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Abstract. This study evaluates water and energy fluxes and
variables in combination with parameter optimization of
version 5 of the state-of-the-art Community Land Model
(CLM5) land surface model, using 6 years of hourly obser-
vations of latent heat flux, sensible heat flux, groundwater
recharge, soil moisture and soil temperature from an agricul-
tural observatory in Denmark. The results show that multi-
objective calibration in combination with truncated singular
value decomposition and Tikhonov regularization is a pow-
erful method to improve the current practice of using lookup
tables to define parameter values in land surface models. Us-
ing measurements of turbulent fluxes as the target variable,
parameter optimization is capable of matching simulations
and observations of latent heat, especially during the sum-
mer period, whereas simulated sensible heat is clearly biased.
Of the 30 parameters considered, the soil texture, monthly
leaf area index (LAI) in summer, stomatal conductance and
root distribution have the highest influence on the local-scale
simulation results. The results from this study contribute to
improvements of the model characterization of water and en-
ergy fluxes. This work highlights the importance of perform-
ing parameter calibration using observations of hydrologic
and energy fluxes and variables to obtain the optimal param-
eter values for a land surface model.

1 Introduction

Hydrological processes play a fundamental role in land sur-
face water and energy cycles. A land surface model (LSM) is
a tool for linking energy and water processes at the land sur-
face and is used to study and understand the processes con-
trolling the transport of energy and water. However, there is a
need to evaluate the hydrologic performance of LSMs based
on comprehensive in situ data on water and energy fluxes and
variables. Climate change and changes in land use/land cover
are further increasing the demand for quantification of water
and energy fluxes. This implies improvement in the predic-
tive capability of LSMs to determine the effect of these land-
use and climate changes (Dai et al., 2003; Oleson et al., 2008;
Clark et al., 2015; Overgaard et al., 2006).

LSMs simulate the vertical water and energy fluxes from
the top of the canopy, through the canopy and stem, through
the root zone, and down to the groundwater table. The ver-
tical fluxes and states are simulated based on coupled flow
and energy equations subject to various boundary conditions
and described by a large number of parameters. It is common
practice to use lookup tables to define a priori parameter val-
ues (Rosero et al., 2010; Hou et al., 2012). However, many
LSM components are based on relatively few observations
and idealized laboratory experiments (Stockli et al., 2008),
and existing LSMs are generally not tested on in situ hydro-
logical observation data (Clark et al., 2015). Thus, LSMs are
typically under-constrained (De Lannoy et al., 2011; Stockli
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et al., 2008), and their capability for hydrological simulations
at watershed scales has not been adequately studied (Li et
al., 2011). With respect to LSMs, it is standard practice that
the a priori assignment of parameter values is based solely
on vegetation type or soil texture. However, several authors
have suggested that parameterization in LSMs should also
consider the climatic conditions (Rosero et al., 2010), as lo-
cal climate has an important impact on the parameter values,
especially when realistic hydrological responses should be
captured (Huang et al., 2013).

Many LSM studies focus on continental to global ef-
fects (Tangdamrongsub et al., 2017), whereas hydrological
model studies often have a catchment-based focus (Demirel
et al., 2018). With the development of hydrological obser-
vatories (Bogena et al., 2018), critical zone observatories
(Guo and Lin, 2016), FLUXNET (Wilson et al., 2002; Chen
et al., 2018) and similar observational programs, more and
more attention is being paid to the hydrological performance
of LSMs at local and regional scales (Stockli et al., 2008;
Carrillo-Rojas et al., 2020; Lane et al., 2021). It is important
to test and evaluate LSMs at the point scale to assess their
predictability and their usefulness in global simulations (Dai
et al., 2003). However, smaller-scale models are also highly
relevant, as they represent the scales at which societies make
decisions. LSMs are used to inform and support natural re-
source management, for example, by estimating the evapo-
transpiration components of various land covers and, thereby,
providing a platform for water and land-use management un-
der current and future climate conditions.

LSMs are simplified representations of the landscape, and
many of the process relation parameters cannot be directly
measured (Gupta et al., 1999). Additionally, there are exten-
sive structural differences among LSMs (Clark et al., 2015).
Therefore, the majority of parameters in LSMs are often
model dependent and, hence, difficult to transfer and com-
pare between different LSM schemes (Rosero et al., 2010).

Over time, LSMs have been further developed to address
a broad range of terrestrial-ecosystem-related scientific ques-
tions (Lawrence et al., 2019a), such as the cycling of energy,
water, carbon and nitrogen. The “bewilderingly large set of
processes” (Clark et al., 2015) incorporated into LSMs heav-
ily increases the model complexity and the associated num-
ber of parameters that governs the model equations, thereby
emphasizing the need for parameter estimation and perfor-
mance evaluation (Mendoza et al., 2014). Some of the com-
monly used LSMs are ORCHIDEE (Krinner et al., 2005),
the Community Land Model (CLM; Dai et al., 2003), Noah-
MP (Niu et al., 2011), VIC (Liang et al., 1994) and MIKE
SHE SWET (Overgaard, 2005). Advanced calibration tech-
niques are widely used in hydrology for parameter estima-
tion, including techniques to quantify uncertainties. Contrary
to hydrological modeling, the calibration of LSMs is rela-
tively uncommon (Davison et al., 2016; De Lannoy et al.,
2011), and only a limited number of studies have dealt with
calibration and sensitivity analysis of the energy and hydrol-
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ogy parameters in LSMs (Gupta et al., 1999; Pauwels and
De Lannoy, 2011); examples of such publications are as fol-
lows: (i) Rosero et al. (2010), who quantified the parameter
sensitivity of both soil and vegetation parameters using the
Sobol method in the Noah LSM by minimization of a root-
mean-square error (RMSE) multi-objective criteria of sen-
sible heat flux (H), latent heat flux (L E), ground heat flux
(G), soil temperature (7si) and soil water content (SWC);
(ii) Pauwels and De Lannoy (2011), who also combined en-
ergy fluxes, as well as the SWC, when calibrating a simple
water and energy balance model using the spectral domain
method; (iii) Davison et al. (2016), who performed a single-
objective calibration on streamflow and concluded that the
simulation of streamflow clearly has an influence on the sim-
ulated LE; and (iv) Mendiguren et al. (2017), who (with
focus on evaluating the spatial performance of hydrologi-
cal models) calibrated the two-source energy balance model
(TSEB) driven by remote sensing products.

Several studies have carried out sensitivity analyses on for-
mer versions of the CLM. Gohler et al. (2013) employed
eigendecomposition in a sensitivity study of 66 parameters in
CLM3.5 using measurements of energy fluxes and photosyn-
thesis, while both Huang et al. (2013) and Sun et al. (2013)
performed sensitivity analyses using satellite-based LE es-
timates and daily streamflow measurements, respectively, to
evaluate the sensitivity of hydrologic parameters in CLM4.0.
Hou et al. (2012) undertook an uncertainty quantification
using a quasi-Monte Carlo approach to evaluate the sensi-
tivity of LE and H to the hydrological input variables in
CLM4.0, and Jefferson et al. (2016) used energy fluxes in
the active subspaces method to evaluate parameter sensitiv-
ity in the ParFlow-CLM. Zhang et al. (2017) calibrated soil
texture parameters using data assimilation methods and ob-
served SWC. Hence, previous studies have shown that both
energy and hydrological fluxes and variables are sensitive to
the parameterization of the CLM, emphasizing the need for
parameter optimization.

In this study, we evaluate in situ water and energy fluxes
and variables at an agricultural field site in Denmark us-
ing version 5 of the state-of-the-art LSM Community Land
Model (CLMS5) coupled to the PEST optimization code (Do-
herty, 2015). In most previous research, LSMs have not been
calibrated and, instead, lookup tables are used to define pa-
rameter values. Here, we identify values of important param-
eters in an LSM using multi-objective calibration in combi-
nation with regularization to improve the simulation of the
hydrological processes.

