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Abstract. Understanding the properties of preferential flow
patterns is a major challenge in subsurface hydrology. Most
of the theoretical approaches in this field stem from research
on karst aquifers, where two or three distinct flow compo-
nents with different timescales are typically considered. This
study is based on a different concept: a continuous spatial
variation in transmissivity and storativity over several orders
of magnitude is assumed. The distribution and spatial pat-
tern of these properties are derived from the concept of min-
imum energy dissipation. While the numerical simulation of
such systems is challenging, it is found that a restriction to a
dendritic flow pattern, similar to rivers at the surface, works
well. It is also shown that spectral theory is useful for in-
vestigating the fundamental properties of such aquifers. As
a main result, the long-term recession of the spring drain-
ing the aquifer during periods of drought becomes slower for
large catchments. However, the dependence of the respec-
tive recession coefficient on catchment size is much weaker
than for homogeneous aquifers. Concerning the short-term
behavior after an instantaneous recharge event, strong devia-
tions from the exponential recession of a linear reservoir are
observed. In particular, it takes a considerable time span un-
til the spring discharge reaches its peak. The order of mag-
nitude of this rise time is one-seventh of the characteristic
time of the aquifer. Despite the strong deviations from the
linear reservoir at short time spans, the exponential compo-
nent typically contributes more than 80 % to the total dis-
charge. This fraction is much higher than expected for karst
aquifers and even exceeds the fraction predicted for homoge-
neous aquifers.

1 Introduction

The recession of spring discharge after recharge events can
be seen as the fingerprint of an aquifer. In contrast to pump-
ing tests at wells, it is a passive method based on data that
are often recorded routinely. Additionally, spring discharges
depend on the overall properties of the catchment, whereas
pumping tests reflect the properties in a region around the
well.

More than a century ago, Maillet (1905) proposed the lin-
ear reservoir, where discharge Q is directly proportional to
the stored volume V :

Q(t)= αV (t). (1)

The linear reservoir is described by a single parameter α
(s−1), and the stored volume follows the ordinary differen-
tial equation:

d
dt
V (t)=−Q(t)+R(t)=−αV (t)+R(t), (2)

where R(t) (m3 s−1) is the recharge. During periods with
zero recharge, both the stored volume and the discharge de-
cay exponentially with the same decay constant α, also called
the recession coefficient:

V (t)= V (0)e−αt , (3)
Q(t)=Q(0)e−αt . (4)

The inverse of the recession coefficient, τ = 1
α

, defines the
e-folding time: the time interval over which the discharge
decreases by a factor of e.
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The linear reservoir is not only appealing because it can
be described by a single parameter but also because its be-
havior during periods of drought depends only on the actual
amount of water and is independent of the recharge history. It
often provides a reasonable approximation for long periods
of drought. Deviations from the exponential decay at shorter
timescales have been investigated and used for characteriz-
ing aquifers since the 1960s; in particular, karst systems have
been addressed in numerous studies, and several theoretical
concepts have been proposed.

Forkasiewicz and Paloc (1967) suggested a superposition
of three distinct linear reservoirs with different decay con-
stants describing three major flow components: a network of
highly conductive conduits, an intermediate system of well
integrated fissures, and a network of pores or narrow fissures
with low permeability. The behavior of this model is domi-
nated by the slowest reservoir during long periods of drought.

Mangin (1975) introduced a different approach using two
components. The slow component was described as a lin-
ear reservoir, and a fast component with a limited range was
added. The parameters of the fast components are the basis
of the widely used karst classification system suggested in
the same study. Several other modeling approaches which
are similar in spirit were developed (e.g., Drogue, 1972;
Atkinson, 1977; Padilla et al., 1994; Kovács and Perrochet,
2014; Xu et al., 2018; Basha, 2020; Kovács, 2021). Beyond
these approaches, a multitude of numerical models designed
for simulating real-world scenarios are now available. For
deeper insights, readers are referred to the review paper by
Fiorillo (2014) and to the model comparison by Jeannin et al.
(2021).

While deviations from the linear reservoir are particularly
relevant for karst systems, it should be noted that even the
simplest Darcy-type aquifers are not linear reservoirs. As-
suming a given transmissivity T (m2 s−1) and a given stora-
tivity S (–), the simplest Darcy-type aquifer is described by
the water balance equation:

S
∂h

∂t
=−divq + r, (5)

where h (m) is the hydraulic head,

q =−T∇h (6)

(m2 s−1) is the 2-D flux density (volume per time and cross-
section width), ∇ is the 2-D gradient operator, r is the
recharge per area (ms−1), and div is the 2-D divergence oper-
ator. Inserting Eq. (6) into Eq. (5) yields a partial differential
equation of the diffusion type for the hydraulic head h:

S
∂h

∂t
= div(T∇h)+ r. (7)

This model has been investigated in several studies for
constant T and S in square or rectangular domains (e.g.,
Rorabaugh, 1964; Nutbrown, 1975; Kovács et al., 2005;

Kovács and Perrochet, 2008). Applying spectral theory (see
Sect. 2.4), it has been shown that the total discharge Q (q
integrated over the entire boundary) can be described by an
infinite series of exponential terms with different decay con-
stants during periods of drought. As the long-term recession
is dominated by the term with the smallest decay constant,
the behavior approaches that of the linear reservoir. However,
the question of how well the linear reservoir approximates
the properties of real aquifers in a practical sense or whether
the linear reservoir is even some kind of preferred state from
a theoretical point of view has prompted debate (e.g., Feni-
cia et al., 2006; de Rooij, 2014; Kleidon and Savenije, 2017;
Savenije, 2018).

Including the early recession phase in the analysis yields
more information about the aquifer but also increases the de-
pendence of the results on the recharge history. The instan-
taneous unit hydrograph, which dates back to concepts of
Sherman (1932), is widely used in this context. It describes
the discharge arising from a unit amount of recharge that is
applied instantaneously at t = 0 over the entire domain.

The unit hydrograph of the simple Darcy aquifer differs
strongly from that of the linear reservoir as well as from the
empirical approaches proposed by Forkasiewicz and Paloc
(1967) and by Mangin (1975). While these models predict
a finite discharge at t = 0, the unit hydrograph diverges ac-
cording to a power law,

Q(t)∝ t−
1
2 , (8)

in the limit t→ 0 for the simple Darcy aquifer (e.g., Her-
garten and Birk, 2007). Such a power-law decrease also oc-
curs in models consisting of porous blocks connected by
highly conductive conduits (Kovács et al., 2005; Kovács and
Perrochet, 2008). However, a finite conductance of the con-
duits limits the power-law divergence at short timescales
(Kovács and Perrochet, 2014). Hergarten and Birk (2007) ex-
tended this concept using a fractal distribution of block sizes.
While this model was able to explain a power-law recession
with exponents different from − 1

2 , deriving aquifer proper-
ties from the power-law behavior of recession curves turned
out to be challenging. Birk and Hergarten (2010) investigated
synthetic hydrographs for recharge events of finite duration
and found that the properties of the recharge event likely ob-
scure the short-term dynamics of the porous blocks.

The quantification of heterogeneity and its representation
in numerical models are still major challenges in hydrology.
Carbonatic aquifers are particularly interesting in this con-
text due to the interplay between fluid flow and structure. The
spatial structure of the aquifer has a strong influence on fluid
flow, which in turn controls dissolution and precipitation and,
thus, the long-term change in the large-scale structure. This
interaction has been addressed in modeling studies of binary
karst systems consisting of a porous medium and discrete
conduits (e.g., Kaufmann and Braun, 2000; Kaufmann et al.,
2010; Birk et al., 2003) as well as in the context of continu-
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ous changes in porosity and conductivity (e.g., Edery et al.,
2021). Similar processes can also take place in soils by sub-
surface erosion (e.g., Bernatek-Jakiel and Poesen, 2018).

