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Abstract. The transport of water, heat, and momentum
from the surface to the atmosphere is dependent, in part,
on the characteristics of the land surface. Along with the
model physics, parameterization schemes, and parameters
employed, land datasets determine the spatial variability in
land surface states (i.e., soil moisture and temperature) and
fluxes. Despite the importance of these datasets, they are
often chosen out of convenience or owing to regional lim-
itations, without due assessment of their impacts on model
results. Irrigation is an anthropogenic form of land hetero-
geneity that has been shown to alter the land surface energy
balance, ambient weather, and local circulations. As such,
irrigation schemes are becoming more prevalent in weather
and climate models, with rapid developments in dataset avail-
ability and parameterization scheme complexity. Thus, to ad-
dress pragmatic issues related to modeling irrigation, this
study uses a high-resolution, regional coupled modeling sys-
tem to investigate the impacts of irrigation dataset selec-
tion on land–atmosphere (L–A) coupling using a case study
from the Great Plains Irrigation Experiment (GRAINEX)
field campaign. The simulations are assessed in the context
of irrigated vs. nonirrigated regions, subregions across the ir-
rigation gradient, and sub-grid-scale process representation
in coarser-scale models. The results show that L–A coupling
is sensitive to the choice of irrigation dataset and resolution
and that the irrigation impact on surface fluxes and near-
surface meteorology can be dominant, conditioned on the de-
tails of the irrigation map (e.g., boundaries and heterogene-
ity), or minimal. A consistent finding across several analyses

was that even a low percentage of irrigation fraction (i.e.,
4 %–16 %) can have significant local and downstream atmo-
spheric impacts (e.g., lower planetary boundary layer, PBL,
height), suggesting that the representation of boundaries and
heterogeneous areas within irrigated regions is particularly
important for the modeling of irrigation impacts on the at-
mosphere in this model. When viewing the simulations pre-
sented here as a proxy for “ideal” tiling in an Earth-system-
model-scale grid box, the results show that some “tiles” will
reach critical nonlinear moisture and PBL thresholds that
could be important for clouds and convection, implying that
heterogeneity resulting from irrigation should be taken into
consideration in new sub-grid L–A exchange parameteriza-
tions.

1 Introduction

The characteristics of the land surface play a critical role
in determining the transfer of water, heat, and momentum
to the atmosphere (Chaney et al., 2018; Santanello et al.,
2018; Zhou et al., 2019; Pielke Sr., 2001). For this reason,
an important component of Earth system models (ESMs) is
the land model, which represents the radiative and physical
properties of the surface, providing a lower boundary for, and
exchange with, the atmosphere (Peters-Lidard et al., 2015).
Datasets that define the land surface and its spatial variabil-
ity (i.e., land heterogeneity), such as land use and land cover
(LULC), soil properties (e.g., type and texture), and vegeta-
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tion characteristics (e.g., leaf area index and greenness veg-
etation fraction), are often overlooked but are integral com-
ponents of this land surface representation. Along with the
model physics, parameterization schemes, and parameters
employed, these datasets determine the spatial variability in
land surface states (i.e., soil moisture and temperature) and
water and energy balance via land surface temperature and
fluxes of latent and sensible heat (Niu et al., 2011; Yang et
al., 2011). Despite the importance of these datasets, they are
often chosen out of convenience or owing to regional lim-
itations, without due assessment of their impacts on model
results.

Operational and global weather and climate models, such
as ESMs, tend to operate at relatively coarse scales compared
with the natural variability in the land surface. As a result,
advanced approaches to representing sub-grid-scale hetero-
geneity of the land have been introduced (e.g., tiling), but
they have not been fully leveraged due to model coupling
that primarily exchanges a grid-scale mean flux between land
and atmospheric models (Simon et al., 2021). To address
these deficiencies in current operational ESMs, NOAA’s Cli-
mate Process Team (CPT) and the Coupling of Land and
Atmospheric Subgrid Parameterizations (CLASP) project
(http://www.clasp.earth, last access: 1 February 2023) seek
to improve the parameterization of heterogeneous sub-grid
exchange between the land and atmosphere. Ideally, such
a parameterization should be representative of both natural
(e.g., land cover, soil type, and terrain) and human-induced
(e.g., irrigation, reservoirs, and dams) sources of heterogene-
ity.

With respect to the latter, modeling of the geophysical
impacts of human activities is a relatively new area of re-
search. In particular, agricultural irrigation consumes the
largest amount of water by far at the global level (FAO, 2021)
and has been shown to alter the land surface energy bal-
ance, ambient weather, and local circulations (Bonfils and
Lobell, 2007; Lo and Famiglietti, 2013; Rappin et al., 2022).
As such, irrigation schemes are becoming more prevalent
in weather and climate models, with rapid developments in
dataset availability and parameterization scheme complexity
(e.g., Valmassoi et al., 2020; Zhang et al., 2020; X. Xu et
al., 2019; Lawston et al., 2015). In most regional and global
models, an irrigation fraction map is used to determine where
irrigation can be triggered and, together with the triggering
algorithm and thresholds, creates unique spatial variability in
soil moisture that alters the naturally (i.e., from precipitation
alone) occurring heterogeneity (Jha et al., 2022; Valmossoi et
al., 2020). Until recently, the choice of the irrigation fraction
dataset was limited; however, the increasing availability of
datasets (e.g., Deines et al., 2019; Brown and Pervez, 2014;
Siebert et al., 2013) has created a pressing need to better un-
derstand how land–atmosphere (L–A) coupling responds to
different spatial representations of irrigation. Such an inves-
tigation is relevant not only for future coupled modeling of
irrigation (e.g., in terms of implications/limitations for scien-

tific results) but also for understanding where and when such
irrigation-imposed heterogeneity may be important for sub-
grid parameterizations, such as those being developed in the
CLASP project.

Thus, to address pragmatic issues related to modeling
irrigation, this study uses a high-resolution, regional cou-
pled modeling system to investigate the impacts of irrigation
dataset selection on L–A coupling. The results are discussed
in the context of ESM sub-grid heterogeneity to better under-
stand how L–A coupling may be impacted by developments
in CLASP parameterizations. However, the results are rel-
evant to the overall modeling community, which is rapidly
working towards developing approaches to parameterize ir-
rigation. The main questions that this work seeks to answer
are as follows:

1. What is the impact of the irrigation dataset (i.e., irriga-
tion fraction map) selection on land surface heterogene-
ity in soil moisture and surface fluxes?

