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Abstract. Rock moisture, which is a hidden component of
the terrestrial hydrological cycle, has received little attention.
In this study, frequency domain reflectometry is used to mon-
itor fluctuating rock water content (RWC) in a sandstone cave
of the Yungang Grottoes, China. We identified two major cy-
cles of rock moisture addition and depletion, one in summer
affected by air vapour concentration and the other in win-
ter caused by freezing—thawing. For the summer-time RWC,
by using the long short-term memory (LSTM) network and
the SHapley Additive exPlanations (SHAP) method, we find
relative humidity, air temperature and wall temperature have
contributions to rock moisture, and there is a good match be-
tween predicted and measured RWC using the three variables
as model inputs. Moreover, by using summer-time vapour
concentration and the difference between dew point temper-
ature and wall temperature as input variables of the LSTM
network, which belongs to physics-informed machine learn-
ing, the predicted RWC has a better agreement with the mea-
sured RWC, with increased Nash—Sutcliffe efficiency (NSE)
and decreased mean absolute error (MAE) and root mean
square error (RMSE). After identifying the causal factors of
RWC fluctuations, we also identified the mechanism con-
trolling the inter-day fluctuations of vapour condensation.
The increased vapour concentration accompanying a precip-
itation event leads to transport of water vapour into rock
pores, which is subsequently adsorbed onto the surface of
rock pores and then condensed into liquid water. With the
aid of the physics-informed deep learning model, this study

increases understanding of sources of water in caves, which
would contribute to future strategies of alleviating weather-
ing in caves.

1 Introduction

Water movement in the unsaturated zone is a fundamen-
tal component of the hydrologic cycle regulating the atmo-
sphere, the hydrosphere and the lithosphere (Arora et al.,
2019; Brubaker and Entekhabi, 1996; Lu and Likos, 2004;
Tindall et al., 1998). Although there are abundant studies on
water movement in various scales of unsaturated soils (Lar-
son et al., 2022; Schoups et al., 2005; Vereecken et al., 2014;
Vinnikov et al., 1996; Yu et al., 2016), much less attention
has been paid to water in unsaturated rocks. In a recent study,
Rempe and Dietrich (2018) defined water stored in unsatu-
rated rocks as rock moisture and pointed out that rock mois-
ture is a hidden component of the terrestrial hydrologic cycle
critical to ecosystems and weathering processes. Due to the
ubiquitous occurrence of precipitation infiltration through
unsaturated rocks, infiltrating precipitation was found to be
the main source of rock moisture (Rempe and Dietrich, 2018;
Sass, 2005). In fact, as early as in the fourth century BC,
Aristotle (384-322 BC) hypothesized that atmospheric water
vapour could penetrate into rocks in caves with low temper-
ature and condense into liquid water (after Meinzer, 1934).
Due to occurrence of hidden water in the form of rock mois-
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ture, many stone heritages inside caves have suffered from
weathering (Auler and Smart, 2004; Camuffo, 1998; de Fre-
itas and Schmekal, 2006; Guerrier et al., 2019; Lifan et al.,
2021). However, up to now, there are no observations of rock
moisture in caves, which hampers a comprehensive under-
standing of the source and control factors of rock moisture.

By using such techniques as downhole neutron probe
(Rempe and Dietrich, 2018), time domain reflectometry
(TDR) (Salve et al., 2012) and nuclear magnetic resonance
(NMR) (Schmidt and Rempe, 2020), the responses of rock
moisture to precipitation were identified in some previous
studies. However, these devices are usually long in length
or large in diameter and thus are not suitable to be used in
stone heritages. For example, the lengths of neutron probes
are larger than 300 mm, and the diameter of NMR is around
70 mm. In the recent 2 decades, the frequency domain reflec-
tometry (FDR) has been widely used to monitor the tempo-
ral variability of soil moisture (Irmak and Irmak, 2005; Xie
et al., 2021; Zhang et al., 2019). Because FDR sensors have
the advantage of being small in volume (the length is less
than 60 mm), for minimizing disturbance to rocks in heritage
sites, we attempt to use the FDR sensor to monitor rock mois-
ture in a cave with stone carvings.