The recent version (at the time of writing) of the CLM,
CLMS, includes a wide range of modifications in its struc-
ture and parameterization over previous CLM versions
(Lawrence et al., 2019a). Only a few calibration studies have
been reported for CLM5 (Dombrowski et al., 2022); how-
ever, through their validation of CLMS5, Cheng et al. (2021)
state that the calibration of the hydrologic parameters are
needed to improve simulations of subsurface runoff.
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Recently, Dombrowski et al. (2022) performed a sensi-
tivity analysis using the prognostic crop module in CLMS5.
We calibrate a point-scale CLMS5 against observations of net
radiation (Ry), incident shortwave radiation (Soy), LE, H,
recharge (q), the SWC and Tyoj from the Danish Hydrolog-
ical Observatory (Jensen and Refsgaard, 2018) using well-
established calibration methods from hydrological model-
ing. Our observational dataset is exclusive in that we include
all observations available for closing the long-term water
and energy balance at the point-scale, including groundwa-
ter recharge measurements, which have not previously been
used for evaluating and calibrating an LSM. The novelty of
this study lies in the methodological approach that combines
(1) multi-objective calibration, (2) truncated singular value
decomposition and (3) Tikhonov regularization, using the
PEST program suite (Doherty, 2015). After the autocalibra-
tion, we evaluate the model parameter uncertainty by means
of identifiability and relative error variance reduction (Do-
herty and Hunt, 2009).

2 Methods
2.1 Study site

The Voulund site is an agricultural field observatory (Jensen
and Refsgaard, 2018) located in a temperate climate in the
western part of Denmark on flat terrain. During the study
period, the field was cultured with rotations of spring and
winter barley, whereas grass species were used as a cover
crop during the autumn and winter seasons. The 30 cm deep
plowed root zone contains approximately 4.5 % organic mat-
ter (Andreasen et al., 2020), whereas there is little organic
matter content below 30 cm. The soil is sandy with a very
low clay content (Vasquez, 2013).

Hourly forcing data from the 2010-2015 period were used
for the analysis. Measurements of energy fluxes were ob-
tained from a flux tower (Ringgaard et al., 2011); the tower
was also equipped with sensors to measure temperature, rel-
ative humidity and radiation components. Wind speed and
atmospheric pressure were obtained from a meteorological
station. The precipitation dataset has been constructed based
on observations from six undercatch-corrected precipitation
gauges (Denager et al., 2020). Recorded irrigation amounts
are included as additional precipitation in the precipitation
dataset. Soil temperature (7o) Was obtained from two ca-
pacitance sensors located right below the soil surface.

To evaluate the performance of the CLMS5 model, we used
measurements of LE, H, g, the SWC in the top soil layer (0-
20 cm), Tyoil, Sout and Ry. Four percolation lysimeters mea-
sured recharge g (Schelde et al., 2011), and measurements
of the SWC in the top soil were obtained from a cosmic-
ray neutron sensor (CRNS) (Andreasen et al., 2020; Bo-
gena et al.,, 2022). Two heat flux plates measured ground
heat flux (G) at 0.05mb.g.l. (meters below ground level).
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R, was calculated as the difference between incident and
reflected shortwave (Sin—Sou) and longwave radiation (Lin—
Loyt) summed. Further details on site characterizations and
data collection are provided in Denager et al. (2020).

2.2 Model description

Version 5 of the open-source Community Land Model
(CLMS5) LSM (Lawrence et al., 2019a, b) is the land com-
ponent of the Community Earth System Model (CESM), and
it simulates the soil-plant—atmosphere exchange processes.
We applied this process-based model in single-point mode,
uncoupled from the climate model and driven by hourly in
situ site-specific climate forcing data. We used the original
and publicly available release code of CLMS5 with the modi-
fications mentioned below.

CLMS includes biophysical, biochemical, ecological and
hydrological processes that are described by equations with
a large number of parameters. Thermal and soil hydraulic
parameters are estimated with built-in pedotransfer functions
from simple soil properties, such as soil texture (the fractions
of sand and clay) (Nachtergaele et al., 2009) and soil organic
carbon (Lawrence and Slater, 2008). CLM5 simulates unsat-
urated flow using the one-dimensional Richards equation for
vertical flow and surface runoff based on a TOPMODEL-
based parameterization (SIMTOP; Niu et al., 2005, 2007).
Surface water storage is simulated as a function of micro-
topography (Lawrence et al., 2019a). The soil column is di-
vided into 20 hydrologically active soil layers (0-8.6 mb.g.1.)
(Lawrence et al., 2019a), and the thickness of each layer in-
creases from top to bottom. While CLMS5 calculates water
flux and the SWC for all 20 hydrologically active layers, it is
assumed that the soil texture is homogeneous within each of
two horizons: the root zone (0-0.32 mb.g.1.) and the below-
root zone (0.32-8.6mb.g.1.). In the present application of
CLMS, the simulated groundwater recharge, gsim, is found
as the water reaches the bottom of the 11th soil layer, corre-
sponding to the depth of the bottom of the lysimeters. In this
study, we compare the average SWC of CLMS layers 1-4
(020 cm) with the SWC measured by the CRNS, which cor-
responds to the average CRNS measurement depth at the site.
All simulations were carried out with hourly time steps cov-
ering the 2010-2015 period. Simulated recharge and SWC
are compared to the outflow from lysimeters and the CRNS-
estimated SWC, respectively.

The lower boundary condition of the model was a wa-
ter table head-based boundary (https://www.cesm.ucar.edu/
models/cesm2/settings/current/clm5_0_nml.html, last ac-
cess: 19 July 2023). This modification was needed as the de-
fault CLMS5 settings of the lower boundary condition raised
the groundwater table above the level of the bottom of the
lysimeters.

CLMS was applied in satellite phenology mode (CLMS5-
SP), in which the carbon and nitrogen biogeochemistry cy-
cles were deactivated and plant phenology was represented
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by the leaf area index (LAI), stem area index (SAI) and
canopy height (height_top). The LAI is the green area index,
whereas the SAI includes dead leaves and litter.

The energy fluxes considered in CLMS include direct and
diffuse shortwave radiation as well as absorbed, transmit-
ted, and reflected longwave radiation by soil and vegeta-
tion. CLMS simulates the turbulent fluxes of H and LE
numerically through the Monin—Obukhov similarity theory
(Lawrence et al., 2019a), which relates the turbulent fluxes to
the differences in mean temperature and humidity (Wang and
Dickinson, 2012). CLMS5 calculates many individual pro-
cesses; for example, soil evaporation, canopy evaporation
and transpiration are parameterized individually, and the sum
of these individual component terms makes up total Egpy. A
detailed description of the CLMS5 framework is available in
Lawrence et al. (2019a).

Energy is conserved at every time step (Lawrence et al.,
2019a):

R.=H+LE +G, (1

where R, is the net radiative flux, H is the sensible heat flux,
LE is the latent heat flux and G is the ground heat flux.
CLMS simulates LE and H explicitly, whereas G is consid-
ered a residual term for closing the energy balance (Lawrence
et al., 2019a). This approach for closing the land surface en-
ergy balance is used in the majority of the available LSMs
(Kracher et al., 2009). As in standard eddy covariance stud-
ies, Eq. (1) neglects minor fluxes and storage terms (Foken
et al., 20006).

A spin-up configuration enables CLMS5 to reach a quasi-
equilibrium state prior to the simulation period of interest. A
total of 1000 years of spin-up was used from cold start, with
the described modifications of the model setup, and 4 years
(2012-2015) of forcing data were recycled to achieve proper
initial conditions. It took approximately 150 years of spin-
up to reach quasi-equilibrium. Additionally, as the calibra-
tion process changes the model behavior through parameter
adjustments, we included 4 years of spin-up preceding each
simulation in the calibration.

CLMS differentiates between “surface runoff” from the
SIMTOP runoff model (Niu et al., 2005) and “surface wa-
ter runoff/surface water storage” based on microtopography
(Lawrence et al., 2019a). In SIMTOP, precipitation that falls
over the saturated fraction of a grid cell is immediately con-
verted to surface runoff. Surface runoff at the study site is
almost absent. Therefore, the maximum possible saturated
area fraction (Fpax) Was set to zero, resulting in nonexistent
surface runoff.

Meteorological forcing data include precipitation, air tem-
perature, wind speed, surface air pressure and relative humid-
ity, while radiation forcing data include incident solar (Si,)
and incident longwave radiation (Liy).

As the intention was to calibrate CLMS5 outputs against ob-
served flux data, it is of critical importance that the specified
Ry, 1s in agreement with R, . We identified systematic
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errors in the measurements of absolute longwave radiation
components. However, although the values of absolute long-
wave radiation were inaccurate, we assume that the differ-
ence between Lip, . and Loy, was reliable, thereby assum-
ing that Ry, calculated as Ry, = Singy, — Soutgps + Lingys —
Lout,,, Will represent the net radiation at the field site.