2. How does irrigation-induced heterogeneity impact L–
A interactions and feedbacks at the 1 km, process-level
scale?

3. Is there essential L–A coupling information that is lost
when averaging from the process-level scale (1 km) to
the scale of a typical ESM (e.g., 100 km)?

The paper is organized as follows: Sect. 2 presents relevant
background information; Sect. 3 describes the methods and
experimental design, including the modeling systems and
observations employed for this work; and results are given
in Sect. 4, with discussions and conclusions presented in
Sects. 5 and 6, respectively.

2 Background

The characteristics and spatial variability (i.e., heterogene-
ity) of the land surface directly affect the surface energy
and moisture budgets (Chaney et al., 2018, 2021; Zhou et
al., 2019) and, therefore, play a key role in simulation and
prediction of the atmosphere. Previous work has shown that
landscape heterogeneity influences the spatial structure of
surface heating, convective initiation, and cumulus cloud-
base height (Rabin et al., 1990; Schrieber et al., 1996; Pielke
Sr., 2001; Tian et al., 2022). Recent studies have assessed
the relative importance of common sources (i.e., datasets) of
land heterogeneity in land surface models (LSMs) and cou-
pled models for a range of applications. For example, Simon
et al. (2021) showed that the land heterogeneity which pro-
duces the biggest impacts on clouds and mesoscale circula-
tions in the Weather Research and Forecasting (WRF) model
in large-eddy simulation (LES) mode is primarily driven by
heterogeneous meteorological forcing (i.e., precipitation). In
addition, Li et al. (2022) found that including more land
heterogeneity sources in the Energy Exascale Earth System
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Model (E3SM) led to larger spatial variability in the simu-
lated water and energy partitioning, with atmospheric forcing
and LULC sources contributing the most.

Irrigation is a form of anthropogenic land heterogeneity
that increases soil moisture and, therefore, has the potential
to affect ambient weather via alterations to the surface energy
and water budgets and planetary boundary layer (PBL) feed-
backs. Many previous studies have concluded that irrigation
can repartition latent and sensible fluxes, ultimately result-
ing in local to regional irrigation-induced cooling (Aegerter
et al., 2017; Leng et al., 2017; Qian et al., 2013; Mahmood et
al., 2013; Lawston et al., 2020). Other studies have found that
irrigation can generate new circulations or modify those that
already exist. For example, Harding and Snyder (2012a, b)
found that irrigation not only enhances precipitation but also
leads to a net water loss in the US Great Plains, as the precip-
itation falls away from the source and is often outweighed by
evapotranspiration (ET) increases. While Lo and Famiglietti
(2013) showed that irrigation strengthens the regional hydro-
logical cycle through increased ET and water vapor export,
they noted that some of the additional water is returned to
the area via streamflow and managed diversion. Mahalov et
al. (2016) found that irrigation modifies the North Ameri-
can monsoon rainfall: some areas downwind experience in-
creases in convective rainfall through positive soil moisture–
rainfall feedbacks, whereas other areas experience a decrease
in precipitation due, in part, to decreased convective available
potential energy (CAPE). These studies, and others focused
on the impact of irrigation on weather and climate (Kang and
Eltahir, 2018; Thiery et al., 2017; Cook et al., 2010), have
demonstrated that irrigation can have large impacts on near-
surface meteorology, PBL evolution, mesoscale circulations,
and convective initiation.

The land heterogeneity imposed by irrigation is a result of
human behavior, including local and regional water manage-
ment policies that can influence farmers’ decisions regarding
crop types, timing, and water use. To simulate irrigation, a
model approximates such behavior by progressing through
a series of checkpoints to determine (1) where, (2) when,
and (3) how much irrigation water to apply. The activation
of the irrigation scheme (i.e., when) and how much water is
applied can be prescribed on a schedule (e.g., Valmassoi et
al., 2020) or conditioned on a model variable, most often soil
moisture, meeting a predetermined threshold of dryness and
desired replenishment (e.g., Ozdogan et al., 2010; Lawston
et al., 2015).

Of primary importance is where irrigation is triggered in
the model, as it is the prerequisite to determining the de-
tails of irrigation in point nos. 2 and 3 above. In regional
and global models, maps of irrigated areas are processed into
irrigation fraction maps that define the fraction of the model
grid cell that is irrigated. These irrigation fraction maps are
used to establish where (spatially) in the model domain the
irrigation scheme “can” activate and may also be referenced
to scale the amount of water applied (e.g., Ozdogan et al.,

2010; Lawston et al., 2020; Nie et al., 2021). Many mod-
ern irrigation maps are created by leveraging the geophys-
ical impacts of human behaviors, as observed by remote-
sensing platforms, sometimes combined with survey statis-
tics or climate data, to create maps of areas equipped for irri-
gation (Siebert et al., 2013) or actual irrigated areas (Thenk-
abail, 2009; Biggs et al., 2006; Ozdogan and Gutman, 2008;
Brown and Pervez 2014; Salmon et al., 2015; Deines et
al., 2019). Although once prohibitively difficult to acquire
at high temporal frequency, technological advances in tools
(e.g., Google Earth Engine and machine learning algorithms)
and computing power have increased the availability of irri-
gation datasets (Deines et al., 2019; T. Xu et al., 2019).

One of the first datasets to leverage machine learning ap-
plications in remote sensing used an image classification al-
gorithm along with MODIS vegetation indices, ancillary cli-
mate, and agricultural data to map irrigated areas in the con-
tinental US circa 2001 (hereafter MOD; Ozdogan and Gut-
man, 2008). The resulting dataset, produced at a 500 m reso-
lution, showed an estimated root-mean-square error (RMSE)
of about 2 % of the total irrigated area in the US. Using a sim-
ilar methodology, but expanding the analysis to the global
scale, the “Global rain-fed, irrigated, and paddy croplands”
(GRIPC; Salmon et al., 2015) map also used a machine learn-
ing algorithm applied to MODIS data, climate data, and ex-
isting information from other datasets to map not only irri-
gated areas but also rainfed and paddy croplands at a 500 m
resolution, circa 2005. More recently, Deines et al. (2019)
used Google Earth Engine to process Landsat data and en-
vironmental covariables using a random forest classifier to
create the Annual Mapping of Irrigated Areas – High Plains
Aquifer (AIM-HPA) dataset, consisting of one map per year
from 1984 to 2017 at a 30 m resolution for the High Plains
Aquifer region of the central US. The high temporal and spa-
tial resolution of this dataset marks a major advancement in
irrigation mapping that has benefits not only for weather and
climate modeling but also for the management, policy, and
agronomy fields (Deines et al., 2019).

