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Abstract. Transit time distributions (TTDs) of streamflow
are useful descriptors for understanding flow and solute
transport in catchments. Catchment-scale TTDs can be mod-
eled using tracer data (e.g. oxygen isotopes, such as δ18O) in
inflow and outflows by employing StorAge Selection (SAS)
functions. However, tracer data are often sparse in space
and time, so they need to be interpolated to increase their
spatiotemporal resolution. Moreover, SAS functions can be
parameterized with different forms, but there is no general
agreement on which one should be used. Both of these as-
pects induce uncertainty in the simulated TTDs, and the in-
dividual uncertainty sources as well as their combined ef-
fect have not been fully investigated. This study provides
a comprehensive analysis of the TTD uncertainty resulting
from 12 model setups obtained by combining different in-
terpolation schemes for δ18O in precipitation and distinct
SAS functions. For each model setup, we found behavioral
solutions with satisfactory model performance for in-stream
δ18O (KGE> 0.55, where KGE refers to the Kling–Gupta ef-
ficiency). Differences in KGE values were statistically signif-
icant, thereby showing the relevance of the chosen setup for
simulating TTDs. We found a large uncertainty in the sim-
ulated TTDs, represented by a large range of variability in
the 95 % confidence interval of the median transit time, vary-
ing at the most by between 259 and 1009 d across all tested
setups. Uncertainty in TTDs was mainly associated with the
temporal interpolation of δ18O in precipitation, the choice
between time-variant and time-invariant SAS functions, flow
conditions, and the use of nonspatially interpolated δ18O in

precipitation. We discuss the implications of these results for
the SAS framework, uncertainty characterization in TTD-
based models, and the influence of the uncertainty for water
quality and quantity studies.

1 Introduction

Understanding how catchments store and release water of
different ages has significant implications for flow and solute
transport, as water ages encapsulate information about flow
paths’ characteristics (McGuire and McDonnel, 2006; Botter
et al., 2011), the contact time of solutes with the soil matrix
(Benettin et al., 2015a; Hrachowitz et al., 2016), and vulner-
ability assessment (Kumar et al., 2020). This plays an im-
portant role in water resources protection and management,
and it requires a tool that can effectively describe catchment-
scale transport processes (Rinaldo and Marani, 1987). The
age of water in outflows is commonly referred to as tran-
sit time (TT), i.e. the time that elapses between the entry
of a water parcel into the catchment via precipitation and
its exit via streamflow or evapotranspiration. Accordingly,
the transit time distribution (TTD) describes the whole spec-
trum of transit times in outflows (Botter et al., 2005; Van der
Velde et al., 2010). Early studies have often assumed simpli-
fied steady-state transport models, resulting in time-invariant
TTDs (Niemi, 1977; Rinaldo et al., 2006). However, exper-
imental simulations have shown that TTDs are time-variant
due to the variability in meteorological forcing (Botter et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



2990 A. Borriero et al.: Uncertainty in water transit time estimation with SAS functions

2010; Hrachowitz et al., 2010; Heidbüchel et al., 2020)
and the activation/deactivation of flow paths in response to
varying hydrologic conditions (Ambroise, 2004; Heidbüchel
et al., 2013). Recent research has introduced new models for
representing time-variant TTDs, for example, allowing for
the estimation of TTDs without making prior assumptions
about their shape (Kirchner, 2019; Kim and Troch, 2020) or
with the parameterization of the StorAge Selection (SAS)
functions (Rinaldo et al., 2015; Harman, 2019). SAS func-
tions describe how catchments selectively remove water of
different ages from storage for outflows, and they have led
to a new framework of nonstationary transport models based
on water age, which have been successfully applied in vari-
ous studies (Benettin et al., 2015b; Queloz et al., 2015; Kim
et al., 2016; Lutz et al., 2017; Wilusz et al., 2017; Nguyen
et al., 2021).

Model-based TTDs are subjected to uncertainty, which
limits their ability with respect to decision support. In gen-
eral, model prediction uncertainty stems from model in-
puts, structure, and parameters (Beven and Freer, 2001). As
TTDs are not directly observable, conservative environmen-
tal tracers (e.g. oxygen isotopes, such as δ18O) in inflow
and outflows are commonly used to infer water ages (Hra-
chowitz et al., 2013; Birkel and Soulsby, 2015; Stockinger
et al., 2015). Long-term, high-frequency tracer data with an
appropriate spatial distribution are generally recommended
for a sufficient understanding of TTD dynamics across a
wide range of fast and heterogeneous hydrological behav-
iors (Kirchner et al., 2004; Danesh-Yazdi et al., 2016; von
Freyberg et al., 2017). Therefore, a lack of appropriate tracer
data coverage can hamper our understanding of TTD dy-
namics at the desired resolution (McGuire and McDonnel,
2006). Additionally, uncertainty in the driving hydroclimatic
fluxes, such as precipitation, discharge, and evapotranspira-
tion, could propagate into the uncertainty in the modeling
results. Further uncertainty emerges from the model struc-
ture due to the difficulty in representing physical processes
because of our incomplete knowledge of complex reality
(Ajami et al., 2007). Finally, specification of model parame-
ters is also an important source of uncertainty (Beven, 2006;
Kirchner, 2006), as the best-fit parameters may suffer from
equifinality (Schoups et al., 2008).

A few studies have investigated the uncertainty in the es-
timated TTDs with SAS models. Danesh-Yazdi et al. (2018)
and Jing et al. (2019) analyzed the effect of interactions be-
tween distinct flow domains, external forcing, and recharge
rate on the resulting TTDs. Several works (Benettin et al.,
2017; Wilusz et al., 2017; Rodriguez et al., 2018, 2021) have
explored model parameter uncertainty and suggested that ad-
ditional types of tracers, data on physical characteristics of
the catchment, and parsimonious parameterization may help
to further reduce parametric uncertainty in the SAS models.
More recently, Buzacott et al. (2020) investigated how gap-
filling of the δ18O record in precipitation propagated uncer-
tainty into the simulated mean water transit time (MTT), i.e.

the average time it takes for water to leave the catchment
(McDonnel et al., 2010).

