim-
ple tracer circulation model based on the SAS approach that
generates time-variant TTDs (Rodriguez and Klaus, 2019).
In spite of consistently higher age estimates obtained from
3H, the absolute differences from 2H-inferred estimates were
very minor. While the difference in mean transit times was
estimated at 1MTT ∼ 0.22 years for MTTs ∼ 3 years, the
difference in the estimate of the 90th percentile of water ages,
as a metric for the presence of old ages, was with 190th
∼ 0.15 years even lower. The authors concluded that these re-
sults cast some doubt on “[. . . ] the perception that stable iso-
topes systematically truncate the tails of TTDs” (Rodriguez
et al., 2021). However, their interpretation was questioned by
Stewart et al. (2021), who pointed out that older water may
simply not be present in their study catchment.

Building on the above work of Rodriguez et al. (2021),
the objective of this study is therefore to further scrutinize
the notion that the use of seasonally variable tracers leads to
truncated estimates of water age distributions in a system-

atic comparative experiment. The novel aspects of this study
for the ∼ 13 000 km2 Neckar River basin in south-western
Germany include the facts that, here, we use (1) long-term
records, i.e.>20 years, of hydrological data as well as of sea-
sonally variable (18O) and radioactive tracers (3H) together
with (2) a suite of lumped and spatially semi-distributed im-
plementations of (3) SW, CO and SAS-function-based mod-
els, including a formulation of an integrated, process-based
model to simultaneously reproduce hydrological and tracer
response dynamics and to track temporally variable water
age distributions in the system. The above points allow us
to, at least partially, explore several unresolved questions
about how different factors may or may not contribute to
the apparent underestimation of water ages by seasonally
variable tracers, including potential effects of uncertainties
arising from short data records, spatial aggregation and the
use of oversimplified time-invariant, lumped models. More
specifically, here we test the hypothesis that 18O as a tracer
generally and systematically cannot detect tails in water age
distributions and that this truncation leads to systematically
younger water age estimates than the use of 3H.

2 Study site

The Neckar River basin in south-western Germany has an
area of ∼ 13 000 km2. The elevation in the basin ranges from
122 m at the outlet in the north to about 1019 m in the south
(Fig. 1a; Table 1). Following the elevation gradient, the land-
scape is characterized by terrace-like elements and undulat-
ing hills with wide valleys used as grasslands and croplands
in the lower regions, in particular in the northern parts of
the Neckar basin, and increasingly steep and narrow forested
valleys towards the southern parts (Fig. 1c). Long-term mean
annual precipitation (P ) reaches ∼ 909 mm yr−1, with con-
siderable spatial variability ranging from ∼ 660 mm yr−1

in the lower parts of the basin to over 1500 mm yr−1 at
high elevations in the south-west (Fig. 1b). With a long-
term mean temperature of about 8.9 ◦C, potential evapora-
tion (EP) around ∼ 870 mm yr−1 and an aridity index (IA)
(i.e. IA = EP/P ) of IA ∼ 0.98, the basin is characterized by
a temperate–humid climate where snow cover can be present
for several weeks in the winter months.

3 Data

3.1 Data

Daily hydro-meteorological data were available for the pe-
riod 1 January 1970–31 December 2016. As the forcing
data of the hydrological models, daily precipitation and daily
mean air temperature were obtained from stations operated
by the German Weather Service (DWD). Precipitation was
recorded at 16 stations and temperature measurements were
available at 12 stations (Fig. 1) in or close to the study basin.
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Table 1. Characteristics of the Neckar catchment in Germany.

Characteristics

Latitude (N) 48◦02′00′′–49◦33′45′′

Longitude (E) 8◦18′45′′–10◦18′45′′

Area (km2) 13 041
Average annual precipitation (mm yr−1) 909
Average annual temperature (◦C) 8.9
Elevation range (m) 122–1019
Mean elevation (m) 569
Slope range (◦) 0–53
Mean slope (◦) 5.1
Forest-dominated land (%) 38.1
Grass-dominated land (%) 51.2
Wetland (%) 10.7

Daily mean discharge data for the period 1 January 1970–
31 December 2016 at the outlet of the Neckar basin at Rock-
enau station were provided by the German Federal Institute
of Hydrology (BfG). In addition, data of daily mean dis-
charge for the same time period from three sub-catchments
within the Neckar basin (Fig. 1) at the gauges Kirchen-
tellinsfurt (C1; 2324 km2), Calw (C2; 584 km2) and Unter-
griesheim (C3; 1827 km2) were available from the Environ-
mental Agency of the Baden-Württemberg region (LUBW).

Long-term volume-weighted monthly δ18O data in precip-
itation were available for the period 1 January 1978–31 De-
cember 2016 at the Stuttgart station. At the sampling gauge,
a monthly accumulation bottle was filled with the collected
daily precipitation, and all collected water was mixed to-
gether. Therefore, the water samples of precipitation reflect
the volume-weighted monthly isotopic composition. Then,
a monthly isotope sample bottle for a stable isotope (i.e.
18O) was filled with 50 mL precipitation water from the cor-
responding monthly accumulation bottle. All the precipita-
tion samples were tightly sealed and stored in a dark room
at ∼ 4 ◦C before analysis. Monthly stream water samples
were collected at Schwabenheim, close to the Rockenau dis-
charge station, by the BfG for the period of 1 October 2001–
31 December 2016 (Schmidt et al., 2020; Königer et al.,
2022). Note that the available data do not represent instan-
taneous grab samples but bulk samples from mixed daily
samples. River water was sampled automatically by samplers
(SP III-XY-36, Maxx Meb- und Probenahmetechnik GmbH,
Germany) that contained 36 bottles (each with a volume of
2.5 L). Every 30 min, 50 mL of river water was pumped into
one bottle (48 subsamples per day). A new bottle was filled
every 24 h with the same procedure. All daily river water
samples were stored in the sample compartment at ∼ 4 ◦C
and were subsequently combined into monthly samples in
the laboratory of the BfG. This means that the stream water
samples reflect a non-flow-weighted monthly average iso-
topic composition. The stable isotope ratios were analysed
with dual-inlet mass spectrometry and a laser-based cavity

ring-down spectrometer (L2120-i/L2130-i, Picarro Inc.) at
the Helmholtz Zentrum München, Germany. When changing
from dual-inlet mass spectrometry to cavity ring-down spec-
trometry, the long-term precision of the analytical systems
(±0.15 ‰ and ±0.1 ‰, respectively, for δ18O) was ensured
(Stumpp et al., 2014; Reckerth et al., 2017).

Long-term monthly 3H data in precipitation were obtained
for the period 1 January 1978–31 December 2016 at the
Stuttgart station (the same station as for 18O data in pre-
cipitation; Schmidt et al., 2020). For the purpose of estab-
lishing robust initial conditions for the model experiment
(see Sect. 4.2), the tritium record in precipitation was re-
constructed for the preceding 1970–1977 period by bias-
correcting data from the sampling station Vienna that are
available from the Global Network of Isotopes in Precipi-
tation, which is a joint database of the International Atomic
Energy Agency (IAEA) and the World Metrological Organi-
zation (WMO) (Fig. S1 in the Supplement). The precipita-
tion for tritium data was sampled based on the same method
as that for 18O in precipitation, which means that the precip-
itation samples for tritium also reflect the volume-weighted
monthly isotopic composition. Stream water samples for tri-
tium were collected based on the same method as that for 18O
in streams. Therefore, tritium stream water samples also re-
flect non-volume-weighted monthly average isotopic compo-
sitions. The tritium stream water samples are not influenced
by water release from nuclear power stations. All the water
samples were analysed for tritium concentrations by the BfG
Environmental Radioactivity Laboratory using liquid scintil-
lation counters (Ultima Gold LLT) with a 2σ analytical un-
certainty (Schmidt et al., 2020).

Land use types of the catchments are determined
using the CORINE Land Cover data set of 2018
(https://land.copernicus.eu/pan-european/corine-land-
cover). The 90 m× 90 m digital elevation model of the study
region (Fig. 1a) was obtained from https://www.usgs.gov/,
last access: 14 August 2023 and used to derive the local
topographic indices, including height above nearest drainage
(HAND) and slope.

3.2 Data pre-processing

For the subsequent model experiment (Sect. 4.2), the study
basin was stratified into four regions P1–P4 that are charac-
terized by a distinct long-term precipitation pattern (hereafter
precipitation zones). In the following the procedure to infer
these precipitation zones and to estimate the associated dif-
ferences in δ18O and 3H input is described.

3.2.1 Spatial distribution of precipitation and
identification of precipitation zones

To account, at least to some degree, for spatial heterogene-
ity in precipitation, we stratified the Neckar River basin into
precipitation zones that are each characterized by distinct
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average annual precipitation totals. Goovaerts (2000) and
Lloyd (2005) showed that areal precipitation estimates in-
formed by elevation data were often more accurate than those
based on precipitation gauge observations alone. Thus, to in-
terpolate and estimate areal precipitation across the basin, we
used co-kriging considering elevation, as a preliminary anal-
ysis suggested lower errors. Finally, the individual precipi-
tation estimates for each grid cell were used with K-means
clustering to establish four clusters representing the four pre-
cipitation zones P1–P4 (see Fig. 1b).

3.2.2 Spatial extrapolation of precipitation δ18O to
precipitation zones

Records of observed precipitation δ18O are available at one
location close to the centre of the Neckar basin (Fig. 1). How-
ever, it is well described (e.g. Kendall and Mcdonnell, 2012)
that precipitation δ18O input can be subject to considerable
spatial heterogeneity largely controlled by topographic and
meteorological influences. Stumpp et al. (2014) specifically
identified latitude, elevation and temperature as the key fac-
tors controlling δ18O input heterogeneity in the greater study
region. To at least partially account for these effects and to
locally adjust δ18O input signals throughout the study basin,
we made use of the sinusoidal isoscapes method (Allen et al.,
2018, 2019). Briefly, this method exploits the seasonal pat-
tern in δ18O precipitation signals by fitting sine functions to
observed δ18O input signals for a large sample of locations:

δ18OP (t)= aP sin(2πt −ϕP)+ bP, (1)

with aP (‰) the amplitude of the seasonal precipitation sig-
nal, bP (‰) a constant offset and ϕP (rad) the phase of the
signal. For each of the three fitting parameters, i.e. aP, bP and
ϕP, multiple regression relationships were previously devel-
oped (Allen et al., 2018). Depending on the fitting parameter,
predictor variables included a selection of latitude, longitude,
elevation, range of annual temperature and mean annual pre-
cipitation (Allen et al., 2018). The relationships defined by
these predictor variables then allow one to estimate aP, bP
and ϕP and thus the seasonal signal of δ18OP for locations
where no precipitation δ18O observations are available.