This work explores the impacts of these three, high-quality
and widely used irrigation datasets – MOD, GRIPC, and
AIM-HPA (Table 1) – on land–atmosphere interactions in
eastern Nebraska using a case study from the Great Plains
Irrigation Experiment (GRAINEX) field campaign. It should
be noted that the purpose of this study is not to discern the
most accurate irrigation map for the study area; rather, this
work is a model sensitivity study that seeks to understand
if and the extent to which irrigation heterogeneity (via irri-
gation map selection and resolution) can impact the simu-
lation and prediction of land–atmosphere coupling and am-
bient weather, and it discusses the implications of such im-
pacts in the context of sub-grid-scale process representation
in coarser-scale models.
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Table 1. List of irrigation maps used in the simulations, including their references and resolutions.

Dataset Dataset Reference Resolution
abbreviation name

AIM-HPA Annual Irrigation Maps – Deines et al. (2019) 1 and 12 km
High Plains Aquifer

GRIPC Global rain-fed, Salmon et al. (2015) 1 km
irrigated, and paddy croplands

MOD MODIS-based Ozdogan and ∼ 12.5 km
dataset Gutman (2008)

3 Methods

3.1 Models and experimental design

This study uses version 3.3 of the Noah land surface model
(Chen and Dudhia, 2001) within the NASA Land Informa-
tion System (LIS; Kumar et al., 2006) to complete long-
term (2010–2019), land-only spin-ups of land surface states
(soil moisture and temperature) and fluxes (sensible and la-
tent). A long-term LSM spin-up that is consistent in its ir-
rigation treatment is essential for the proper, equilibrated
initialization of the subsequent coupling simulations. The
modeling domain is 360 km× 360 km with a spatial reso-
lution of 1 km and encompasses the GRAINEX field cam-
paign study region (Fig. 1). The land-only simulations are
forced with meteorological data from Phase 2 of the Na-
tional Land Data Assimilation System (NLDAS-2; Xia et al.,
2012) and use MODIS International Geosphere–Biosphere
Program (MODIS-IGBP) land cover and National Centers
for Environmental Prediction (NCEP) climatological green-
ness vegetation fraction (GVF) and leaf area index (LAI)
datasets.

The irrigation parameterization within LIS/Noah is acti-
vated when four conditions are met: (1) the land cover must
be an irrigable type (e.g., non-urban or bare soil land cover);
(2) the irrigation fraction must be nonzero, (3) the simula-
tion date or time must be within the “growing season”, de-
fined by a grid cell GVF greater than 40 % of the annual
range in climatological GVF; and (4) the root zone must be
dry enough to require irrigation, as determined by root zone
moisture availability that falls below a user-defined field ca-
pacity threshold. Ozdogan et al. (2010) determined 50 % of
field capacity to be sufficient based on correspondence with
local experts in Nebraska and California as well as on trial
and error. Due to this previous work, as well as previous
assessments of the irrigation scheme and modeling system
(Lawston et al., 2017), this study also uses a threshold of
50 % of field capacity. The root zone is determined by the
crop type and scaled by GVF to mimic a seasonal cycle of
root growth. If all conditions are met, water will be applied as
precipitation (mimicking a “sprinkler” application) until the
root zone moisture availability reaches 80 % of field capacity.

Center-pivot sprinklers are the most common method of irri-
gation in Nebraska (NASS, 2009). The irrigation fraction is
used to scale the amount of water applied. More details about
the irrigation schemes as well as an evaluation and sensitivity
analysis of the irrigation scheme and thresholds can be found
in Ozdogan et al. (2010) and Lawston et al. (2015, 2017). The
irrigation scheme, thresholds, and all datasets except irriga-
tion fraction (i.e., land cover, GVF, soil texture, crop type,
and meteorological forcing) are kept constant between runs.

Three different irrigation maps, MOD, GRIPC, and AIM-
HPA (see Sect. 2), are used in the land-only simulations.
These datasets have a relatively high native resolution (30 m
for AIM-HPA and 500 m for MOD and GRIPC) but are up-
scaled to the model 1 km grid at varying resolutions to dis-
cern not only the impact of differing irrigation sources but
also of varying the dataset resolution. The AIM-HPA dataset
for the year 2017 (the most recent year available at the time
of this work) is upscaled to both 1 and 12 km, GRIPC is up-
scaled to 1 km, and MOD is upscaled the resolution of the
NLDAS domain (∼ 12.5 km). These simulations provide the
opportunity to discern the impacts of heterogeneity resulting
from the following: (1) a single-dataset resolution only (i.e.,
AIM-HPA 1 km vs. AIM-HPA 12 km), (2) different datasets
at a coarser resolution (MOD 12 km vs. AIM-HPA 12 km)
and a higher resolution (i.e., GRIPC 1 km vs. AIM-HPA
1 km), and (3) using a product at an “off-the-shelf” resolu-
tion (i.e., MOD ∼ 12 km). An additional baseline run with
the irrigation scheme inactive is also completed (hereafter
NO IRR), resulting in five runs (i.e., NO IRR, MOD 12 km,
GRIPC 1 km, AIM-HPA 1 km, and AIM-HPA 12 km).