Despite the studies cited above, there are other aspects that
are particularly significant for SAS modeling and cause un-
certainty in the simulated TTDs that have not yet been thor-
oughly investigated. First, isotope data are generally sparse
globally in space and time (von Freyberg et al., 2022), due
to laborious and costly sampling campaigns limited to well-
equipped areas (Tetzlaff et al., 2018). As SAS models re-
quire continuous time series of input tracer data, different
methods for temporal interpolation could be used to recon-
struct isotope values in precipitation; consequently, the in-
terpolated input data are subject to uncertainty. Furthermore,
the input data of SAS models are influenced by whether the
tracer data in precipitation are collected at a single location
within the catchment or at multiple locations. In the latter
scenario, there is a need to account for the spatial variabil-
ity in the tracer composition in precipitation, which is com-
monly done via spatial interpolation. Choosing data from one
approach (i.e. tracer data from a single location) over the
other (i.e. tracer data spatially interpolated based on multiple
locations, including stations outside the catchment bound-
aries) can potentially result in different resulting TTDs. Fi-
nally, SAS functions, employed to model TTDs, must be pa-
rameterized, and their functional forms need to be specified
a priori. Commonly used forms are the power law (Benet-
tin et al., 2017; Asadollahi et al., 2020), beta (van der Velde
et al., 2012; Drever and Hrachowitz, 2017), and gamma
(Harman, 2015; Wilusz et al., 2017) distributions. However,
there is no general agreement on which SAS function should
be used, as the hydrological processes that control the pat-
terns and dynamics of the subsurface vary across catchments.
Therefore, the most convenient approach is to simply rely
on a specific parameterization over another and estimate its
parameters (Harman, 2015). All of these aspects, related to
model input, structure, and parameters, induce uncertainty in
the simulated TTDs. To date, the role of these individual un-
certainty sources and their combined effect on the modeled
TTDs have not been adequately discussed.

This study bridges the aforementioned gaps by specifically
exploring the combined effect of tracer data interpolation and
model parameterizations on the simulated TTDs. We investi-
gated TTD uncertainty using an SAS-based catchment-scale
transport model applied to the upper Selke catchment, Ger-
many. We evaluated TTDs resulting from 12 model setups
obtained by combining distinct interpolation techniques of
δ18O in precipitation and parameterizations of SAS func-
tions. For each model setup, we searched for behavioral
parameter sets (i.e. those providing acceptable predictions)
based on model performance for in-stream δ18O, and we
evaluated the sources of uncertainty and their combined ef-
fects in the modeled TTDs. Overall, our results provide new
insights into the uncertainty characterization of TTDs, partic-
ularly in the absence of high-frequency tracer data, and the
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Figure 1. The upper Selke catchment, showing precipitation sam-
pling points (purple dots), the river network (blue lines), and the
elevation (in meters above sea level) as a colored map. The inset
presents the location of the upper Selke catchment in Germany.

use of SAS functions as well as the implications of TTDs’
uncertainty on water quantity and quality studies.

2 Study area and data

The upper Selke catchment is located in the Harz Moun-
tains in Saxony-Anhalt, central Germany (Fig. 1). The study
site is part of the Bode region, an intensively monitored area
within the TERENO (TERrestrial ENvironmental Observa-
tories; Wollschläger et al., 2017) network. The catchment
has a drainage area of 184 km2, the altitude ranges between
184 and 594 m above mean sea level, and the mean slope is
7.65 %. Land use is dominated by forest (broadleaf, conif-
erous, and mixed forest) and agricultural land (winter ce-
reals, rapeseed, and maize), representing 72 % and 21 % of
the catchment, respectively. The soil is largely composed of
Cambisols and the underlying geology consists of schist and
claystone, resulting in a predominance of relatively shallow
flow paths (Dupas et al., 2017; J. Yang et al., 2018).

Daily hydroclimatic and monthly tracer data in the up-
per Selke catchment were available for the period between
February 2013 and May 2015. Precipitation (P ) was taken
from the German Weather Service, whereas discharge (Q)
and evapotranspiration (ET) were simulated data obtained
from the mesoscale Hydrological Model (mHM; Samaniego
et al., 2010; Kumar et al., 2013), as continuous measure-
ments were not available for the given outlet and period. A
thorough evaluation of mHM performance for past measure-
ments has been conducted in previous studies (Zink et al.,
2017; X. Yang et al., 2018; Nguyen et al., 2021). The average
annual P ,Q, and ET are 703, 108, and 596 mm, respectively.
The area is characterized by high flow during November–
May (average Q= 0.88 m 3 s−1) and low flow during June–
October (average Q= 0.42 m 3 s−1). Evapotranspiration is
higher in June (109 mm per month) and lower in Decem-

Figure 2. Data of δ18O in precipitation (kriged values as pink dots
and raw values as yellow dots) and streamflow (blue dots).

ber (10 mm per month). The average monthly temperature
ranges from −0.7 ◦C in January to 17 ◦C in July. The δ18O
values in precipitation (δ18OP ) and in streamflow (δ18OQ)
at a monthly resolution were taken from Lutz et al. (2018)
and are displayed in Fig. 2. Values of δ18OP were used in the
form of “raw” (i.e. values collected at the catchment outlet)
and “processed” (i.e. values collected at multiple locations
and spatially interpolated using kriging) data (see Sect. 3.2
for more details). The variability in δ18OP was larger than
that in δ18OQ (Fig. 2) because of the damping of the precip-
itation signal due to mixing and dispersion within the catch-
ment. Temperature dependence caused more depleted (i.e.
more negative) δ18OP in winter than in summer (Fig. 2).