Establishing the cause-and-effect relationship between
rock moisture and various atmospheric conditions is a feasi-
ble approach to identify the source of rock moisture respon-
sible for weathering in caves and to reveal mechanisms con-
trolling cycles of rock moisture addition and depletion. Ma-
chine learning has the ability to acquire knowledge and estab-
lish the complicated nonlinear relationship between variables
in a vast domain (Chen et al., 2019a; Jumin et al., 2020).
Although machine learning models have the ability of high-
accuracy prediction, they are notorious for being a black-box
model. Lundberg and Lee (2017) proposed the SHAP (SHap-
ley Additive exPlanations) values as a unified measure of fea-
ture importance, which led to a combination of accuracy and
interpretability of predictions by machine learning models.
In almost all applications of machine learning in the field
of hydrology, the directly measured meteorological factors
like precipitation, temperature, radiation, humidity and wind
speed are used as input variables (e.g. Barzegar et al., 2017,
Fang et al., 2019; Gao et al., 2020; Lees et al., 2021; Liu
et al., 2022; Xiang et al., 2020; Zhao et al., 2022). In fact, the
performance of a machine learning algorithm could be im-
proved by using prior knowledge stemming from physical or
mathematical understanding as model inputs, which is called
physics-informed learning (Karniadakis et al., 2021).

In this study, the long short-term memory (LSTM) net-
work, which is a classic deep learning model, is combined
with the SHAP values to predict rock moisture and evaluate
the relative importance of four directly measured variables
(precipitation, relative humidity, air temperature and wall
temperature). After excluding the possible control by precip-
itation infiltration, based on the physics controlling vapour
condensation, two new variables derived from relative hu-
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midity, air temperature and wall temperature are used as in-
puts of the LSTM network, which not only improves predic-
tion performance but also leads to improved understanding
of source of water in caves.

2 Study site and field monitoring
2.1 Study site

The Yungang Grottoes (40°07’ N, 113°08’ E), which are lo-
cated in Datong, Shanxi Province, China, were declared a
World Heritage Site by the UNESCO (United Nations Edu-
cational, Scientific and Cultural Organization) in 2001 (http:
/Iwhc.unesco.org/en/list/1039, last access: 15 July 2023). Ac-
cording to meteorological data in the recent 20 years (from
2002 to 2021) in the Datong city (data from China Meteo-
rological Data Service Center; http://data.cma.cn/en, last ac-
cess: 15 July 2023), the study area has a semi-arid climate,
with an annual average precipitation of 393 mm and an an-
nual average pan evaporation of 1243 mm. The precipitation
in the rainy season from June to September accounts for 73 %
of the annual precipitation. The annual average temperature
is 8 °C, the average temperature in summer is 20.3 °C and the
average temperature in winter is —8.2 °C.

Most statues in the Yungang Grottoes were carved in sand-
stone caves in ~ 1500 years ago (Fig. 1a). In summer, wa-
ter droplets with planar distribution can be occasionally ob-
served on the walls of some caves (Fig. 1b). Although no
water droplets occur in other sandstone walls, by absorb-
ing water, the high rock moisture leads to slight changes in
the colour of some walls. Water in the form of either wa-
ter droplets or rock moisture is responsible for weathering
of the statues; however, the sources of the two forms of wa-
ter remain controversial. Previous studies suggested that the
possible source of water in caves include infiltrating precip-
itation through the overlying thick unsaturated zone (Wang
et al., 2012) and condensation of water vapour onto walls
(Cao et al., 2005). Recent studies reveal that it is difficult for
precipitation to infiltrate through the silt overlying the sand-
stone (Mao et al., 2022).

2.2 Monitoring of rock moisture and atmospheric
conditions

To monitor variations of rock moisture in the shallow part of
a cave wall, a FDR-based sensor (ECH20 EC-5, produced by
DECAGON, USA) was installed at 3—8 cm inside the north
wall of cave 9 (Fig. 2). Air temperature (7,) and air rela-
tive humidity (RH) are simultaneously monitored near the
monitoring site of rock moisture (Fig. 2). The wall tempera-
ture is also monitored to analyse whether the wall meets the
condition for condensation. Moreover, hourly precipitation is
available from a meteorological station outside the cave.
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Figure 1. (a) Some caves and statues in the Yungang Grottoes; (b) The occurrence (b1-b3) and disappearance (b4) of water droplets in

cave 5 of the Yungang Grottoes in summer of 2021.