As an alternative to forward modeling, there is an increas-
ing number of studies attempting to derive preferred states of
the atmosphere and the hydrosphere from principles of op-
timality (e.g., Kleidon and Schymanski, 2008; Kleidon and
Renner, 2013; Kleidon et al., 2014; Kleidon and Savenije,
2017; Kleidon et al., 2019; Zehe et al., 2010, 2013, 2021;
Westhoff and Zehe, 2013; Westhoff et al., 2014, 2017; Zhao
et al., 2016; Schroers et al., 2022). In the context of fluid
flow, minimum energy dissipation seems to be a promising
concept, and it has been successfully applied to river net-
works (Howard, 1990; Rodriguez-Iturbe et al., 1992a, b; Ri-
naldo et al., 1992; Maritan et al., 1996) and to the cardiovas-
cular system of mammals (West et al., 1997; Enquist et al.,
1998, 1999; Banavar et al., 1999; West et al., 1999a, b).

Hergarten et al. (2014) developed a theory for an optimal
spatial distribution of porosity and hydraulic conductivity in
the sense that the total energy dissipation of the flow is mini-
mized. A major difference from the studies focusing on karst
systems mentioned above is that this theory does not predict
a binary or ternary system of distinct flow components but
rather a continuous variation in the hydraulic properties over
several orders of magnitude in combination with a highly or-
ganized spatial pattern. The predicted spatial pattern is den-
dritic and similar to drainage networks at the surface. There-
fore, it does not entirely capture the variety of preferential
flow patterns found in nature.

The potential relation of this theoretical concept to sub-
surface hydrology is still unclear. Validation is limited to the
statistical distribution of catchment sizes and leaves several
open questions (Hergarten et al., 2016). Even the properties
of the model have not been analyzed thoroughly, except for
residence times in a steady state (Hergarten et al., 2014).

This study investigates the dynamic properties of such
preferential flow patterns based on the instantaneous unit hy-
drograph. The main research question is how preferential
flow patterns with minimum energy dissipation are related
to the different concepts discussed above. However, we also
pose the following more detailed research questions:

– How much does the behavior of preferential flow pat-
terns differ from that of a homogeneous aquifer or a lin-
ear reservoir?

– Can we explain the typical behavior of karst springs
without assuming two or three distinct flow compo-
nents?

– Which physical properties do short- and long-term
properties of such an aquifer depend on?

2 Approach

2.1 Linearized consideration

The instantaneous unit hydrograph describes the response of
an aquifer to adding a unit amount of water instantaneously.
It is particularly useful for linear systems because the re-
sponse to any recharge curve r(t) can be obtained by super-
posing multiple recharge events at different times (formally,
the convolution integral of r(t) and the instantaneous unit
hydrograph).

For unconfined aquifers, however, the transmissivity is
proportional to the height of the water column:

T =K(h− b), (9)

where K is the hydraulic conductivity (m s−1) and b is the
base of the aquifer (m). As this dependence introduces a non-
linearity in Eq. (7), we can only make use of the linear theory
for small disturbances. For this, we assume a steady state at a
recharge r0 and apply a small additional recharge δr , so that
r = r0+ δr . We can then write the actual head in the form
h= h0+ δh with the steady-state head h0. Equation (5) re-
tains its shape,

S
∂δh

∂t
=−divδq + δr, (10)

but with

δq =−K ((h0+ δh− b)∇ (h0+ δh)+ (h0− b)∇h0) (11)
≈−K ((h0− b)∇δh+ δh∇h0) (12)

for small δh. The first term is the effect of a change in the hy-
draulic gradient at constant transmissivity T0 =K(h0− b),
which has the same form as Eq. (6). The second term de-
scribes the change in flux arising from the change in the
thickness of the water column at constant hydraulic gradient.
This term is particularly relevant for sloping aquifers with
thin water layers.

As the concept developed in the following only captures
the first term, the second term is neglected in this study. This
means that the steady-state water table should be almost hor-
izontal and the respective water column should not be too
thin. In this case (neglecting the second term in Eq. 12), δh
is described by the same equation as h in Eq. (7) but with
δr and T = T0. For simplicity, δh, δq, and δr are labeled h,
q, and r , respectively. Thus, we have to keep in mind that
these properties are not absolute values but rather small devi-
ations from a steady state. Furthermore, T is the steady-state
transmissivity T0 in the following.

2.2 Basic setup

Following the considerations outlined in the previous sec-
tion, we consider a 2-D aquifer with a given transmissivity T
(m2 s−1) and a given storativity S (–), described by Eqs. (5)
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and (6). As the focus is on strongly organized preferential
flow patterns, both T and S are not spatially uniform and may
even vary over several orders of magnitude. As discussed in
the previous section, the head values h, the flux density q,
and the recharge r are not absolute values but rather devi-
ations from a steady state. As the simplest boundary con-
dition, it can be assumed that the hydraulic head at springs
remains constant, which is equivalent to the boundary condi-
tion h= 0.

On a regular grid with a uniform grid spacing d, Eqs. (5)
and (6) can be discretized by a finite-volume approach ac-
cording to

d2Si
∂hi

∂t
=−

∑
j∈N(i)

qij + d
2ri (13)

with the fluxes

qij = dTij
hi −hj

d
. (14)

The nodes of the grid were numbered by a single index i,
where N(i) denotes the nearest neighborhood of the node
i, consisting of four neighbors except for boundary nodes.
The symbol qij (m2 s−1) refers to the flux from the node i
to the node j , while Tij is the respective transmissivity. Note
that qij already includes the length of the edge between the
two nodes (first term d in Eq. 14), so that it is no longer a
flux per unit width. Inserting Eq. (14) into Eq. (13) yields the
respective discrete form of Eq. (7).

Solving this equation numerically on large grids is chal-
lenging if the transmissivity varies over several orders of
magnitude. Using an explicit scheme for the time step re-
quires very small time increments because small changes in
hydraulic head cause large fluxes. Employing a fully im-
plicit scheme overcomes this limitation, as fully implicit
schemes are stable at arbitrary time increments for diffusion-
type equations. However, most of the available algorithms
for solving the resulting linear equation system do not per-
form well if T varies strongly. This also applies to multi-
grid schemes (e.g., Hackbusch, 1985), which are the only
schemes with a numerical effort that increases only linearly
with the number of nodes.

2.3 Dendritic flow patterns

The theory of minimum energy dissipation in Darcy flow
proposed by Hergarten et al. (2014) approximates prefer-
ential flow patterns by dendritic structures. This means that
each node i delivers its entire discharge to one of its neigh-
bors, b, referred to as the flow target in the following (strictly
speaking, it should be labeled bi). The flow target is defined
as the neighbor with the steepest descent in hydraulic head,
which is the same as the neighbor with the lowest head value
for a grid with uniform spacing in both directions. Then,
the neighborhood consists of three groups of nodes: (i) one

flow target; (ii) some neighbors that deliver their discharge
to the considered node, called donors in the following; and
(iii) some nodes that do not interact with the considered node.
The last group of nodes results in the difference from the
original model where all neighboring nodes interact.

As we consider only small deviations from a steady state,
we can assume that the topology of the flow pattern does
not change through time. The flow target of each node is de-
termined from the steady state and persists. As a major ad-
vantage, this simplification inhibits the occurrence of nodes
without a flow target.

The discrete version of the balance equation (Eq. 13) be-
comes

d2Si
∂hi

∂t
=−qi +

∑
j∈D(i)

qj + d
2ri (15)

for a dendritic flow pattern, where the notation qi (with a
single index) describes the flux from the node i to its flow
target (so qib in the general notation). The sum extends over
all donors of the node i, denoted here as D(i).

Because the topology of the flow pattern is static, the head
value of a node may become lower than that of its flow target,
in which case Eq. (14) predicts a negative flux. In the context
of small deviations from a steady state, a negative flux would
not have an immediate meaning because it just says that the
flux towards the flow target is lower than in the steady state.
However, there is no problem, even if backward flux occurs
on an absolute scale.

Dendritic networks are widely used in the context of sur-
face flow patterns, in particular river networks at large scales.
In order to reduce the effects of anisotropy, the so-called
D8 scheme is typically used on a regular, 2-D grid. Here,
eight neighbors (four nearest neighbors and four diagonal
neighbors) are considered, so that river segments are either
parallel to one of the coordinate axes or diagonal. While
the numerical construction of optimized drainage patterns by
Hergarten et al. (2014) also used the D8 scheme, we consider
only the four nearest neighbors (D4 scheme) in the follow-
ing. The main reason for this limitation is the comparison to
the original model in Sect. 3.1. The D4 scheme can be seen
as a restriction of the original model, whereas the D8 ver-
sion would allow for additional flow paths. In particular, a
diagonal line of points with a high transmissivity would be a
preferential flow path with regard to the D8 scheme, although
not in the original model.