Here, we adopted the method as described in the follow-
ing. In a first step, we estimated the sine-wave parameters for
the time series of precipitation δ18O observed at the Stuttgart
station, using the procedure described by Allen et al. (2018).
Subsequently, we estimated the associated sine-wave param-
eters aP, bP and ϕP in each of the four precipitation zones
(P1–P4; Table S2 in the Supplement) based on Eqs. (S1)–
(S3) in the Supplement, using the above-described individ-
ual predictor variables averaged for each precipitation zone
(Table S1 in the Supplement). We then used the estimated
sine-wave parameters to construct an individual δ18OP sine
wave for each precipitation zone (Eq. 1). In a last step, we
adjusted the observed δ18O input for the four precipitation
zones by rescaling and bias-correcting the observed δ18O sig-

nal according to the differences between the sine waves at the
observation station and sine waves estimated for each precip-
itation zone, respectively (Fig. S2 in the Supplement).

3.2.3 Spatial extrapolation of precipitation 3H to
precipitation zones

As for δ18O, it is well documented that 3H exhibits spatial
heterogeneity that is to some extent controlled by geograph-
ical factors. It has been shown that the 3H concentration in
precipitation increases with latitude, with the highest con-
centrations in polar regions (Rozanski et al., 1991). In ad-
dition, 3H concentrations in precipitation increase with el-
evation due to the 3H-enriched upper troposphere and iso-
topic exchange between liquid water and atmospheric mois-
ture, depleting 3H in lower-tropospheric layers (Tadros et al.,
2014). Considering the above effects, we established a multi-
ple linear regression relationship between 3H concentrations
in precipitation observed at 15 multiple locations across Ger-
many (Fig. S3 in the Supplement) as available through the
WISER database (IAEA and WMO, 2022; Schmidt et al.,
2020) together with their corresponding elevations and lati-
tudes, respectively (Fig. S4 in the Supplement). We then used
this relationship to adjust the 3H precipitation input for the
four precipitation zones according to their corresponding av-
erage latitude and elevation estimate:
3HP (t)=−0.75(LP−Lo)− 0.002(EP−Eo)+

3Ho, (2)

where 3HP is the latitude- and elevation-adjusted tritium pre-
cipitation concentration for each precipitation zone (P1–P4);
3Ho is the tritium precipitation concentration observed at the
Stuttgart station; LP and EP are the mean latitude and eleva-
tion, respectively, of each precipitation zone; and Lo and Eo
are the latitude and elevation, respectively, of the Stuttgart
station.

4 Methods

The experiment to test the hypothesis that the use of δ18O
data systematically leads to truncated water age distributions
and associated underestimations of water ages is designed
and executed in a step-wise approach: 21 different scenarios
of model types and spatial implementations thereof are se-
quentially calibrated and tested to reproduce observed δ18O
and 3H signals in streamflow. For each of these models, sev-
eral metrics of water age distributions resulting from the two
independent calibration procedures, i.e. for δ18O and 3H,
respectively, are then estimated and compared. As a base-
line and to ensure comparability with previous studies, wa-
ter ages are quantified with spatially lumped, time-invariant
implementations of 12 commonly used SW and CO model
scenarios (Table 2): sine-wave models using exponential
(SW-EM) and gamma distributions as TTDs (SW-GM; only
δ18O), lumped-parameter convolution integral models us-
ing exponential (CO-EM) and gamma distributions as TTDs
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(CO-GM), two-parallel reservoirs (CO-2EM), three-parallel
reservoirs (CO-3EM) as well as an exponential piston flow
(CO-EPM) implementation. The above baseline scenarios
are complemented by nine additional models on the basis
of SAS functions (Table 3). In order of increasing complex-
ity, these include three spatially integrated formulations of a
“pure” SAS-function approach with one storage component
and based on observed streamflow (P-SAS), three imple-
mentations of a spatially integrated hydrological model with
tracer routing based on SAS functions (IM-SAS-L) as well
as three spatially distributed implementations of the same in-
tegrated hydrological model in combination with SAS func-
tions (IM-SAS-D).

4.1 Models

4.1.1 SW model

As demonstrated by Małoszewski et al. (1983), sine waves
fitted to δ18O precipitation and streamflow signals can be
used to indicatively determine water ages. More specifi-
cally, the ratio of the amplitudes of the fitted sine waves, i.e.
As/Ap, can be used together with the assumption of a shape
of the TTD to estimate the associated MTT of a system. In
the case of a gamma distribution as a TTD, this is done ac-
cording to (Kirchner, 2016)

τ = αβ, (3)

with

β =
1

2πf

√(
As/Ap

)−2/α
− 1, (4)

where τ is the MTT, α is a shape parameter, β is a scale
parameter, and f here is the frequency for the seasonal
δ18O signal, i.e. f = 1 yr−1. Here we analyse the two cases
α = 1 (SW-EM) and 0.5 (SW-GM). Note that, with α = 1,
the gamma distribution is equivalent to an exponential distri-
bution. The sine-wave model is a simplification of a convo-
lution integral model and can be directly derived from that.
For a more detailed description of the method and underlying
assumptions, we refer the reader to McGuire and McDonnell
(2006) and Kirchner (2016).

4.1.2 Time-invariant, lumped-parameter (CO) model

While the sine-wave approach requires regular cyclic signals
of tracer composition, i.e. sine waves fitted to the observa-
tions, convolution integral models make direct use of the ob-
served tracer data (e.g. Kreft and Zuber, 1978). Tracer com-
position in the system output can thus be estimated based on
a convolution operation of the tracer composition in the sys-
tem input together with an a priori assumption of a TTD (e.g.
Małoszewski and Zuber, 1982; Kirchner et al., 2001):

Co (t)=

∫
∞

0
g (τ)Ci (t − τ)e

−λτdτ, (5)

where Co(t) is the tracer composition of the system output
(here streamflow) at time t ;Ci(t−τ) is the tracer composition
of the system input (here precipitation) at any previous time
t − τ ; λ is the radioactive decay constant (λ= 0.00015 d−1

for 3H and λ= 0 d−1 for stable isotopes); and g(τ) is the
distribution of transit times τ . Here, we used gamma distri-
butions as a basis for a flexible and general formulation of
TTDs in the different CO scenarios tested in this study:

g (τ)=
∑N

i=1
ηfi

τα−1

βαi 0(α)
e

(
−τ
ηβi
+

1
η
−1
)

for τ ≥ τm(1− η), and g(τ)= 0 otherwise, (6)

with α and βi being the shape and scale parameters, re-
spectively; fi is the fraction of the contribution of the ith
reservoir, so that

∑
fi = 1 and η is the ratio of the expo-

nential volume to the total volume. For a single exponen-
tial TTD (CO-EM) with α = 1, N = 1, η = 1 and f1 = 1, β1
was the only calibration parameter. The two-parallel expo-
nential TTD model (CO-2EM) with α = 1,N = 2, η = 1 and
f2 = 1−f1 required β1, β2 and f1 as calibration parameters,
while the three-parallel exponential TTD model (CO-3EM)
with α = 1, N = 3, η = 1 and f3 = 1− f1− f2 required β1,
β2, β3, f1 and f2 as calibration parameters. The exponential
piston flow model (CO-EPM) with α = 1, N = 1 and f1 = 1
was characterized by the two calibration parameters β1 and
η. In contrast, the Gamma distribution model (CO-GM), with
N = 1, η = 1 and f1 = 1, used both α and β1 as free calibra-
tion parameters.

The MTTs associated with the above parameters in the
individual model implementations are then obtained with
Eq. (7).

τ =
∑N

i=1
fiαβi (7)

For a more detailed description of the method and the in-
dividual shapes of TTDs considered here, please refer to
McGuire and McDonnell (2006).

4.1.3 SAS-function models (P-SAS, IM-SAS)

The SAS-function concept as outlined by Rinaldo et
al. (2015) requires explicit tracking of water and tracer stor-
age volumes. The age compositions of water fluxes are then
sampled from the age composition in the associated storage
volume. Two alternative and frequently used approaches to
account for the evolution of water storage volumes were ex-
plored here: firstly, the P-SAS model in which the observed
streamflow was used to account for changes in water storage
volumes; secondly, the IM-SAS model that generates stream-
flow and other fluxes in the system. Water ages, their distri-
butions and the associated moments thereof were then esti-
mated by tracking water and tracer fluxes through the mod-
els.
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Hydrological model

The hydrological component of the P-SAS model was im-
plemented as described in Benettin et al. (2017). This model
consists of one single storage volume that receives observed
precipitation P as input and releases observed streamflow as
output. Evaporation EA from that storage is modelled fol-
lowing the simplifying assumption that there is negligible
storage change over the entire 47-year study period (1 Jan-
uary 1970–31 December 2016), as expressed by

EA (t)= Ep (t)

(
P −Q

Ep

)
, (8)

with P and Q being long-term mean daily precipitation P
(mm d−1) and discharge Q (mm d−1), respectively, and Ep
the long-term mean daily potential evaporationEp (mm d−1).