Each land-only spin-up is used to initialize a fully cou-
pled simulation with the NASA Unified Weather Research
and Forecasting System (NU-WRF; Peters-Lidard et al.,
2015), which is coupled to LIS (i.e., LIS-WRF; Kumar et al.,
2008). These five LIS-WRF simulations are run for 30 h from
00:00 UTC on 24 July to 12:00 UTC on 25 July 2018. This
time period was selected to build upon previous GRAINEX
analyses (Rappin et al., 2021, 2022) that identified it as the
most ideal period for the evaluation of irrigation’s impact on
L–A coupling during the second intensive observation period
(IOP). The LIS-WRF simulations are forced using meteoro-
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Figure 1. Panel (a) presents a map of the USA (Google Earth Pro, 2023) with a box indicating the location of the study area. Panel (b)
shows the application of the AIM-HPA 1 km, (c) AIM-HPA 12 km, (d) GRIPC 1 km, and (e) MOD 12 km irrigation fraction datasets to the
modeling domain. Boxes show the irrigated (left), transition (middle), and rainfed (right) 100 km× 100 km domains used in the analysis
shown in Figs. 4 and 5.

logical data from the NCEP Final Analysis (FNL; https://rda.
ucar.edu/datasets/ds083.3/, last access: 10 October 2021).
The model setup has 60 vertical levels and uses Mellor–
Yamada–Nakanishi–Niino Level-2.5 (MYNN2.5; Nakanishi
and Niino, 2006) surface layer and PBL schemes. The iden-
tical irrigation scheme, thresholds, and respective datasets
used in the land-only simulations are also used in the coupled
runs, ensuring continuity between the spun-up initial condi-
tions and the coupled irrigation parameterization.

Figure 1 shows the irrigation maps applied to the modeling
domain for the four irrigated runs along with markers indi-
cating the locations of relevant GRAINEX observation sites
and boxes defining subregions used in the analysis detailed in
Sect. 4. There are several key differences that emerge among
the maps. When comparing the higher-resolution maps (i.e.,
Fig. 1b vs. d), AIM-HPA extends the irrigated area further to
the east and south than the GRIPC dataset and has a wider
range of irrigated fraction values. More specifically, most
grid cells classified as irrigated by GRIPC show a high ir-
rigation fraction (> 90 %), whereas AIM-HPA is more het-
erogeneous, even in the heart of the irrigated area. Some of
this heterogeneity is lost when upscaling to 12 km (Fig. 1c),
but a greater range in irrigation fraction still exists compared
with the other coarser-resolution run, MOD (Fig. 1e). The lo-

cation of the highest-intensity irrigation in the MOD dataset
is similar to the others (i.e., roughly between 97 and 98◦W),
but MOD is an outlier in that it extends a low percentage of
irrigation (i.e., < 30 %) far eastward, well into what is con-
sidered to be rainfed areas of the GRAINEX study domain.

3.2 Observations

To comprehensively observe the impacts of irrigation on the
atmosphere, GRAINEX (Rappin et al., 2021) deployed a col-
lection of observation systems in a 100 km× 100 km region
of eastern Nebraska in May–August 2018. This field cam-
paign, funded by the National Science Foundation (NSF),
was centered on a divide between predominately irrigated
(west) and rainfed agriculture (east). Observation systems
used during the campaign include 12 flux towers, 80 tempo-
rary meteorological observation stations, 2 vertical wind pro-
filers, and regular radiosonde launches (Rappin et al., 2021).
The campaign also featured two IOPs, (1) 29 May–13 June
and (2) 16–30 July, in order to more rigorously observe the
impacts of the commencement and peak of irrigation, respec-
tively. Analysis of the GRAINEX data has shown that air
temperature, wind speed, and the planetary boundary layer
height (PBLH) were lower over the irrigated area compared
with the nonirrigated region (Rappin et al., 2021, 2022) and
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that irrigation in the upslope region of the domain weakened
terrain-induced baroclinicity and the slope wind circulation
(Phillips et al., 2022).

Observations from the GRAINEX field campaign are used
to assess the model simulations. Figure 2 shows the locations
of the comprehensive land and PBL profiling instruments
used in this study overlaid on the irrigation fraction given
by the AIM-HPA dataset. The green, orange, and red circles
in Fig. 2 note the locations of 38 Environmental Monitor-
ing Economical Sensor Hub (EMESH) meteorological sta-
tions. EMESH weather stations were developed at the Uni-
versity of Alabama in Huntsville and were field tested for
accuracy and reliability. Each EMESH station recorded stan-
dard meteorological data, such as air temperature, baromet-
ric pressure, relative humidity, wind speed and direction,
and rainfall, as well as soil moisture and temperature. The
blue triangles in Fig. 2 indicate the locations of two Inte-
grated Sounding System (ISS) sites. The western ISS site
(i.e., York) is surrounded by irrigated agriculture, whereas
the eastern site (i.e., Rogers Farm) is representative of the
nonirrigated region. Instrumentation at each ISS site included
a ceilometer, radar wind profiler, weather station, and 2-
hourly radiosonde launches from sunrise (∼ 11:00 UTC) to
sunset (∼ 01:00 UTC). In this study, we use weather data
(e.g., temperature, humidity, and pressure) from the EMESH
stations (Nair et al., 2019) and radiosonde observations
from the Rogers Farm (UCAR/NCAR, 2018a) and York ISS
sites (UCAR/NCAR, 2018b). More information about the
EMESH stations and the ISS sites as well as a full descrip-
tion of all instruments deployed during the campaign can be
found in Rappin et al. (2021).

In order to investigate the irrigation dataset heterogeneity
impacts in different subregions of the domain, the EMESH
stations are classified as being in irrigated (green circles),
transition (orange circles), or rainfed (red circles) regions.
EMESH stations with a longitude less than (i.e., west of)
97.084◦W are well within the irrigated area and are classified
as “irrigated” stations, whereas those with a longitude greater
than (i.e., east of) 96.335◦W are classified as rainfed stations.
The stations located between 97.084 and 96.335◦W are clas-
sified as transition stations, as they are likely subject to both
irrigated and nonirrigated effects under typical synoptic con-
ditions. These longitude cutoffs were chosen to encompass
both the boundary of irrigation given by the AIM-HPA 1 km
map and the Big Blue River, the latter of which is locally un-
derstood to be the unofficial “dividing line” between predom-
inately irrigated and rainfed agriculture (Rappin et al., 2021).
In addition, a coarser-scale subregional analysis is completed
that imposes three 100 km× 100 km boxes on the study re-
gion (shown in Fig. 1), as proxies for three ESM grid cells
that are mostly irrigated, partially irrigated (i.e., transition),
and mostly rainfed (as discussed in Sect. 4).