3 Methods

3.1 Catchment-scale transport model

In this study, we used the tran-SAS model (Benettin and
Bertuzzo, 2018a) for describing the catchment-scale water
mixing and solute transport based on SAS functions. The
catchment was conceptualized as a single storage S(t) (mm),
whose water-age balance can be expressed as follows (Benet-
tin and Bertuzzo, 2018a):

S(t)= S0+V (t) (1)
∂ST (T , t)

∂t
+
∂ST (T , t)

∂T
= P(t)−Q(t) ·�Q(ST , t)

−ET(t) ·�ET(ST , t), (2)
with an initial condition of ST (T , t = 0)= ST0(T ) (3)
and a boundary condition of ST (0, t)= 0. (4)

Here, S0 (mm) is the initial storage; V (t) (mm) represents
the storage variations; P(t) (mm d−1), Q(t) (mm d−1), and
ET(t) (mm d−1) are precipitation, discharge, and evapotran-
spiration, respectively; ST (T , t) (mm) is the age-ranked stor-
age; ST0(T ) (mm) is the initial age-ranked storage; and
�Q(ST , t) (–) and �ET(ST , t) (–) are the cumulative SAS
functions for Q and ET, respectively.
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By definition, the TTD of streamflow pQ(T , t) (d−1) is
calculated as follows (Benettin and Bertuzzo, 2018a):

pQ(T , t)=
∂�Q(ST , t)

∂ST
·
∂ST

∂T
. (5)

The isotopic signature in streamflow CQ(t) (‰) can be
obtained as follows (Benettin and Bertuzzo, 2018a):

CQ(t)=

+∞∫
0

CS(T , t) ·pQ(T , t) · dT , (6)

whereCS(T , t) (‰) is the isotopic signature of a water parcel
in storage. Equations (5) and (6) also apply for ET.

In this study, we tested three SAS parameterizations: the
power law time-invariant (PLTI; Eq. 7, Queloz et al., 2015),
power law time-variant (PLTV; Eq. 8, Benettin et al., 2017),
and beta time-invariant (BETATI; Eq. 9, Drever and Hra-
chowitz, 2017) distributions. Here, they are expressed as
probability density functions in terms of the normalized age-
ranked storage PS(T , t) (–), also known as fractional SAS
functions (fSAS):

ω(PS(T , t), t)= k · (PS(T , t))
k−1, (7)

ω(PS(T , t), t)= k(t) · (PS(T , t))
k(t)−1, (8)

ω(PS(T , t), t)=
(PS(T , t))

α−1
· (1−PS(T , t))

β−1

B(α,β)
. (9)

The parameters k, α, and β determine the catchment’s
water-age preference for outflows, while B(α,β) is the two-
parameter beta function. If k < 1, or if α < 1 and β > 1, the
system tends to discharge young water. If k > 1, or if α > 1
and β < 1, the catchment preferably releases old water. The
case of k = 1 or α = β = 1 describes no selection prefer-
ence (i.e. complete water mixing). PLTV is characterized by
k(t) varying linearly over time between two extremes, k1
and k2, as a function of the catchment wetness wi (–), i.e.
wi(t)= (S(t)−Smin)/(Smax−Smin), where Smin and Smax are
the respective minimum and maximum storage values over
the entire period.

3.2 Interpolation techniques for δ18O in precipitation

We tested the model with two spatial representation and two
temporal interpolation methods for δ18OP to explore the im-
pact of input tracer data on model performance, results, and
uncertainty. To evaluate the effect of spatial representation,
we firstly used single-point δ18OP measurements, which we
refer to in the following as raw δ18OP . These measurements,
obtained from Lutz et al. (2018), were taken at the catchment
outlet. The selection of δ18OP at the outlet assumes a precipi-
tation collector close to the stream gauge at the outlet, which
is a common occurrence in many catchments for logistical
reasons. Indeed, the outlet, where in-stream δ18O is sampled,
serves as the location where all precipitation inputs across

the catchment are integrated. For convenience, precipitation
monitoring is also often conducted at or near the gauging
station at the outlet. Secondly, we used spatially interpolated
δ18OP with kriging based on multiple locations. The spatial
interpolation was conducted in Lutz et al. (2018) using raw
δ18OP from 24 precipitation collectors spread over the larger
Bode region and using altitude as external drift. In a further
step, the kriged δ18OP data were weighted with spatially dis-
tributed monthly precipitation to obtain representative esti-
mates for the study catchment. In our study, the kriged δ18OP
resulted in slightly more negative values than the raw δ18OP
from the catchment outlet (Fig. 2) because of the inclusion of
more depleted δ18OP values from locations with higher alti-
tudes during the kriging process. By considering these two
options for the spatial representation of δ18OP , we intend to
assess the influence of spatial variability and uncertainty in
the simulated outputs between two opposing cases i.e. raw
isotopes representing the simplest approach and kriged iso-
topes derived from a more sophisticated method. While there
are other possibilities for the spatial representation of δ18OP ,
our choice allows us to effectively address our research ques-
tion regarding the effects on SAS models of tracer data in
precipitation collected at a single location within the catch-
ment or spatially interpolated from multiple sites.

SAS model results are sensitive to the choice of the tem-
poral resolution of input tracer data, and a finer resolution is
generally recommended to achieve a satisfactory level of de-
tail (Benettin and Bertuzzo, 2018a). Additionally, a forward
Euler scheme was employed to solve Eq. (2), whose preci-
sion increases with high-frequency time steps. For these rea-
sons, we reconstructed daily δ18OP estimates from monthly
values with two interpolation schemes. First, we used a step
function in which the values between two consecutive sam-
ples assumed the value of the last sample. Second, we used
a sine interpolation due to the fact that δ18OP samples typ-
ically exhibit pronounced seasonal variations with more de-
pleted values in winter than in summer (Fig. 2). The sine-
wave function has been used in several studies to describe
temporal variation in δ18OP (McGuire and McDonnel, 2006;
Feng et al., 2009; Allen et al., 2019). The seasonal pattern of
δ18OP values over a period of 1 year can be described as
follows (Kirchner, 2016):

δ18OP (t)= aP ·cos(2·π ·f ·t)+bP ·sin(2·π ·f ·t)+kP , (10)

where a and b are regression coefficients (–), t is the time
(decimal years), f is the frequency (yr−1), and k is the ver-
tical offset of the isotope signal (‰). The coefficients a and
b were estimated by fitting Eq. (10) to monthly δ18OP val-
ues using the iteratively re-weighted least-squares (IRLS) es-
timation (von Freyberg et al., 2018). In our study, we repro-
duced the daily frequency isotopic data through the estimated
regression coefficients of Eq. (10). Figure 3 displays the daily
kriged and raw δ18OP values simulated via step function and
sine interpolation; by employing step function and sine in-
terpolation as techniques to reconstruct tracer data in precip-
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Figure 3. Predicted δ18O in precipitation (kriged values as pink
lines and raw values as yellow lines) via step function and sine in-
terpolation.

itation, we aim to analyze the effects on SAS-based results
from two relatively simple, rather opposing approaches: one
focusing on individual measurements and the other on sea-
sonality.

