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Abstract. Essentially all hydrogeological processes are
strongly influenced by the subsurface spatial heterogeneity
and the temporal variation of environmental conditions, hy-
draulic properties, and solute concentrations. This spatial and
temporal variability generally leads to effective behaviors
and emerging phenomena that cannot be predicted from con-
ventional approaches based on homogeneous assumptions

and models. However, it is not always clear when, why, how,
and at what scale the 4D (3D + time) nature of the subsur-
face needs to be considered in hydrogeological monitoring,
modeling, and applications. In this paper, we discuss the in-
terest and potential for the monitoring and characterization of
spatial and temporal variability, including 4D imaging, in a
series of hydrogeological processes: (1) groundwater fluxes,
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(2) solute transport and reaction, (3) vadose zone dynamics,
and (4) surface—subsurface water interactions. We first iden-
tify the main challenges related to the coupling of spatial
and temporal fluctuations for these processes. We then high-
light recent innovations that have led to significant break-
throughs in high-resolution space—time imaging and model-
ing the characterization, monitoring, and modeling of these
spatial and temporal fluctuations. We finally propose a clas-
sification of processes and applications at different scales ac-
cording to their need and potential for high-resolution space—
time imaging. We thus advocate a more systematic character-
ization of the dynamic and 3D nature of the subsurface for a
series of critical processes and emerging applications. This
calls for the validation of 4D imaging techniques at highly
instrumented observatories and the harmonization of open
databases to share hydrogeological data sets in their 4D com-
ponents.

1 Introduction

While the surface components of continental water, such as
streams, lakes, and glaciers, are a very familiar part of our
landscape, the vast majority of continental water resources
resides and flows in the subsurface and is thus generally in-
accessible to direct observation (McDonnell, 2017). Grow-
ing societal needs imply that subsurface environments, which
form part of the critical zone of the Earth (Brantley et al.,
2007; Fan et al., 2019), are increasingly subject to pressure
and multiple (possibly competing) uses for water resources,
such as groundwater abstraction, artificial recharge and stor-
age (Dillon et al., 2019; Russo and Lall, 2017; Aeschbach-
Hertig and Gleeson, 2012), nuclear waste storage (e.g., Ew-
ing, 2015; Butler, 2010), geothermal energy (Rivera et al.,
2017; Fleuchaus et al., 2018; Lu, 2018), oil and gas ex-
traction (e.g., Wang et al., 2014), and climate change mit-
igation, such as energy storage (Arbabzadeh et al., 2019)
and CO; sequestration (Hamza et al., 2021; Kumar et al.,
2020), while being threatened by anthropogenic contamina-
tion (e.g., Riedel and Weber, 2020). As a result, subsurface
systems are experiencing profound modifications that affect
their basic environmental functions and ecosystem services
(Erostate et al., 2020; Fattorini et al., 2020; Luijendijk et
al., 2020). These modifications include, both at the local and
the catchment scales, water level depletion (Jasechko et al.,
2021), which affects baseflow of many rivers and associated
ecosystem services (Conant et al., 2019), a growing input of
chemicals and pathogens, which threatens water quality (e.g.,
Szymczycha et al., 2020), seawater intrusion (Werner et al.,
2013) and soil salinization (Litalien and Zeeb, 2020; Singh,
2021), threatening soil and water resources as well as food
security in many arid and semi-arid regions of the world, and
massive fluid injections at depth, related to CO; sequestra-
tion or gas extraction, which may lead to increased seismic-
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ity (Rathnaweera et al., 2020; Schultz et al., 2020; Keranen
and Weingarten, 2018).

The last decade has seen great advances in stochastic sub-
surface hydrology (e.g., Scheidt et al., 2018), microscale
imaging (e.g., Gouze et al., 2008; Blunt et al., 2013; Heyman
et al., 2020), and geophysical characterization (e.g., Binley
atal., 2015; Singha et al., 2015). Although geological hetero-
geneity has been long recognized, these advances have made
it even more clear that the subsurface is highly heterogeneous
at multiple scales and that this heterogeneity substantially
controls many flow, transport, and biochemical processes
(e.g., Hartmann et al., 2017; Comte et al., 2019; Zamrsky
et al., 2020). Recent efforts have led to an improved ability
for monitoring surface-water dynamics or characterizing the
state of aquatic systems, but this has not been matched by a
significant increase in our ability to quantify the dynamics of
fluxes and processes in the subsurface (e.g., Schilling et al.,
2018). A wide gap between common modeling approaches
(e.g., homogeneous or multi-Gaussian representations of pa-
rameters, steady-state or transient simulations, upscaling ap-
proaches) and field reality prevails. On the one hand, data sets
often have a very limited 3D spatial extent and are character-
ized by a low sampling density, preventing a full description
of the complex nature of the aquifer (e.g., Xu and Valocchi,
2015). On the other hand, studies concerning the temporal
dynamics of hydrological processes and structures are gen-
erally based on point data typically acquired in wells, poten-
tially missing the underlying spatial variability (e.g., Johnson
etal., 2012).