3.3 Land–atmosphere (L–A) interactions

The local L–A coupling (i.e., LoCo; Santanello et al., 2018)
process chain paradigm provides an integrative framework
for assessing the impacts of land surface heterogeneity (LSH)
by evaluating the relative sensitivities of (1) surface fluxes to
soil moisture; (2) PBL evolution to fluxes; (3) entrainment
fluxes to PBL evolution; and (4) the collective feedback of
the atmosphere on ambient weather, clouds, and precipita-
tion. This allows for a more comprehensive analysis of the
coupling impacts of heterogeneity vs. a traditional one-at-
a-time approach (e.g., evaluating evapotranspiration or air
temperature independently). In this study, the complete set
of process chain variables are not available at any individual
site, so we do not undertake a site-by-site, end-to-end LoCo
assessment. Rather, we use the process chain framework to
assess the bulk land surface forcing by using aggregates of
observations and models across regions. In particular, we
employ (1) evaporative fraction (EF= latent heat flux/latent
heat flux+ sensible heat flux) vs. PBL height (PBLH) plots
and (2) a modified version of mixing diagrams (Santanello et
al., 2009, 2018). Traditional mixing diagrams relate the diur-
nal coevolution of temperature and moisture in the boundary
layer using vectors representing the surface input of heat and
moisture scaled by the PBLH. As surface fluxes and PBLH
observations are not co-located with near-surface meteorol-
ogy observations, the vectors are excluded from this analysis.

4 Results

Figure 3 shows the differences between no irrigation and
each irrigation simulation in top-layer soil moisture, EF, tem-
perature at 20 m, humidity (mixing ratio) at 20 m, and the
PBLH, along with the GRAINEX instrument locations for
reference. The 20 m model height (rather than 2 m) is chosen
throughout the analysis to assess the bulk (ambient) signal
of irrigation, as 2 m values will be more reflective of hyper-
local vegetation and crop characteristics and irrigation prac-
tices in the field. In each case, irrigation increases soil mois-
ture, latent heat flux, and near-surface humidity, as expected,
with a corresponding decrease in sensible heat flux, temper-
ature, and the PBLH. The spatial pattern of changes in soil
moisture and evaporative fraction corresponds closely to the
irrigation data source, as the irrigation map determines the
location of soil moisture increases, which then directly af-
fect fluxes via the terrestrial leg of the L–A coupling chain
(Dirmeyer, 2011). The impacts on the PBLH and tempera-
ture and humidity are more representative of the bulk atmo-
spheric integrated (spatially and vertically) response to irri-
gation (i.e., the atmospheric leg of L–A coupling), and, as
such, the impacts extend a bit beyond the actual boundaries
of irrigated area, particularly in the southern region as the
result of light northerly winds.
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Figure 2. (a) The AIM-HPA 1 km irrigation dataset applied to the modeling domain with a box noting the zoomed in area in panel (b).
(b) Locations of the GRAINEX instruments overlaid on the AIM-HPA 1 km irrigation fraction dataset. Circles indicate stations with mete-
orological observations (i.e., temperature and humidity), classified as irrigated (green), transition (orange), and rainfed (red). Blue triangles
are the locations of radiosonde launches (i.e., ISS sites) at the irrigated (ISS3 – York) and nonirrigated (ISS2 – Rogers Farm) sites.

The spatial extent and magnitude of irrigation-induced
changes vary based on the selected irrigation map, with the
biggest differences stemming from the dataset source, rather
than the resolution. The MOD map is the clear outlier, as
the irrigated area and subsequent impacts extend well east
into the actual rainfed region of the GRAINEX domain. The
biggest changes are observed in the southeast corner of the
domain, where even a small amount of irrigation fraction
(4 %–16 %) increases soil moisture by 0.1–0.15 m3 m−3 and
reduces temperature by up to 3 K. The GRIPC map most
closely matches the GRAINEX site-level classification of ir-
rigated and rainfed sites, largely bisecting the site locations
and limiting most impacts to Nebraska, whereas the other ir-
rigation maps extend south into Kansas. The AIM-HPA maps
at different resolutions are quite similar, but the upscaling
limits the precision of the spatial heterogeneity at the irri-
gated vs. nonirrigated border as well as the subsequent im-
pacts.

In order to analyze the extent to which essential L–A cou-
pling information, driven by the irrigation heterogeneity, is
retained at the ESM scale, three 100 km× 100 km subregions
are imposed on the study domain, indicated by the boxes in
Fig. 1. The western subregion is largely irrigated, the center
contains the transition area from irrigated to rainfed, and the
eastern is predominantly rainfed. These subregions can be
viewed as a proxy for an ESM grid cell, with the model 1 km

grid cells contained within them serving as “tiles” in which
the ESM sub-grid L–A processes are fully resolved.

Figure 4 presents plots of the daytime average EF vs. the
maximum PBLH, which is a critical coupling metric that re-
lates the daytime surface flux of heat and moisture (i.e., the
land forcing) to the PBL response (Santanello et al., 2009,
2011). The gray circles represent the EF and PBLH (given
as the model diagnostic from the MYNN scheme) values for
each 1 km grid cell within the irrigated subregion for each
model run. The colored markers show the subregional aver-
age for each model run and are, therefore, the same for each
figure panel (Fig. 4a–e). The NO IRR run (Fig. 4a) shows
the variability in the EF and PBLH that results from natural
heterogeneity in the model (e.g., land cover and soil type)
and reveals that this subregion is fairly wet on this day even
without irrigation, as most grid cells have EF values of 0.5
or greater. In the irrigated runs (Fig. 4b–e), the irrigation
scheme increases the EF in most grid cells and greatly re-
duces the PBLH compared with NO IRR. Although the spa-
tial averages are very similar across the irrigated runs (e.g.,
colored markers grouped near an EF of 0.8 and PBLH of
1100 m), the spread across the 1 km tiles varies considerably.
For example, the AIM-HPA 1 km dataset produces the most
spatial variability in the EF (i.e., numerous points spread be-
tween an EF of 0.3 and 0.7 across the 100 km box), due to the
local heterogeneity that extends to lower and, importantly,
zero irrigation fraction values. This variability in EF is lost
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Figure 3. Difference from the control as a daytime average for the (a–d) top-layer soil moisture, (e–h) evaporative fraction, (i–l) temperature
at 20 m, (m–p) humidity (mixing ratio) at 20 m, and (q–t) PBLH for the AIM-HPA 1 km, AIM-HPA 12 km, GRIPC 1 km, and MOD 12 km
runs.
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when upscaling to 12 km (Fig. 4c). In fact, AIM-HPA 12 km
more closely resembles the MOD 12 km run (Fig. 4d), which
has a positive irrigation fraction throughout the region, than
the AIM-HPA 1 km run, suggesting that resolution of the ir-
rigation fraction dataset can play a key role in the terrestrial
leg of L–A coupling. Despite the lower EF values seen in
this subregion in the AIM-HPA and GRIPC runs, there is lit-
tle impact on the PBL growth, likely due to the bulk of the
domain being irrigated and the spatial and vertical blending
of that influence.