The forcing data of Lj, were computed as a differential
term, as CLMS5 computes Ly using the Stefan—Boltzmann
law (Stockli et al., 2008):

To4 T \*
Lin = Ry _Sin+Sout+O'<%> , 2

where Ry, Sip and Sy are the respective net radia-
tion, incoming solar radiation and outgoing solar radia-
tion (Wm™2); o is the Stefan-Boltzmann constant (5.67 x
1078 Wm2 K=%); T, is the air temperature (K); and T is
the soil-surface temperature (K).

The observed energy fluxes do not meet long-term energy
balance closure (Denager et al., 2020). Many studies intro-
duce corrections of the observed energy fluxes, LE and H,
to meet energy balance closure (Carrillo-Rojas et al., 2020;
Chen et al., 2018; Davison et al., 2016). Such a correction
of the observed turbulent fluxes was not applied here, as our
specific goal was to analyze the energy balance components
using CLMS.

2.3 Calibration approach

Calibration is a challenge when models are complex and the
number of parameters is high (Doherty et al., 2010). We ap-
plied the PEST suite of programs (Doherty, 2018a, b) to cal-
ibrate CLMS5. PEST is an open-source software, is model in-
dependent, and provides highly parameterized inversion and
model parameter uncertainty analysis (Doherty et al., 2010).
A single model run in CLMS5 took about 10 min on a Linux
server (Intel Xeon Gold 6148 processor, 20 cores, 380 GB
RAM). An example .pst file used in PEST can be found in Ta-
ble S3 in the Supplement. In PEST, a maximum of 50 interac-
tions were defined, and only one scenario calibration reached
this maximum. We applied the gradient-based nonlinear
Gauss—Marquardt-Levenberg method in PEST, in which the
calculation of finite-difference derivatives is used in the in-
version process. This optimization technique often use fewer
models runs than alternative optimization techniques (Do-
herty, 2015). Additionally, we introduced Tikhonov regu-
larization to honor the observed parameters values as prior
knowledge. In mathematical regularization using the sub-
space method, the parameter space is divided into a solu-
tion space and a null space. The solution space comprises
combinations of parameters that can be estimated uniquely
from the available observations, whereas the null space in-
cludes parameters combinations that cannot be estimated on
the basis of the observations. Truncation of low singular val-
ues provides a threshold between the solution and null spaces
(Doherty et al., 2010).
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Focus was given to a set of 30 time-invariant model param-
eters (Tables 1, S1, S2), chosen for their direct mechanistic
impacts on the responses of energy and water fluxes. To keep
the analysis simple, we decided to include only parameters
represented in lookup tables and to disregard hard-coded pa-
rameters, parameters determining pedotransfer functions and
parameters influencing factors such as snow hydrology. We
kept all of these parameters at the prescribed values. A for-
mal local parameter sensitivity analysis of the 30 model pa-
rameters was carried out to identify the most sensitive pa-
rameters. However, it was decided to include all 30 parame-
ters in the calibration approach. John Doherty (personal com-
munication, 2017) recommends highly parameterized inver-
sion, in which most parameters are included in the calibra-
tion. The regularization approach maintains the insensitive
parameters at their preferred values; thus, parameter value
deviation from the lookup table values can be studied after
regularization. It should be noted that we calibrated using
the percentages of clay and sand, not directly on the Clapp—
Hornberger exponent B. The Clap—Hornberger B exponent
is inherently defined in CLM5 using pedotransfer functions
of the soil texture (percentages of sand and clay) and the or-
ganic matter fraction (Lawrence et al., 2019a). Regulariza-
tion converts an ill-posed problem to a well-posed problem
and prevents overfitting. Truncated singular value decompo-
sition identifies insensitive or highly correlated combinations
of parameters and excludes them from the calibration (Do-
herty, 2015); moreover, using Tikhonov regularization, we
honored the observed parameter values and a priori infor-
mation from lookup tables, as they were given as the prior
knowledge/initial values (Tables, 1, S1, S2).

In CLMS, the soil and hydraulic parameters, including
porosity, saturated hydraulic conductivity and the Clapp—
Hornberger exponent B, in the functional relationships for
retention and unsaturated hydraulic conductivity are derived
from soil texture (percentage of sand/clay and organic mat-
ter fraction) in each soil layer (Lawrence et al., 2019a) us-
ing built-in pedotransfer functions. Measured soil texture
was used as prior knowledge/initial values (Vasquez, 2013).
These were slightly different from lookup table parameter
values (Tables 1, S1, S2). The soil carbon density in the root
zone was fixed at a value of 6kgm™3, as this represents an
organic matter content corresponding to the measured value
of 4.5 % (Andreasen et al., 2020). Soil color determines a dry
or saturated soil albedo (Fisher et al., 2019). Soil color was
not included in the calibration because the parameter estima-
tion tool was not able to handle parameter values as integers.
The lookup parameter value of soil color for the field site
is 13; we used this value in the simulations.

The a priori satellite-derived LAI and SAI values were ag-
gregated from high-resolution input datasets (Cheng et al.,
2021). According to our basic knowledge of the field site
(Herbst et al., 2011), the a priori LAI values derived from
satellite images seemed rather small. Therefore, we used ini-
tial values for the LAI from Herbst et al. (2011). We included
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all 12 of the monthly LAI parameters in the calibration. We
used the SAI values from the lookup table and did not include
them in the optimization. Initial values of the eight optical
property parameters were defined according to the lookup ta-
ble values.

We used a single plant functional type (PFT) “Cs; Un-
managed Rainfed Crop” (Lawrence et al., 2019a) for a pri-
ori vegetation parameter values. The prescribed leaf orienta-
tion index for “C3 Unmanaged Rainfed Crop” of —0.3 was
changed to —0.5, as this is the prescribed value for spring
wheat (Lawrence et al., 2019a).

Parameter limits were given wide intervals to provide full
freedom to the parameter optimization. Prior calibration pa-
rameter variability (oj,,) was given as a standard deviation
of 0.5 in the log space of the respective parameters.

In the calibration, we used seven different observation
datasets (all at an hourly resolution) as optimization targets:
Rn, Souts LE, H, q, Tsoi1 and the SWC in the top soil layer.
We considered 13 individual scenarios (A—M) in which cali-
bration was carried out against different combinations of ob-
servation data types (Table 1). The scenarios were designed
to study the value of hydrological data in an energy-based
LSM and the reliability of respective LE and H observa-
tions. R, and Sy were included as optimization targets to
ensure a persistent match between observations and simula-
tions of R, and Soyt.

The multi-objective function (@gbservation) that is mini-
mized by PEST is defined as the squared sum of weighted
residuals:

m n

Pobservation = Z Z (a)y,i,j (yobs,i,j - ysim,i,j))z’ (3)

i=1j=1

where m is the number of observation groups in the given
optimization; n is the number of respective Ry, Sout, LE, H,
q, SWC and Ty, observations; w is the weight of the obser-
vations; and yobs and ysim are observed and simulated values,
respectively. We ensured uniform weighting between the dif-
ferent observation groups to avoid single observation groups
excessively dominating the parameter estimation.

Regularization was introduced in all calibrations by
adding the regularization objective function (¢regularization)
to @Pobservation- As we used preferred value regularization,
@regularization consists of the weighted least squares of the dif-
ference between the parameter value and the preferred (a pri-
ori) parameter values. Thus, the total objective function (¢y)
comprises the sum of the observation and the regularization
objective functions:

2
@t = Pobservation T U Pregularization s “4)

where p is the weight factor of the regularization objective
function (Doherty, 2018a).

In mathematical regularization, we seek an “appropriate”
fit, rather than the best possible fit, between simulations and
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Table 1. Lookup table with initial and optimized parameter values for all scenarios. The LAI and optical parameter values can be found in Tables S1 and S2 in the Supplement.