While the concept of dendritic flow patterns was used
by Hergarten et al. (2014) to construct patterns of poros-
ity and conductivity (see also Sect. 2.7), recent develop-
ments in numerics make this concept interesting for time-
dependent modeling. In the following sections, two numer-
ical approaches that are robust against strong variations in
transmissivity are presented.

Hydrol. Earth Syst. Sci., 27, 3041–3058, 2023 https://doi.org/10.5194/hess-27-3041-2023



J. Strüven and S. Hergarten: Flow recession behavior of preferential subsurface flow patterns 3045

2.4 Spectral theory

Large parts of this study are based on spectral theory. Spec-
tral theory decomposes the solution into a set of functions
with a simple behavior. The functions are simple in the sense
that they can be written in the form

h(x, t)= h(x,0)f (t), (16)

which means that their shape does not change through time.
For r = 0, Eq. (7) can then be separated into one equation for
h(x,0) and another equation for the time dependence f (t).
This result is recognized by inserting h(x, t) into Eq. (7) and
dividing both sides by h(x, t) and by S, which yields

d
dt f (t)

f (t)
=

1
S

div(T∇h(x,0))
h(x,0)

. (17)

As the left-hand side is independent of x and the right-hand
side is independent of t , both sides must be constant. If we
call the respective constant −α, the solution for f is

f (t)= e−αt (18)

because Eq. (16) requires f (0)= 1. Thus,

h(x, t)= h(x,0)e−αt (19)

decreases exponentially for α > 0 and increases for α < 0.
The right-hand side of Eq. (17) yields the eigenvalue equa-
tion

−
1
S

div(T∇h)= αh (20)

for h(x,0). This means that the differential operator
−

1
S

divT∇ applied to the function h just multiplies h by the
factor α. Mathematically, h is an eigenfunction of the differ-
ential operator and α is the respective eigenvalue.

While the eigenfunctions and the respective eigenvalues
can be computed analytically for some simple geometries
(e.g., Rorabaugh, 1964; Nutbrown, 1975; Kovács et al.,
2005; Kovács and Perrochet, 2008) and constant parameters,
a heterogeneous distribution of S and T requires a numeri-
cal treatment. The numerical treatment requires a transition
from the continuous function h to the values hi on the dis-
crete grid. Using the same finite-volume discretization as
above (Eqs. 13 and 14), the term − 1

S
div(T∇h) can be ap-

proximated at the ith node by

−
1
S

div(T∇h)
∣∣∣∣
i

≈
1
Si

∑
j∈N(i)

Tij
(
hi −hj

)
, (21)

where unit grid spacing (d = 1) was assumed for simplicity.
Aligning all values hi in a column vector h, this relation can
be written in matrix form

−
1
S

div(T∇h)≈ Ah (22)

with a square matrix A. It is easily recognized that the non-
diagonal elements of A are

Aij =

{
−
Tij
Si

for j ∈N(i)
0 else

, (23)

whereas the diagonal elements are

Aii =
∑
j∈N(i)

(
−Aij

)
=

∑
j∈N(i)

Tij

Si
. (24)

This matrix is the same as that needed for solving the steady-
state version of Eq. (7) numerically. The respective form of
the matrix for dendritic flow patterns is basically the same,
where only the neighborhood has to be reduced to those
points that are connected, i.e., where either j is the flow tar-
get of i or vice versa.

As all software packages for linear algebra provide func-
tions for computing eigenvalues, the steps are technically
not very challenging up to this point. However, each eigen-
value and the respective eigenfunction is just one solution
of Eq. (7) with r = 0 for a specific initial condition h(x,0).
In turn, we need the solution for any given initial condition.
Spectral theory expresses a given initial condition as a super-
position of eigenfunctions and then uses the knowledge about
the individual eigenfunctions for predicting the full solution.

Let us assume that we computed all eigenfunctions and
that eki is the value of the kth eigenfunction at the node i. If
hi(0) is the initial value at this node, we need coefficients λk
so that hi(0) is the superposition of the respective values eki ,

hi(0)=
∑
k

λkeki . (25)

Then, the values of h at time t are

hi(t)=
∑
k

λkekie
−αk t , (26)

where αk is the kth eigenvalue of A. Thus, all head values
can be written as a sum of exponentially decaying terms,
provided that all eigenvalues are positive. The latter can be
shown for the matrix defined by Eqs. (23) and (24) with the
help of Gershgorin’s circle theorem.

Because all head values can be decomposed into a sum of
exponential functions, the fluxes and, thus, the discharge of a
spring can be expressed the same way:

Q(t)=
∑
k

λkQke
−αk t , (27)

where Qk is the discharge of the kth eigenfunction. If we
assume that the eigenvalues are sorted in increasing order,
the long-term recession coefficient is α = α1.

The nontrivial question is whether each initial condition
can be expressed as a superposition of eigenfunctions ac-
cording to Eq. (25). Mathematically, this property relies on
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the symmetry of the differential operator or, for the discrete
problem, on the symmetry of the matrix (Aij = Aji). If A
is symmetric, a basis of eigenvectors (the representations of
the eigenfunctions on the discrete grid) can be found, which
ensures the applicability of Eq. (25) for any initial condition
with unique coefficients λk .

The symmetry of A even guarantees the existence of an
orthonormal basis. As a main advantage, an orthonormal ba-
sis allows for the computation of each coefficient λk from the
inner product (scalar product) of the initial head distribution
and the respective eigenvector. Therefore, we can obtain the
long-term recession coefficient α = α1 and the contribution
of the respective component to the total (time-integrated) dis-
charge from the lowest eigenvalue and the respective eigen-
vector alone. Otherwise, we would need all eigenvectors. As
their number equals the number of nodes, this would be ex-
pensive on large grids and would cost the advantage over a
direct forward simulation.

Because Tij is the transmissivity between the nodes i and
j , Tij = Tji . Without the term Si in Eq. (23), this property
would already guarantee the symmetry of A. With this term,
however, A is only symmetric if Si = Sj , i.e., if S is the same
everywhere.

To overcome this limitation, we need to get a bit deeper
into linear algebra and consider a wider definition of symme-
try coming from the concept of linear maps. Here, symmetry
is related to an inner product, and the condition for symmetry
is

Ah · h̃= h ·Ah̃, (28)

where · is the inner product. This condition has to be satisfied
for all h and h̃. It is easily recognized that the criterionAij =
Aji describes the specific case for the standard scalar product

h · h̃=
∑
i

hi h̃i . (29)

For deeper insights into the fundamentals, readers are re-
ferred to textbooks of linear algebra (e.g., Halmos, 1958).

To examine the symmetry of A in this sense, we need the
custom inner product

h · h̃=
∑
i

Sihi h̃i, (30)

which differs from the standard scalar product (Eq. 29) by
its weighting with the storativity S. Using the definition of A
(Eqs. 23 and 24), it is easily recognized that

SiAij = SjAji, (31)

and thus

(Ah) · h̃=
∑
i

Si

(∑
j

Aijhj

)
h̃i (32)

=

∑
i,j

SiAijhj h̃i (33)

=

∑
i,j

SjAjihj h̃i (34)

=

∑
i,j

Sjhj

(∑
i

Aji h̃i

)
(35)

= h ·
(

Ah̃
)
, (36)

which proves the symmetry of A with regard to the custom
inner product.

Technically, the normalization of the eigenvectors ob-
tained numerically is the only point that requires attention.
The eigenvectors have to be normalized with respect to the
custom inner product and not with respect to the standard
scalar product, i.e., according to the condition

ek · ek =
∑
i

Sie
2
ki = 1. (37)

If hi represents the head values at t = 0, the coefficients λk in
Eqs. (25) and (26) are then obtained from the inner products
in the following form:

λk = h · ek =
∑
i

Sihieki . (38)

This relation becomes particularly simple for the instanta-
neous unit hydrograph. Applying a unit amount of water per
area to all nodes results in Sihi = 1 for all i, and thus

λk =
∑
i

eki . (39)

Thus, the coefficient λk is obtained by adding the head values
of the respective normalized eigenfunction at all nodes.