3.3 Experimental design

In this study, different scenarios were used to quantify uncer-
tainty in the modeled results. We tested 12 setups composed
of three SAS functions (PLTI, PLTV, and BETATI), two tem-
poral interpolations (step and sine function), and two spatial
representations (raw and kriged values) of δ18OP (Table 1).
For each setup, we performed a Monte Carlo experiment by
running the model with 10 000 parameter sets generated by
Latin hypercube sampling (LHS; McKay et al., 1979). Model
parameters and their search ranges are shown in Table 2. A
5-year warm-up period (i.e. repetition of the input data) from
February 2008 to January 2013 was performed to reduce
the impact of model initialization. The period from Febru-
ary 2013 to May 2015 was used to infer behavioral param-
eters (i.e. parameter sets giving acceptable predictions) and,
subsequently, to interpret model results. The initial concen-
tration of δ18O in storage was set to 9.2 ‰, coinciding with
the mean δ18OQ over the study period.

The informal likelihood of the Sequential Uncertainty Fit-
ting (SUFI-2; Abbaspour et al., 2004) procedure was applied
to account for uncertainty in the parameter sets and result-
ing modeled estimates. In SUFI-2, the uncertainty is repre-
sented by a uniform distribution, which is gradually reduced
until a specific criterion is reached. In our study, we cal-
ibrated the values of model parameters until the predicted
output matched the measured δ18OQ to a satisfactory level,
defined by an objective function. As the objective function,
we employed the Kling–Gupta efficiency (KGE; Gupta et al.,
2009), and once the criterion of KGE≥ 0.5 was satisfied, we
defined a set of behavioral solutions for each model setup.
However, as the aim of this study is to investigate the im-
pact of various sources of uncertainty on simulated outputs,
rather than to determine the best model setup, we decided to
set a fixed sample size and narrow down those solutions gen-

Table 1. List of model setups.

Setup Interpolation SAS function

a step function
kriged δ18OP

PLTI
b PLTV
c BETATI

d step function
raw δ18OP

PLTI
e PLTV
f BETATI

g sine function
kriged δ18OP

PLTI
h PLTV
i BETATI

j sine function
raw δ18OP

PLTI
k PLTV
l BETATI

erated by SUFI-2 in the previous step. Setting a fixed sample
size ensures the comparability of results across the setups, as
different sample sizes could influence the uncertainty anal-
ysis (i.e. the greater the number of behavioral solutions, the
wider the uncertainty band). By fixing the sample size, we
can still meet the requirement of a minimum acceptable KGE
value (i.e. KGE≥ 0.5). In this study, we determined the final
behavioral solutions by using a fixed sample size that corre-
sponds to the best 5 % parameter sets and modeled results in
terms of the KGE.

To assess the range of possible behavioral solutions and
understand the level of uncertainty associated with it, we cal-
culated the 95 % confidence interval (CI) derived by comput-
ing the 2.5 % and 97.5 % percentile values of the cumulative
distribution in the parameters and time series of output vari-
ables (Abbaspour et al., 2004). These percentile values rep-
resent the lower and upper bounds of the CI, respectively. In
our experimental setup, the main output variables were the
in-stream δ18O signature and backward median transit time
(TT50, in days, i.e. the time it takes for half of the water par-
ticles to leave the system as streamflow at the catchment out-
let). Time series of TT50 were extracted directly from daily
TTDs (Eq. 5) and used as a metric for the streamflow age.
This was done because TTDs are typically skewed with long
tails (Kirchner et al., 2001); hence, the median is often a more
suitable metric than, for example, the MTT, as it is less im-
pacted by the poor identifiability of the older water compo-
nents (Benettin et al., 2017).

4 Results

4.1 Simulated δ18O in streamflow and model
performance

Modeled δ18O values in streamflow (δ18OQ) represented
by the 95 % confidence interval (CI) in the ensemble solu-
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Table 2. Model parameters and search ranges.

SAS parameter Symbol Unit Lower Upper
bound bound

kQ – 0.1 2
kQ1 – 0.1 2

Discharge SAS parameter kQ2 – 0.1 2
α – 0.1 2
β – 0.1 2

Evapotranspiration SAS parameter kET – 0.1 2
Initial storage S0 mm 300 3000

tion are displayed in Fig. 4. The results reveal how the pre-
dicted δ18OQ values enveloped the measured isotopic signa-
ture by reproducing its seasonal fluctuations, with depleted
(i.e. more negative) values in winter and enriched (i.e. less
negative) values in summer. Although the behavioral param-
eter sets were able to capture the seasonal isotopic trend,
they poorly reproduced the exact values; therefore, the en-
semble simulations are characterized by a non-negligible un-
certainty.

Figure 4 shows the distinct effects of the interpolated in-
put tracer data and model parameterization on the simulated
δ18OQ values. The step function interpolation generated an
erratic isotopic signature in streamflow with flashy fluctua-
tions (Fig. 4a–f). On the other hand, sine interpolation of
δ18OP values yielded a smooth response in the simulated
δ18OQ values (Fig. 4g–l). No significant visual distinction
was found between kriged (Fig. 4a–c) and raw (Fig. 4d–
f) δ18OP samples when the step function interpolation was
used, except for a slightly larger uncertainty observed with
raw δ18OP samples. Furthermore, when employing the sine
interpolation and raw δ18OP values (Fig. 4j–l), the simu-
lations overestimated the in-stream measurements in com-
parison with kriged values (Fig. 4g–i). Finally, distinct SAS
parameterizations did not produce remarkable differences
in the simulated δ18OQ values, although PLTV generally
yielded simulations that better enveloped the measured iso-
topic signature (Fig. 4b, e, h, k).