Scenario X Z A B C D E F G H I J K L M
Target variable Control run Initial LE LE LE LE,q H H H H,q H H,q, q LE LE,
(lookup  model run and and and and and and and SWC and H,q
table (initial qg SWC SwC g SWC SWC T and H and
parameter  parameter Tsoil SWC
value) value)
Sand, root zone sand1 % 60 60 53 59 86 88 86 102 82 75 57 67 54 86 78
Sand, below-root sand2 % 60 60 127 33 100 57 97 60 93 73 107 55 46 100 78
zone
Clay, root zone clayl % 10 10 6 16 5 14 4 4 4 4 4 4 6 4 5
Clay, below-root clay2 % 10 10 5 22 5 14 4 8 4 5 5 8 9 4 5
zone
Canopy top height height top m 0.5 0.5 0.6 1.0 0.5 1.0 0.4 0.2 0.5 04 040 0.30 0.7 0.4 0.4
Displacement height  displar - 0.68 0.68 0.86 0.79 092 0.62 0.7 091 072 073 0.71 0.72 07 073 071
to canopy top height
Characteristic leaf dleaf m 0.04 0.04 0.04 0.04 004 0.03 0.04 0.03 004 0.04 0.03 0.03 0.03 0.04 0.04
dimension
Ratio of momentum  zOmr - 0.12 0.12 0.1 007 0.11 0.08 0.1 009 0.12 0.1 0.07 0.07 0.15 0.07 0.11
roughness length to
canopy top height
Leaf resistance medlyn - 5.79 579 396 534 388 471 517 575 499 438 486 3.83 56 428 395
parameter
Root distribution rootprof - 0.94 094 078 039 092 056 082 076 095 093 0.73 093 099 0.81 0.9

parameter
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observations (Doherty et al., 2010). An acceptable fit is spec-
ified by PHIMLIM, which defines a threshold value that the
observation objective function must not fall below. By set-
ting this threshold, a balanced optimization is obtained with
respect to observations and prior parameter values. PHIM-
LIM was set 10 % higher than the lowest achieved objec-
tive function, and PHIMACCEPT was set 10 % higher than
PHIMLIM, as recommend by Doherty (2018a).

The weights for the individual observations were assigned
such that they were proportional to the standard deviation
associated with the observation. The standard deviation was
assumed to be 10 % of the absolute observation value. To
ensure that all observation time steps had a balanced impact
on the objective function, we developed a simple model of
the observation weights of LE, H and g. Within this model
optimization, larger observations are given a higher weight
than smaller observations; hence, time steps where yops &
0 are prevented from having an inappropriate high weight
and, therefore, an inappropriate high impact on the objective
function.

1
a0 ol ®
where ay g = 1000, ag = 1000, ag, = 1000 and a, = 1. All
SWC and Ty, observations were given the same weight and,
thus, were not dependent on the observation value.

All calibration scenarios were assessed based on the mean
error (ME), mean absolute error (MAE), root-mean-square
error (RMSE), Nash—Sutcliffe efficiency (NSE) coefficient
and Pearson correlation () coefficient for each of the six ob-
servation groups’ LE, H, Ry, ¢, SWC and Tyoj.

e ,
ME = - ; (obsj — 51mj) 6)
MAE——Z|0bs,—sunJ| @)
j=1
N
RMSE = Z sim; — obs) (®)

N 2
> |obs; — sim|
NSE=1- = ©)

Z |obs; — obs|’

2

N
> (obs; — obs) - (sim; — sim)
=1
ryr =

(10)

e

I

Here, N is the number of observations in the given obser-
vation group. All summary statistics were calculated on an
hourly time basis.

N
(obs; —ﬁ)z- > (sim; —ﬁ)z
j=1
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A small ME suggests that the overall model fit is not bi-
ased; however, positive and negative errors may cancel out,
implying that ME may be a weak indicator of the goodness
of model fit. Instead, the MAE may be a better indicator of
model performance. The RMSE is a performance criteria that
gives higher weight to large errors, as opposed to the MAE
that weights all residuals equally. The innate character of the
RMSE is very much related to the objective function. The
NSE and r are both unitless, should ideally be as close to one
as possible and are comparable across data types. The NSE is
a measure of the model’s ability to match the temporal vari-
ability, whereas the r is a measure of the strength of the lin-
ear relationship. For the ME, MAE and RMSE, the closer the
metrics are to zero, the better the model performs. The opti-
mized fluxes and states of the system are evaluated via those
six metrics (including the objective function). It is important
to keep in mind that the PEST optimization tool uses the ob-
jective function and that this does not necessarily improve all
other metrics.

Aside from parameter estimation, the PEST software
package contains a collection of utility programs for the cal-
culation of the model parameter uncertainties developed un-
der the assumption of linearity. Thus, the uncertainty esti-
mates are approximations, but they can, nevertheless, pro-
vide useful information, even though the system may violate
the assumptions (Doherty, 2015). The truncation point (or
threshold) between the null and solution space is a generic
mathematical concept that enables an investigation of model
error (Doherty et al., 2010; Doherty, 2015).

To assess the parameter importance, we used the two
statistics “identifiability” and “relative error variance reduc-
tion” (Doherty and Hunt, 2009) calculated by the IDENT-
PAR and GENLINPRED PEST utility programs. These
statistics are based on the same concepts as those applied by
mathematical regularization and rely on singular value de-
composition of a weighted sensitivity matrix. In contrast to
the one-at-a-time sensitivity analysis approach, identifiabil-
ity and relative error variance reduction determine the signif-
icance of the parameters while taking the interactions among
them into account (Doherty and Hunt, 2009).

The identifiability expresses the extent to which a param-
eter can be estimated uniquely based on the extent to which
the parameter is located in the solution space and, hence, how
much it is informed by available observation data. When the
identifiability of a parameter is zero, the dataset possesses
no information with respect to that parameter, and the uncer-
tainty is not reduced through the calibration process. When
the identifiability of a parameter is one, it does not mean that
the parameter can be estimated without error, but it indicates
that its potential for error is dominated by and originates from
the noise of the observation data (Doherty and Hunt, 2009).

The relative error variance reduction (r;) describes the ex-
tent to which the calibration process reduces the variance of a
parameter from the pre-calibration level (Doherty and Hunt,
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Table 2. Summary statistics. The units of each variable are as follows: the NSE and r are unitless, the ME and MAE for H and LE are given
in watts per square meter (W m~2), the ME and MAE for g are given in millimeters per hour (mmh~1), the ME and MAE for the SWC are
given in cubic meters per cubic meter (m3m™3), ¢ and the RMSE for H and LE are given in watts per square meter squared (W m~2)2),
¢ and the RMSE for ¢ are given in millimeters per hour squared ((mm h~1)?2), and ¢ and the RMSE for the SWC are given in cubic meters
per cubic meter squared ((m3 m_3)2). Blue color indicates that variables were included in the calibration for the given scenario.

Scenario X (Control run)
lookup table parameter values

é ME MAE RMSE NSE r

LE - 4 18 32 068 085
H- -14 26 37 043 0.74

q - -0.004 0.0470 0.09 0.19 0.53
SWC - -0.051 0.0516 0.06 -1.04 0.84
Sout - -0 8 17 076 0.87
Rn - 1 14 23 0.97 0.99

Scenario A (LE)

) ME MAE RMSE NSE r
LE 52 2 16 27 0.78 0.89
H 90 -12 24 34 0.52 0.79
q 103 -0.0013 0.048 0.10 0.02 0.50
SWC 1301 -0.1109 0.111 0.11 -7.48 0.83
Sout 91 -1 8 16 0.77 0.88
Rn 94 1 14 23 0.97 0.99

Scenario E (H)

¢ ME MAE RMSE NSE r
LE 71 2 17 31 0.70 0.87
Hg4 -1 23 33 0.55 0.79
q 94 -0.0012 0.049 0.09 0.11 0.51
SWC 87 0.0157 0.022 0.03 0.43 0.84
Sout 92 -1 8 16 0.77 0.88
Rn 99 2 14 23  0.97 0.99

Scenario K (q)

() ME MAE RMSE NSE r

LE 96 -1 19 37 0.59 0.85
H110 -9 25 38 041 0.71

q 81 -0.0002 0.043 0.09 0.24 0.56
SWC 225 -0.0408 0.041 0.05 -0.47 0.80
Sout 90 -1 8 16 0.78 0.88
Rn 95 1 14 23 0.97 0.99

Scenario Z (Initial model run)
ininitial parameter values

¢ ME MAE RMSE NSE

LE 100 -1 19 37 057

H 100 -10 24 36 0.46

g 100 0.0032 0.050 0.10 0.06

SWC 100 0.0222 0.026 0.03 0.35

Sout 100 0 8 17 0.75

Rn 100 -0 15 23 0.97
Scenario B (LE and q)

¢ ME MAE RMSE NSE

LE 54 3 16 27 0.77

H 9 -13 24 & | 0&1

q 58 -0.0028 0.036 0.07 0.46

SWC 341 -0.0535 0.054 0.06 -1.22

Sout 90 -1 8 16 0.78

Rn 95 2 14 23 0.97

Scenario F (H and q)

[} ME MAE RMSE NSE

LE 61 3 16 29 0.74

H 74 12 22 31 0.60

q 85 -0.0026 0.046 0.09 0.20

SWC 429 0.0603 0.061 0.07 -1.79

Sout 93 -1 8 16 0.77

Rn 101 2 15 23 0.97
Scenario | (H and Tsoil)