2.5 Forward modeling

Spectral theory is very efficient for characterizing the long-
term recession, as only the components with the lowest reces-
sion coefficients αk are relevant here. In turn, computing the
instantaneous unit hydrograph at short timescales requires a
large number of eigenfunctions, so that the advantage over
direct forward modeling is lost. Therefore, we also imple-
mented a numerical scheme for forward modeling of the den-
dritic model. For this purpose, we adopted the very efficient,
fully implicit scheme that was recently proposed in the con-
text of fluvial erosion and sediment transport by Hergarten
(2020). As a major advantage, the scheme is robust against
strong spatial variations in transmissivity. For simplicity, the
scheme is only described for the D4 neighborhood with unit
grid spacing (d = 1) in the following.

Let us consider a time step from t to t + δt . Replacing the
time derivative on the left-hand side of Eq. (15) with a dif-
ference quotient and evaluating the fluxes on the right-hand
side at the time t+ δt (for the fully implicit treatment) yields
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Si
hi(t + δt)−hi(t)

δt
=−qi(t + δt)+

∑
j∈D(i)

qj (t + δt)+ ri . (40)

The key idea behind the scheme is that all fluxes respond lin-
early to changes in h of the flow target b due to the linearity
of the differential equation. In particular, the flux qi(t + δt)
depends linearly on hb, so that

qi(t + δt)= q
0
i + q

′

i (hb(t + δt)−hb(t)) . (41)

Here, q0
i is the hypothetic flux at time t + δt under the as-

sumption that hb remains constant (hb(t + δt)= hb(t)). It is
not the same as qi(t) because qi may also change if qb re-
mains constant. The second term in Eq. (41) describes the
effect of changes in hb(t + δt) on qi(t + δt), where q ′i is the
partial derivative of qi(t + δt) with respect to hb(t + δt).

As shown in Appendix A, q0
i and q ′i can be computed from

the respective properties of the donors and from the known
values of h at time t by the following expressions:

q0
i = Ti

(
Si
δt
−
∑
j

q ′j

)
(hi(t)−hb(t))+

∑
j

q0
j + ri

Si
δt
+ Ti −

∑
j

q ′j

, (42)

q ′i =−Ti

Si
δt
−
∑
j

q ′j

Si
δt
+ Ti −

∑
j

q ′j

. (43)

Thus, q0
i and q ′i can be computed successively in downstream

order, starting from the nodes without donors.
However, qi(t+δt) cannot be computed during the down-

stream sweep because the actual values hb(t+δt) required in
Eq. (41) are still unknown. Computing the values hi(t + δt)
and qi(t + δt) requires a second sweep over all nodes, which
has to be performed in the opposite direction (upstream, start-
ing from the boundary). As soon as hb(t + δt) is known (as
the node b is treated prior to the node i), qi(t + δt) can be
computed from Eq. (41). Finally, the hydraulic head can be
calculated from Eq. (14) according to

hi(t + δt)= hb(t + δt)+
qi(t + δt)

Ti
. (44)

This scheme provides a direct solver (without the need for
iterations) for the fully implicit discretization of the flow
equation on a dendritic network. As mentioned at the end
of Sect. 2.2, fully implicit schemes are stable for arbitrary
time increments δt . As a main advantage over other efficient
schemes (e.g., multigrid schemes), the performance of this
scheme is not affected by spatial variations in transmissiv-
ity and storativity. The numerical complexity is O(n), which
means that the computing effort increases only linearly with
the total number of nodes. It is, therefore, perfectly suited for
simulations on grids with several million nodes.

2.6 Nondimensionalization

The linearized problem (Eq. 7, where T does not depend on
h) can easily be transformed to nondimensional properties,
which makes the results independent of the absolute values
of S and T and of the spatial scale. For this purpose, arbitrary
reference values S0 and T0 and an arbitrary length scale l can
be defined. Then, the respective nondimensional properties

Ŝ =
S

S0
, T̂ =

T

T0
, and x̂ =

x

l
(45)

are defined. If we further introduce

t0 =
S0l

2

T0
and r0 =

T0

l
(46)

and define the nondimensional properties

ĥ=
h

l
, t̂ =

t

t0
, and r̂ =

r

r0
, (47)

the differential equation for the nondimensional properties is
the same as the original equation (Eq. 7). This result can eas-
ily be verified by expressing the original properties in Eq. (7)
in terms of the respective nondimensional properties. The
scaling factor for the flux density is T0 then, so q = T0q̂.

As a consequence of these scaling properties, the shape of
the instantaneous unit hydrograph depends only on the shape
of the aquifer and on the spatial pattern of S and T . It is
independent of the absolute values of S and T and on the
absolute size of the aquifer. This property will become useful
in the following section.

2.7 Patterns of transmissivity and storativity

While systematic knowledge about the spatial structure of
preferential flow paths is still limited, we need a model for
generating spatial patterns of transmissivity and storativity.
In this study, we adopt the theory based on minimum energy
dissipation proposed by Hergarten et al. (2014). This theory
addresses the best spatial distribution of a given total pore
space volume in the sense that the total energy dissipation
of steady-state flow is minimized. The central assumption
behind this theory is a power-law relation between the hy-
draulic conductivity K on the porosity φ,

K ∝ φn, (48)

with a given exponent n. Some ideas regarding how dissolu-
tion could increase K were discussed in the aforementioned
study. If all pores have the same diameter and grow uni-
formly, an exponent n= 2 was obtained. The same result was
obtained for an arbitrary distribution of diameters if all pores
grow by the same factor with respect to diameter. In turn, a
stronger increase in K with φ (n > 2) occurs if dissolution
mainly affects the largest pores. Overall, these simple mod-
els yield a weaker increase in conductivity with porosity than
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predicted by the fundamental relation of Kozeny (1927) and
Carman (1937). This relation predicts n= 3 at small porosi-
ties, which was also adopted in the numerical study of dis-
solution and precipitation by Edery et al. (2021). In turn,
the theoretical study of fractal pore spaces by Costa (2006)
points towards n≈ 2.

The exact value of the exponent n is, however, not im-
portant in the following. Theoretically, it is only important
that the increase in K with φ is stronger than linear (n > 1)
because concentrating porosity along preferential flow struc-
tures is only energetically favorable under this condition.

Based on the power-law relation, Hergarten et al. (2014)
derived the following relations:

φ ∝ q
2
n+1 , (49)

K ∝ q
2n
n+1 . (50)

They also computed optimized dendritic networks on a
discrete grid. This result is, however, limited to confined
aquifers with a constant thickness. Assuming S = φ for
an unconfined aquifer is the simplest and somehow most
straightforward approach. In turn, the transfer from K to T
is not trivial and depends on the topography of the base b.
Even if the bottom is flat, points with the same q will have
different values of h and, thus, different T =K(h− b), de-
pending on their position in the network. As this dependency
would make the theory of minimum energy dissipation more
complicated, it is assumed in the following that the depen-
dence of T on q is the same as that of K (Eq. 50). As a
modification, we might take into account that sites with high
q and, thus, high K may have a lower thickness h− b. The
increase in T with φ will then be weaker than the increase
in K , which could be included by reducing the exponent n.
In each case, however, this 2-D approach only captures hor-
izontal heterogeneity. A high value of T requires that K is
high over the entire thickness, so that neighboring sites with
a high transmissivity are connected well.

As the most important aspect, however, Eqs. (49) and (50)
refer to a steady state. The aquifer’s properties do not change
on the timescale of individual events. Instead, we assume that
S and T are adjusted to a steady state that reflects some long-
term average. At this point, we can make use of the nondi-
mensional formulation developed in Sect. 2.6. Single-pixel
catchments (nodes without donors) have the lowest values
of S and T . Let us use their storativity and transmissivity
as the reference values S0 and T0, respectively. If we as-
sume a uniform long-term average recharge, the mean flux
is proportional to the catchment size Ai of the respective
node. If we further use the grid spacing d as the characteristic
length scale l, the respective nondimensional generalizations
of Eqs. (49) and (50) are as follows:

Si = A
2
n+1
i , (51)

Ti = A
2n
n+1
i . (52)

Owing to the choice of l = d, the catchment size Ai has to be
measured in grid pixels (so in units of d2) here. Then, single-
pixel catchments are characterized by Si = Ti = 1, corre-
sponding to Si = S0 and Ti = T0 in physical units.