Figure 5 shows the EF vs. PBLH plots for the transition
region for all runs. The NO IRR run (Fig. 5a) shows tight
grouping of points with fairly clean borders governed by the
natural heterogeneity (e.g., land cover, soil type, and vege-
tation characteristics) and associated model thresholds and
parameters. The irrigated runs (Fig. 5b–e) show how irriga-
tion and the irrigation fraction map itself change the hetero-
geneity in the EF vs. PBLH. For example, in the transition
region, the MOD run extends irrigation to the east such that
the transition region is almost entirely irrigated, resulting in
EF values that are skewed towards the high (i.e., wet) end
of the EF, whereas two clusters (wet vs. moderate) emerge
as a result of the precisely resolved irrigation boundary in
the AIM-HPA 1 km run. Notably, the wetter cluster in the
AIM-HPA 1 km run has EF values similar to the MOD run
(i.e., ∼ 0.65–0.9) but has corresponding PBLH values that
are up to 400 m higher than in MOD. It is likely that the
drier (east of the AIM-HPA transition boundary) grid cells
that have higher sensible and lower latent heat impact larger
PBL growth and entrainment feedbacks (as the PBL can inte-
grate over 10–50 km horizontally; Stull, 1988), and the influ-
ence is felt beyond just the nonirrigated region. This implies
that some grid cells in the AIM-HPA 1 km run (but not MOD,
which has irrigation throughout) reach critical moisture and
PBL thresholds that allow for PBL feedbacks that increase
the height of the PBL. The L–A interactions that lead to these
feedbacks are a direct result of the irrigation map and trig-
gering thresholds and, in turn, could be important for cloud
development and convective processes in a sub-grid ESM pa-
rameterization.

The rainfed region (Fig. S1 in the Supplement) shows con-
siderable spread in both the EF and PBLH but little difference
across runs, as all datasets specify a zero or near-zero irriga-
tion fraction. This allows “natural” heterogeneity in the EF
to dominate, which is dependent on land cover, soil type, ter-
rain, and precipitation. Overall, it is clear from the intercom-
parison of the three subregions that irrigation (and choice of
dataset in coupled models) can be a dominant and/or limit-
ing (Fig. 4), conditional (dependent on the orientation of the
fraction map, boundaries, and wind flow; Fig. 5), or minimal
(i.e., natural heterogeneity dominates; Fig. S1) control on L–
A coupling and the processes that govern the relationship of
soil moisture, fluxes, and PBL growth on ambient weather.

Figure 6 presents mixing diagrams for seven subregions of
the GRAINEX domain. All irrigation maps define the west-

ern part of the domain as heavily irrigated, but the maps dif-
fer considerably in their representation of the heterogeneity
within the irrigated area and in defining the location and char-
acteristics of the transition between irrigated and rainfed ar-
eas. To address this within-region heterogeneity, the EMESH
sites are classified into the following seven subregions using
the AIM-HPA 1 km irrigation map: North Irrigated, Middle
Irrigated, and South Irrigated (Fig. 2, green circles); North-
east Transition, Northwest Transition, and Southwest Transi-
tion (Fig. 2, orange circles); and Rainfed (Fig. 2, red circles).
Table 2 lists the specific site numbers included in each sub-
region.

Figure 6 shows that there is tight grouping across (i.e.,
minimal difference in) the irrigation runs in the Middle Ir-
rigated (Fig. 6b) and South Irrigated (Fig. 6c) regions. Irriga-
tion can affect the simulations through (1) wetter initial soil
moisture conditions from the irrigated spin-up (i.e., previous
irrigation) and (2) irrigation in the coupled simulation (i.e.,
present irrigation). The similar performance displayed by the
irrigation runs is due to the combined facts that (1) there is
agreement among the maps that these regions are heavily irri-
gated and (2) these regions also exhibit low antecedent mois-
ture (Fig. S2), causing irrigation to turn on in the coupled
run. In contrast, the North Irrigated (Fig. 6a) region, while
also heavily irrigated, has wetter antecedent soil moisture, so
irrigation does not turn on in the coupled run at the sites that
make up this region. Rather, the spread is due to previously
applied irrigation from which the model has begun to dry out.

The irrigation maps differ the most in the transition re-
gion between irrigated and rainfed, leading to the greatest
spread in model runs in the Northwest Transition (Fig. 6e)
and Southwest Transition (Fig. 6f) subregions. In the Rainfed
(Fig. 6g) subregion, the MOD run is the outlier as it classifies
the rainfed sites as irrigated, whereas all other runs are close
to the NO IRR run because they correctly classify these sites
as rainfed. Figure 6 also shows that the model has an inher-
ent dry bias, as the observations are consistently more humid
than the NO IRR run in all subregions, including Rainfed.
The irrigation scheme, regardless of the prescribed irriga-
tion fraction map, acts to mitigate this bias, compensating
for other model errors beyond only the lack of irrigation in
the model.

In order to better understand the irrigation impacts on the
PBL, the York (irrigated) and Rogers Farm (rainfed) sites
are analyzed in more detail in Figs. 7, 8, and 9. Figure 7
again shows mixing diagrams, although this time for the sin-
gle sites (i.e., not spatial averages as in Fig. 6) of York and
Rogers Farm, using temperature and humidity at 20 m in the
model and at the level closest to 20 m from radiosonde ob-
servations. At the York site, the model starts the day con-
siderably cooler and drier than observations, but the daytime
heating vigorously warms and moistens the boundary layer,
bringing all model runs closer to observations by late morn-
ing (e.g., 15:00 UTC). The model follows the diurnal cycle of
the observations well, implying that it captures the warming
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Figure 4. Evaporative fraction vs. PBLH plots for the irrigated subregion for the (a) NO IRR, (b) AIM-HPA 1 km, (c) AIM-HPA 12 km, (d)
GRIPC 1 km, and (e) MOD 12 km runs. There is one gray marker for each 1 km grid cell within the 100× 100 km irrigated subregion. The
colored markers represent the subregional average for each run and are, therefore, the same for each subplot.

and moistening of the boundary layer early in the day, the
subsequent drying due to entrainment around midday (i.e.,
the “left turn” in the diagram), and the second round of moist-
ening late in the day (i.e., the final “right turn”).