[} ME MAE RMSE NSE

LE 81 -3 18 34 065

H 84 -8 22 S (01565

q 107 0.0056 0.050 0.10 -0.00

SWC 489 -0.0589 0.064 0.07 -2.19

Ts 72 -79 15 47  0.01

Sout 93 -1 8 16 077

Rn 98 0 15 23 097
Scenario L (LE and H)

¢ ME MAE RMSE NSE

LE 61 5 16 29 0.74

H 84 -13 24 33 0.55

q 91 -0.0052 0.049 0.09 0.15

SWC 62 0.0071 0.018 0.02 0.60

Sout 92 -1 8 16 0.77

Rn 100 2 14 23 0.97
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r
0.86
0.73
0.47
0.84
0.87
0.98

0.89
0.78
0.70
0.82
0.89
0.99

0.88
0.82
0.54
0.81
0.88
0.99

0.88
0.77
0.44
0.84
0.20
0.88
0.99

0.87
0.80
0.53
0.83
0.88
0.99

Observed
n M
LE_obs 52584 35
S_obs 52584 7

SD
57
50

q_obs 52584 0.07 0.10
SWC_obs 23135 0.20 0.04

Sout_obs 52584 20
Rn_obs 52584 54

Scenario C (LE and SWC)

34
135

¢ ME MAE RMSE NSE

LE 63 5 16 30 0.73
H93 -14 25 35 0.50

q 92 -0.0060 0.049 0.09 0.13
SWC 51 0.0003 0.016 0.02 0.67
Sout 92 -1 8 16 077
Rn 99 2 14 23 0.97

Scenario G (H and SWC)

¢ ME MAE RMSE NSE

LE 82 1 18 34 0.65
H97 -1 24 36 048

q 96 -0.0001 0.049 0.09 0.10
SWC 50 -0.0002 0.016 0.02 0.67
Sout 92 -1 8 16 077
Rn 99 1 14 23 0.97

Scenario M (LE, H, q and SWC)

$ ME MAE RMSE NSE

LE 61 5 16 29 0.74
H 88 -14 24 34 0.53

q 90 -0.0055 0.050 0.09 0.15
SWC 52 -0.0010 0.016 0.02 0.66
Sout 92 = 8 16 0.77
Rn 101 2 14 23 097

0.87
0.79
0.53
0.83
0.88
0.99

0.86
0.75
0.50
0.83
0.88
0.99

0.87
0.79
0.51
0.82
0.88
0.99

Scenario D (LE, g and SWC)

¢ ME MAE RMSE
LE 54 4 16 27
H95 -14 25 35

q 82 -0.0045 0.041 0.09

SWC 47 -0.0006 0.015 0.02
Sout 91 -1 8 16
Rn 95 1 14 23

Scenario H (H, g and SWC)

¢ ME MAE RMSE
LE 70 4 17 31
H90 -12 24 34

q 90 -0.0033 0.050 0.09
SWC 50 -0.0011 0.016 0.02
Sout 91 -1 8 16
Rn 99 2 14 23

NSE
0.77
0.49
0.23
0.69
0.77
0.97

NSE
0.70
0.52
0.15
0.67
0.77
0.97

Scenario J (H, q, SWC and Tsoil)

() ME MAE RMSE NSE

LE 75 0 17 32 0.68
H 8 -10 22 33 0.54

g 88 0.0016 0.046 0.09 0.18
SWC 50 -0.0004 0.016 0.02 0.67
Ts 71 -8.0 15 47 0.01
Sout 93 -1 8 16  0.77
Rn 101 1 15 24 097

r
0.88
0.80
0.57
0.84
0.88
0.99

0.86
0.78
0.51
0.83
0.88
0.99

0.87
0.78
0.52
0.83
0.20
0.88
0.99
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2009):
“z‘ios[
ri=1-——, 11
(o
Ipre
where o2 is the post-calibration error variance associ-

ipost
ated with the estimation of parameter i and aiireis its pre-
calibration error variance assigned by expert knowledge.

3 Results

To provide a basis for comparison, we ran a control simu-
lation using CLMS5’s a priori (lookup table) parameter val-
ues (Scenario X). Additionally, a simulation was run (Sce-
nario Z) in which some lookup table parameters values were
replaced by observed parameter values. Table 1 presents the
soil texture parameters and the plant functional type (PFT)
parameters. The respective LAI and optical parameters can
be found in Tables S1 and S2 in the Supplement. Lookup ta-
ble and initial parameter values are listed along with the op-
timized parameters for all calibrated scenarios. Scenarios A,
E and K are calibrations with LE, H and g, respectively,
as targets. The remaining scenarios are multi-objective cal-
ibrations using different combinations of observational data
types. The summary statistics are given in Table 2, which
presents the following information: the top row shows the
initial and control runs as well as statistics on the observed
data; row no. 2 presents calibration results using LE as the
target as well as results using L E combined with other mea-
surement types as targets; row no. 3 is similar to row no. 2 but
LE is substituted by H; row no. 4 is similar to row no. 3 but
including 7o as the target variable; and the last row shows
the results using different combinations of targets.

As R;,,, was used indirectly to obtain incident longwave
radiation for model forcing (Eq. 2), there is a good match
between R, and Ry, and between Sou,, and Sout, in
the control run. To ensure that simulated and observed R,
and S,y agree in the optimization process, R, and Soy¢ were
included in the objective function (Eq. 3) and given the same
group weight as that for the other variables in the objective
function. We included R, and S, in the objective function to
ensure accordance between observed and simulated R, and
the shortwave radiation components. It is important to note
that, in the control run and initial model run (scenarios X and
Z), an excellent match between R, , and R, was already
obtained; therefore, we do not expect the metrics for R, to
improve in the calibrated scenarios (Table 1).

3.1 Analysis of the control run

Simulations based on lookup parameter values for the field
site (Scenario X) highly overestimate daily H all year except
in July and August (Fig. 1b). On the contrary, LE is under-
estimated during the cold season from September to April,

https://doi.org/10.5194/hess-27-2827-2023

especially in March and April (Fig. 1a). This model concep-
tualization fails to reproduce the correct partitioning between
LE and H during the grain-filling and harvest period in July
and August, when LE is highly overestimated (Fig. 1a) and
H is underestimated (Fig. 1b).

Regarding the unsaturated zone variables, the control run
(Scenario X) consistently simulates an overly high SWC
level, although the dynamics match the observations fairly
well (Fig. 2a). The model fails to capture the overall dynam-
ics of ¢, including low- and high-flow events (Fig. 2b). For
certain years, 2010 and 2011, snow periods are not simulated
well (results not shown).

As the turbulent fluxes have a distinct diurnal variation, we
compare simulations and observations in Fig. 3 for 4 individ-
ual months. For the control run (Scenario X), the daytime L E
values are slightly overestimated in June (Fig. 3b), whereas
they are underestimated in all other months (Fig. 3a, c, d).
For H, both the daytime and nighttime values are overesti-
mated in all 4 months (Fig. 3e, f, g, h). Thus, CLMS5 highly
overestimates H based on lookup parameter values and is not
capable of simulating negative nocturnal H (Figs. le and 3e,
f, g, h). In winter, the CLMS5 control run simulates small neg-
ative H during the night, but Hgps is much lower than Hgimy,
(Fig. 3h).

3.2 Analysis of multi-objective calibration results

As expected, calibration enhances CLMS5’s ability to sim-
ulate the dynamics of the energy fluxes, recharge and soil
moisture, although with a consistent overestimation of H
(Fig. 1b, e).

LE and H are linked through the energy balance and the
partitioning of incoming energy into L E and H. In most cali-
brated scenarios, optimization against either one of the turbu-
lent fluxes improves the other as well. Thus, the inverse cal-
ibration improves the simulation of both LE and H. When
comparing the initial model run (Scenario Z) with the cali-
brated scenarios in general, Hgj, and H,ps match better in all
of the calibrated scenarios (scenarios A—M) than in the con-
trol run (Table 2). This applies to most metric types but is
most evident for ¢, which is less than 100 in all scenarios
(except Scenario K). This is the case regardless of whether H
is used as calibration target (scenarios E-J, L and M) or not
(scenarios A-D). In the same way as for H, Table 2 shows
that the summary statistics for L E are likewise improved for
all scenarios when compared with the initial model run.