The persistent observation gap between data points con-
tributes significantly to the current lack of understanding of
subsurface processes and our (in)ability to accurately predict
the evolution of subsurface systems. It limits our ability to
answer critical scientific questions of significant societal and
industrial impacts, such as the management of water quan-
tity, quality, and ecology at the interface between the surface
and the subsurface (Fleckenstein et al., 2006, 2010; Brun-
ner et al., 2017; Conant et al., 2019), the fate of contaminant
through mixing, reactions, and the development of biogeo-
chemical hotspots (e.g., Wallis et al., 2020; Pannecoucke et
al., 2020; Robinson and Hasenmueller, 2017; Bailey, 2017),
or understand the contribution of subsurface processes to
global cycles of carbon (Zhang and Planavsky, 2020; Liu
et al., 2014) and nitrogen (Marzadri et al., 2012) (Fig. 1).
The potential of characterization for coupled spatio-temporal
monitoring of parameters and state variables and their tem-
poral evolution, including 4D imaging, to understand these
processes remains largely unexplored. This temporal compo-
nent should not only include the evolution of state variables
under transient conditions, but also the evolution of system
properties because of coupled processes, such as hydrome-
chanical effects impacting the pore space or fracture aper-
tures (Davy et al., 2018), clogging and erosion processes in
streambeds (Partington et al., 2017), or reactive transport in-
ducing changes in the pore space (Izumoto et al., 2020).
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Figure 1. Illustration of the 4D nature of hydrogeological processes inaccessible from punctual data only: (a) imaging subsurface fluxes and
their contribution to surface fluxes through the combination of borehole and surface imaging; (b) monitoring water content and temperature
fluctuations for quantifying preferential flows and heat transfer; (c) characterizing tracer motion to elucidate transport processes and related
parameters; and (d) analyzing and upscaling pore-scale signals produced by microscale reactive transport processes.

A grand challenge of subsurface imaging methods for dy-
namic hydrogeological processes (Fig. 1) is to deal with sys-
tems characterized by pronounced structure and process het-
erogeneity, including preferential flow paths, evolving prop-
erties or geometry, unsaturated flow processes, fluctuating re-
dox conditions, and multifunctional microbial communities.
Recent breakthroughs in hydrogeophysical imaging tech-
niques (e.g., Binley et al., 2015; Singha et al., 2015) and the
emergence of interdisciplinary approaches combining new
sensors such as fiber optics (Bense et al., 2016; Zhan, 2020),
new experimental methodologies like ambient seismic noise
correlation (Garambois et al., 2019), and coupled modeling
techniques (e.g., Hinnell et al., 2010; Jardani et al., 2013;
Linde and Doetsch, 2016) may profoundly change our vision
and representation of the dynamics of processes that take
place in these environments (Binley et al., 2015; St. Clair et
al., 2015). However, monitoring and characterizing dynam-
ical fluxes, transport, reactions, and hydromechanical pro-
cesses that evolve spatially in 3D with geophysical imaging
is still in its infancy in environmental sciences and engineer-
ing. The efficiency of those new methods and the full com-
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plexity that emerges from their coupling can only be revealed
through in situ exploration with interdisciplinary approaches.
In that sense, field observatories and case studies constitute
a key component of the current research effort (e.g., Folch et
al., 2020; Palacios et al., 2020, Table 2B6).

The objective of this review paper is to identify and dis-
cuss when, why, and for which processes and applications
the characterization of dynamic hydrogeological processes is
crucial. Although heterogeneity influences all the processes
occurring in the subsurface, an exhaustive characterization of
the subsurface is not always necessary and strongly depends
on the objective of the studies, the scale, and the available
budget. We identify three categories of processes according
to their need for coupled temporal and spatial monitoring,
including 4D imaging (see Table 1 and Fig. 8): (A) pro-
cesses that require high-resolution space—time imaging to
develop accurate upscaled models applicable to less instru-
mented sites; (B) applications for which spatial and temporal
monitoring is critical and desirable; and (C) applications for
which limited hydrogeological data are often sufficient for
a first approximation. Specifically, we discuss the potential
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Table 1. Classification of processes according to their need for high-resolution space—time imaging.