The largest catchments in the examples considered later
consist of slightly more than 106 pixels, which means that
the catchment size varies by a bit more than 6 orders of mag-
nitude. For n= 2, this corresponds to a variation in T by 8 or-
ders of magnitude. If we assume, e.g., T0 = 10−9 m2 s−1, the
values of T would cover the range from fresh limestone to
strongly karstified limestone at a thickness of some meters.
The respective range of S is only slightly more than 4 or-
ders of magnitude for n= 2. However, assuming S0 = 10−5

would cover the range up to S = 0.1.
Practically, the characteristic timescale t0 (Eq. 46) is the

central property to be taken into account when transferring
nondimensional hydrographs to real-world coordinates. With
the values S0 and T0 defined above, this timescale would
be t0 = 104 s at a grid spacing d = 1 m and t0 = 106 s at
d = 10 m. As d seems to be a numerical parameter rather
than a physical parameter, the strong dependence on d may
be confusing at first. However, d is a property of the spatial
pattern. It defines the smallest cell that cannot be subdivided
by a preferential flow pattern and, thus, some kind of repre-
sentative elementary volume (in combination with the thick-
ness).

The characteristic timescale t0 can be interpreted physi-
cally in the setup used here. According to Eqs. (14) and (15),
the smallest spatial unit (a single-pixel catchment) is de-
scribed by the equation

d2S0
∂hi

∂t
=−T0 (hi −hb) (53)

for zero recharge. Therefore, the smallest spatial units behave
like a linear reservoir with a recession coefficient

α =
T0

d2S0
=

1
t0
, (54)

which means that t0 is the characteristic time of a single-pixel
catchment.

2.8 Considered scenarios

Based on the assumptions described in the previous section,
a numerically obtained flow pattern for n= 2 on a 4096×
4096 grid is used in this study. The algorithm for generating
such patterns was described by Hergarten et al. (2014). All
points at the boundaries are considered to be springs where
the discharge is measured. Figure 1 illustrates the catchments
of the springs.

Several scenarios will be considered for the same geom-
etry in the following. Beside the reference scenario with
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Figure 1. Catchments of numerically obtained dendritic flow pat-
terns for n= 2 on a lattice of 4096 sites×4096 sites. The color
corresponds to the size A of each individual catchment, measured
in grid pixels. The watersheds between large catchments (A≥
10 000 pixels) are highlighted in black.

n= 2, the influence of n will be investigated. These inves-
tigations also include uniform transmissivity and storativity.
The suitability of the description as a dendritic network will
be tested against full Darcy flow.

In order to enable a comparison of the recession curves of
individual springs, the same catchments are used in all sim-
ulations. This means that the boundaries between the catch-
ments shown in Fig. 1 are enforced by cutting the respective
connections, i.e., by inhibiting flow across the watersheds.

3 Results and discussion

3.1 Dendritic flow patterns vs. full Darcy flow

As a first step, we investigate under which conditions the re-
duction from full Darcy flow (taking all four neighbors into
account) to a dendritic flow pattern (a single flow target for
each node) provides a suitable approximation. We start from
the optimized distribution of S and T for n= 2, i.e., from
a strongly preferential flow pattern. Figure 2 compares the
long-term recession coefficients α (α1 in Eq. 27) obtained
from the dendritic flow pattern to those of full Darcy flow.
The recession coefficients of both approaches agree well,
which means that the long-term recession behavior is cap-
tured well by the dendritic flow pattern. Some deviations oc-
cur at rather small catchment sizes from about 10 to 200.
Here, allowing only one single flow direction leads to a
slight underestimation of α, which means that the recession
is slightly too slow. This underestimation is highest at catch-
ment sizes A≈ 16 and reaches about 10 % there.

In order to investigate the effect of the restricted flow di-
rections in more detail, we analyzed the flow pattern of the
full Darcy scenario. For this purpose, we define the major
flux component of each node as the flux towards the given
flow target (according to the dendritic pattern) and the mi-

Figure 2. Recession coefficient α of each individual catchment with
n= 2 for dendritic flow patterns against full Darcy flow. The colors
match Fig. 1 and indicate the size of the respective catchment.

Figure 3. Relative contribution of the minor fluxes for each grid
pixel as a function of the catchment size A. The curves were
obtained by logarithmic binning with 10 bins per decade. All
three considered scenarios – a steady-state initial condition, a unit
recharge pulse, and the exponentially decaying term (only the slow-
est component; first term in Eq. 27) – are analyzed separately for
grid pixels that lie within a catchment (flow towards all four neigh-
bors; solid lines) and pixels at drainage divides (restricted flow di-
rections; dashed lines).

nor flux component as the sum of the fluxes towards all other
neighbors with lower head values.

Figure 3 shows the relative contribution of the minor fluxes
as a function of the size of the respective upstream catch-
ment. The upstream catchment size refers to the individual
pixels here and not to the embedding catchment. Thus, the
data point for a A= 1 describes the average over all pix-
els without donors, regardless of whether they are draining
directly to the boundary (i.e., are indeed single-pixel catch-
ments) or are part of a larger catchment. As points at drainage
divides are already restricted concerning their flow direction
in the full Darcy scenario, these points are analyzed sepa-
rately from inner points.
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The contribution of the minor fluxes decreases with in-
creasing catchment size, i.e., downstream along the prefer-
ential flow paths. It becomes negligible for all considered
scenarios at catchment sizes A' 200. The contribution of
the minor flux is particularly small immediately after a short,
uniform recharge pulse. If all sites receive the same amount
of water, the resulting change in hydraulic head is inversely
proportional to the storativity. Because high transmissivity
goes along with high storativity, the hydraulic gradient be-
tween sites with low transmissivity and sites with high trans-
missivity increases. As a consequence, the fluxes are concen-
trated towards the preferential flow paths, which reduces the
minor fluxes.

The strongest contribution of the minor fluxes is found for
the long-term recession, characterized by an exponential re-
cession curve. The minor fluxes contribute even almost 60 %
for A= 1 here (only inner points, about 35 % for drainage
divides). It may be surprising that the minor fluxes do not af-
fect the recession coefficient strongly, as shown in Fig. 2. In
an extreme scenario where all four neighbors are at the same
head values, the fluxes would be 4 times higher in the full
Darcy model than in the single-flow-target realization, which
would result in a 4 times faster recession than predicted by
Eq. (54). Although the majority of the nodes have small up-
stream catchment sizes (e.g., A= 1 for 43 % of all nodes and
A≤ 10 for 81 % of all nodes), their behavior is obviously not
crucial for the properties of the entire catchment.

These results suggest that preferential flow patterns can be
represented well on a discrete grid by a dendritic structure
where each node drains only towards one of its neighbors. In
turn, the approximation using a dendritic flow pattern does
not work well for a spatially uniform distribution of T and
S, as shown in Fig. 4. Here, α is underestimated by more
than 1 order of magnitude for large catchments, which means
that the recession is more than a factor of 10 too slow. The
coefficients agree well only for small catchments, where the
minor fluxes are small or even absent due to the restricted
flow directions at drainage divides.

3.2 Scaling properties of the recession coefficient

The fact that the recession coefficient α decreases with in-
creasing catchment size is already visible in Figs. 2 and 4.
The expected scaling behavior is α ∝ A−1. This result is for-
mally obtained from the characteristic timescale t0 (Eq. 46
with A∝ l2), but it can also be derived directly from the oc-
currence of a first-order time derivative on the left-hand side
of Eq. (7) and second-order spatial derivatives on the right-
hand side of Eq. (7). If we rescale the entire catchment in-
cluding the pattern of S and T by a factor β, the right-hand
side of Eq. (7) changes by a factor of β−2 for r = 0. Then,
the timescale must change by the same factor. As the catch-
ment size A increases quadratically with β, the timescale is
proportional to the catchment size and, thus, α ∝ A−1.