Scenarios A and D are, as expected, best at capturing the
reduction in L E in the harvest and grain-filling period in July
and August. However, it is important to keep in mind that
Fig. 1 shows the daily mean over a 6-year period, and the
variation in the timing of harvest/grain fill will affect the vi-
sual comparison.

Figure 1d, e and f present results for the first week in June.
When LE is used as target variable (Scenario A), H is over-
estimated; the inverse is observed if H is used as the tar-
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Figure 1. Observed and simulated L E and H (daily mean for 2010-2015) for Scenario X (control run), Scenario D and Scenario E over a
1-year period (a—c) and (hourly mean for 2010-2015) over a 1-week period in June (d-f).
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Figure 2. Observed and simulated SWC and ¢ for Scenario X (control run) and Scenario D in 2014.

get variable (Scenario E). The excess energy is placed on the
other turbulent flux or on G (Fig. 1f).

Despite the improvement in both L Egi, and Hgi, a clear
discrepancy between Hgim, and Hops is found after calibration
(Table 2); this is also seen for the single-objective optimiza-
tion (Scenario E), as a bias of MEy = —11 W m™2 is found.
ME( is negative in all scenarios with a value of between
—9 and —14 Wm™2. This is a very high absolute value, es-
pecially compared with the mean value of the observations
(UHys =TW m~2; Table 2). The bias of Hiy, can also been
seen in Fig. 1b, where the calibrated scenarios are not able to
match mean daily Hyps and the simulated values are higher
than observations for most of the year. The same discrep-
ancies between simulations and observations can be seen in

Hydrol. Earth Syst. Sci., 27, 2827-2845, 2023

Fig. 3e, f, g and h, where hourly Hyps values are less than
Hgiy, values for all scenarios and for all months, especially
at night. We see from Fig. le that CLMS5 overestimates the
nighttime negative H values.

For Scenario D, L Egjy, matches L Eqp nearly perfectly in
June (Figs. 1a, 3b); however, during the remaining seasons
(Fig. 3a, ¢, d), LEgy is underestimated. For example, the
calibration of LE (Scenario A) only slightly improves the
climatology of LE during March (Fig. 3a). There is only a
slight difference in turbulent fluxes between scenarios A and
D; thus, including hydrological observations in the objective
function does not have much effect on the results.

As expected, the single-criteria optimization of L E (Sce-
nario A) leads to the best summary statistics for LE (Ta-
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Figure 3. Seasonal daily cycle of observed and simulated (hourly mean for 2010-2015) LE and H for Scenario X (control run), Scenario D

and Scenario E.

ble 2); however, for H, the best summary statistics are sur-
prisingly obtained in Scenario F and not in Scenario E. In
the same way, optimization against LE and g (Scenario B)
gives better summary statistics for ¢ than the single-objective
optimization of g (¢4 = 58 for Scenario B and ¢, = 81 for
Scenario K) and is capable of matching observed and simu-
lated g to a better degree than other scenarios. However, in
general, the dynamics of g are not well simulated in any of
the scenarios, as reflected by the NSE, being less than 0.46
for all scenarios (Table 2).

The model is generally better at simulating the dynamics
of LE compared with H and the hydrological observations,
as evidenced by the NSE for the different scenarios (Table 2).
This is also the case if LE is not included in the objective
function. In all cases (except Scenario G), NSE[ g is higher
than NSE,, NSEswc and NSEg (Table 2). To ensure that
the heat and water budget are constrained to the same extent,
we ran two scenarios that include Ty as a target variable in
the calibration. A slight improvement in MEy (from —11 to
—8Wm_2) is obtained from Scenario E to Scenario H, but
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MEj is still highly biased, and the remaining metrics for H
are not improved when including Ty, as the target variable.

The results demonstrate that it is important to include sev-
eral data types in the optimization. Single-objective opti-
mization against L E or H, respectively, leads to good results
for the respective fluxes but deteriorates the simulation of
the internal hydrological processes, especially the SWC. The
absolute level of simulated SWCgiy, is too high in the con-
trol run (Scenario X) but becomes much better when using
site-specific parameter values in the initial model run (Sce-
nario Z) (not shown).

The information content of the different observation data
types can be examined by comparing the model results of the
different scenarios. When evaluating the model performance
of scenarios A-D, it is evident that including ¢ in the objec-
tive function (Scenario B) improves the fit of g (¢, = 103
for Scenario A and ¢, = 58 for Scenario B) and the SWC
(¢pswe = 1301 for Scenario A and ¢gyw. = 341 for Scenario B)
while still maintaining strong agreement with LE observa-
tions (¢ = 52 for Scenario A and ¢ g = 54 for Scenario B).

Hydrol. Earth Syst. Sci., 27, 2827-2845, 2023
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Figure 4. The identifiability (a) and the relative error variance reduction and optimized parameter values (b) for Scenario D. The total height
of the bars in panel (a) indicates the identifiability of each parameter, and the color-coding of each bar corresponds to the contribution of the
singular values to the identifiability. The reader should note the logarithmic scale on the secondary y axis of panel (b).

On the other hand, including the SWC in the objective func-
tion (Scenario C) also improves g (¢, = 103 for Scenario A
and ¢, =92 for Scenario C), although the match with LE
observations becomes worse (¢; g =52 for Scenario A to
¢ = 63 for Scenario C). When including both ¢ and SWC
in the calibration, a good fit of LE and the SWC as well as
an acceptable agreement with g observations can be obtained
(Scenario D). Scenario D leads to the best overall model re-
sults. Including the SWC in the parameter optimization leads
to a good match between SWCgps and SWCsin, (Fig. 2a).

Surprisingly, summary statistics (Table 2) do not change
much when calibrating the dynamics of LE and H at the
same time (scenarios L and M). H is simulated with low ac-
curacy independently of whether LE is included in the ob-
jective function or not, and LE is simulated slightly worse
in Scenario L than in Scenario A (¢ = 52 for Scenario A
and ¢z = 61 for Scenario L). Including all four data types
in the optimization (Scenario M) still leads to a bias of H
simulations.

The parameter response space of CLMS is complex, and
the impacts of the parameters estimated on water and energy
fluxes vary with different parameter value combinations. In
general, Scenario D gives the best results. Figure 4 shows
the identifiability, the relative error variance reduction and
the estimates of 30 parameters estimated for Scenario D. The
total height of each bar in Fig. 4a is the identifiability of the
pertinent parameter, and the color-coding of each bar cor-
responds to the contribution of different eigencomponents
spanning the calibration solution space to the identifiability:
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warmer colors (red—yellow) correspond to singular values of
smaller index (singular value of higher magnitude) and indi-
cate that the parameter is less prone to measurement noise
and more informed by observation data (Doherty, 2015).

The boundary between the solution and null subspaces for
Scenario D was set to 20. The 30 parameters show a broad
range of identifiability, and 14 of the 30 parameters are iden-
tifiable on the basis of the hourly observations of Ry, Sout,
LE, g and SWC if a somewhat arbitrary qualitative identi-
fiability level of 0.7 is chosen to mark the cutoff between
identifiable and unidentifiable parameters. The 14 identifi-
able parameters are primarily the sand and clay fractions, the
LAI in summer, height_top, medlyn and rootprof.

The parameters that have the highest identifiability and are
mostly informed by data (warmer colors in Fig. 4) also have
the highest relative error variance reduction. Hence, the in-
formation contained in the observation dataset constrains the
identifiable parameters, whereas the unidentifiable parame-
ters are, to a stronger degree, constrained by expert knowl-
edge in the form of preferred values in the Tikhonov regular-
ization. The parameter confidence intervals mostly decrease
for the parameters that are more informed by data.

Figure 5 shows the optimized parameter values, i.e., the
soil parameters (Fig. 5a), LAI (Fig. 5b) and optical parame-
ters (Fig. 5c). The optimized values for the plant functional
type (PFT) parameters can be found in Tables 1, S1 and S2.
Additionally, Fig. 5 indicates how much the parameters have
moved compared with the a priori lookup table values and
the initial parameter values.
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=== X, Control run
Z, Initial model run
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—=- F(Handq)
—=-- G (H and SWC)
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tausvis o
tausnir -

Figure 5. Optimized parameter values for all scenarios for (a) soil
parameters, (b) LAI and (c¢) optical parameters.