Type of processes Typical scales

Examples

(A) Processes for which high-resolution
space—time imaging is needed for
developing mechanistic models that
upscale these dynamics

From the pore scale to
(deca)metric scale
Seconds to hours or days

— Subsurface velocity statistics and dynamics
— Fracture dominated flow

— Transport, mixing, and reactive transport
— Geophysical characterization of
biogeochemical processes

— Preferential infiltration and lateral
unsaturated flow

— Transport and reaction in the unsaturated
zone

— Conceptual models of interface exchanges
— Upscaling mechanistic models

(B) Processes for which high-resolution
space—time monitoring is desirable or
crucial in applications

kilometric scale

From metric scale to

A few hours to years

— Soil moisture characterization for precision
— agriculture

— Monitoring of contaminations (natural
attenuation, in situ bioremediation, reactive
barriers)

— Thermal affected zone for energy storage
— Storage of nuclear waste

— Induced seismicity resulting from
geothermal exploitation or fluid injections in
the subsurface

— Variability in groundwater—river exchanges

(C) Processes for which space—time
characterization may not be critical

From decametric scale to
catchment and global scale
Months to centuries

— Water balance at the catchment scale

— Average transit and residence time

— Average recharge towards aquifer

— Evaluation of the fate of contaminants when the
risk for receptors is limited

— River baseflow

and value of high-resolution space—time imaging in hydro-
geology for monitoring and modeling groundwater fluxes,
transport and reactions processes, soil moisture dynamics in
the vadose zone, and surface—subsurface water interactions
(Fig. 1). Based on a non-exhaustive overview of recent ad-
vances, we identify key scientific challenges and their re-
lation to the heterogeneous and dynamic nature of the sub-
surface for each of the abovementioned processes. We then
highlight some recent breakthroughs which allowed to ad-
vance our understanding of these processes. We also discuss
the feasibility, advances, and challenges of numerical mod-
eling of the identified processes in terms of 4D complexity.
We finally highlight the central role of instrumented field ob-
servatories and corresponding case studies to tackle the sci-
entific challenges and evaluate the performance and scope of
recent innovations.

2 Key processes in hydrogeology and their 4D nature

In this section, we highlight hydrogeological processes for
which the considerations of coupled spatial heterogeneity
and temporal dynamics are important, present the main chal-
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lenges related to the representation and inference of spatial
and temporal variability, and point towards a few recent in-
novations that could help to address these challenges in the
future (Fig. 1).

2.1 Groundwater fluxes

Inferring and modeling groundwater Darcy fluxes and fluid
velocities is crucial in most hydrogeological processes and
related applications, both for water quantity (e.g., water stor-
age, groundwater discharge, transit time distribution) and
quality (e.g., contaminant transport, reaction and mixing pro-
cesses, see also Sect. 2.3) purposes (Fig. 1). Pore-scale ad-
vection flow, along with the other transport processes and the
influence of the macro-scale geological heterogeneity, con-
trols propagation and spreading of natural or contaminant
solutes, from fast transfers to late time tailings (e.g., Dentz
et al., 2011; Hoffmann et al., 2020; Table 2E2; Kang et al.,
2015). In the context of risk assessment, measuring natu-
ral solutes or contaminant concentrations may be of lim-
ited value if not supported by quantitative flux rates al-
lowing to estimate solute mass transfers (Brouyere et al.,
2008). Groundwater fluxes drive mixing processes prevailing

https://doi.org/10.5194/hess-27-255-2023
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at aquifer interfaces such as subsurface—surface interactions
in hyporheic zones (see also Sect. 2.4) or transition zones
along coastal saltwater intrusion (e.g., Werner et al., 2013;
Hester et al., 2017; Nogueira et al., 2019). They also in-
fluence hydrogeochemical and biogeochemical reactions by
transporting reactants, such as nutrients, to these interfaces.
They impact the feasibility of storage applications, including
the injection and recovery of heat or CO; in the subsurface
(Niemi et al., 2017; Fleuchaus et al., 2018), and control tran-
sit times distributions across watersheds (Goderniaux et al.,
2013).