To make sure that the sensor is in close proximity to the
porous rock, which is crucial to obtain accurate measure-
ment, we use fine sand as infilling in the hole for the FDR
sensor. Because the FDR sensor is installed inside the cave
without direct exposure to sunshine, there is limited diurnal
fluctuations in wall temperature. Because there is no corre-
lation between the instantaneous change in temperature and
the instantaneous change in the FDR reading, the possible
influence of fluctuating temperature on rock water content
(RWC) can be neglected (Fig. S1 in the Supplement). As re-
ported in previous experimental studies (Mollo and Greco,
2011; Sakaki and Rajaram, 2006), there is a good linear rela-
tionship between actual RWC and rock moisture transformed
from a dielectric constant. Considering the difficulty of cal-
ibrating the actual water content in the field (Li et al., 2020;
Sass, 2005), and the purpose of the current study being to es-
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tablish the relationship between rock moisture fluctuations
and atmospheric conditions, the apparent RWC is directly
used as RWC.

3 Methods
3.1 The LSTM network

The LSTM network is an improved variant of the conven-
tional recurrent neural network (RNN), which is a recurrent
neural network that is mainly used for modelling sequence
data. Because the LSTM network has the same fundamental
framework as the conventional RNN, we first briefly intro-
duce the structure of RNN. As shown in Fig. 3, a common
RNN model consist of an input layer, a hidden layer and an
output layer, where the hidden layer is used to capture fea-
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Figure 2. (a) The arrangements of sensors for rock moisture, wall
temperature, air temperature and relative humidity in the north wall
of cave 9. (b) A photo showing the installed FDR sensor in cave 9.

tures of sequence data by RNN cells. x; is the input vector
at time step ¢, h; is the hidden state at time step ¢ determined
by both the input vector x; at time step ¢ and the hidden
state (h;—1) at time step t — 1 (Zhao et al., 2017), and op,
is the output of the RNN at time step t. Mathematically, the
relationship between the three layers can be written as

h; = tanh(Ux; + Wh;_1 + byp), 6]
Opt = Vht + bOv (2)

where tanh is the activation function which means the hy-
perbolic tangent performs nonlinear transformations of the
inputs; U, W and V are the network weight matrices for
input-to-hidden, hidden-to-hidden and hidden-to-output con-
nections, respectively; and b, and by, are bias vectors.

The limitation of common RNNs is that they cannot cap-
ture the long time dependence of sequences; that is, some
earlier historical data are ignored when conducting predic-
tions on long time series data (Bengio et al., 1994; Hochreiter
and Schmidhuber, 1997). To solve such problems, Hochre-
iter and Schmidhuber (1997) proposed an improved variant
of an RNN whose hidden layer can capture the correlation
within time series in both short-term and long-term depen-
dence, which was named the LSTM network. In other words,
the LSTM is a variant model that improve the limitation
of common RNNs for long-term dependence. As shown in
Fig. 4, the LSTM replaces the RNN cell in a hidden layer
with the LSTM cell, which introduces three types of gates:
forget gate (f;), input gate (i;) and output gate (o;). The for-
get gate determines the effect of the cell state ¢, at the pre-
vious moment on the current cell state ¢;, the input gate de-
termines the effect of the input x, at the current moment on
the cell state ¢;, and finally the output gate determines the
effect of the cell state ¢; on the output #; (Gao et al., 2020;
Fischer and Krauss, 2018; Lipton et al., 2015).
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The formulas of the three gates, abstract cell state, cell
state and hidden state in the LSTM cell are shown as follows:

(forget gate) fi=0oWgx; +Wmh,—1+byp),  (3)
(input gate) ir =0 (Wixx; + Winh,—1 + by), “)
(output gate) 01 =0 (Woxx; + Wonhi—1 +bo), (5)
(abstract cell state) ¢, = tanh(Wexx; + Wenh,—1 +be),  (6)
(cell state) = frOc—1+i ©¢(7), (7
(hidden state) h; = o;tanh © ¢y, ®)

where i;, f; and o; are the vectors of input, forget and output
gates at time step ¢, respectively, all of which have the same
sizes as ¢; and hy; o is the logistic sigmoidal activation func-
tion; ¢, is the vector of the abstract cell state at time step ¢;
and © is element-wise multiplication of two vectors. Similar
to RNN, We, W, Wix, Win, Wox, Won, Wex and W, are
the matrices for different connections in the network; b;, b,
and b. are bias vectors. The dimensions of Wg, Wix, Wox
and Wy are D x M, and the dimensions of Wg,, Win, Won
and W¢, are M x M; here, D is the number of input features
and M is the number of hidden units in the LSTM layer.
When M is large enough, an increasing M would lead to
more computation time but does not improve the prediction
performance (Bengio, 2012).

In this study, the open-source framework TensorFlow (ver-
sion 1.14.0) written in Python 3.7.6 is used to build and train
the LSTM model. We first use the raw atmospheric data (air
relative humidity, RH; air temperature, T,; precipitation, P;
and wall temperature, Ty,) to predict RWC, then integrate
physics controlling vapour condensation into the input vari-
ables to improve the performance of the LSTM model. In
both schemes, we find the accuracy has stabilized when M
equals 48.

3.2 Model interpretation and evaluation

To interpret the performance of a machine model, Lundberg
and Lee (2017) proposed the SHAP (SHapley Additive ex-
Planations) explanation method, which is based on the game
theory (Strumbelj and Kononenko, 2014). The Shapely value
of every input variable represents its contribution on the pre-
diction, and the importance of each input variable is clarified
by comparing model performances with and without it. The
formula for calculation of the Shapely value is
I(F =S| =1)!
= 3 PR EE D s v sl o)
SCF{i} :

where ¢; is the contribution of variable i; F' is the set of all
input variables; and v(S U{i}) is the result of a model trained
with the variable i and v(S) is the result without the vari-
able i, so the difference between them represents the effect
of feature i on the model prediction. This method requires
retraining the model on all feature subsets S C F (Shapley,
1953).
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Figure 3. The structure of the recurrent neural network (RNN) (modified from Hopfield, 1982).
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Figure 4. The structure of the LSTM cell (modified from Hochreiter and Schmidhuber, 1997).

To assess the accuracy of prediction by the LSTM net-
work, we use the statistical metrics of Nash—Sutcliffe effi-
ciency coefficient (NSE), mean absolute error (MAE) and
root mean squared error (RMSE), all of which are widely
used in the literature. NSE is the ratio of the sum of the
squares of the regression to the total sum of the squares,
which reflects the linear fit between the predictions and ob-
servations. The closer the value is to 1, the better the linear
fit. The expression of NSE is

ZIN=1 (YPred — Y)z
ZlNz] OG-y )2
where N is the number of data; and ypr4, ¥ and y are the
predicted, observed and mean observed value, respectively.
MAE is the mean of the distance between the predicted and
the observations, whereas RMSE is the square root of the
mean of the square of the deviation between the predicted

values and the observations. The expressions of MAE and
RMSE are

NSE=1-— (10)

] N
MAE=N;|yPred—y|, (11)
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1 N
RMSE= | > (yprea = )" (12)
i=1

4 Results and discussion

4.1 The seasonal variations of rock moisture and
atmospheric conditions

In the north wall of cave 9, although there is no obvious oc-
currence of liquid water throughout the year, there is a clear
trend of seasonal variations in RWC (Fig. 5). Take the year
2021 for example, from February to May, the RWC is rel-
atively stable, maintaining at around 0.013 cm3 cm™3; from
June to September, which corresponds to the rainy season
with high relative humidity and high air temperature, there is
acycle of significant addition and depletion of rock moisture;
from October to December, there is a trend of gradual de-
crease in RWC. The cycles of precipitation, relative humid-
ity, air temperature and wall temperature from spring to early

Hydrol. Earth Syst. Sci., 27, 2579-2590, 2023
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Figure 5. The temporal variations of rock water content (RWC), air relative humidity (RH), air temperature (7},), precipitation (P) and wall
temperature (7w). The two periods in yellow correspond to the summer period with high temperature and high humidity, whereas the two
periods in green correspond to the fluctuation of rock moisture caused by freezing—thawing.

winter have quite similar trends as the cycle of RWC, indicat-
ing that they are possible environmental conditions leading to
the fluctuating RWC.