In contrast, the water storage fluctuations and fluxes in the
IM-SAS approach were modelled based on a previously de-
veloped process-based model based on the DYNAmic MIx-
ing Tank (DYNAMIT) modular modelling scheme (Hra-
chowitz et al., 2013, 2021). Briefly, this hydrological model
consists of a suite of storage components and associated wa-
ter fluxes between them. The influence of functionally differ-
ent landscape elements, i.e. forest, grassland, cropland and
flat valley bottoms, for brevity hereafter referred to as wet-
land, is represented by parallel hydrological response units
(HRUs) linked by a common storage component represent-
ing the groundwater system (Fig. 2), as previously imple-
mented and successfully tested in many contrasting environ-
ments (e.g. Gao et al., 2014; Gharari et al., 2014; Euser et
al., 2015; Nijzink et al., 2016; Prenner et al., 2018; Hanus et
al., 2021). Briefly, precipitation P (mm d−1) falling on days
with temperatures below threshold temperature Tt (◦C) is ac-
cumulated as snow Psnow (mm d−1) in the snow storage Ssnow
(mm). On days with temperatures higher than that, precipita-
tion enters the system as rainfall Prain (mm d−1) and, based
on a simple degree-day approach, water is released from
Ssnow as snowmeltMsnow (mm d−1) controlled by melt factor
Cmelt (mm d−1 ◦C−1; e.g. Gao et al., 2017; Girons Lopez et
al., 2020). Rainwater is then routed through the interception
storage Si (mm). With Ei (mm d−1) as interception evapora-
tion at the potential evaporation rate, effective precipitation
Pre (mm d−1) generated by overflow once the maximum in-
terception capacity (Simax) is exceeded, together withMsnow,
enters the unsaturated root zone Su (mm). From Su, water can
then be released as vapour via a combined soil evaporation
and transpiration flux Ea (mm d−1). Drainage of liquid water
from Su can recharge the groundwater Ss (mm) over a perco-
lation flux Rperc (mm d−1) and a faster preferential recharge
Rpref (mm d−1). Alternatively, drainage of liquid water from
Su can be routed via Ruf (mm d−1) to a faster-responding
component Sf (mm), from where it is directly released to
the stream as Qf (mm d−1), representing lateral preferential
flow. Rain and snowmelt entering the wetland HRU directly

reach Su. Soil moisture levels in the wetland Su are further
sustained by a fraction of groundwater Rcap (mm d−1) that
upwells into Su from Ss (e.g. Hulsman et al., 2021a). The de-
tailed equations of the model are provided as Table S3 in the
Supplement.

Tracer transport model

δ18O and 3H were routed through the above-described stor-
age components of both the P-SAS and IM-SAS (Fig. 2)
models by sampling the observed (i.e.Q in P-SAS) and mod-
elled outflow volumes (i.e. Ea in P-SAS and all outflows in
IM-SAS) that leave the individual components at each time
step t (d) (e.g. Msnow, Rperc, Ea) from the individual water
volumes of different ages T (d) that are stored in the asso-
ciated storage component (e.g. Ssnow, Su) at each time step
according to an SAS function. The distribution of water vol-
umes of different ages in each storage component, i.e. the
RTD, depends on the past sequence of inflows I (mm d−1)
and outflows O (mm d−1) and therefore varies over time.
As a consequence of being sampled from RTDs that evolve
over time, both I and O are correspondingly characterized
by water age distributions (or TTDs) that change over time.
A straightforward implementation of this SAS concept is fa-
cilitated by the formulation of age-ranked storages ST (T , t)
(mm). As emphasized by Benettin et al. (2017), ST (T , t) is
described as “at any time t the cumulative volumes of wa-
ter in a storage component as ranked by their age T ”. Cor-
respondingly, the total I and the total O volumes from dif-
ferent storages can be expressed in terms of their cumulative,
age-ranked volumes IT (T , t) andOT (T , t) (mm d−1). At any
time, closing the resulting water age balance for each storage
component j (e.g. Ssnow, Su) also leads to an updated age-
ranked storage ST ,j (T , t) for that component, formulated as
(Benettin et al., 2015a; Botter et al., 2011; Harman, 2015;
Van Der Velde et al., 2012)

∂ST ,j (T , t)

∂t
+
∂ST ,j (T , t)

∂T
=∑N

n=1
IT ,n,j (T , t)−

∑M

m=1
OT ,m,j (T , t) , (9)

where ∂ST /∂T is the ageing process of water in storage.
Here, the water age balance (Eq. 7) was formulated individ-
ually for each storage reservoir j , also accounting for differ-
ent numbers N of storage component inflows I (e.g. Prain,
Msnow, Rperc) and numbers M of outflows O (e.g. Rperc,
Rpref, Ea) (Fig. 2), similar to previous studies (e.g. Hra-
chowitz et al., 2021). For a daily modelling time step, in the
water age balance it can be assumed that precipitation P(t)
that falls on day t is characterized by an age T = 0. This im-
plies for the age-ranked inflow that IT ,P,j (0, t)= PT (0, t)=
P(t). Note that all other age-ranked inflows IT ,n,j (T , t) that
enter a storage component are equivalent to the correspond-
ing age-ranked outflows OT ,m,j (T , t) that leave a “higher”
storage component.
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Figure 2. Model structure of the integrated model discretized into three-parallel hydrological response units (HRUs), i.e. forest, grassland
and wetland in each precipitation zone (P1–P4). The light-blue boxes indicate the hydrologically active individual storage volumes. The
dark-blue box indicates the hydrologically passive storage volume Ss,p. The arrow lines indicate water fluxes, and the model parameters are
shown in red. All the symbols are described in Table S4 in the Supplement.

Depending on the total volume of outflow Om,j (t) and
the cumulative distribution of ages Po,m,j (T , t) of that flow,
an age-ranked outflow OT ,m,j (T , t) for each flux m released
from each storage component j can be defined as

OT ,m,j (T , t)=Om,j (t)Po,m,j (T , t) . (10)

While the outflow Om,j (t) from any storage component j is
computed for each time step t by the hydrological model de-
scribed above, the associated Po,m,j (T , t) cannot be assumed
to be known as it is controlled by the temporally evolving
distribution of water ages present in that storage component
ST ,j (T , t) at t . However, the temporally variable Po,m,j (T , t)

can be inferred for each time step t by defining, for each stor-
age j and for each outflow m released from j , an SAS func-
tion ωo,m,j together with its cumulative form �o,m,j . These
functions then describe how the water volumes of different
ages, stored in component j at time t , i.e. ST ,j (T , t), are
sampled and combined into the corresponding total outflow
volume Om,j (t):

Po,m,j (T , t)=�o,m,j
(
ST ,j (T , t) , t

)
. (11)

The probability density function po,m,j (T , t) associated with
the cumulative distribution of ages Po,m,j (T , t) then repre-
sents the TTD of that outflow and can be written as

po,m,j (T , t)=$o,m,j
(
ST ,j (T , t) , t

) ∂ST ,j
∂T

. (12)

Conservation of mass dictates that

�o,m,j
(
ST ,j (T , t)→ Sj (t) , t

)
= 1, (13)

where Sj (mm) is the total volume of water stored in com-
ponent j at time t . The resulting need to rescale ωo,m,j for

each time step was avoided here by instead normalizing and
therefore bounding the age-ranked storage to the interval [0,
1] according to

ST ,norm,j (T , t)=
ST ,j (T , t)

Sj (t)
. (14)

Note that ST ,norm,j also represents the RTD of storage com-
ponent j at time t .

For the P-SAS model implementation in this study, we
used power law distributions with one parameter to sample
streamflow (kQ) and evaporation (kE), respectively, as de-
scribed by Benettin et al. (2017). In contrast, we used uni-
form distributions in the form of ω = const. as an SAS func-
tion in each storage component in the IM-SAS model im-
plementations, as previously shown to be effective in many
studies (e.g. Birkel et al., 2011; van der Velde et al., 2015;
Benettin et al., 2015b, 2017; Ala-Aho et al., 2017; Kuppel
et al., 2018; Rodriguez et al., 2018). The latter implies ran-
dom sampling together with the assumption that each stor-
age component is fully mixed and that there is no preference
for sampling younger or older water. However, note that,
due to distinct storage capacities and timescales of the in-
dividual storage components, the “combined” SAS functions
of all storage components will not lead to an overall fully
mixed system response. Uniform SAS functions were cho-
sen here over other shapes, such as beta distributions (e.g.
van der Velde et al., 2012; Hrachowitz et al., 2021), as they
do not need additional model parameters and avoid the need
for explicit calculation of TTDs at each model time step
to route tracers through the model (Benettin et al., 2015b),
thereby drastically reducing computer memory requirements
and computational time (Benettin et al., 2022).
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Figure 3. The time series of stream δ18O reproduced by models P-SAS (scenarios 13 and 15) and IM-SAS-D (scenarios 19 and 21) based
on different calibration strategies. The IM-SAS-D model is based on simultaneous calibration to δ18O and the streamflow signatures, i.e.
calibration strategies Cδ18O,Q (scenario 19) and Cδ18O,3H,Q (scenario 21), for the model calibration and evaluation periods. (a) Observed

δ18O signals in precipitation (light-grey dots; the sizes of the dots indicate the precipitation volume) and observed stream δ18O signals
(orange dots) as well as the most balanced modelled δ18O signal in the stream (light-green dots) for scenario 13 from calibration strategy
Cδ18O. (b) Zoom-in of observed and modelled δ18O signals in the stream for the 1 January 2007–31 December 2012 period for scenario 13.
(c) Observed δ18O signals in precipitation and in the stream, same as in panel (a), and the modelled stream δ18O signals (relatively darker
green dots) for scenario 15 from calibration strategy Cδ18O,3H. (d) Zoom-in of observed and modelled δ18O signals in the stream for the
1 January 2007–31 December 2012 period for scenario 15. (e) Observed δ18O signals in precipitation and in the stream, same as in panel (a),
and the modelled stream δ18O signals (relatively darker green dots) for scenario 19 and the 5th and 95th percentiles of all retained Pareto
optimal solutions obtained from calibration strategy Cδ18O,Q (light-green-shaded area). (f) Zoom-in of observed and modelled δ18O signals

in the stream for the 1 January 2007–31 December 2012 period for scenario 19. (g) Observed δ18O signals in precipitation and in the stream,
same as in panel (a), and the modelled stream δ18O signals (relatively darker green dots) for scenario 21 and the 5th and 95th percentiles of
all retained Pareto optimal solutions obtained from calibration strategy Cδ18O,3H,Q (light-green-shaded area). (h) Zoom-in of observed and

modelled δ18O signals in the stream for the 1 January 2007–31 December 2012 period for scenario 21.
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To adequately damp tracer input signals, suitable system
storage volumes have to be defined as calibration parame-
ters. In the P-SAS implementation, the parameter Stot is used,
reflecting the initial total system storage (e.g. Benettin et al.,
2017). In contrast, the IM-SAS implementations made use of
additional and hydrologically passive storage volumes (e.g.
Christophersen and Wright, 1981; Birkel et al., 2010; Hra-
chowitz et al., 2015, 2016) that physically represent ground-
water volumes below the river bed, as illustrated by Zuber
(1986; Fig. 1 therein). Such a passive water storage volume
Ss (mm), characterized by dSs,p/dt = 0, was thus added as
a calibration parameter to the active groundwater storage Ss
(Fig. 2). While the outflow Qs from the groundwater stor-
age is exclusively regulated by the temporally varying stor-
age volume in Ss (Eq. S9 in the Supplement), the tracer and
age composition of that outflow is also randomly sampled
from the total groundwater storage volume Ss,tot = Ss+Ss,p.