Figure 4. Recession coefficient α of each individual catchment with
a spatially uniform distribution of T and S for dendritic flow pat-
terns against full Darcy flow. The colors match Fig. 1 and indicate
the size of the respective catchment.

Figure 5. Scaling behavior of recession coefficient α relating to
catchment size A (Eq. 55) for different values of n and for a uni-
form distribution of T and S. Full Darcy flow is plotted as solid
lines, and flow in dendritic patterns is plotted as dotted lines. Ex-
cept for the scenario with S = T = 1, the curves of full Darcy flow
and the dendritic pattern are hardly distinguishable.

As shown in Fig. 5, this simple scaling behavior does not
hold for the patterns of S and T considered here. While the
scaling behavior follows a power law

α ∝ A−γ (55)

reasonably well for all considered values of n, it seems that
an exponent γ = 1 is only achieved for n= 1. For all val-
ues n > 1, we find γ < 1, where γ decreases with increasing
n. This means that the recession of large catchments is still
slower than the recession of small catchments, but the effect
is considerably weaker than for a simple Darcy-type aquifer
(γ = 1).

Qualitatively, this weaker increase is the expected behav-
ior for a preferential flow pattern. Preferential flow paths are
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able to transport water rapidly over large distances, so that
an increasing spatial extension does not slow down the re-
cession as strongly as in a homogeneous aquifer.

The opposite behavior is observed for n < 1. Here, large
catchments become extremely slow. Revisiting Eqs. (51)
and (52), it is recognized that T still increases with catch-
ment size, but it is weaker than S for n < 1. Therefore, flow
is still facilitated along the preferential flow paths, but the re-
spective cells become slow due to their high storativity. This
becomes visible if we apply Eq. (54) formally to such cells,

which yields α ∝ A
2(n−1)
n+1 , so that α decreases with increasing

A. However, n < 1 would be unrealistic for porous media,
where n≥ 2 should instead be expected. Beyond this, Her-
garten et al. (2014) demonstrated that dendritic flow patterns
are energetically favorable only for n > 1. Thus, preferen-
tial flow patterns with n < 1 can be constructed, but they do
not make much sense. Nevertheless, the curves are almost
indistinguishable not only for n≥ 1 but also for n < 1. The
results reveal that the numerical approximation using a den-
dritic flow pattern also works well for n < 1.

As already recognized in Sect. 3.1, the approximation us-
ing a dendritic flow pattern does not work for constant trans-
missivity and storativity. Figure 5 reveals that the unusual
scaling behavior with γ > 1 also occurs for the description
using full Darcy flow. This result is related to the subdivi-
sion of the domain into fixed catchments drained by distinct
springs. In order to test this hypothesis, we computed the re-
cession coefficients for radial flow towards a spring in polar
coordinates. Keeping the radius of the spring constant and
varying the total size of the catchment (the outer radius), we
obtained roughly the same scaling behavior, γ ≈ 1.1, found
for the catchments considered in Fig. 5. This scaling behav-
ior indicates that the region around the spring is some kind of
bottleneck that becomes increasingly relevant for large catch-
ments. This result aligns well with the result of Hergarten
et al. (2014), who found that minimum energy dissipation
for radial flow requires an increase in permeability towards
the spring.

The nontrivial dependence of α on the catchment size not
only affects spring hydrographs but also the response time
of aquifers to changes in climate or hydraulic conditions at
the boundaries. As a recent example, Cuthbert et al. (2019)
provided worldwide estimates of these groundwater response
times. These estimates are based on the 1-D version of Eq. (7)
for homogeneous aquifers, with the size of the aquifer as-
sumed to be twice the distance L of perennial rivers. The
scaling arguments given above (and formally in Sect. 2.6)
then yield α ∝ L−2 and, thus, a response time proportional
to L2. Because L increases with decreasing precipitation,
this model predicts a strong negative correlation between
precipitation and groundwater response time with typical re-
sponse times of several thousand years in arid and semiarid
regions. If the respective aquifers are not homogeneous but
rather have a preferential flow structure as considered here,

Figure 6. Unit hydrographs of the biggest catchment for n= 2 and
of a homogeneous 1-D aquifer. The dashed lines correspond to the
long-term exponential recession. The data are scaled in such a way
that the e-folding time τ and the total amount of water supplied by
the recharge event are the same in both scenarios.

the dependence of the groundwater response time on L and,
thus, on climate will be considerably weaker than predicted
by Cuthbert et al. (2019).

3.3 Short-term recession

The differences between the model considered here and sim-
ple Darcy-type models are not limited to the scaling proper-
ties of the long-term recession coefficient. As exemplified in
Fig. 6 for the biggest catchment, the unit hydrograph shows
a clear rising limb at short timescales. In contrast, the 1-D
Darcy-type aquifer shows a power-law decrease in discharge
at short timescales, so that Q→∞ for t→ 0.

For a better comparison, size and parameter values of the
1-D aquifer were adjusted in such a way that the long-term
recession coefficient α and the total amount of water sup-
plied by the recharge event are the same as for the considered
catchment (see Appendix B). For such a simple aquifer, a lag
between a short precipitation event and the peak discharge
would typically be attributed to the infiltration process. We
would then assume that the time lag is related to the transit
time of the water from the surface to the aquifer. In a model
consisting of individual porous blocks connected by highly
conductive fractures (e.g., Kovács et al., 2005; Hergarten and
Birk, 2007), the time lag may also be owing to the finite con-
ductivity of the fracture system. In contrast, the finite rise
time is an inherent property of the structure of the aquifer in
the model considered here. It cannot be attributed uniquely
to any individual component of the system.

Figure 7 provides an analysis of the rise time trise for the
considered catchments and different values of the exponent
n. For n= 2, the data suggest a linear relationship between
trise and the long-term e-folding time τ = 1

α
. The ratio of trise

and τ varies from about 9 % to 19 % for the individual catch-
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Figure 7. Relation between rise time trise and e-folding time τ of
the long-term recession for the considered catchments and different
values of n.

ments. The rise times become slightly shorter in relation to
the e-folding time for lower n. For n= 1.5, we found ra-
tios in a range from about 4 % to 22 %. The data obtained
for n > 2 are nonunique, in particular for small catchments
(small τ ). Overall, there seems to be a weak increase in the
ratio of trise and τ with increasing n. This trend aligns well
with the absence of a finite rise time in the simple 1-D and 2-
D aquifers without a preferential flow pattern. However, the
trend is much weaker than the variation among individual
catchments; therefore, it is not investigated further. In each
case, however, trise is not very small compared with τ . One-
seventh of the e-folding recession time seems to be a reason-
able order of magnitude. Taking into account that long-term
e-folding times of karst aquifers are typically in an order of
magnitude of several weeks, the rise time is of an order of
magnitude of several days.

The occurrence of a rising limb in the unit hydrograph re-
quires that some of the coefficients λkQk in Eq. (27) are neg-
ative. This can be seen formally by computing the derivative
of Eq. (27). The derivative is similar to Eq. (27) itself, except
that the coefficients are −αkλkQk . As the sum cannot be-
come zero if all coefficients have the same sign, at least one
of the original coefficients λkQk must be negative. Figure 8
shows the coefficients for the largest catchment. While the
coefficients of the slowest components (small αk) are posi-
tive, there is no obvious preference for either sign in the faster
components.

The spectrum of the considered catchment differs funda-
mentally from that of the 1-D aquifer. While the spectrum of
the 1-D aquifer consists of distinct components with reces-
sion coefficients αk ∝ (2k− 1)2 (see Appendix B), the spec-
trum of the catchment becomes more or less continuous at
large k. However, the smallest recession coefficients are still
distinct. For the catchment analyzed in Fig. 8, the ratio is
α2
α1
≈ 2. While the lowest ratios among all simulated catch-

ments are about 1.5, the ratio is typically in a range from

Figure 8. Coefficients λkQk and recession coefficients αk in
Eq. (27) for the largest catchment (n= 2). Only the slowest 500
components (k ≤ 500) were computed. The data of the 1-D aquifer
were rescaled in such a way that the lowest recession coefficient α1
and the total recharge are the same as for the simulated catchment.