In the summer of 2021, the RWC has a sharp increase
from 9 July and is maintained at relatively high values un-
til 28 July, with a maximum value equalling 0.029 cm? cm ™3
on 17 July. The high RWC indicates that there are atmo-
spheric conditions responsible for water infiltration or water
vapour condensation. Note that this period with high RWC
corresponds to the period with occurrence of water droplets
in cave 5 as shown in Fig. 1 (b1-b3). Although there is no
water droplet in cave 9, the colour of the sandstone changes
slightly, indicating that this slight change is a result of the
increased RWC.

From the middle of December 2020 to the end of January
2021 and from late December 2021 to the end of Febru-
ary 2022, there are also significant fluctuations of RWC
(Fig. 5). This pattern of fluctuation is a direct consequence
of freezing—thawing, which can be confirmed by the negative
wall temperature. At the beginning of the freezing—thawing
cycle, there is a trend of increasing RWC due to freezing-
induced liquid water migration towards the wall surface with
the lowest temperature. By the end of the freezing period, the
RWC reaches a minimum value of the year because most lig-
uid water has been transformed into ice. In the 2 years, the
minimum liquid water content is 0.009 cm? cm 3 (on 16 Jan-
uary 2021) and 0.010cm>cm™> (on 25 February 2022), re-
spectively. In the thawing stage, there is a trend of increasing
liquid water content.

The pattern of freezing—thawing-induced RWC fluctua-
tions is similar to that of freezing—thawing-induced soil wa-
ter content fluctuations (Deprez et al., 2020; Matsuoka and
Murton, 2008; Sun and Scherer, 2010; Xie et al., 2021; Yu
et al., 2018), demonstrating that the FDR technique is very
sensitive to liquid water content in sandstone and is suitable
to measure rock moisture. The fluctuating RWC during the
freezing—thawing cycle also has implications for understand-
ing weathering processes. The increased RWC before freez-
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ing indicates that there is movable water in winter even if
the RWC is very low. The movable water could be responsi-
ble for chemical weathering, and the freezing of liquid wa-
ter near the wall surface might cause physical weathering.
Therefore, our field monitoring of RWC in winter has impli-
cations for understanding rock weathering.

4.2 The performance of the LSTM model with two
different schemes of model inputs

In the rainy season, as we pointed out in Sect. 4.1, precipita-
tion, relative humidity, air temperature and wall temperature
have quite similar trends of seasonal variations as RWC. Ap-
parently, they are all possible factors determining the fluctu-
ating apparent rock moisture. Therefore, in Sect. 4.2.1, we
first use all of them as input variables (scheme 1) of the
LSTM model to predict RWC, and we use the SHAP val-
ues to evaluate the contribution of each input variable. After
excluding precipitation whose mean | SHAP value | equals 0,
in Sect. 4.2.2, we use two new parameters (vapour concen-
tration, dew point temperature minus wall temperature) cal-
culated from relative humidity, air temperature and wall tem-
perature as input variables (scheme 2) of the LSTM model to
predict RWC.

Deep learning models require a large amount of data for
training, as well as data sets with a long time span to ensure
the mastery of complete data features. Because the period
from 1 June to 1 October has the most significant trends of
rock moisture addition and depletion, the hourly data during
this period in the year 2020 are used to construct the train-
ing set, whereas the hourly data in the year 2021 are used to
construct the test set.

4.2.1 The predicted results based on directly monitored
variables

By using relative humidity, air temperature, precipitation and
wall temperature as model input variables, there is a fairly
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Figure 6. The predicted and measured RWC obtained by two schemes. (a) Scheme 1 uses four directly measured variables. (b) Scheme 2
uses two calculated variables controlling vapour condensation. Also shown are NSE of the whole time series, MAE and RMSE of three

different stages.

good match between the predicted and measured RWC, with
similar patterns of fluctuations (Fig. 6a). Although there is
obvious underestimation of RWC in middle and late July, and
slight underestimation or overestimation in other months, the
NSE is as high as 0.958, indicating that the fluctuating rela-
tive humidity, air temperature, precipitation and wall temper-
ature can capture the major patterns of the fluctuating RWC.