The a priori values for the PFT parameters are retrieved
from global datasets, whereas the soil and vegetation phenol-
ogy parameters are linked to the study site location (Herbst et
al., 2011; Vasquez, 2013). The sandl and clay1 variables de-
termine the hydraulic properties of the root zone. The sand1
variable is highly informed by data (warmer colors in the
identifiability plots in Fig. 4a), which is also seen from the
narrow post-calibration confidence interval (Fig. 4b). Ac-
cording to the local information (Vasquez, 2013), the soil at
the field site is sandy with a very low clay content. Most cal-
ibrated scenarios obtain reasonable soil texture values: the
sand content mostly varies between the lookup table value of
60 % and up to 100 %, and the clay content is below 20 %.
All scenarios that include g in the objective function (sce-
narios D, F, H, J, K and M) reduce the fraction of sand in
the soil layer below the root zone (sand2). We know that this
is incorrect and that the soil texture becomes coarser with
depth (Haarder et al., 2015). All scenarios not including ¢
in the objective function have an expected high sand content
below the root zone (Fig. 5a). Scenario A, in contrast, has an
unrealistic high value for the sand fraction of sand2. In gen-
eral, the clay content is much less informed by data than sand
(Fig. 4a)
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All a priori values of the PFT parameters (except medlyn)
are nearly identical for the different vegetation types in the
lookup tables of CLMS (Lawrence et al., 2019a). Thus, the
specification of individual initial parameter values for each
PFT is not possible.

The medlyn variable is a parameter of the stomatal con-
ductance model. The parameter determines the degree of
stomatal opening and has a critical impact on the stomatal re-
sponses in the soil-root—stem—leaf system. The optimal value
for medlyn varies between 3.83 and 5.75 (Table 1).

The rootprof variable is the root distribution parameter that
determines the root fraction in each soil layer, and it is criti-
cal for the SWC of the soil. This parameter is well informed
by data, and the regularization strategy allows the parameter
value to move away from the initial value.

The LAI shows similar patterns for all scenarios (Fig. 5b).
As the LAI parameters are unidentifiable in cold months, the
values do not deviate much from the preferred values. The
optimized LAI values enhance energy partitioning of L E and
H during the grain-filling and harvest phase in July and Au-
gust (Fig. 1). The calibrated models match L E and H during
the harvest period in July and August better than the control
run.

4 Discussion

The results presented show that multi-objective calibration
considerably enhances the ability of CLMS5 to represent both
energy and hydrological processes. This result is expected
to be applicable elsewhere, particularly in low-lying agricul-
tural areas subject to high evapotranspiration. In line with
Gupta et al. (1999), it was also demonstrated that optimiza-
tion using a single-criterion objective function is less suit-
able, as the internal hydrological processes are not repre-
sented adequately. In contrast, multi-objective parameter es-
timation considerably enhances the ability of CLMS5 to sim-
ulate observed energy and hydrology data. According to the
summary statistics, Scenario D (calibrated against LE, g and
SWC) gives the best overall representation of all data types
(Table 2). Compared with the control run (Scenario X), Sce-
nario D reduces the RMSE by 27 %, 2 %, 9 % and 31 % for
LE, H, g and SWC, respectively.

In the following, we will discuss issues with respect to the
energy and hydrology representation of the model, the cal-
ibration approach and the parameter uncertainty. However,
to begin with, we will elaborate on the issue of land surface
energy balance closure with respect to the calibration of an
LSM as well as potential shortcomings of LSMs. Throughout
the discussion, we will outline potential future work within
the subject of the study.
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4.1 Energy balance closure

The eddy covariance (EC) method is generally regarded as
the best practical method for measuring turbulent energy
fluxes at the land surface; however, numerous studies have
documented the lack of energy balance closure (Foken et al.,
2006; Franssen et al., 2010; Stoy et al., 2013). As measure-
ments of R, are generally trusted, an underestimation of the
turbulent fluxes appears likely because the sum of the energy
fluxes is less than R, (Foken et al., 2011). The observation
data from the field site (Ringgaard et al., 2011) show that in-
coming available energy (R, minus G) on average exceeds
the turbulent energy fluxes (LE and H) by 21 %; thus, the
data are subject to a land surface energy imbalance (Denager
et al., 2020). As LSMs conserve energy, the conclusions from
LSM calibration studies using turbulent fluxes as target vari-
ables rest on the premise of closure of the observed energy
fluxes. As it is not possible to match L Eqps and Hyps simul-
taneously, scenarios L and M are fundamentally incorrect.

CLMS simulates L E and H explicitly through the Monin—
Obukhov similarity theory. Nonetheless, the regularization
approach used in this study fails to identify parameter val-
ues to match uncorrected Hypg With Hgiy (Scenario E). It
is especially challenging to match negative H during win-
ter and nocturnal periods, when the overlying air is warmer
than the surface and sensible heat is, therefore, transported
downwards (Figs. le and 3e, f, g, h). There may be struc-
tural limitations to CLMS5 that prevent a good match to H.
However, as the observed incoming and outgoing energy is
imbalanced (Denager et al., 2020) and the model maintains
Ry (Eq. 1), there is excess energy in the model, which CLM5
transmits to H and G. G is often considered to be a residual
term for closing the energy balance in CLM5 (e.g., Kracher
et al., 2009). Denager et al. (2020) concluded, by comparison
to water balance measurements, that the imbalance of the EC
method at the specific field site is, to a lesser degree, caused
by errors in the LE estimates but can mainly be attributed
to errors in the other energy flux components or unaccounted
for effects.

Contrary to this study, many studies have tested LSMs
using corrected flux observations of H and LE that fulfill
energy closure (Carrillo-Rojas et al., 2020; Davison et al.,
2016; Pauwels and De Lannoy, 2011; Larsen et al., 2016;
Dombrowski et al., 2022). A few studies have tested LSMs
using both corrected and uncorrected turbulent fluxes (Chen
et al., 2018), but some studies do not indicate whether tur-
bulent energy fluxes have been corrected or not (De Lannoy
et al., 2011; Gohler et al., 2013; Hou et al., 2012). Chen et
al. (2018) applied both corrected and uncorrected LE and
H from FLUXNET to test a point-scale CLM4.5 over open
sites; they found that simulations matched uncorrected LE
better than corrected LE, and, as energy-balance correction
methods increase the LE values, CLM4.5 underestimated
FLUXNET-corrected LE.
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4.2 Model physics in LSMs

In this study, we have shown that running the model with
soil parameters that have been measured (and are therefore
likely correct), i.e., Scenario Z, did not lead to improved
model performance, which can potentially be interpreted as
pointing to deficiencies in the model physics. More and more
advanced descriptions of the processes have been built into
LSM codes. This induces heavily increased model complex-
ity and expands the associated number of parameters in the
model equations (Mendoza et al., 2014). The parameter op-
timization in complex models is complicated, and there is
a possibility that LSMs may not be parameterized appro-
priately. Several authors have contested the complexity of
LSMs (Franks et al., 1999; Clark et al., 2015; McCabe et al.,
2005; Williams et al., 2009) and suggested a reassessment of
the structure and process representations. An overall sim-
plification of the LSMs would enable a more profound pa-
rameter optimization and utilization of measured data. This
would lead to more parsimonious LSMs, and utilizing the
well-establish model evaluation within hydrology, consider-
ing uncertainties in data, model parameters and conceptual
understanding (Refsgaard et al., 2021), would enhance the
model evaluation of LSMs. Therefore, the hydrology and
LSM modeling communities could benefit even more from
each other (Clark et al., 2015).

4.3 Value of observation data

Physically, L E depends on both energy flux and water avail-
ability. Aside from L E, moisture information is clearly cen-
tral to the optimization of the internal hydrological processes
of CLMS. Other studies have also shown the appropriateness
of the SWC in optimizing the hydrological state in LSMs
(Zhang et al., 2017; De Lannoy et al., 2011). Similar to LE,
groundwater recharge, g, also describes the water exchange;
however, as long as L E data are available, g data only pro-
vide minor additional information to the calibration.

Data uncertainty has been discussed in Denager et
al. (2020), and we are generally confident with the accuracy
of our forcing and hydrological data. To improve the simu-
lation of soil water flow in LSMs, we followed the sugges-
tion of Rosero et al. (2010) and used percolation observations
in the parameter optimization process. To capture the diur-
nal dynamics of energy and water fluxes, the optimization is
based on hourly time steps. However, given the design of the
lysimeters at the field site, where recharge water is collected
at a sloping face at the bottom of the lysimeters, there may be
a temporal mismatch between model simulations and obser-
vations. Although each of the four lysimeters has a surface
area of 3.2 m x 3.88 m, their total area is much smaller than
the footprint of the EC system.

https://doi.org/10.5194/hess-27-2827-2023



T. Denager et al.: Point-scale multi-objective calibration of the Community Land Model Version 5.0

4.4 Calibration approach

As 6 years of observations are available for all major water
and energy balance components at the field site, there is the
potential to studying the long-term effects on the seasonal
energy and water fluxes and variables. However, the target of
the applied calibration approach is the dynamics of the 24 h
cycle of hourly observations, rather than the seasonal energy
and water balance components.