Figure 9. Recession curves of the largest catchment obtained from
the numerical simulation and different numbers of exponential func-
tions (Eq. 27).

about 2.5 to 4 for smaller catchments. Thus, the ratio α2
α1

dif-
fers from catchment to catchment but is always clearly above
unity. This also holds for n 6= 2. This property ensures that
the recession curve approaches a single exponential function
at a reasonable time and that the coefficient λ1Q1 captures
the long-term recession well. However, the ratio is much
lower than the ratio α2

α1
= 9 of the 1-D aquifer. Although the

deviation from an exponential recession also depends on the
coefficients λkQk , the difference is already visible in Fig. 6.
While the unit hydrograph of the 1-D aquifer is almost in-
distinguishable from the exponential decay at t = 0.5τ , the
difference is more than 15 % at this time for the largest catch-
ment. Therefore, the model with the preferential flow pattern
approaches the long-term exponential recession much more
slowly than the simple 1-D aquifer.

Figure 9 illustrates the approximation of the unit hydro-
graph by a finite number of exponential components. In this
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example, all coefficients for k ≤ 9 are positive. In the range
9< k ≤ 23, there are also negative coefficients. However, the
positive coefficients still dominate here, so that the highest
peak discharge is achieved when including the components
with k ≤ 23. The negative components become increasingly
relevant for larger k. This results in a decreasing peak dis-
charge, however, that is still at t = 0 for k ≤ 60. The compo-
nent with k = 61 is the first that shifts the peak discharge to a
time t > 0 and, thus, produces a rising limb in the unit hydro-
graph. However, approximating the behavior around the peak
discharge reasonably well requires several hundred compo-
nents.

The occurrence of negative coefficients in Eq. (27) is not a
fundamental problem, but it impedes a simple interpretation
of the decomposition into exponentially decreasing terms. If
all components were positive, we could imagine the aquifer
as a set of linear reservoirs drained in parallel. However, neg-
ative components would correspond to reservoirs with a neg-
ative amount of water. Formally, the slow component (first
exponential function) could even contain more water than
available in total, and the fast components (all higher ex-
ponentials) could be negative in total. In Fig. 6, this would
mean that the area of the unit hydrograph below the exponen-
tial component at short timescales was larger than the area
above the exponential component. In this case, the widely
used characterization of karst aquifers according to the con-
tribution of the slow (exponential) component to the total dis-
charge (Mangin, 1975; Jeannin and Sauter, 1998) would be
taken ad absurdum.

Figure 10 shows the contribution of the slow component
(first exponential) to the total amount of water for all catch-
ments considered here (n= 2). Depending on the catchment
size, this contribution is between 77 % and 104 %. Thus,
there are indeed catchments where the effect of the rising
limb is so strong that the slow component is formally larger
than the total recharge and the fast components are negative
in sum. However, this effect is found only for some rather
small catchments. For the largest catchments, the contribu-
tion of the slow component is about 90 %.

The obtained contributions of the slow component are high
compared with other models. For the 1-D aquifer used here
as a reference, this contribution is 8

π2 ≈ 81 %. For an aquifer
consisting of square porous blocks connected by conduits
with infinite conductance, it is 64

π4 ≈ 66 % (e.g., Birk and
Hergarten, 2010). The contribution of the slow component
was not explicitly investigated by Hergarten and Birk (2007)
in their fractal model with power-law-distributed block sizes.
However, as the slowest flow component arises from the
largest blocks, the total contribution of the slow component
must even be considerably smaller than the 66 % obtained
for an aquifer with a uniform block size. In the widely used
classification scheme of karst aquifers proposed by Mangin
(1975), even aquifers with a contribution of the slow compo-
nent of less than 50 % are considered poorly karstified (see
also Jeannin and Sauter, 1998). Therefore, our continuous

Figure 10. Contribution of the slowest exponential component to
the total discharge for the considered catchments. The red line
shows the respective contribution of 8

π2 ≈ 81 % for the 1-D aquifer.

model of preferential flow patterns predicts an even higher
contribution of the slow component to the unit hydrograph
than other models and is very different from what is typically
assumed for karst systems.

At first sight, the observed high contribution of the slow
component could be an effect of the finite rise time. As rec-
ognized in Figs. 6 and 9, the unit hydrograph is below the
slow component for t / 0.5trise. When investigating reces-
sion curves in reality, the analysis typically starts from the
peak in discharge (t = trise). The orange markers in Fig. 10
show the respective contributions of the slow component.
Starting the analysis from t = trise instead of t = 0 indeed
yields lower contributions of the slow components. However,
the effect is only of the order of magnitude of a few per-
cent. Thus, the result that continuous preferential flow pat-
terns predict a high contribution of the slowest flow compo-
nent is not an artifact of the analysis.

3.4 The effect of nonuniform recharge

While the unit hydrograph describes uniform recharge, the
spatial distribution of the recharge may have a strong influ-
ence on recession curves of large catchments. Therefore, a
question arises regarding whether the strong deviations from
the exponential behavior found for karst springs could be re-
lated to the occurrence of local rainstorms that affect only a
small part of the catchment.

As a simple example, we separated the domain into a prox-
imal part and a distal part. Both parts are equally sized, and a
distinction is made based on the distance from the boundary
of the domain. Because the overall domain is the same, the
recession coefficients αk of all flow components are the same
as for the entire domain. Only the coefficients ak in Eq. (27)
differ. This difference, however, has a strong effect on the rise
time and on the contribution of the slow flow component.
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Figure 11. Instantaneous unit hydrographs for recharge applied to a
part of the domain. Solid lines refer to the largest catchment of the
simulation and dashed lines refer to a homogeneous aquifer. The
data are scaled in such a way that the e-folding time τ and the total
amount of supplied water are the same in both scenarios. Proximal
and distal regions cover half of the catchment each.

Figure 11 compares the results obtained numerically for
the largest catchment to those obtained by spectral decompo-
sition for a 1-D aquifer (for details, see Appendix B). While
the hydrograph starts with a peak at t = 0 after a spatially
uniform recharge event, applying recharge only to the distal
part of the domain introduces a finite rise time. This rise time
is, however, shorter (in relation to the e-folding recession
time) than for the aquifer with the preferential flow pattern.
The rise time of the preferential flow pattern also changes
considerably if recharge is only applied to a part of the do-
main. The strong influence may be surprising at first because
we could expect the signal to propagate rapidly through the
preferential flow structure from the distal part of the domain
to the spring. However, preferential flow paths not only have
a high transmissivity here but also a high storativity. Thus,
the propagation of signals is not as fast as we might expect.

The contribution of the slowest component also changes if
recharge is only applied to a part of the domain. Similarly to
the rise time, it increases if only the distal part of the domain
is filled because the instantaneous recharge signal has already
been smoothed when it arrives at the spring. The contribution
of the first exponential component is formally higher than
100 % for the distal part. For the largest simulated catchment,
it is 137 %, whereas it is 115 % for the 1-D aquifer. In turn,
the contribution of the first exponential component is lower
for the proximal parts: 50 % for the largest catchment in the
simulation and 47 % for the 1-D aquifer. Therefore, the con-
tribution of the first exponential component is always higher
for the preferential flow pattern than for the 1-D aquifer, and
the effect of only applying recharge to a part of the domain
is similar.

On average, however, the effect vanishes. For the largest
catchment, the 50 % for the proximal region and the 137 %

for the distal region yield a mean value of 94 %, in agreement
with Fig. 10 (the rightmost blue circle). This is a general
property of the linear model, which allows for the superposi-
tion of recharge events not only temporally but also spatially.
It could even be generalized to arbitrary parts of the domain
down to recharge events that are limited to a single node.

While there should theoretically be no effect on average,
recharge events in the proximal region will be more promi-
nent in the hydrograph than those in the distal region. There-
fore, the analysis of real-world hydrographs might be bi-
ased towards the more prominent, proximal recharge events,
which would yield a decreasing contribution of the slowest
component for large catchments. However, explaining the of-
ten small contribution of the exponential component this way
seems quite a stretch.

4 Conclusions and perspectives

This study is a first attempt to describe the dynamics of
aquifers with continuous preferential flow patterns. In con-
trast to approaches based on two or three distinct flow com-
ponents widely used in the context of karst aquifers, the con-
cept used here assumes a continuous spatial variation in hy-
draulic properties over several orders of magnitude.