The δ18O and 3H concentrations were then routed through
each individual storage component according to (e.g. Har-
man, 2015; Benettin et al., 2017)

Co,m,j (t)=

∫ Sj

0
Cs,j (ST ,j (T , t), t)ωo,m,j(

ST ,j (T , t) , t
)
e−λT dST , (15)

where Co,m,j is the tracer concentration in outflow m from
storage component j at time t ; Cs,j is the tracer concentra-
tion of water in storage at time t ; and λ is the radioactive
decay constant (λ= 0 d−1 for δ18O and λ= 0.00015 d−1 for
3H).

4.2 Model implementation

4.2.1 Spatially lumped model implementation

The original argument that the use of seasonally variable
tracers underestimates water ages was exclusively based on
lumped, time-invariant implementations of sine-wave and
convolution integral models (Stewart et al., 2010). For a base-
line comparison and to check whether the above conclu-
sion would also have been reached for our study basin us-
ing the same methods, here we similarly implemented the
sine-wave (SW-EM, SW-GM) and convolution integral (CO-
EM, CO-GM, CO-2EM, CO-3EM, CO-EPM) models in a
spatially lumped way. For this baseline case the catchment
average tracer input was estimated as the spatially weighted
mean from the four precipitation zones P1–P4 as described
in Sect. 3.2. The calibration parameters of the CO implemen-
tations are shown in Table 2.

The P-SAS model (Table 3) and the spatially lumped im-
plementation of the integrated model (IM-SAS-L) were also
forced with the same spatially averaged input. In addition, the
spatial fractions for IM-SAS-L of the grassland and wetland
HRUs, respectively, were set to 0, and the entire study basin
was therefore represented by one HRU, which is equivalent

to the forest HRU described in the distributed model, simi-
lar to many traditional lumped formulations of process-based
conceptual models (Bouaziz et al., 2021; Clark et al., 2008;
Fenicia et al., 2006; Fovet et al., 2015; Seibert et al., 2010).
This implementation has 11 calibration parameters (Table 3).

4.2.2 Spatially distributed model implementation

To balance the need for spatial detail to some extent with
the adverse effects of increased parameter uncertainty (e.g.
Beven, 2006) and computational capacity (in particular for
the calculation of TTDs), here we implemented the inte-
grated model in parallel (IM-SAS-D) in the four precipita-
tion zones P1–P4 and forced it with the corresponding input
(e.g. P, δ18O and 3H) for each precipitation zone as described
in Sect. 3.2. Each precipitation zone was further discretized
(1) into 100 m elevation zones for a stratified representa-
tion of the snow storage Ssnow (e.g. Mostbauer et al., 2018)
and (2) into three HRUs, i.e. forest, grassland and wetland
(Fig. 2; e.g. Gharari et al., 2014; Hanus et al., 2021). Rain-
water Prain and meltwater Msnow from the different elevation
zones were aggregated according to their associated spatial
weights in each elevation zone. This total liquid water input
was then routed through the three parallel HRUs. The classi-
fication into the three HRUs was based on HAND (Gharari
et al., 2011) and land cover. While landscape elements with
HAND<5 m were classified as wetland, all other parts of the
landscape were classified as forest or grassland according to
land use data. In total, there are therefore 12 individual, par-
allel model components, i.e. three HRUs in each of the four
precipitation zones, not counting the elevation zones for the
snow module. All flux and storage variables of the 12 compo-
nents are weighted according to their areal fractions. While
each of the three HRUs was characterized by individual pa-
rameters (e.g. Gao et al., 2016; Prenner et al., 2018), the same
parameter values were used in all four precipitation zones in
a distributed moisture-accounting approach (e.g. Ajami et al.,
2004; Euser et al., 2015; Hulsman et al., 2021b; Roodari et
al., 2021). Overall, the spatially distributed implementation
has 19 model parameters, including 5 global parameters (Tt,
Cmelt, Ca , Ks and Ss,p) that are identical for each HRU and
14 HRU-specific parameters (Table 3; Fig. 2).

4.3 Model calibration and post-calibration evaluation

The models were run at a daily time step where the observed
volume-weighted monthly tracer concentration in precipita-
tion was used as model input for each day of that month
together with the daily data of precipitation. Model perfor-
mance was evaluated based on the MSE as an error met-
ric. The time-invariant, lumped convolution integral models,
using uniform prior parameter distributions as shown in Ta-
ble 2, were individually calibrated to the observed δ18O (cal-
ibration strategy Cδ18O; Table 2) and 3H stream water con-
centrations (C3H), respectively. In contrast, a multi-objective
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calibration approach was applied for the integrated IM-SAS
models to simultaneously reproduce streamflow volumes and
tracer concentrations thereof (e.g. 3H and/or δ18O). Briefly,
the model parameters were calibrated by using the Borg
MOEA (Borg multiobjective evolutionary algorithm) (Hadka
and Reed, 2013) and were based on uniform prior distri-
butions (Table 3). The model performances were evaluated
based on the models’ ability to simultaneously reproduce
multiple signatures of streamflow and signatures of tracer
dynamics as shown in Table 3. The sets of Pareto optimal
solutions obtained from the calibration procedures were then
retained as acceptable solutions for the subsequent analysis.
To compare the water age distributions (i.e. TTDs and RTDs)
and thus to test the research hypothesis, different calibration
strategies – Cδ18O,Q, C3H,Q and Cδ18O,3H,Q – were adopted
(Table 3). While in strategy Cδ18O,Q the models were cali-
brated to simultaneously reproduce signatures of streamflow
and δ18O, C3H,Q combined the streamflow signatures with
3H. In strategy Cδ18O,3H,Q the model was finally calibrated
to simultaneously reproduce the six streamflow signatures as
well as δ18O and 3H dynamics. For each strategy, all the per-
formance metrics were also combined into an overall per-
formance metric based on the Euclidian distance DE, where
DE = 0 indicates a perfect fit. To find a somewhat balanced
solution in the absence of more detailed information, all the
individual performance metrics were equally weighted here
(e.g. Hrachowitz et al., 2021; Hulsman et al., 2021b):

DE =

√√√√1
2

(∑N
n=1

(
EMSE,Q,n

)2
N

+

∑M
m=1

(
EMSE,tracer,m

)2
M

)
, (16)

where N = 6 is the number of performance metrics with
respect to streamflow (EMSE,Q,n) and M is the number of
performance metrics for tracers (EMSE,tracer,m) in each com-
bination (e.g. M = 1 for Cδ18O,Q and C3H,Q; M = 2 for
Cδ18O,3H,Q). Note that the different units and thus differ-
ent magnitudes of residuals introduce some subjectivity in
finding the most balanced overall solution according to DE
(Eq. 16). However, a preliminary sensitivity analysis with
varying weights for the individual performance metrics inDE
suggested limited influence on the overall results and is thus
not further reported here.

After a warm-up period (1 January 1978–30 Septem-
ber 2001), the models were calibrated for the 1 Octo-
ber 2001–31 December 2009 period. The calibration period
was chosen so that observations of all three calibration vari-
ables, i.e. Q, 3H and δ18O, are available for the entire cal-
ibration period to allow a consistent comparison. The long
model warm-up period was deemed necessary to meaning-
fully approximate the model initial conditions due to the
potential and a priori unknown relevance of old water in
the study basin and thus to avoid underestimation of wa-
ter ages inferred from 3H data. The Pareto optimal solu-
tions (parameter sets) of the Neckar basin model were then
used to test the model in the post-calibration evaluation pe-

riod 1 January 2010–31 December 2016. In addition, the
model was tested for its ability to represent spatial differ-
ences in the hydrological response by evaluating it against
streamflow observations in three sub-catchments (C1–C3) of
the Neckar without further re-calibration, where each one
of them largely represents the hydrological response from
one of the precipitation zones (Fig. 1). The water age distri-
butions, i.e. TTDs and RTDs, extracted from the individual
models and calibration strategies were then estimated based
on the corresponding sets of Pareto optimal solutions ob-
tained for each calibration strategy.

5 Results

5.1 Model performance

The stream tracer responses of the lumped baseline models
were found to be broadly consistent with the available obser-
vations (Table 4). For the SW models (scenarios 1 and 2), in
particular, the sine wave fitted to the stream water δ18O ob-
servations provides a robust characterization of the observed
signal with MSEδ18O = 0.121 ‰ and 0.144 ‰ for the calibra-
tion and model evaluation periods, respectively (Fig. S5 in
the Supplement). Similarly, the CO models (scenarios 3, 5,
7, 9 and 11) reproduced the overall pattern of seasonal fluc-
tuations and the degree of dampening of the δ18O response
(Supplement Fig. S6). The best-performing model, the CO-
3EM model, was characterized by MSEδ18O = 0.171 ‰ and
0.191 ‰ for the calibration and model evaluation periods,
respectively, while, in comparison, the CO-EM implemen-
tation exhibited considerably higher errors with MSEδ18O =

0.327 ‰ and 0.432 ‰ (Table 4). When used with 3H data
(scenarios 4, 6, 8, 10 and 12), the CO models do capture the
general decrease in the magnitude of stream water 3H con-
centrations, although fluctuations at shorter timescales are
not well reproduced (Fig. S7 in the Supplement). The CO-
2EM model gives the best performance with MSE3H = 5.171
and 3.964 TU2 for the calibration and evaluation periods, re-
spectively, while the CO-EPM model resulted in MSE3H =

5.926 and 5.115 TU2 (Table 4). It is also noted that the mod-
els already mimic the 3H response well in the 1978–2001
pre-calibration model warm-up period.