Despite the differences in the predicted δ18OQ values, all
simulations can be considered satisfactory given the KGE
values ranging between 0.55 and 0.72 across all tested se-
tups (Fig. 5). This aforementioned model performance can
be classified as intermediate (Thiemig et al., 2013) to good
(Andersson et al., 2017; Sutanudjaja et al., 2018). When con-
sidering the best fit, the combination of step function inter-
polation and raw δ18OP values performed best. Addition-
ally, PLTV generally yielded slightly better KGE values than
PLTI or BETATI when grouping the setups with the same
spatiotemporal interpolation of δ18OP . Differences in the
mean KGEs were statistically insignificant (t test with p val-
ues> 0.05) only between setups a–g, c–i–k, and j–l (Table 1),
as the mean KGE values were nearly identical; this largely

agrees with the visual analysis (Fig. 5). Contrarily, the differ-
ences in the mean KGE values of the remaining setups were
statistically significant (p values< 0.05), indicating that the
a priori methodological choices (i.e. interpolation techniques
of δ18OP values and/or SAS parameterization) strongly im-
pact the overall results. Nonetheless, this does not mean that
we can clearly identify the most suitable setup, but there is a
need to carefully analyze the multiple potential choices with
respect to SAS parameterization and tracer data interpola-
tions as well as to evaluate the uncertainty range in modeled
predictions.

Ranges of the behavioral SAS parameters for the tested
setups are summarized in Table S1 in the Supplement. Pa-
rameters for the SAS functions of Q (i.e. kQ, kQ1, kQ2, α,
and β) were different across the setups, although they were
generally relatively narrow and well identified. However, the
behavioral parameters were better constrained when using
the step function interpolation, as their 95 % CI was, on av-
erage, 34 % narrower than that provided by the sine inter-
polation, across all the SAS parameterizations. The param-
eters kQ1 and α were also better identified than kQ2 and β,
as their 95 % CI was, on average, 56 % narrower, across all
tested setups. Conversely, there was no clear difference in the
parameter ranges when using kriged or raw δ18OP values.
The evapotranspiration parameter (i.e. kET) was poorly iden-
tified in all setups, as any value in the search range provided
equally good results. The initial storage (i.e. S0) was only
partially constrained, as any value between 335 and 2895 mm
was considered acceptable.

4.2 Simulated transit times and model uncertainty

Figure 6 illustrates the 95 % CI of the behavioral solutions for
the predicted median transit time (TT50). The results show
that the model simulated largely different ranges of TT50
based on the tested setups. When using PLTI and BETATI
(Fig. 6a, c, d, f, g, i, j, l), the 95 % CI was relatively stable
with smaller fluctuations throughout the simulation period
compared with PLTV (Fig. 6b, e, h, k). However, minor dif-
ferences emerged across the simulated TT50 as a result of the
distinct interpolation techniques used for δ18OP . The 95 %
CI of TT50 was, on average, 37 % larger, across all tested se-
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Figure 4. Predicted δ18O values in streamflow. The dark blue filled circles represent the observed data, and the dashed light blue lines and
shaded areas represent the ensemble mean of all possible solutions and their range according to the 95 % CI, respectively.

Figure 5. Box plots of model performance ranges in behavioral solutions. The letters on the x axis refer to the model setup type according
to Table 1. Box plots filled with the same colors represent model setups characterized by the same interpolation scheme in space and time.
On each box, the central red line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively, namely the interquartile range (IQR). The whiskers extend to the most extreme data points not considered outliers, which are
the 25th percentile− 1.5× IQR and the 75th percentile+ 1.5× IQR, respectively. The outliers are plotted individually using the red “+”
markers.

tups, when using raw δ18OP (Fig. 6d–f and j–l) rather than
kriged δ18OP (Fig. 6a–c and g–i). This was especially visible
when the step function was used (Fig. 6a–f). Moreover, the
sine interpolation generated a 95 % CI of TT50 that was, on
average, 62 % narrower across all tested setups (Fig. 6g–l)
with respect to the step function (Fig. 6a–f). These differ-
ences were more evident for high-flow conditions where the
95 % CI of TT50 showed a significant reduction. In addition,
the behavioral solutions obtained with the sine interpolation
(Fig. 6g–l) were more skewed towards shorter mean TT50
values, across all tested setups, than those of the step func-
tion (Fig. 6a–f).

Behavioral solutions obtained with PLTV revealed a simi-
lar pattern regardless of the interpolation employed (Fig. 6b,
e, h, k). Nonetheless, there was a noticeable difference in the
95 % CI of TT50 under distinct flow regimes. During low

flows and dry periods (i.e. summer and autumn), the time
series of predicted TT50 showed large uncertainties rang-
ing at most between 259 and 1009 d across the different
setups (Fig. 6e). Conversely, during high flows (i.e. winter
and spring), the 95 % CI was much narrower and varied at
least between 126 and 154 d (Fig. 6h). The large 95 % CI
and the notable differences across the tested setups highlight
the sensitivity and, in turn, the uncertainty in the predicted
TT50 to the model parameterization, temporal interpolation
of input data, hydrologic conditions, and nonspatially inter-
polated δ18OP .

In general, the variability in the predicted TT50 was con-
trolled by the hydrological state of the system (Fig. 6). High-
discharge events reduced the TT50 values, whereas low-flow
periods were associated with a longer estimated TT50. This is
expected, as streamflow during high (low) flows is dominated
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Figure 6. Predicted TT50 of streamflow. The dashed light blue lines and shaded areas represent the ensemble mean of all possible solutions
and their range according to the 95 % CI, respectively.

by near-surface runoff (groundwater) with shallow (deep)
flow paths leading to a shorter (longer) TT50. Such differ-
ences were particularly visible with PLTV (Fig. 6b, e, h, k),
as the exponent kQ(t) shifts the water selection preference
over time as a function of the wet/dry conditions. This re-
sulted in the variability in TT50 being more pronounced than
that of PLTI and BETATI, whose SAS parameters for Q are
constant over time.