A 2-D aquifer with a spatially variable but time-
independent transmissivity was considered. This scenario
corresponds to the application of small disturbances to a
steady state of an aquifer with an almost horizontal water
table. Synthetic spatial patterns of transmissivity and stora-
tivity were obtained from principles of minimum energy dis-
sipation based on the theory proposed by Hergarten et al.
(2014).

As a major technical result, it was found that such aquifers
can be approximated well by dendritic flow patterns, in
which the entire discharge of each cell is delivered to the
neighbor with the steepest gradient in hydraulic head. This
approximation has been widely used for channelized flow
patterns at the surface. The dendritic structure enables an ef-
ficient, fully implicit numerical scheme with a numerical ef-
fort that increases only linearly with the number of cells, also
known as O(n) complexity. This property allows for simula-
tions on grids consisting of several million nodes and, thus,
for a reasonable spatial resolution of the preferential flow pat-
tern.

As a second, rather theoretical result, it was shown that
spectral theory is not restricted to homogeneous aquifers and
can also be applied to aquifers with any spatial distribution of
transmissivity and storativity. Although the eigenvalues and
the respective eigenvectors have to be computed numerically,
this approach allows for a fast computation of the long-term
recession coefficient without forward modeling over a long
time span. In addition, the contribution of the slowest flow
component to the instantaneous unit hydrograph (and also
to any other initial state) can be computed easily. However,
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the efficient numerical scheme and spectral theory rely on the
assumption of time-independent transmissivity and cannot be
extended easily towards sloping aquifers.

The long-term recession coefficient α depends on the
catchment size. The dependency is, however, weaker than
for homogeneous aquifers and follows a power law α ∝ A−γ

(Eq. 55). The exponent γ depends on the assumed relation
between transmissivity T and storativity S. It approaches 1
for T ∝ S, which is also the limit where dendritic flow pat-
terns are energetically favorable. In this case, the scaling
is the same as for homogeneous aquifers (γ = 1). For rela-
tions T ∝ Sn, γ decreases with increasing n. As a typical
value, γ = 0.4 was found for n= 2. Therefore, the decrease
in the recession coefficient with catchment size is typically
less than half as strong as for homogeneous aquifers. This
finding challenges previous results on very long groundwater
response times of large aquifers (e.g., Cuthbert et al., 2019).

Because flow patterns obtained from minimum energy dis-
sipation are typically scale-invariant, a power-law decrease in
the discharge after a short recharge pulse might be expected
at first. However, the respective instantaneous unit hydro-
graph shows a completely different behavior. The discharge
immediately after the recharge event is quite small, and it
takes a considerable time until it reaches its peak. The order
of magnitude of this rise time is one-seventh of the charac-
teristic time of the aquifer (τ = α−1). It seems not to depend
strongly on the catchment size nor on the relation between
transmissivity and storativity.

The contribution of the slowest component to the unit hy-
drograph is of an order of magnitude of 90 % for large catch-
ments and even larger for small catchments. This contribu-
tion increases further if recharge is only applied to a part of
the domain at a distance from the spring and can even ex-
ceed 100 % in these cases. Formally, this result arises from
the occurrence of negative coefficients in the decomposition
of the unit hydrograph into exponentially decaying compo-
nents. The occurrence of negative coefficients also inhibits
the simple interpretation as a set of linear reservoirs draining
in parallel. Measuring the contribution of the slowest compo-
nent from the peak of the unit hydrograph instead of the time
at which the instantaneous recharge occurs reduces the con-
tribution of the slowest component only slightly. This con-
tribution is higher than for homogeneous aquifers and much
higher than typically assumed for karst aquifers (less than
50 %).

Thus, we have to conclude that preferential flow patterns
arising from a strongly organized pattern of transmissivity
and storativity differ fundamentally from karst aquifers in
their properties. For future work, it would be interesting to
find out whether the difference mainly concerns the contri-
bution of the slowest flow component or also the scaling of
the recession coefficient with catchment size.

With respect to further development, an extension of the
numerical scheme towards unconfined sloping aquifers (e.g.,
Rupp and Selker, 2006; Pauritsch et al., 2015) would be par-

ticularly useful. Although there is ongoing development in
this field (e.g., Alemie et al., 2019; Pathania et al., 2019), in-
cluding preferential flow patterns at a reasonable spatial res-
olution is still a challenge. Extending the implicit scheme for
dendritic flow patterns towards unconfined sloping aquifers
would still be challenging, but it might considerably con-
tribute to understanding the response of hillslopes to precip-
itation events and phenomena such as subsurface storm flow
(e.g., Chifflard et al., 2019).

Appendix A: The fully implicit scheme for a dendritic
network

In this section, Eqs. (42) and (43), which are the basis of the
implicit scheme discussed in Sect. 2.5, are proven. Inserting
Eqs. (14) and (41) into Eq. (40) yields

Si
hi(t + δt)−hi(t)

δt
=−Ti (hi(t + δt)−hb(t + δt))

+

∑
j∈D(i)

q0
j +

∑
j∈D(i)

q ′j

(hi(t + δt)−hi(t))+ ri, (A1)

and thus

hi(t + δt)−hi(t)=

Ti (hb(t + δt)−hi(t))+
∑
j

q0
j + ri

Si
δt
+ Ti −

∑
j

q ′j

. (A2)

Using Eq. (14), we can then compute the flux according to

qi(t + δt)= Ti (hi(t + δt)−hb(t + δt))

= Ti

Ti (hb(t + δt)−hi(t))+
∑
j

q0
j + ri

Si
δt
+ Ti −

∑
j

q ′j

+hi(t)−hb(t + δt))

= Ti

(
Si
δt
−
∑
j

q ′j

)
(hi(t)−hb(t + δt))+

∑
j

q0
j + ri

Si
δt
+ Ti −

∑
j

q ′j

. (A3)

Then, q0
i (Eq. 42) is obtained by setting hb(t + δt)= hb(t)

and q ′i (Eq. 43) is obtained by taking the derivative with re-
spect to hb(t + δt).

Appendix B: The unit hydrograph of a homogeneous
1-D aquifer

Let us consider a 1-D aquifer with a length L, where the
spring is located at x = 0 and the drainage divide at x = L.
The boundary conditions are then h(x, t)= 0 at x = 0 and
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∂
∂x
h(x, t)= 0 at x = L, and h(x, t) is periodic with a wave-

length of 4L. Thus, h(x,0) can be written as a Fourier series:

h(x,0)=
∞∑
k=1

ak sin
(

2πkx
4L

)
, (B1)

where the respective terms with the cosine function are zero
due to the boundary conditions and ak = 0 for even values of
k. The coefficients ak are given by the relation

ak =
2

4L

4L∫
0

h(x,0)sin
(

2πkx
4L

)
dx (B2)

=
2
L

L∫
0

h(x,0)sin
(

2πkx
4L

)
dx. (B3)

If we assume that the distal region, λL≤ x ≤ L with λ ∈
[0,1], is initially filled to a given head value h0, we obtain

ak =
2h0

L

L∫
λL

sin
(

2πkx
4L

)
dx =

4h0

πk
cos

(
πkλ

2

)
(B4)

for uneven values of k. The time-dependent solution h(x, t)
must satisfy the 1-D version of Eq. (7) with r = 0,

S
∂h

∂t
=
∂

∂x

(
T
∂h

∂x

)
. (B5)

It is easily recognized that the solution of this equation with
the initial condition defined by Eq. (B1) is

h(x, t)=

∞∑
k=1

ak sin
(

2πkx
4L

)
e−αk t , (B6)

where

αk =
T

S

(
πk

2L

)2

. (B7)

The flux per unit width across the boundary is then

q(t)= T
∂

∂x
h(x, t)

∣∣∣∣
x=0

(B8)

= T

∞∑
k=1

ak
2πk
4L

e−αk t (B9)

=
2T h0

L

∞∑
k=1

(uneven)

cos
(
πkλ

2

)
e−αk t (B10)

with the coefficients ak from Eq. (B4). The respective expres-
sion for the proximal region, 0≤ x ≤ λL, is readily obtained
by subtracting this expression from the same expression with
λ= 0.
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