The P-SAS implementations (scenarios 13–15; Table 5;
Figs. 3a–d and 4a–d) show a somewhat higher skill in
reproducing the dampening of the δ18O response with
MSEδ18O = 0.069 ‰–0.078 ‰ for the calibration period and
0.215 ‰–0.231 ‰ for the evaluation period, respectively, to-
gether with a general decrease in the magnitude of stream
water 3H with MSE3H<3 TU2. In contrast to the above, the
implementations of the integrated model IM-SAS (Table 5)
aim not only to reproduce the δ18O or 3H stream signals, but
to additionally and simultaneously describe the hydrological
response (Table 5). Both the lumped IM-SAS-L (scenario 16;
Fig. S8a, b in the Supplement) and the distributed IM-SAS-
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Table 4. Performance metrics of the 12 time-invariant, lumped SW and CO model implementations for the 2001–2009 calibration period
(cal.) and the 2010–2016 model evaluation period (val.). For brevity, only the values for the most balanced solution are shown here. ∗ The
MSE values provided for Cx describe the sine-wave fits of both the precipitation and streamflow δ18O signals, respectively.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12

Model SW-EM SW-GM CO-EM CO-GM CO-2EM CO-3EM CO-EPM

Calibration strategy→ Cx Cx Cδ18O C3H Cδ18O C3H Cδ18O C3H Cδ18O C3H Cδ18O C3H
Performance metric ↓

MSEδ18O cal. 3.850 / 0.121∗ 0.327 – 0.204 – 0.171 – 0.171 – 0.254 –
val. 5.208 / 0.144∗ 0.432 – 0.192 – 0.192 – 0.191 – 0.683 –

MSE3H cal. – – – 5.903 – 5.791 – 5.171 – 5.170 – 5.926
val. – – – 5.155 – 4.597 – 3.964 – 4.000 – 5.115

D (scenario 19; Fig. 3e, f) reproduce the seasonal fluctua-
tions as well as the degree of dampening of the δ18O signals
with MSEδ18O = 0.079 ‰–0.083 ‰ for the calibration period
and 0.273 ‰–0.332 ‰ for the evaluation period, similar to
or better than the baseline SW or CO models. The IM-SAS
models also describe the evolution of the 3H stream signals
rather well (scenarios 17 and 20). With MSE3H<3 TU2, IM-
SAS-L (Fig. S9 in the Supplement) and IM-SAS-D (Fig. 4e–
h) not only outperform the baseline models with respect to
the overall magnitude of 3H, but, in spite of somewhat un-
derestimating the magnitudes of seasonal amplitudes, also
provide a better representation of these intra-annual fluctu-
ations. Similarly to the SW and CO baseline models, both
the P-SAS and IM-SAS implementations also capture the
overall decline of the stream water 3H levels in the 1978–
2001 pre-calibration model warm-up period very well. The
simultaneous calibration to the hydrological response and
the δ18O and 3H stream signals (scenarios 18 and 21) led
to a comparable model skill to reproduce the tracer signals.
In addition to the tracer concentrations, all IM-SAS imple-
mentations also reproduce the main features of the hydro-
logical response (Table 5). More specifically, the modelled
hydrographs in particular describe well the timing of peaks
and the shape of recessions, although in some cases peak
flows were underestimated and low flows overestimated, as
shown for scenario 21 in Fig. 5 (for scenarios 16–20, see
Figs. S10–S14 in the Supplement). The resulting MSEQ re-
mains ≤ 0.336 mm2 d−2 across all IM-SAS implementations
(scenarios 16–21). Crucially, the models also reproduce well
the other observed streamflow signatures, such as the flow
duration curves (MSEFDCQ ≤ 0.047 mm2 d−2; Fig. 5d), the
seasonal runoff coefficients (MSERC ≤ 0.008; Fig. 5e) and
the autocorrelation functions (MSEACQ ≤ 0.007; Fig. 5f).
The model, calibrated on the overall response of the Neckar
basin, also exhibited considerable skill in representing spatial
differences in the hydrological response by reproducing ob-
served streamflow in the three sub-catchments (C1–C3) sim-
ilarly well (Fig. 6) without any further re-calibration.

5.2 Model parameters

Parameters of the SW or CO baseline models (scenarios 1–
12) directly define the shapes of parametric TTDs and thus
the associated metrics of water age, such as MTTs following
Eqs. (3)–(7). The CO models representing 3H signals (sce-
narios 4, 6, 8, 10 and 12) are characterized by values of pa-
rameters β1, β2 and β3 that are a factor of up to ∼ 10 higher
than the same parameters of models calibrated to δ18O sig-
nals (Table 2). For example, β1 = 513 d for the CO-EM in
scenario 3 and 3795 d in scenario 4.

The individual parameters of the P-SAS and IM-SAS
model implementations (scenarios 13–21), in contrast, do
not directly define parametric TTDs, nor can they readily
and directly be linked to water ages. However, it has been
shown previously that the sizes of water storage volumes are
an important control on water ages (e.g. Harman, 2015) and
that, in particular, total storage volumes, represented by pa-
rameter Stot in P-SAS, and the hydrologically passive stor-
age volumes, represented by parameter Ss,p in the IM-SAS
models, are key to regulating older water ages in many sys-
tems (e.g. Hrachowitz et al., 2016). Calibration of P-SAS
to δ18O in scenario 13 suggested Stot ∼ 15595 mm, while
calibration of the lumped IM-SAS-L to δ18O and stream-
flow (Cδ18O,Q) in scenario 16 led to a moderately well-
identifiable range of this parameter (Ss,p ∼ 4107–10 029 mm)
across all Pareto optimal solutions and the same order of
magnitude as P-SAS (Fig. 7a; Table 3). Reflecting the wa-
ter storage capacity in the unsaturated root zone, which is
an important control on younger water ages (Hrachowitz et
al., 2021), the parameter SumaxF was found to range between
∼ 314 and 415 mm (Fig. 7b; Table 3) for the same IM-SAS-
L scenario. The calibration of the same models to 3H (sce-
narios 14 and 17) resulted in similar parameter ranges of
Stot ∼ 16638 mm, Ss,p ∼ 3924–9339 mm (Fig. 7a) and, albeit
slightly lower, SumaxF ∼ 236–355 mm (Fig. 7b). The similar-
ities between these two scenarios are also reflected in the
parameter ranges obtained from the simultaneous calibra-
tion to δ18O and 3H (Cδ18O,3H,Q) in scenarios 15 and 18.
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Figure 4. The time series of stream 3H reproduced by models P-SAS (scenarios 14 and 15) and IM-SAS-D (scenarios 20 and 21) based
on different calibration strategies. The IM-SAS-D model is based on simultaneous calibration to 3H and the streamflow signatures, i.e.
calibration strategies C3H,Q (scenario 20) and Cδ18O,3H,Q (scenario 21) for the model calibration and evaluation periods. (a) Observed 3H

signals in precipitation (light-blue-purple dots; the sizes of the dots indicate the precipitation volume) and observed stream 3H signals (pink
dots) as well as the most balanced modelled 3H signal in the stream (light-purple dots) for scenario 14 from calibration strategy C3H. (b)
Zoom-in of observed and modelled 3H signals in the stream for the 1 January 2007–31 December 2012 period for scenario 14. (c) Observed
3H signals in precipitation and in the stream, same as in panel (a), and the modelled stream 3H signals (relatively darker purple dots) for
scenario 15 from calibration strategy Cδ18O,3H. (d) Zoom-in of observed and modelled 3H signals in the stream for the 1 January 2007–
31 December 2012 period for scenario 15. (e) Observed 3H signals in precipitation and in the stream, same as in panel (a), and the modelled
stream 3H signals (relatively darker purple dots) for scenario 20 and the 5th and 95th percentiles of all retained Pareto optimal solutions
obtained from calibration strategy C3H,Q (light-purple-shaded area). (f) Zoom-in of observed and modelled 3H signals in the stream for

the 1 January 2007–31 December 2012 period for scenario 20. (g) Observed 3H signals in precipitation and in the stream, same as in panel
(a), and the modelled stream 3H signals (relatively darker green dots) for scenario 21 and the 5th and 95th percentiles of all retained Pareto
optimal solutions obtained from calibration strategy Cδ18O,3H,Q (light-green-shaded area). (h) Zoom-in of observed and modelled 3H signals
in the stream for the 1 January 2007–31 December 2012 period for scenario 21.
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Table 5. Performance metrics of the nine P-SAS and IM-SAS model scenarios for the 2001–2009 calibration period (cal.) and the 2010–2016
model evaluation period (val.). For brevity, only the values for the most balanced solution, i.e. the lowest DE (Eq. 16), are shown here. The
ranges of all the performance metrics for the full set of Pareto optimal solutions for the multi-objective calibration cases (scenarios 15–21)
are provided in Table S5 in Supplement.