4.3 Catchment-scale water release

SAS functions provided valuable insights into the catchment-
scale water release dynamics. Figure 7 presents the behav-
ioral solutions releasing water of different ages and also
shows that the catchment generally experienced a stronger
affinity for releasing young water (i.e. kQ < 1, or α < 1 and
β > 1), rather than old water (i.e. kQ > 1, or α > 1 and
β < 1). These findings are in agreement with other studies
in the upper Selke catchment (Winter et al., 2020; Nguyen
et al., 2021). Nonetheless, there were differences in the wa-
ter release scheme when comparing various combinations of
SAS functions and spatiotemporal interpolation techniques
of isotopes. The use of PLTV resulted in a substantial num-
ber of solutions, approximately 50 % of all behavioral solu-
tions, suggesting a preference for both young and old water.
On the other hand, only a few solutions showed affinity for
old-water release, and this was more prominent when using
the sine interpolation, raw δ18OP values, and PLTI across all
tested setups.

5 Discussion

5.1 Uncertainty in TTD modeling

In this study, we characterized the TTD uncertainty arising
from some significant and critical aspects for the SAS model-
ing. These aspects are also the most directly linked to the data

interpolation and SAS parameterization that we explored in
this work. The uncertainty analysis was carried out across
the 12 tested setups corresponding to different combinations
of spatiotemporal data interpolation techniques and SAS pa-
rameterizations. Our results show that the uncertainty (i.e.
95 % CI) of the simulated TT50 (Fig. 6) was firmly dependent
on the choice of model setup, as the 95 % CI was primarily
sensitive to the type of SAS function, temporal interpolation,
and spatial representation of δ18OP .

Uncertainty in the simulated TT50 differed considerably
between time-invariant (i.e. PLTI and BETATI; Fig. 6a, c,
d, f, g, i, j, l) and time-variant (i.e. PLTV; Fig. 6b, e, h, k)
SAS functions; thus, a large sensitivity is associated with the
choice of the SAS parameterization. For example, PLTI and
BETATI explicitly assume constant water selection prefer-
ence over time, as these functions do not consider the tempo-
ral variability in the catchment wetness. As a consequence,
the resulting TT50 had a moderately stable 95 % CI with
smaller fluctuations compared with those of PLTV. On the
other hand, including an explicit time dependence in the
SAS function strongly affected the 95 % CI of TT50. No-
tably, PLTV produced a wider 95 % CI during low-flow con-
ditions, which can hinder the TTDs ability to provide robust
insights into flow and solute transport behaviors in the study
area during low-flow conditions. This highlights the need to
further constrain PLTV with additional data, which could in-
volve obtaining tracer data at a finer resolution or additional
information on the evapotranspiration and initial storage. In
addition, the exceptionally old flow components associated
with a very large 95 % CI of TT50 might be a distortion of
the actual TT50 values, which can usually be more reliably
estimated using radioactive tracers than with stable isotopes
(Visser et al., 2019). Hence, PLTV-based TT50 greater than
the observed period (828 d) should be interpreted carefully.
It is important to note that we discussed the fractional SAS
(fSAS) functions in this study, but another form of the SAS
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Figure 7. Percentage of behavioral solutions releasing water of different ages.

functions, such as the rank SAS (rSAS) functions, may have
different uncertainty. This is mainly due to the difference in
how the storage is considered: fSAS functions are expressed
as function of the normalized age-ranked storage, which is
equal to the cumulative residence time, whereas rSAS func-
tions depend on the age-ranked storage, which is the volume
of water in storage ranked from youngest to oldest (Harman,
2015).

Likewise, the high-frequency reconstruction of δ18OP
from monthly samples via interpolation created further un-
certainty. The sine interpolation effectively captured the
dominant features of the observed δ18OP , such as seasonal-
ity. Consequently, sine interpolation successfully reproduced
the seasonal trend in in-stream δ18O, although simulations
overestimated the measurements (Fig. 4g–l). On the other
hand, sine interpolation poorly reproduced rainfall isotopes
during short-term flashy events and missed detailed char-
acteristics of the tracer dataset by smoothing the variabil-
ity in the observed δ18OP (Fig. 3). As a result, high values
of δ18OP are underestimated, whereas low values are over-
estimated. It is critical to recognize these limitations when
interpreting modeling results, as uncertainty in the simu-
lated δ18OP may conceal a more pronounced hydrological
response of the system (Dunn et al., 2008; Birkel et al., 2010;
Hrachowitz et al., 2011). Contrarily, step function interpola-
tion preserved the maxima in the monthly observed δ18OP
values by capturing their variation correctly (Fig. 3). Sim-
ulations showed a better fit with measured in-stream δ18O
(Fig. 4a–f) and higher model performance (Fig. 5). However,
combining step function with raw δ18OP resulted in larger
uncertainty in the simulated TT50 (Fig. 6d–f). This reflects
the need for a comprehensive exploration of the uncertainty
range, rather than relying solely on the goodness of fit. Over-
all, the choice between step function and sine interpolation
largely affected the reconstructed input data (Fig. 3), leading
to significant differences in the simulated TT50 and associ-
ated uncertainty. It is important to note that alternative meth-
ods, such as generalized additive models (GAMs; Buzacott
et al., 2020), offer other options for interpolating tracer data.
We conducted further tests with the SAS model using a GAM
to reconstruct both kriged and raw δ18OP using smoothing
functions; this provides a more sophisticated approach than
the intuitive methods used in this study. However, the results,
available in the Supplement, show that while a GAM pro-

vided more detailed reconstructed input tracer data (Fig. S1),
it did not significantly alter the SAS-based results (Figs. S2,
S3) or yield any new insights or conclusions about uncer-
tainty with respect to using step function and sine interpo-
lation. Therefore, we conclude that, while highly resolved
input data may seem appealing, they do not necessarily lead
to substantial benefits for the SAS-based output, supposedly
due to the conceptual simplifications in the SAS model.

The spatial representation of δ18OP values had limited im-
pact on the overall pattern of simulated TT50, as the time se-
ries were comparable with both kriged (Fig. 6a–c and g–i)
and raw (Fig. 6d–f and j–l) δ18OP . Nonetheless, the spatial
interpolation of δ18OP from different locations resulted in a
reduction in the uncertainty in the TT50, which was partic-
ularly evident with the step function (Fig. 6a–f). This dif-
ference may be attributed to the fact that the upper Selke is a
large (mesoscale) catchment with a substantial gradient in el-
evation, and, as a consequence, measurement for δ18OP from
only one location may be generally overly simplistic. This
finding highlights the importance of considering not only the
model performance (Fig. 5; raw values with a step function
interpolation produced higher KGE values) but also the un-
certainty range in predicted TT50.