Sun et al. (2013) found that parameter optimization us-
ing PEST only led to small improvements in performance of
CLM4.0. In the present study, we were able to obtain consid-
erable improvements by parameter optimization using singu-
lar value decomposition and Tikhonov regularization imple-
mented in the PEST software package. This approach is more
computationally effective than general Bayesian approaches
that require a large number of model simulations to estimate
parameter and predictive uncertainty, such as the stochastic
Markov chain Monte Carlo inversion of CLM4 presented by
Sun et al. (2013). Another approach was presented by Zhang
et al. (2017), who evaluated different data assimilation meth-
ods for soil texture parameter estimation in the CLM.

4.5 Evaluation of optimal parameters values

Some CLMS parameters, e.g., LAI and height_top, are phys-
ically meaningful and can be inferred directly from observa-
tions, whereas other parameters, e.g., displar, dleaf, medlyn,
rootprof and zOmr can be viewed as conceptual representa-
tions for which useful values cannot be directly measured.

Aside from the stomatal resistance, the LAI also directly
controls actual evapotranspiration, and, as the sum of L E and
H is constrained by the energy preservation in CLMS5, the
LAI consequently determines both LE and H.

Theoretically, the LAI should not change between cal-
ibration scenarios, and most scenarios show very similar
LAI and SAI values. Scenarios A-D show well-constrained
LAIjun values of between 4.14 and 5.37. We did not con-
sider SAI parameters as adjustable parameters, but prelimi-
nary model calibrations including SAI showed that the de-
creases in LAl and LAl,,g were compensated for by an in-
crease in SAl;y and SAl,,, in nearly all scenarios. However,
we do not expect the SAI to have a considerable influence
on turbulent fluxes and hydrological variables. The increase
in the LAI in some scenarios in September probably reflects
emerging cover crop.

When CLMS is run in satellite phenology mode, it is not
capable of simulating the year-to-year variation in germina-
tion, leaf emergence, harvest, etc., as all years are assumed to
follow the same pattern. The energy partitioning in July and
August is simulated better in some years than in others, but,
despite the alignment of distinct yearly phenology in CLMS5,
the abrupt decrease in LE (averaged over 6 years) at grain
filling/harvest is quite well simulated (Fig. 1a). Calibration
of CLMS5 with the inclusion of the biogeochemistry (BGC)
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model is beyond the scope of this paper; however, as CLM5-
BGC applies carbon and nitrogen cycle functionality, it re-
places phenology with prognostic variables. These variables
change dynamically with meteorological forcing, soil mois-
ture and nutrient availability (Cheng et al., 2021). Inclusion
of the BGC module in CLM5 would further enable simula-
tions of cover crops schemes (Boas et al., 2021). According
to Boas et al. (2021), the cover crop scheme helped to match
the observed energy balance.

It is a large disadvantage when calibrating LSMs that
many important parameters are often hard coded (Davison et
al., 2016). Adjusting those hard-coded parameters requires
manual alteration of the appropriate code lines and subse-
quent recompiling before every parameter trial in the cali-
bration routine. This limits the calibration process and the
ability of the model to describe important processes (Men-
doza et al., 2014).

The model uses pedotransfer functions to estimate the soil
hydraulic properties, which is a useful approach for large-
scale applications. However, for local-scale applications, as
in this study, it would have been more appropriate to be able
to specify the hydraulic properties directly. We observed that
CLMS overestimates the recharge during spring and summer,
indicating that the representation of the hydraulic properties
is inadequate when estimated from pedotransfer functions
of optimized soil texture. A large number of former stud-
ies regarding parameter estimation and parameter sensitivity
in CLMS have related their analysis to the hydrologic pa-
rameters (e.g., hydraulic conductivity) rather than evaluating
the model parameters in the pedotransfer functions (e.g., per-
centage of sand and clay) (Hou et al., 2012; Gohler et al.,
2013; Huang et al., 2013; Sun et al., 2013).

De Lannoy et al. (2011) analyzed the effect of different
soil texture specifications on simulations of SWC, LE and H
using CLM3.5 and concluded that the impact of soil texture
on energy fluxes is minor but the impact on water storage
characteristics is significant. The present study found that the
soil texture parameters (especially in the root zone) are also
identifiable in the single-objective calibration of Scenario A.

It should be noted that, although soil texture is defined as
a proportion of sand and clay (and therefore has the unit of
percentage), individual values of sand or clay > 100 % are
conceivable in CLMS5, as the parameter intervals were set
> 100 %. In some scenarios, we obtain a sum of sand and
clay slightly above 100 %, but this is not considered a critical
issue, as the textural percentages are only used as parameters
in the pedotransfer function for the hydraulic properties.

Similar to other sensitivity studies of CLM, we find that
the stomatal conductance parameter (medlyn) and the soil
parameters are highly significant (Gohler et al., 2013). In
contrast, Hou et al. (2012) and Huang et al. (2013) found
that subsurface generation parameters (distribution of sur-
face runoff with depth, max subsurface drainage and spe-
cific yield) are the most important parameters for L E, H and
runoff in CLM4, whereas soil texture parameters (Clapp and
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Hornberger parameter b and porosity) are of secondary sig-
nificance. However, the parameters that are most sensitive
can vary from site to site and from season to season, and the
significance of parameters also depends on which target vari-
able is considered. As our cropland field site has a shallow
root zone, the unsaturated zone parameters (e.g., soil texture
in the top layer) became more important.

The a priori value of 0.943 for rootprof is similar for all
grass and crop PFTs (Lawrence et al., 2019a). Therefore, the
off-the-shelf CLMS5 does not distinguish root density for dif-
ferent types of grasses and crops. There is the clear possi-
bility to constrain individual rootprof parameter values for
different land-cover types. We found the rootprof parameter
to be highly identifiable and, thus, highly informed by LE,
q and SWC observation data. Our optimized values of the
rootprof parameter for the scenarios including the SWC in
the objective function (scenarios B and C) are substantially
different from the a priori values (rootprof =0.39 for Sce-
nario B and rootprof =0.56 for Scenario C). However, the
optimized values of rootprof seem reasonable, as they imply
an increase in the root density near the surface and a reduc-
tion at deeper soil layers, which fit well with the spring and
winter barley cultivated at the agricultural field.

5 Conclusion

In this study, we explore how parameter estimation tech-
niques can be used to improve the hydrological processes in a
state-of-the-art LSM. The results indicate that mathematical
regularization is a compelling method to improve the current
practice of using lookup tables to define parameter values
in LSMs.

Using the case study of an agricultural field in western
Denmark with 6 years of extensive observations, we demon-
strate that calibrating a point-scale CLMS5 using (i) multi-
objective calibration, (ii) truncated singular value decompo-
sition and (iii) Tikhonov regularization employing combina-
tions of hourly time series of latent heat, sensible heat, soil
moisture and groundwater recharge from 2010 to 2015 can
considerably improve the characterization of the energy and
water fluxes.

The control run overestimated the soil moisture by more
than 10 %; however, we found that parameter optimization
of CLMS using soil moisture data enhanced the ability of the
model to describe the temporal patterns of moisture storage
within the root zone. Calibration also considerably improved
the energy partitioning of LE and H during the summer pe-
riod and revealed good reproduction of observed and simu-
lated LE and H during the grain-filling and harvest period
in July and August.

Nevertheless, we found that H was biased the rest of the
year, as the simulated H was clearly overestimated. It was
not possible to fine-tune parameters to match the observed
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H, which suggests that the observed H needs to be corrected
to match simulations.

Additionally, we evaluated the post-calibration uncertain-
ties of the model parameters using the identifiability and rel-
ative error variance reduction statistics. Identifiability indi-
cates the extent to which the parameter is informed by ob-
servation data. Using LE, ¢ and SWC as target variables,
we found that the identifiable parameters were soil texture,
monthly LAI in summer, the stomatal conductance model
parameter (medlyn) and the root distribution parameter (root-
prof).

Our results highlight the necessity for parameter calibra-
tion using available observations of energy and hydrologi-
cal fluxes to obtain an optimal parameter set for CLMS5. We
anticipate that the results from this study will contribute to
improvements in the model characterization of water and en-
ergy fluxes, especially when EC flux data are available.
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