The range of variation of expected groundwater fluxes may
be very large, making them difficult to image, with their spa-
tial and temporal variation. For decades, the basic approach
consisted in first measuring the hydraulic conductivity and
then predict fluxes, based on the hydraulic gradient. This ap-
proach however presents the serious disadvantage to aver-
age local variations and offers a limited understanding of the
groundwater flux spatial distribution in heterogeneous me-
dia (Palmer, 1993; Brouyere et al., 2008; Jamin et al., 2015).
In addition, many subsurface processes are time-dependent
and exhibit an inherent periodicity. If deep systems are
not expected to vary rapidly, shallow aquifers can exhibit
fluctuations ranging from lower (e.g., multi-annual or sea-
sonal recharge fluctuations) to higher frequencies (e.g., tide-
dependent saltwater intrusion, aquifer exploitation or artifi-
cial storage applications, reaction to rainfall). The accurate
quantification of groundwater flux rates including their spa-
tial distribution and transient conditions is therefore needed
to understand and manage these processes. This should be
performed at the relevant scale(s), with the appropriate reso-
lution, in adequation with the objectives of the study and the
geological context (Jiménez-Martinez et al., 2013).

Recent research efforts have focused on the development
of direct or indirect methods allowing for a more accurate
assessment of groundwater fluxes, including their amplitude,
spatial distribution, and temporal dynamics, with applica-
tions in highly heterogeneous media. Specific approaches,
based on thermal methods for instance, have been developed
for certain contexts, such as surface—subsurface interactions
(Sect. 2.4), while approaches based on solute transport (e.g.,
tracer experiments), are allowing only indirect quantification
of the fluxes (Popp et al., 2021, see Sect. 2.2). Other tech-
niques are more general and available to directly and accu-
rately measure local groundwater fluxes (e.g., Jamin et al.,
2015; Le Borgne et al., 2006; Brouyere et al., 2008; Bur-
nett et al., 2006). For instance, point measurements of Darcy
fluxes are classically done from dilution methods (Drost et
al., 1968; Klotz et al., 1980; Pitrak et al., 2007; Novakowski
et al., 2006; Jamin et al., 2015). Well-points velocity probes
have also been recently developed (Labaky et al., 2009; De-
vlin, 2020) to provide promising and complementary veloc-
ity measurements, although ranges of measurements are still
limited. A key aspect of some recent approaches is to allow
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the monitoring of groundwater fluxes dynamics (Jamin and
Brouyere, 2018).

Important challenges, also depending on the media type,
however remain. The number of available methods for di-
rect measurement is limited and most methods are suited for
porous media rather than fractured aquifers where fluxes are
expected to show stronger spatial variations (Pouladi et al.,
2021). Current methods are still deficient in providing high-
resolution 3D datasets, as they must be performed in wells.
Current geophysical imaging techniques are still unable to
directly estimate fluxes, as they are mostly based on the con-
trast in water properties induced through tracers or natural
concentration variations (e.g., Robert et al., 2012; Paepen
et al., 2022). Nevertheless, very promising results were ob-
tained combining ambient noise surface wave tomography
and self-potential (SP) measurements to image the hydro-
geological structure and associated groundwater flow paths
(Grobbe et al., 2021). Despite these improvements, moni-
toring the dynamics of fluxes remains resource expensive.
Accurate measurements, which often imply complex exper-
imental needs and designs, must be repeated regularly, with
an adequate time resolution, for example to understand cyclic
process evolution. Passive flux methods (e.g., Hatfield et al.,
2004) integrate flux measurements over specific periods, pro-
viding mean representative value while avoiding repetitive
field operations, but do not capture the dynamics.

Fiber optic distributed temperature sensing (DTS) allows
for the measurement of temperature with high spatial and
temporal resolution over large distances from a few meters
up to several kilometers, using buried or borehole cables
(Selker et al., 2006; Bense et al., 2016; Simon et al., 2020, see
Table 2C2). By estimating the rates of temperature change
along the cable, this kind of system allows an indirect es-
timation of groundwater fluxes intercepting the cable, pro-
vided that conditions are changing fast enough and that the
temperature change is large enough to be detected (Read et
al., 2013). Long-term changes can also be detected by using
DTS systems as permanent monitoring tools (Susanto et al.,
2017; McCobb et al., 2018). A new generation of active fiber
optics with heated cables designed for hydrogeological in-
vestigations is currently being developed and is a promising
approach for inferring borehole or in situ groundwater fluxes
(Read et al., 2014; des Tombes et al., 2019; Maldaner et al.,
2019; Simon et al., 2021; Del Val et al., 2021). The thermal
response during the active heating of the cable and the sub-
sequent cooling period is monitored, as it depends strongly
on the water fluxes intercepting the cable, allowing an accu-
rate groundwater flux assessment (Simon et al., 2021). Al-
though challenges still remain to deploy such setups on the
field, possible DTS applications extend to various domains,
including 3D hydraulic tomography (Pouladi et al., 2021) or
groundwater—surface water interactions (see Sect. 2.4).