Scenario 13 14 15 16 17 18 19 20 21

Model P-SAS IM-SAS-L IM-SAS-D

Implementation Lumped Distributed

Calibration strategy→ Cδ18O C3H Cδ18O,3H Cδ18O,Q C3H,Q Cδ18O,3H,Q Cδ18O,Q C3H,Q Cδ18O,3H,Q
Performance metric ↓

MSEδ18O cal. 0.069 – 0.078 0.083 – 0.118 0.079 – 0.114
val. 0.231 – 0.215 0.332 – 0.273 0.273 – 0.475

MSE3H cal. – 2.828 2.847 – 2.972 2.823 – 2.920 2.981
val. – 1.717 1.710 – 2.389 2.285 – 2.357 2.450

MSEQ cal. – – – 0.202 0.299 0.308 0.228 0.263 0.317
val. – – – 0.224 0.297 0.329 0.251 0.283 0.336

MSElog(Q) cal. – – – 0.120 0.158 0.174 0.130 0.171 0.161
val. – – – 0.120 0.148 0.150 0.127 0.201 0.165

MSEFDCQ cal. – – – 0.058 0.024 0.073 0.022 0.017 0.025
val. – – – 0.103 0.022 0.142 0.043 0.065 0.059

MSEFDClog(Q) cal. – – – 0.011 0.011 0.047 0.006 0.019 0.009
val. – – – 0.015 0.009 0.047 0.009 0.050 0.018

MSERC cal. – – – 0.004 0.005 0.007 0.003 0.006 0.003
val. – – – 0.004 0.004 0.005 0.003 0.008 0.003

MSEACQ cal. – – – 0.003 0.002 0.003 0.002 0.001 0.001
val. – – – 0.008 0.002 0.001 0.005 0.002 0.007

The calibration of the distributed IM-SAS-D model follow-
ing all three calibration strategies in scenarios 19–21 resulted
in values for Ss,p ∼ 3270–9011 mm (Fig. 7c) that are broadly
in similar ranges to IM-SAS-L (Ss,p ∼ 3924–13 676 mm). In
contrast, the distinction into the individual HRUs led to clear
differences between SumaxF, SumaxG and SumaxW (Fig. 7d–f)
that are reflective of the different hydrological functioning
of these HRUs. Nevertheless, the area-weighted average of
these parameters comes close to the equivalent parameter
from the lumped model implementation (SumaxF). The gen-
eral consistency of these parameters obtained from the differ-
ent calibration strategies is exacerbated by the limited differ-
ences in the most balanced solutions (smallest DE) between
the different scenarios. For example, the most balanced so-
lutions of Ss,p fall between ∼ 4000 and 5000 mm for all IM-
SAS scenarios (16–21) (Fig. 7a, c). All the other parameters,
which are less clearly related to water ages, exhibit different
levels of variation across the individual scenarios but do not
follow any clear and systematic pattern (Table 3).

5.3 Water age distributions

Based on a δ18O amplitude ratioAs/Ap = 0.21 (Table 2), the
results of the SW models (scenarios 1 and 2) suggest a sys-
tem that is characterized by rather young stream water with
MTTs of ∼ 0.7–1.8 years, depending on the choice of TTD
(Table 6; Fig. 8). The TTDs obtained from the CO models
calibrated to δ18O (scenarios 3, 5, 7, 9 and 11) are broadly
consistent with this, suggesting MTTs of ∼ 1.4–2.4 years.
These TTDs suggest mean water ages that are up to∼ 9 years
lower than estimates from CO models calibrated to 3H (sce-
narios 4, 6, 8, 10 and 12) with MTTs of ∼ 9.4–10.4 years
(Table 6; Fig. 8). For higher percentiles, the differences in
water ages can even reach more than 20 years (Table 6). Cor-
respondingly, the fractions of water younger than 3 months,
F (T<3 m), exhibit considerable differences of −2 %–22%
points between δ18O- and 3H-inferred estimates, which fur-
ther increase to differences of 30 %–64 % for F (T<3 years).

In contrast, from the implementations of the P-SAS and
IM-SAS models in scenarios 13–21, it can be clearly seen
that the stream water ages inferred from δ18O are across
most percentiles a factor of around 10 higher than those from
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Figure 5. Hydrograph and selected hydrological signatures reproduced by IM-SAS-D following a simultaneous calibration to the hydro-
logical response, δ18O and 3H (Cδ18O,3H,Q; scenario 21). (a) Time series of observed daily precipitation: observed and modelled (b) daily
streamflow (Q), where the red line indicates the most balanced solution, i.e. the lowest DE, and the red-shaded area indicates the 5th or
95th inter-quantile range obtained from all Pareto optimal solutions. (c) Streamflow zoomed in to the 1 January 2007–31 December 2012
period. (d) Flow duration curves (FDCQ). (e) Seasonal runoff coefficients (RCQ) and (f) autocorrelation functions of streamflow (ACQ)
for the calibration period. Blue lines indicate values based on observed streamflow (Qo); red lines are values based on modelled streamflow
(Qm) representing the most balanced solutions. That is, the lowest DE and the red-shaded areas show the 5th and 95th inter-quantile ranges
obtained from all Pareto optimal solutions.

Figure 6. Selected model performances in the 1 January 2010–31 December 2016 validation period of the overall Neckar basins against
the model performance in uncalibrated sub-catchments (a) Kirchentellinsfurt (C1), (b) Calw (C2) and (c) Untergriesheim (C3) based on
scenario 19. The dots indicate all Pareto optimal solutions in the multi-objective model performance space. The shades from dark to light
indicate the overall model performance based on the Euclidean distanceDE, with the black solutions representing the overall better solutions
(i.e. smaller DE).
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Figure 7. Pareto optimal distributions of selected parameters of the IM-SAS models (i.e. IM-SAS-L, IM-SAS-D) shown as the associated
empirical cumulative distribution functions (lines). Light-green shades indicate scenario 16, light-purple shades indicate scenario 17, and
light-brown shades indicate scenario 18 in panels (a) and (b). Relatively darker green shades indicate scenario 19, relatively darker purple
shades indicate scenario 20, and relatively darker brown shades indicate scenario 21 in panels (c)–(f). The dots indicate the parameter values
associated with the most balanced solution, i.e. the lowest DE.

the SW and CO models, resulting in volume-weighted aver-
age MTTs of ∼ 11–17 years over the modelling period (Ta-
ble 7; Fig. 9). Similarly, all water fractions below 20 years
are substantially lower for the P-SAS and IM-SAS models
than for the SW and CO models. The most pronounced dif-
ference is observed at F (T<5 years), which reaches 38 %–
57 % for SAS-function models and 91 %–100 % for SW and
CO, equalling a difference of more than 50 %. As such, these
water age estimates from δ18O in SAS-function models (sce-
narios 13, 16 and 19) are not only very similar to the esti-
mates from 3H in these models (scenarios 14, 17 and 20),
but δ18O suggests, against expectations, even slightly older
water than 3H does. More specifically, while δ18O results in
stream water MTTs of 11–17 years (scenarios 13, 16 and 19),
the 3H-based estimates reach MTTs of ∼ 11–13 years (sce-
narios 14, 17 and 20) and are thus up to 4 years younger
(Table 7; Fig. 9). The differences between δ18O and 3H wa-
ter ages from individual P-SAS and IM-SAS model imple-

mentations (scenarios 13–21) are similar over all percentiles,
with 1TTδ18O−3H, on average, ∼ 1.4 years and not exceed-
ing ∼ 5.5 years. Accordingly, the fractions of water of any
given age up to T<20 years are ∼ 1 %–8 % higher for 3H
than for δ18O, suggesting higher fractions of old water mod-
elled with δ18O (Table 7). Equivalent patterns and compara-
ble magnitudes are found for the combined use of δ18O and
3H in scenarios 15, 18 and 21.

An explicit comparison between the lumped IM-SAS-L
(scenarios 16–18) and the distributed IM-SAS-D (scenarios
19–21) also suggests a good correspondence between the
respective inferred water ages for both tracers. While IM-
SAS-L generates MTTs of ∼ 11.2–17.4 years, the MTT ob-
tained from IM-SAS-D reaches ∼ 12.8–15.6 years (Table 7;
Fig. 9). In addition to the MTTs, the differences in water ages
across all percentiles are also minor and reach a maximum
of 4.6 years at the 75th percentile. Accordingly, the fractions
of water with ages T<20 years exhibit only marginal differ-
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Figure 8. Streamflow TTDs derived from the 12 SW and CO model scenarios with the different associated calibration strategies based on
different lumped, time-invariant models. The TTDs represent the best fits of the respective time-invariant TTDs. The green shades represent
the TTDs inferred from δ18O (from lighter to darker for scenarios 1, 2, 3, 5, 7, 9 and 11) in panels (a) and (b). The purple shades represent
TTDs inferred from 3H (from lighter to darker for scenarios 4, 6, 8, 10 and 12). The black dots in panel (b) indicate the mean transit time for
each model scenario.

ences between the lumped (IM-SAS-L) and distributed (IM-
SAS-D) model implementations. It is noted that these over-
all water ages from IM-SAS-D for the entire Neckar basin
emerge from the aggregation of TTDs of the four individ-
ual precipitation zones P1–P4 (Figs. S29–S31 and Table S6
in the Supplement), which are characterized by pronounced
differences, with MTTs ranging from ∼ 8 to 10 years in P4
and from ∼ 18 to 22 years in P2, depending on the scenario.

The consistency between water ages inferred from δ18O
and 3H, respectively, in all SAS-function model scenarios is
further illustrated by the direction and magnitude of change
in water age distributions as a consequence of changing wet-
ness conditions. In particular, during wet-up and wet periods,
a marked variability of daily TTDs can be observed, with
young water fractions F (T<3 m) ranging between ∼ 20 %
and 65 % for δ18O-based estimates and between ∼ 25 % and
70% for 3H (Fig. 10a, b, e, f). Less variability in daily TTDs
is found under drying and dry conditions, with F (T<3 m)
generally in the range of ∼ 1 %–20 % and only a very few
outliers>30 %. Overall, the volume-weighted average TTDs
for wet conditions suggest slightly older water inferred from
δ18O, with a median water age of ∼ 3 years and F (T<3 m)
∼ 30% for wet conditions, than from 3H, for which a median
age of∼ 1 year and F (T<3 m)∼ 40 % were found (Fig. 10d,
h). This is in contrast to dry conditions, for which the dif-

ferences between δ18O- and 3H-derived water age estimates
become mostly negligible (Fig. 10d, h).

With the P-SAS and IM-SAS models, MTTs and TTDs
can be derived not only in streams, but also in any fluxes
and storages (i.e. transpiration flux Ea and groundwater stor-
age). An even more pronounced young water variability in
daily TTDs was found for the transpiration flux Ea leaving
the unsaturated root zone storage Su in the IM-SAS models
(scenarios 16–21). As shown in Fig. 11a, the transpiration
TTDs inferred from δ18O suggest a median transpiration age
during wet conditions of ∼ 2–40 d and F (T<3 m) ∼ 60 %–
100 %. This variability shifts to median ages between ∼ 30
and 100 d and F (T<3 m) ∼ 30 %–95 % for dry conditions.
This pattern of variability in daily TTDs in wet and dry pe-
riods is very closely matched by the estimates based on 3H
(Fig. 11b). Overall, the volume-weighted average TTDs of
transpiration suggest median ages of around 14 d for wet con-
ditions and between 35 d (3H) and 70 d (δ18O) for dry condi-
tions (Fig. 11d).