Figure 7a shows the mean absolute SHAP value of each in-
put variable, which represents the relative importance of each
variable for the prediction. The mean absolute SHAP val-
ues are in descending order: air relative humidity (0.0087),
air temperature (0.0032), wall temperature (0.0018), RWC
at previous time step (0.0004) and precipitation (0), respec-
tively. Therefore, precipitation infiltration has no direct con-
tribution to rock moisture in caves, and we infer that vapour
condensation should be the source of rock moisture in caves.

4.2.2 The prediction results based on variables
controlling vapour condensation

Based on the SHAP values of scheme 1, precipitation can
be excluded as an input variable for the LSTM network.
Among the three directly monitored variables that have con-
tributions to RWC, air relative humidity and air temperature
determine the vapour concentration and the dew point tem-
perature (Nguyen et al., 2013), and whether the wall temper-
ature is below the dew point temperature determines whether
vapour condensation could occur (Ferndndez-Cortés et al.,
2006; Gabrovsek et al., 2010; Li et al., 2021). Because wa-
ter vapour is the direct source of condensation water and
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whether the wall temperature is below the dew point tem-
perature is the precondition of vapour condensation, we use
vapour concentration and dew point temperature minus wall
temperature as two input variables.

Vapour concentration and dew point temperature are both
functions of actual vapour pressure, which is determined by
air temperature, saturated vapour pressure and relative hu-
midity. For air with a temperature of T (K), the formulas for
calculating saturated vapour pressure and actual vapour pres-
sure are (Dingman, 2002; Lu and Likos, 2004)

T — 273.2>

T 36 (1)

Uy sat = 0.611exp <17.27

(14)

Uy = Uy sat RH,

where uy ot is the saturation vapour pressure (kPa), RH is the
relative humidity of air (%) and u, is the actual vapour pres-
sure (kPa). After obtaining u,, we can calculate the vapour
concentration Cy (g m~3) and the dew point temperature
T4 (K). The equations of Cy and T are (Lu and Likos, 2004)

Uy
Cy=217 —— 15
v T —273.15 (15
361 — 4700

In(uy) — 16.78

As indicated in Eq. (15), a higher water vapour pressure
in the air, uy, corresponds to a higher vapour concentration,
thus a higher possibility of condensation at the wall. Figure 8
shows that the patterns of fluctuating RWC, vapour concen-
tration and difference between dew point temperature and

Hydrol. Earth Syst. Sci., 27, 2579-2590, 2023
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Figure 8. The fluctuating apparent rock moisture (RWC), the vapour concentration (Cy) and the difference between dew point temperature
and wall temperature (7q — Tw). The zones in purple represent the periods with positive 7y — Tw and high rock moisture.

wall temperature (denoted as Ty — Ty, hereafter) in the whole
non-freezing period are quite similar. Moreover, we find the
period with a positive Ty — Ty, has a good correspondence
with the period with a high level of rock moisture.

In scheme 2, by using the two new variables as inputs of
the LSTM model, the mean absolute SHAP values of Tqg— Ty
and vapour concentration are 0.0217 and 0.0100, respectively
(Fig. 7b), indicating that both variables have significant con-
tributions to rock moisture. Moreover, the NSE of predicted
rock moisture is increased to 0.978 (Fig. 6b). Although the
prediction still underestimates RWC from mid-July to the
end of July, the MAE reduced from 0.245 in scheme 1 to
0.186 in scheme 2, and the RMSE reduced from 0.01416 in
scheme 1 to 0.01050 in scheme 2. In the other two time dura-
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tions shown in Fig. 6b, the MAE and the RMSE of scheme 2
also decrease obviously. Therefore, scheme 2 has much bet-
ter performance of prediction, showing that using physics-
informed variables would improve accuracy of prediction.

4.3 The mechanism of water vapour condensation

As we illustrated in Sect. 4.21, precipitation is not directly
responsible for rock moisture fluctuations, but other atmo-
spheric conditions controlling vapour concentration and the
condition of vapour condensation are directly responsible for
RWC fluctuations in the cave. In fact, vapour concentration
fluctuations are more or less related to precipitation events.
As shown in Fig. 9, the vapour concentration usually begins
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Figure 9. Plots showing the responses of rock water content (RWC) to precipitation (P), vapour concentration (Cy), dew point tempera-
ture (Ty) and wall temperature (7y) in the summer of 2021. The zones in yellow have increasing RWC, and zones in red have increasing

RWC as well as positive Tq — T .

to rise before a precipitation event and declines under the
control of solar radiation after a precipitation event.