At the Rogers Farm site, most of the model runs cap-
ture the midday drying well (slow leftward curve) but miss
the small morning moistening from 13:00 to 15:00 UTC
shown in observations. In addition, the models display a late

day moistening (20:00–23:00 UTC or 15:00–18:00 LT, local
time) that does not appear in observations. The exception is
the MOD run, which shows the moistening early in the day
and gradual drying throughout the day, more consistent with
observations. The better performance of MOD is due to mis-
classifying this site as a small percentage irrigated and, there-
fore, mitigating the existing dry bias in the model.
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Figure 5. As in Fig. 4 but for the transition region.

Figures 8 and 9 show 2-hourly (15:00 UTC on 24 July to
01:00 UTC on 25 July) potential temperature profiles for the
lowest 1.8 km at the York and Rogers Farm sites, respec-
tively. A detailed analysis of the radiosonde profiles is avail-
able in Rappin et al. (2021). Here, we focus on the differ-
ences in the model runs and their ability to simulate what
was observed. At the York site, the observations show more
rapid PBL growth from 15:00 to 17:00 UTC than the model
as the PBL grows into a more unstable free atmosphere layer.
Although the model is slower in simulating this growth at

17:00 UTC, the well-mixed layer and the PBLH (i.e., approx-
imated as the level corresponding to the maximum gradient
in potential temperature) are remarkably well simulated dur-
ing 19:00–23:00 UTC. The NO IRR simulation is the outlier,
as it simulates a warmer boundary layer throughout the di-
urnal period. Little difference is noted between the irrigated
runs at this site.

At the rainfed site (Fig. 9), the model runs show a warm
bias in the potential temperature profiles. The OBS (obser-
vations, black solid line in Fig. 9) are again more unstable
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Table 2. List of GRAINEX EMESH sites, including the subregional classification used in Fig. 6, and the irrigation fraction given by each
dataset for the grid cell closest to the site’s latitude and longitude.

Site Classification MOD GRIPC AIM-HPA AIM-HPA
no. (12 km) (1 km) (1 km) (12 km)

95 North Irrigated 46 100 66.2 77.5
96 North Irrigated 46 100 79.1 82.2
51 North Irrigated 41 50 95.2 86.3
50 North Irrigated 22 55.6 86 80.5
98 North Irrigated 58 100 55.5 83.4
23 Middle Irrigated 65 100 75.4 85
54 Middle Irrigated 61 100 80.9 85
13 Middle Irrigated 44 50 14.8 53.8
26 Middle Irrigated 54 100 50.2 74.2
67 Middle Irrigated 43 100 30 74.9
9 Middle Irrigated 59 100 56.2 80.7
57 South Irrigated 47 100 97.2 85.5
68 South Irrigated 45 25 36.5 60.6
25 South Irrigated 18 83.3 84 60.6
52 South Irrigated 44 16.7 61.7 64.8
69 South Irrigated 26 83.3 90.1 77.3
81 South Irrigated 15 0 92.3 47.2
34 South Irrigated 38 100 79.6 70
53 Northwest Transition 3 0 0 0
38 Northwest Transition 4 0 0 1.2
99 Northwest Transition 5 0 0 3.7
71 Southwest Transition 7 0 8.7 36.1
85 Southwest Transition 7 0 84.7 36.1
66 Southwest Transition 7 0 9.8 36.1
70 Southwest Transition 9 100 35.7 39
83 Southwest Transition 12 50 79.1 39
84 Southwest Transition 14 50 6.6 44
86 Southwest Transition 7 0 16.2 57.4
42 Northeast Transition 52 0 33.3 55
48 Northeast Transition 30 0 62.8 24.9
47 Northeast Transition 0 0 84.3 58.6
40 Northeast Transition 4 0 73.7 52.3
39 Northeast Transition 0 0 85.4 46.4
41 Northeast Transition 6 0 0 9.2
5 Rainfed 0 0 0 0
8 Rainfed 4 0 0 0
11 Rainfed 6 0 0 0

in the free atmosphere and feature a residual layer extend-
ing to about 1300 m at 15:00 UTC. The observed PBL grows
quickly to the top of the residual layer, and the PBLH reaches
a maximum of about 1400 m at 19:00 UTC. The model sim-
ulates a shallower residual layer (about 900 m at 15:00 UTC)
and slower growth once the PBL surpasses the top of the
residual layer and grows into the more stable air in the free
atmosphere. Thus, these plots illustrate that the residual layer
can be a good predictor of future PBL growth (e.g., San-
tanello et al., 2005) and that surface changes induced by ir-
rigation need to be considered holistically, as the PBL and
lower troposphere are important modulators of the response.
Figure 9 also shows more sensitivity to the irrigation fraction

map (i.e., spread among runs) at the Rogers Farm site com-
pared with York, despite irrigation not occurring at this site,
except in the misclassified MOD.

Figures 10 and 11 show water vapor mixing ratio profiles
for the York and Rogers farm sites, respectively. At the York
site, the model again exhibits a dry bias that irrigation acts
to erode as it moves the irrigation runs slightly closer to ob-
servations. There is little difference between the runs early
in the day. While the AIM-HPA runs at each resolution per-
form marginally better by 21:00 and 23:00 UTC, all of the
runs perform quite well. The observations at both sites show
a dry layer around 1500 m that gradually lowers throughout
the day. At the rainfed site (Fig. 11), the MOD run, which ex-
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Figure 6. Average mixing diagrams for the (a) North Irrigated, (b) Middle Irrigated, (c) South Irrigated, (d) Northeast Transition, (e) North-
west Transition, (f) Southwest Transition, and (d) Rainfed subregions.