The modelled groundwater, in comparison, was found to
be characterized by substantially less temporal variability in
TTDs and older water ages (Fig. 12). The TTDs inferred
from both δ18O and 3H are similar and are characterized by a
median age of∼ 10 years under both wet and dry conditions.
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Figure 9. Streamflow TTDs derived from the nine model scenarios with the different associated calibration strategies of the P-SAS (sce-
narios 13–15), IM-SAS-L (scenarios 16–18) and IM-SAS-D model implementations (scenarios 19–21). The TTDs represent the volume-
weighted average daily TTDs for the modelling period 1 October 2001–31 December 2016. Green shades represent the TTDs inferred from
δ18O (from lighter to darker for scenarios 13, 16 and 19), the purple shades represent TTDs inferred from 3H (from lighter to darker for
scenarios 14, 17 and 20), the brown lines represent TTDs inferred from combined δ18O and 3H (brown shades from lighter to darker for
scenarios 15, 18 and 21), and the black dots in panel (b) indicate the mean transit time for each model scenario. Note that the mean transit
time was estimated by fitting Gamma distributions to the volume-weighted mean TTDs of each individual scenario.

While F (T<3 m) of the groundwater largely remains <1 %,
around 20 %–25 % of the groundwater is older than 20 years.

6 Implications, limitations and unresolved questions

What can we learn from the above? We believe that the re-
sults obtained in this study have several implications for the
utility of different tracer and model types, as described in de-
tail below.

6.1 The individual roles of the choices of tracers and
models for underestimation of water ages

The overall magnitudes of water ages estimated here from
time-invariant, lumped SW and CO models in combination
with δ18O reach MTTs of ∼ 2 years (Table 6; Fig. 8). These
values fall within the age ranges reported for comparable
model experiments with seasonally variable tracers in many
other catchments worldwide (see McGuire and McDonnell,
2006; Godsey et al., 2009; Hrachowitz et al., 2009b; Stewart
et al., 2010, and references therein). Similarly, the water ages
estimated with the same CO models in combination with 3H
are, with MTTs of ∼ 10 years, a factor of ∼ 5 higher (Ta-
ble 6; Fig. 8) and also reflect the findings of previous studies

well, many of which suggest 3H-inferred catchment MTTs of
∼ 10–15 years (Stewart et al., 2010, and references therein).
This suggests that the Neckar basin does not exhibit unusual
or unexpected water age characteristics. By themselves, these
results would therefore lend further supporting evidence for
the interpretation provided by Stewart et al. (2010) and, cru-
cially, lead us to the same conclusion that the use of δ18O
and comparable seasonally variable tracers truncates stream
water ages.

However, and in stark contrast, the estimates of water ages
obtained from all P-SAS and IM-SAS model implementa-
tions in this study, i.e. scenarios 13–21, are similar to each
other irrespective of the tracer used. Water ages estimated
from δ18O are, with MTTs of >11.4 years, not only substan-
tially older than those inferred from the SW and CO mod-
els (scenarios 1–3, 5, 7, 9 and 11), but, most importantly,
are similar to those inferred from 3H in the P-SAS and IM-
SAS models, which reach MTTs of ∼ 11–13 years (Table 7;
Fig. 9). These water ages highlight the importance of old wa-
ter in the Neckar basin, similar to what is suggested by the
use of 3H in the CO models (scenarios 4, 6, 8, 10 and 12).

It is important to note that the IM-SAS and, to a lesser
degree, P-SAS models can simultaneously reproduce sev-
eral signatures of the hydrological response together with the

https://doi.org/10.5194/hess-27-3083-2023 Hydrol. Earth Syst. Sci., 27, 3083–3114, 2023
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Figure 10. Daily streamflow (Q) TTDs extracted from the most balanced model solutions of P-SAS (scenarios 13–15) based on (a) calibration
strategy Cδ18O (scenario 13), (b) calibration strategy C3H (scenario 14) and (c) calibration strategy Cδ18O,3H (scenario 15), together with IM-
SAS-D implementations (scenarios 19–21) based on (e) calibration strategy Cδ18O,Q (scenario 19), (f) calibration strategy C3H,Q (scenario
20) and (g) calibration strategy Cδ18O,3H,Q (scenario 21). The line colours represent the transition between dry and wet periods. Panel
(d) shows the volume-weighted average TTDs for the wet and dry periods, respectively. For the P-SAS model, the light shades represent
calibration strategy Cδ18O (scenario 13), the intermediate shades indicate calibration strategy C3H (scenario 14), and the dark shades are
calibration strategy Cδ18O,3H (scenario 15). Panel (h) shows the volume-weighted average TTDs for the wet and dry periods, respectively.
For the IM-SAS-D model, the light shades represent calibration strategy Cδ18O,Q (scenario 19), the intermediate shades indicate calibration
strategy C3H,Q (scenario 20), and the dark shades are calibration strategy Cδ18O,3H,Q (scenario 21). For illustrative purposes, the fraction of
water younger than 3 months F (T<3 m) is also indicated.

Figure 11. Daily transpiration (Ea) TTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenar-
ios 19–21) based on (a) calibration strategy Cδ18O,Q (scenario 19), (b) calibration strategy C3H,Q (scenario 20) and (c) calibration strategy
Cδ18O,3H,Q (scenario 21). The line colours represent the transition between dry and wet periods. Panel (d) shows the volume-weighted
average TTDs for the wet and dry periods, respectively. The light shades represent calibration strategy Cδ18O,Q (scenario 19), the interme-
diate shades indicate calibration strategy C3H,Q (scenario 20), and the dark shades are calibration strategy Cδ18O,3H,Q (scenario 21). For
illustrative purposes, the fraction of water younger than 3 months F (T<3 m) is also indicated.
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Figure 12. Daily groundwater (Ss) RTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenar-
ios 19–21) based on (a) calibration strategy Cδ18O,Q (scenario 19), (b) calibration strategy C3H,Q (scenario 20) and (c) calibration strategy
Cδ18O,3H,Q (scenario 21). The line colours represent the transition between dry and wet periods. Panel (d) shows the volume-weighted
average RTDs for the wet and dry periods, respectively. The light shades represent calibration strategy Cδ18O,Q (scenario 19), the interme-
diate shades indicate calibration strategy C3H,Q (scenario 20), and the dark shades are calibration strategy Cδ18O,3H,Q (scenario 21). For
illustrative purposes, the fraction of water younger than 3 months F (T<3 m) is also indicated.

δ18O and 3H stream water signals. They therefore provide a
more holistic description of physical transport processes in
the system (Table 7; Figs. 3–5) than the SW and CO mod-
els, which mimic one single tracer signal and thus one iso-
lated variable at a time. In addition, the P-SAS and IM-SAS
model parameters that are most linked to tracer circulation,
e.g. Stot, Ss,p and Sumax (Fig. 7), exhibit little difference when
obtained from calibration to δ18O or 3H, respectively. This
implies that both δ18O and 3H provide similar information
about how tracers are routed through the model and how wa-
ter is stored in and released from the system. As a conse-
quence, the simultaneous representation of all three types of
variables under consideration, i.e. the hydrological response
as well as the δ18O and 3H stream signals, in these models is
also consistent with the observed data (scenarios 18 and 21).

The above is further corroborated by how water ages in
the Neckar basin respond to changing wetness conditions.
Although not identical, δ18O- and 3H-inferred daily TTDs
nevertheless exhibit broad agreement in the directions and
magnitudes of change in response to changing wetness con-
ditions (Fig. 10). Changes in streamflow TTDs in IM-SAS
are not primarily caused by changes in water ages within in-
dividual storage components. In particular, the modelled wa-
ter age distributions in the groundwater Ss show limited sen-
sitivity to changing wetness conditions, with MTTs varying
between ∼ 18 years in dry periods and ∼ 17 years in wet pe-
riods (Fig. 12). The TTDs in the transpiration flux Ea , which
are reflective of the water ages in the unsaturated root zone
Su, exhibit, with MTTs of between ∼ 0.20 and 0.12 years in
dry and wet periods (Fig. 11), respectively, magnitudes and
fluctuations over time that are similar to what has been previ-
ously reported in other studies (e.g. Hrachowitz et al., 2015;
Soulsby et al., 2016; Visser et al., 2019; Birkel et al., 2020;

Kuppel et al., 2020). However, the level of these age fluctua-
tions alone is insufficient to explain the magnitude of change
in streamflow TTDs, which can vary by several years. In-
stead, the temporal variability of streamflow TTDs is largely
controlled by switches in the relative contributions of in-
dividual storage components to streamflow under different
wetness conditions. Under increasingly wet conditions, con-
siderably increasing proportions of comparably young water
from SU contribute over shallow preferential flow pathways
(SF) to streamflow, while the relative proportion of ground-
water contributing to streamflow under such conditions is re-
duced (Hrachowitz et al., 2013). Both tracers, δ18O and 3H,
generate these patterns in a corresponding way.

Altogether, this suggests that the P-SAS and IM-SAS
models and the resulting estimates of water ages inferred
from both δ18O and 3H provide plausible descriptions of
transport processes and thus water ages in the Neckar basin.
Clearly, with current observation technology, it is impossi-
ble to know the real water age distribution at the river basin
scale. However, the water ages and their temporal variabil-
ity inferred from both δ18O and 3H using the P-SAS and
IM-SAS models are widely consistent. This suggests that
it is not the use of δ18O per se that leads to truncation of
TTDs but rather that time-invariant, lumped convolution in-
tegral models are incapable of extracting sufficient informa-
tion from δ18O signals. These results mirror anecdotal evi-
dence from several previous studies (e.g. Hrachowitz et al.,
2015, 2021; Ala-aho et al., 2017; Buzacott et al., 2020; Yang
et al., 2021). Although no direct comparison with 3H data
is provided in these studies, they demonstrated the potential
of δ18O in SAS-based model approaches to estimate water
age distributions with considerable fractions of water older
than 5–10 years, and Birkel et al. (2020) explicitly estimated
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MTTs of up to 18 years. Our results also strongly support the
findings and general conclusions of Rodriguez et al. (2021),
who undertook a direct comparison of water ages inferred
from δ18O and 3H. In their study for a small catchment based
on a shorter tracer time series, i.e. 2 years, and a system that
is characterized by rather low MTTs of∼ 3 years, they found
that, although 3H led to higher MTTs than δ18O, the absolute
difference between these ages estimates was, at 0.2 years,
limited and even decreasing for higher percentiles of the wa-
ter age distributions.