Finally, we found that the uncertainty was larger under dry
conditions when lower flow and longer TT50 were observed.
This was especially visible when using the time-variant SAS
function (Fig. 6b, e, h, k). It might be due to the fact that,
under wet conditions, there is a high level of hydrologic con-
nectivity within the catchment (Ambroise, 2004; Blume and
van Meerveld, 2015; Hrachowitz et al., 2016), which results
in nearly all flow paths being active and contributing to the
streamflow. This, ultimately, may make TT50 values easier
to constrain. Conversely, under dry conditions, when usu-
ally only longer flow paths carrying older water are active
(Soulsby and Tetzlaff, 2008; Jasechko et al., 2017), water
partially flows through a drier soil zone where flow is more
erratic (i.e. flow directions and patterns can vary widely) as
the conductivity is controlled by soil moisture. As a result,
wet areas can be patchy and water flows preferentially at
certain locations only, as opposed to spatially uniform flow
through the soil matrix; this might make it more challeng-
ing to constrain older water ages. Similarly, Benettin et al.
(2017) found higher uncertainty in the simulated SAS-based
median water ages during drier periods, potentially due to
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higher uncertainty in the total storage. Moreover, non-SAS
function studies have observed major uncertainties and devi-
ations from observations in lumped modeled results during
low-flow conditions (Kumar et al., 2010). This was primarily
due to the lack of spatial variability in the catchment charac-
teristics in lumped models, which is a critical factor control-
ling low-flow regimes in rivers.

The dissimilarities in the simulated TT50 across the tested
setups underline the importance of accounting for uncer-
tainty in model-based TTDs. The uncertainty analysis with
SUFI-2 performed in this study was essential to best describe
the parameter identifiability and bounds of the behavioral
solutions of each output variable. Furthermore, our results
highlight the importance of gaining tracer datasets of good
quality (i.e. tracer data with a finer temporal resolution), con-
sidering the spatial variability in the isotopic composition in
precipitation, and, possibly, employing a model parameteri-
zation that best describes the catchment-specific storage and
release dynamics. The last point can be defined according to
a precise conceptual knowledge of the catchment’s function-
ing and information from previous studies in similar catch-
ments.

5.2 TTD modeling: advantages and limitations

Our results provide visually plausible seasonal fluctuations in
the predicted δ18OQ samples (Fig. 4) and satisfactory KGE
values (Fig. 5), despite the uncertainty arising from model
inputs, structure, and parameters. The good match with ob-
servations provides confidence in the simulated TT50 for the
upper Selke catchment. The magnitude of the uncertainty re-
sulting from different setups cannot be generalized, but the
overall approach for uncertainty assessment presented here
could be extended to other areas and TTD studies. However,
we recognize some limitations and indicate below possible
reasons and, in turn, improvements that future work could
achieve.

First, the limited length of the δ18O time series might not
describe the system accurately; hence, implementing longer
time series could improve the parameter identifiability and
provide a more accurate estimation of the TTDs. Second,
this study relied on stable water isotopes, which might un-
derestimate the tails of the TTDs (Stewart et al., 2010; Seeger
and Weiler, 2014), although recent works have contested this
(Wang et al., 2022). Possible advancements could be reached
by using decaying tracers varying over a longer timescale
than stable water isotopes (e.g. tritium; Stewart et al., 2012;
Morgenstern et al., 2015) and imparting more information
on old water. Next, future work should retrieve more infor-
mation on the evapotranspiration ET and initial storage S0,
whose parameters were poorly identified. However, this issue
is common in transport studies that rely on measurements of
in-stream stable water isotopes (Benettin et al., 2017; Buza-
cott et al., 2020). As a way forward, information on the ET
isotopic compositions might help better constrain ET param-

eters and assess their affinity for young/old water. Regard-
ing constraining the range of S0, further information can
be gained from geophysical surveys in the study areas or
groundwater modeling as well as by using decaying isotopes
(Visser et al., 2019).

5.3 Implications of TTD uncertainties

This study characterized the uncertainty in TTDs, which
summarize the catchment’s hydrologic transport behavior
and, therefore, comprise decisive information for water man-
agers. The value of TT50 has relevant implications for both
water quantity and quality, as does its uncertainty. The larger
the 95 % CI in the simulated TT50, the greater the difference
in the TT50 values, which, ultimately, implies distinct hydro-
logical processes, water availability, groundwater recharge,
and solute export dynamics (McDonnel et al., 2010).

For example, knowing the TTD and its uncertainty may
be crucial for characterizing the catchment’s response to cli-
matic change (Wilusz et al., 2017). Considering the increas-
ing severity of droughts in the past decades (Dai, 2013), a
catchment with a shorter TT50 and a dominant release of
young water might be more affected by droughts than a
catchment with a longer TT50, which means that its stream is
fed by relatively old water sources. Therefore, a short TT50
reveals a low drought resilience of the catchment and lim-
ited water availability, which could limit streamflow genera-
tion processes and change the in-stream water quality status
during drought periods (Winter et al., 2023). Likewise, TTD
uncertainty may affect the understanding of the water in-
filtration rate, hydrological processes, and aquifer recharge,
as a shorter TT50 suggests that water is quickly routed to
the catchment outlet rather than infiltrating deeply into the
groundwater. Finally, TTD uncertainty can have an impact
on the quantification of the modern groundwater age, i.e.
groundwater younger than 50 years (Bethke and Johnson,
2008). According to Jasechko (2019), the correct identifica-
tion of modern groundwater abundance and distribution can
help determine its renewal (Le Gal La Salle et al., 2001;
Huang et al., 2017), groundwater wells and depths most
likely to contain contaminants (Visser et al., 2013; Opazo
et al., 2016), and the part of the aquifer flushed more rapidly.