Under the control of convection and diffusion, the in-
creased water vapour in the air could be transported into
porous media. When the sandstone is dry, water vapour can
be adsorbed onto the surface of the rock pores, forming an
adsorbed layer as thin water film; as curved menisci begin to
form under increasing relative humidity, capillary condensa-
tion occurs in the rock pores (Broekhoff, 1969; Lu and Likos,
2004; Xu et al., 1998). Both adsorption and capillary con-
densation would lead to rock moisture addition. As shown
in Fig. 9, in summer of 2021, there are 10 stages with obvi-
ous rock moisture additions. In the majority of the 10 stages,
there are lagged responses of rock moisture additions to ris-
ing vapour concentration in the air, probably due to time re-
quired for vapour convection and diffusion.

Among the 10 stages, the magnitude of rock moisture ad-
dition is controlled by Ty — Ty,. In stages IV, V, VII, VIII,
IX and X, because the dew point temperature seldom ex-
ceeds the wall temperature, the magnitudes of rock mois-
ture additions are relatively small. In stages I, II, III and VI,
there are long durations with dew point temperature being
higher than the wall temperature, causing large magnitudes
of rock moisture addition. However, at the beginning of these
four stages, even if dew point temperature is still lower than
the wall temperature, increasing vapour concentration has re-
sulted in rock moisture addition. Therefore, although a neg-
ative Tqg — Ty does not exclude the possible occurrence of
capillary condensation, a positive Ty — Ty, does promote cap-
illary condensation.

https://doi.org/10.5194/hess-27-2579-2023

After the 10 stages of rock moisture additions, we find
rock moisture depletions are very sensitive to decreasing
vapour concentration. Moreover, inside stage III with very
high RWC, a slight decrease in vapour concentration results
in a slight decrease in RWC. Therefore, we believe that RWC
measured by the FDR technique is sensitive enough to fluc-
tuating vapour concentrations and can be applied in future
rock moisture monitoring in other settings.

5 Conclusion

The source of water in the sandstone caves in the Yungang
Grottoes responsible for weathering was a long-standing un-
resolved scientific question. In this study, we use the FDR
sensor to monitor the rock moisture in a cave, which shows
clear rock moisture addition—depletion cycles due to vari-
ous controlling mechanisms. By using relative humidity, air
temperature, precipitation and wall temperature as the input
variables of the LSTM network, the predicted rock moisture
well reproduced the pattern of monitored rock moisture fluc-
tuations. Moreover, we find that precipitation has no contri-
bution, but all other three variables have contribution to the
fluctuating rock moisture. Because relative humidity, air tem-
perature and wall temperature belong to factors controlling
vapour condensation, this scheme of deep learning reveals
that vapour condensation instead of precipitation infiltration
is the source of rock moisture in the cave.

By calculating vapour concentration and dew point tem-
perature from air temperature and relative humidity, we pro-
posed two new variables, vapour concentration and the dif-
ference between dew point temperature and wall tempera-
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ture as input variables of the LSTM network. Because the
two variables are direct controlling factors of vapour conden-
sation, this scheme leads to a much better accuracy of pre-
diction, confirming that rock moisture in the cave is derived
from vapour condensation. We also analysed how precipita-
tion events control vapour concentration and thus indirectly
control vapour condensation inside the rock.

By monitoring rock moisture in the field and examining
their responses to atmospheric conditions, this study demon-
strates for the first time that the FDR technique is effective
for monitoring rock moisture. By using variables directly
controlling vapour condensation as the input variables of
the LSTM model, this study shows that “physics-informed”
deep learning can improve prediction performance. More-
over, by identifying how vapour condensation controls rock
moisture and occasional occurrence of water droplets in the
study area, this study contributes to the understanding of the
source of water in caves, which is important in providing
scientific-based proofs to propose future strategies for alle-
viating weathering of stone heritages.
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