We therefore argue that the evidence emerging from our
results and the above considerations is strong enough to re-
ject the hypothesis that δ18O as a tracer generally and system-
atically “cannot see water older than about 4 years” (Stew-
art et al., 2010, 2012) and the corresponding tails in water
age distributions, leading to underestimations of water ages.
We further argue that previous underestimations of water
ages are rather a consequence of the use of time-invariant,
lumped-parameter convolution integral model techniques
that cannot resolve the information contained in δ18O sig-
nals in a meaningful way for catchments with transient flow
conditions. In contrast, the combined information using hy-
drological and tracer data and thus the consideration of tran-
sient flow conditions results in similar MTTs, independent of
the tracer used. Note that, for this reason, time-variant imple-
mentations of convolution integral models that can describe
transient conditions may hold the potential to similarly gen-
erate water age estimates from δ18O signals that reflect the
results of the P-SAS and IM-SAS models tested here.

However, and notwithstanding the rejection of the above
hypothesis, it is important to note that overall, and in spite
of the similarity between δ18O- and 3H-inferred water ages
in the study basin on the basis of the P-SAS and IM-SAS
models, there may be no general equivalence between δ18O
and 3H tracers. Instead, it is plausible to assume that dif-
ferences will gradually increase with higher water ages. In
systems characterized by water older than the water in the
Neckar study basin and where the amplitudes of the δ18O
stream signal are attenuated to below the analytical precision,
the water age estimates from δ18O will indeed become sub-
ject to increasing uncertainty up to the point where further
attenuation and thus older water ages cannot be discerned
anymore, independent of modelling approaches. The specific
magnitude of such a water age threshold remains difficult to
quantify with the available data. However, given the results
in the Neckar study basin, the question raised by Stewart et
al. (2021), whether δ18O allows one to see “the full range
of travel times”, can to some extent be answered: it can be
assumed that, when used with a suitable model, δ18O con-
tains sufficient information for a meaningful characterization
of water ages in systems characterized by MTTs of at least
∼ 15–20 years, which encompasses the vast majority of river
basins analysed so far in the literature (see Stewart et al.,
2010, and references therein). As a step forward, the original
hypothesis above can, for future research, be reformulated:

δ18O-inferred water age estimates are subject to increasing
uncertainty and bias when compared to 3H-inferred estimates
when stream water MTTs of ∼ 15–20 years are exceeded in
systems characterized by increasingly old water.

6.2 The role of spatial aggregation in underestimation
of water ages

In addition to the above, Kirchner (2016) demonstrated that
the use of seasonally variable tracers with time-invariant,
lumped-parameter model approaches, i.e. SW and CO, has
considerable potential to underestimate water ages due to
spatial aggregation of heterogeneous MTTs in systems char-
acterized by large spatial contrasts in MTTs. We could not
reproduce that exact experiment here, as stream observations
were only available at one location for each tracer. However,
in the distributed implementation of the IM-SAS-D model
(scenarios 19–21), we nevertheless explicitly accounted, al-
beit to a limited degree, for heterogeneity in the system input
variables and for potential differences in landscape types, as
expressed by the three model HRUs. This resulted in differ-
ent TTDs for the individual precipitation zones (Figs. S29–
S31 and Table S6 in the Supplement), elevation zones and
HRUs therein (not shown). The comparison between the
lumped IM-SAS-L (scenarios 16–18) and distributed IM-
SAS-D models does not show major differences in their abil-
ity to reproduce the various hydrological signatures or the
δ18O and 3H stream signals (Table 5). Against evidence from
various previous studies (e.g. Euser et al., 2015; Gao et al.,
2016; Nijzink et al., 2016; Nguyen et al., 2022), this reflects
to some degree the conclusion by Loritz et al. (2021), who
found in a comparative analysis that distributed model im-
plementations do not necessarily improve a model’s ability
to reproduce the hydrological response as compared to spa-
tially lumped formulations. In addition, the contrasts in water
ages between the discretized model components, with MTTs
ranging from ∼ 8 to ∼ 22 years in the individual precipita-
tion zones, may not be sufficient to significantly affect over-
all basin MTTs. As a consequence, the results of IM-SAS-L
and IM-SAS-D also do not show major differences in the as-
sociated water age estimates, with MTTs of ∼ 11–17 years
and 12–16 years, respectively (Table 7; Fig. 9).

How can this be interpreted? If significantly older ages
were inferred from the distributed IM-SAS-D implementa-
tion, this would have provided strong supporting evidence
for the role and effect of spatial heterogeneity on water ages
as demonstrated by Kirchner (2016). However, the similar
water ages inferred from the spatially lumped and distributed
implementations, respectively, allow two possible but mutu-
ally contradictory interpretations. They could indicate either
that the aggregation of spatial heterogeneity does not have
any discernible effect on water ages inferred from the IM-
SAS model in the study basin or, by contrast, that the spatial
contrasts in water ages, limited by the spatial resolution of
the model and the available data, were not sufficient to detect
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any significant differences. The evidence found here there-
fore remains inconclusive, and further research is required to
describe the role of the aggregation of spatial heterogeneity
in estimates of water ages using the IM-SAS type of model.

For any estimates of water ages in this study – as in any
other study – it is important to bear in mind that they are
conditional on the available data and models used. Uncer-
tainties can and do arise from both data and decisions made
in the modelling process (e.g. Beven, 2006; Kirchner, 2006).
One challenge in this study was that precipitation δ18O and
3H compositions were only available at rather coarse spatial
and temporal resolutions. We have used the best-available
information to spatially extrapolate the tracer precipitation
data from the individual sampling stations in order to esti-
mate their spatial variation across the Neckar basin, includ-
ing stations outside the study basin. The monthly δ18O and
3H distribution in precipitation within southern Germany is
generally similar (Stumpp et al., 2014; Schmidt et al., 2020);
still, regional correction for δ18O might not be sufficient to
explain local differences in δ18O precipitation data. A similar
limitation applies to the temporal resolution of tracer compo-
sition in precipitation as only monthly information was avail-
able. However, as the available data nevertheless reflect the
seasonal variation in δ18O and 3H precipitation input, the un-
certainties arising can be assumed to largely affect the short-
term dynamics of tracers in the stream and thus rather young
water ages, whereas the objective of our analysis was focused
on the right tail of the water age distributions and thus on old
ages. Notwithstanding these uncertainties, the overall model
performances with respect to the hydrological and tracer re-
sponses suggest that the choice of input data and the model
formulations led to model results that are largely consistent
with the observed responses in the stream. The observation
that there is little ambiguity in the results further suggests that
the remaining uncertainties are unlikely to affect the overall
interpretation and conclusions of this study.

7 Conclusions

δ18O and 3H are frequently used as tracers in environmen-
tal sciences to estimate age distributions of water. However,
it has previously been argued that seasonally variable trac-
ers, such as δ18O, fail to detect the tails of water age distri-
butions and therefore substantially underestimate water ages
as compared to radioactive tracers such as 3H. In this study
for the Neckar River basin in central Europe and based on
a > 20-year record of hydrological, δ18O and 3H data, we
systematically scrutinized the above postulate by comparing
water age distributions inferred from δ18O and 3H with a to-
tal of 21 different model implementations. The main findings
of our analysis are the following.

1. Water ages inferred from δ18O with commonly used
time-invariant, sine-wave (SW) and lumped-parameter
convolution integral models (CO) are, with MTTs of

∼ 1–2 years, substantially lower that those obtained
from 3H with the same models, reaching MTTs of
∼ 10 years.

2. In contrast, the concept of SAS functions in com-
bination with hydrological models (P-SAS, IM-SAS)
not only allowed simultaneous representations of water
storage fluctuations together with δ18O and 3H stream
signals, but water ages inferred from δ18O were, with
MTTs of ∼ 11–17 years, much higher and even higher
than inferred from 3H, which suggested MTTs of∼ 11–
13 years.

3. Constraining P-SAS and IM-SAS model implementa-
tions individually with δ18O and 3H observations re-
sulted in similar values for parameters that control wa-
ter ages, such as the total storage Stot (P-SAS) or passive
groundwater volumes Ss,p (IM-SAS). In addition, δ18O-
and 3H-constrained models both exhibited limited dif-
ferences in the magnitudes of water ages in different
parts of the models as well as in the temporal variability
of TTDs in response to changing wetness conditions.
This suggests that both tracers lead to comparable de-
scriptions of how water is routed through the system.

4. Based on the points above, we reject the hypothesis that
δ18O as a tracer generally and systematically “cannot
see water older than about 4 years” (Stewart et al., 2010,
2012) and that it truncates the corresponding tails in wa-
ter age distributions, leading to underestimations of wa-
ter ages.

5. Instead, our results provide evidence for broad equiva-
lence of δ18O and 3H as age tracers for systems charac-
terized by MTTs of at least 15–20 years.

6. The question of the degree to which aggregation of spa-
tial heterogeneity can further adversely affect estimates
of water ages remains unresolved as the lumped and
distributed implementations of the IM-SAS model pro-
vided similar and thus inconclusive results.

Overall, this study demonstrates that previously reported
underestimations of water ages are most likely not a result
of the use of δ18O or other seasonally variable tracers per se.
Rather, these underestimations can be largely attributed to
the choices of model approaches which rely on assumptions
not frequently met in catchment hydrology. Given the vulner-
ability of lumped, time-invariant parameter convolution inte-
gral approaches in combination with δ18O to substantially
underestimate water ages due to transient flow conditions,
spatial aggregation and potentially other, still unknown ef-
fects, we therefore strongly advocate avoiding the use of this
model type in combination with seasonally variable tracers
and instead adopting SAS-based or other model formulations
that allow for the representation of transient conditions.
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