Uncertainty in TTDs also impacts on assessing the fate
of dissolved solutes, such as nitrates (X. Yang et al., 2018;
Nguyen et al., 2021, 2022; Lutz et al., 2022), pesticides
(Holvoet et al., 2007; Lutz et al., 2017), and chlorides (Kirch-
ner et al., 2000; Benettin et al., 2013). These solutes con-
stitute a crucial source of diffuse water pollution in agricul-
tural areas (Jiang et al., 2014; Kumar et al., 2020), as they
are spread on the soil in large quantities, especially during
the growing season. The exposure time of solutes with the
soil matrix has strong consequences for biogeochemical re-
actions, such as denitrification in the case of nitrates (Kolbe
et al., 2019; Kumar et al., 2020). A short TT50 suggests
that water can be rapidly conveyed to the stream network
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(Kirchner et al., 2001), with limited time for denitrification.
This explains the elevated in-stream concentration and short-
term impact of nitrate export compared with that of a longer
TT50, which is typically associated with old-water release
and a low nitrate concentration (Nguyen et al., 2021). Sim-
ilarly, pesticide transport is highly affected by the TTD un-
certainty, as a long TT50 suggests little pesticide degradation
due to decreased microbial activity along deeper flow paths
(Rodríguez-Cruz et al., 2006). In other cases, a shorter TT50
may limit the time for degradation, causing a peak in the
in-stream concentration (Leu et al., 2004). Overall, a longer
TT50 can delay or buffer the catchment’s reactive solute re-
sponse at the outlet (Dupas et al., 2016; Van Meter et al.,
2017). This creates a long-term effect of hydrological lega-
cies and a continuous problem with diffuse pollution of ni-
trates (Ehrhardt et al., 2019; Winter et al., 2020) and pes-
ticides (Lutz et al., 2013), which can persist in the catch-
ment for several years. Finally, TTD uncertainties also play
an important role in chloride transport, although chlorides
are commonly known to be conservative (Svensson et al.,
2012). A short TT50 may indicate rapid chloride mobiliza-
tion, whereas a long TT50 implies chloride persistence in
groundwater; therefore, chloride accumulates and is released
at lower rates, with impacts on the ecosystem functions, veg-
etation uptake, and metabolism (Xu et al., 1999).

Understanding the uncertainty in TTDs is crucial for the
aforementioned implications. While previous studies have
used only a specific SAS function and/or specific tracer data
interpolation technique in time and space, here we show that
there could be a wide range of different results in terms of
water ages, model performance, and parameter uncertainty.
This is due to the specific choice regarding SAS parameter-
ization and tracer data interpolation. With this, we want to
convey that uncertainty is omnipresent in TTD-based mod-
els, and we need to recognize it, especially when dealing with
sparse tracer data and multiple choices for model parameter-
ization. Therefore, we want to encourage future studies to
explore these uncertainties in other catchments and different
geophysical settings, with the final aim to investigate whether
these uncertainties may affect the conclusions of water quan-
tity and quality studies for management purposes.

6 Conclusions

This study explored the uncertainty in TTDs of streamflow,
resulting from 12 model setups obtained from different SAS
parameterizations (i.e. PLTI, PLTV, and BETATI), and re-
construction of the precipitation isotopic signature in time
and space via interpolation (step function vs. sine fit and raw
vs. kriged values).

We found satisfactory KGE values, whose differences
across the tested setups were statistically significant, mean-
ing that the choice of the setup matters. As a consequence,
distinct setups led to considerably different simulated TT50

values. The choice between using time-variant or time-
invariant SAS functions was crucial, as the time-invariant
functions generated moderate fluctuations in the 95 % CI
of the estimated TT50 because of the constant water se-
lection preference over time. On the other hand, the time-
variant SAS function captured the dynamics of the catch-
ment wetness, resulting in more pronounced fluctuations in
TT50. However, the time-variant SAS function also produced
a larger 95 % CI in TT50, notably during drier periods, which
might indicate the need to constrain the function with ad-
ditional data (e.g. finer tracer data resolution and/or infor-
mation on evapotranspiration and storage). Significant dif-
ferences in TT50 were observed depending on the employed
temporal interpolations. Results from the sine interpolation
produced a smaller uncertainty in TT50, with the time series
skewed towards smaller values. However, such results must
be interpreted carefully, as the sine interpolation poorly re-
produced flashy events in precipitation, thus indicating that
some more dynamic transport processes were not fully con-
sidered. Conversely, the step function interpolation resulted
in a larger uncertainty in the TT50, but it was able to better
reproduce the measured δ18OP data by capturing the peak
values, as opposed to the sine interpolation. Dry conditions
were another reason for uncertainty, as indicated by the high
variance in the simulated TT50 values, which is potentially
attributed to the water preferentially moving at certain loca-
tions, making wet areas patchy, so it may be more challeng-
ing to accurately constrain older water ages. Finally, there
was comparable pattern in the modeled results when using
kriged vs. raw isotopes, but the kriged values yielded an un-
certainty reduction in TT50. This highlights the potential ad-
vantage of spatially interpolated values over a single mea-
surement representative of the entire area, particularly in a
mesoscale catchment that varies with respect to elevation.

These findings provide new insights into TTD uncertainty
when high-frequency tracer data are missing and the SAS
framework is used. Regardless of the degree of efficiency or
uncertainty, the decision on which setup is more plausible
depends on the best conceptual knowledge of the catchment
functioning. We consider the presented approach to be po-
tentially applicable to other studies to enable a better char-
acterization of TTD uncertainty, improve TTD simulations
and, ultimately, inform water management. These aspects
are particularly crucial in view of increasingly extreme cli-
matic conditions and worsening water pollution under global
change.

Code and data availability. The version of the model used in
this study (v1.0) and its documentation are available at https:
//github.com/pbenettin/tran-SAS (last access: August 2020) and
https://doi.org/10.5281/zenodo.1203600 (Benettin and Bertuzzo,
2018b). The iteratively re-weighted least-squares (IRLS) method
used to obtain the modeled daily kriged and raw isotope
(δ18O) in precipitation information with the sine interpolation
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is presented at https://doi.org/10.5194/hess-22-3841-2018 (von
Freyberg et al., 2018). The hydroclimatic time series, δ18O
data, and interpolated δ18O time series can be accessed at
https://doi.org/10.5281/zenodo.8121108 (Borriero, 2022).
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