Figure 7. Mixing diagrams for the (a) York (ISS3 – irrigated) and (b) Rogers Farm (ISS2 – rainfed) Integrated Sounding System sites.
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Figure 8. Potential temperature profiles for each model run and observations at the York Integrated Sounding System site (ISS3 – irrigated)
every 2 h from 15:00 UTC on 24 July to 01:00 UTC on 25 July.

Figure 9. As in Fig. 8 but for the Rogers Farm Integrated Sounding System site (ISS2 – rainfed).

Hydrol. Earth Syst. Sci., 27, 2787–2805, 2023 https://doi.org/10.5194/hess-27-2787-2023



P. Lawston-Parker et al.: Investigating the response of land–atmosphere interactions 2801

Figure 10. Water vapor mixing ratio profiles for each model run and observations at the York Integrated Sounding System site (ISS3 –
irrigated) every 2 h from 15:00 UTC on 24 July to 01:00 UTC on 25 July.

hibits greater moisture from the irrigation misclassification,
lacks this dry layer, resulting in a wetter and taller boundary
layer that stands out from the other runs. Overall, the models
struggle to simulate the details of the elevated dry slot, with
the MOD run being an outlier as a result of the irrigation
misclassification.

5 Discussion and conclusions

This study employed a high-resolution, regional coupled
modeling system to assess the impacts of the spatial repre-
sentation of irrigation on L–A coupling using a case study
from the GRAINEX field campaign. The simulations are as-
sessed in the context of irrigated vs. nonirrigated regions,
subregions across the irrigation gradient, and sub-grid-scale
process representation in coarser-scale models.

The results show that L–A coupling is sensitive to the
choice of irrigation dataset and resolution and that the irriga-
tion impact on surface fluxes and near-surface meteorology
can be dominant, conditioned on the details of the irrigation
map (e.g., boundaries and heterogeneity), or minimal. For
example, within the irrigated region, the irrigation map res-
olution had a larger influence on the spatial heterogeneity of
the evaporative fraction than the choice of dataset, whereas
the opposite is true (i.e., the dataset was more important)
in the transition region. When viewing the simulations pre-

sented here as a proxy for “ideal” tiling in an ESM-scale grid
box, the results show that some tiles will reach critical non-
linear moisture and PBL thresholds that could be important
for clouds and convection, implying that heterogeneity re-
sulting from irrigation should be taken into consideration in
new sub-grid L–A exchange parameterizations, such as those
being investigated within the CLASP project.

A consistent finding across several analyses was that even
a low percentage of irrigation fraction can have significant
local and downstream atmospheric impacts, suggesting that
representation of boundaries and heterogeneous areas within
irrigated regions is particularly important for the modeling of
irrigation impacts on the atmosphere. In addition, the analy-
sis of modeled and observed temperature and moisture pro-
files demonstrated that lower troposphere stability is an im-
portant modulator of the irrigation signal. The results also
show that irrigation, regardless of the dataset, acts to mitigate
an existing dry bias in the model, as highlighted by irrigation
improving the bias in rainfed areas misclassified by the irri-
gation datasets. This underscores that care must be taken in
the implementation of irrigation physics in models in order
to avoid utilizing the irrigation scheme as a tuning mecha-
nism to compensate for embedded model errors. Approach-
ing the evaluation of irrigation schemes through a holistic
L–A coupling framework, as demonstrated here, can aid in
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Figure 11. As in Fig. 10 but for the Rogers Farm Integrated Sounding System site (ISS2 – rainfed).

disentangling model improvements that result from new irri-
gation inclusion vs. the mitigation of unrelated model biases.

This study focused on a major type of human-induced
land heterogeneity (i.e., irrigation) that can be introduced by
model parameters and datasets, distinct from natural sources
such as LULC, soil properties (e.g., type and texture), and
the greenness vegetation fraction. Our results suggest that
the combination of the irrigation fraction specification and
the triggering algorithm creates a new type of soil moisture
heterogeneity that is different from what would occur due to
atmospheric forcing alone and that results in changes to L–A
coupling and ambient weather.

The selected case study was chosen to fully leverage the
available GRAINEX data on a favorable day for L–A in-
teractions during IOP2 (i.e., the height of irrigation) and to
build on previous GRAINEX and L–A coupling work (Rap-
pin et al., 2021, 2022). The model antecedent soil moisture
in the irrigated region ranged from 0.14 to 0.24 m3 m−3, as
some regions of the domain were wet from antecedent rain-
fall. In addition, only one type of LSM irrigation scheme and
thresholds are used in this study, whereas previous work has
shown that L–A coupling is sensitive to irrigation type and
factors such as vegetation greenness (Lawston et al., 2015).
This enabled a controlled study on the impacts of the specific
irrigation map applied, which is often overlooked in irriga-
tion modeling impact studies (similar to land cover or soil-
type datasets). A combination of mapping, thresholds, and

antecedent soil moisture regime (which influences trigger-
ing) determines the irrigation heterogeneity, and these factors
deserve further investigation under a wider range of atmo-
spheric conditions. In addition, this analysis concentrated on
the region of GRAINEX observations, where there are other
areas of the domain with larger differences between datasets
(e.g., the southeast corner) that could be explored more di-
rectly.

This work featured only three of several widely used ir-
rigation datasets, and it is likely that the amount and vari-
ety of irrigation datasets will increase in coming years. The
results of this study suggest that, to be most beneficial for
irrigation representation within ESMs, future irrigation frac-
tion datasets should ideally be high resolution, resolve large-
scale irrigation boundaries, and capture within-region irriga-
tion heterogeneity. While not investigated here, a focus of
future work should be to discern the importance of the loca-
tion and intensity of irrigation map boundaries on local wind
and mesoscale circulations as well as the prevailing wind in-
fluences across these boundaries.

Code and data availability. NASA’s Land Information
System code is open source and available on GitHub
(https://github.com/NASA-LIS/LISF, Kumar et al., 2006).
Data from the GRAINEX field campaign are accessible via
https://doi.org/10.26023/ZEP0-XK4N-AW01 (Nair et al., 2019),
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https://doi.org/10.5065/D6WH2NV0 (UCAR/NCAR, 2018a) and
https://doi.org/10.5065/D6RR1X4P (UCAR/NCAR, 2018b). The
NASA Unified WRF code and model results are archived and can
be made available from the corresponding author upon request.
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