In summary, the development of innovative in situ meth-
ods to characterize the spatial and temporal variability of
groundwater flow opens a range of new opportunities for un-
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Table 2. Selection of datasets available online for multidimensional hydrogeological system characterization and monitoring. Datasets were
selected based on their online availability, their link with a dynamic component of the subsurface, and their relevance for illustrating the
paper. This table will be available online at https://hplus.ore.fr/en/database/4d-hydrogeology-dataset (last access: 15 August 2022), with the

possibility to contribute to enrich the datasets with new data.

Dimension  Dataset Site Link to dataset Publications
(Al) Time-lapse geophysical Hermalle, https://hplus.ore.fr/en/associated-sites/enigma/data-hermalle Hermans et al.
monitoring of heat transport: Belgium (last access: 15 August 2022) (2015b, 2018),

g 2D time-lapse ERT cross- Hoffmann et
E= sections + 3D multiple nested al. (2019)
g wells data during heat tracer test
:z (A2) Time-lapse geophysical Theis site,  https://doi.org/10.4211/hs.69204f1ee49c4176a8aab5f4832c¢7b76  McGarr et al.
< monitoring of hyporheic zone Ohio, USA (2021)
e processes: 2D surface
Electromagnetic induction 4 2D
time-lapse ERT (section)
(B1) Time-lapse geophysical Ploemeur, http://hplus.ore.fr/en/blazevic-et-al-2020-water-data™ Blazevic et al.
monitoring of water France (last access: 15 August 2022) (2020)
infiltration in the vadose zone:
2D time-lapse ERT and seismic
cross sections + TDR
monitoring of water content
during irrigation
(B2) GPR (ground-penetrating Aspd hard  http://hplus.ore.fr/en/molron-et-al-2021-eg-data™ Molron et al.
radar) imaging of fracture rock (last access: 15 August 2022) (2020, 2021)
opening during hydraulic test: laboratory,  http://hplus.ore.fr/en/molron-et-al-2020-eg-data™
borehole and surface GPR + Sweden (last access: 15 August 2022)
optical televiewer 4 core
logging during high pressure
injection test
g (B3) GPR imaging of tracer Ploemeur, http://hplus.ore.fr/en/shakas-et-al-2017-grl-data™ Shakas et al.
i transport in fractured media: France (last access: 15 August 2022) (2016, 2017)
A borehole GPR + conductivity
a and fluorescence monitoring
S during tracer test
(B4) Use of Vp/ Vsratio to Ploemeur,  http://hplus.ore.fr/en/pasquet-et-al-2015-nsg-data Pasquet et al.
monitor subsurface water France (last access: 15 August 2022) (2015),
content: 2D time-lapse seismic Dangeard et al.
cross sections P- and surface- (2018)
wave survey, SH-wave
refraction acquisition, travel-
time tomography
(BS5) Time-lapse geophysical LSBB, https://hplus.ore.fr/en/carriere-et-al-2022-dib-data Carriere et al.
monitoring of water France (last access: 15 August 2022) (2015, 2022)
infiltration in karstic
environment:
2D time-lapse ERT cross
sections during rainfall events
(B6) Time-lapse geophysical Argentona,  http://hplus.ore.fr/en/palacios-et-al-2020-hess-data Palacios et al.
monitoring of seawater Spain (last access: 15 August 2022) (2020)

intrusion: 2D time-lapse cross
hole ERT in coastal aquifer

Hydrol. Earth Syst. Sci., 27, 255-287, 2023
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Table 2. Continued.
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Dimension  Dataset

Site

Link to dataset

Publications

(C1) Nuclear Magnetic
resonance monitoring of water

Strengbach,
France

http://hplus.ore.fr/en/lesparre-et-al-2020- joh-data
(last access: 15 August 2022)

Lesparre et al.
(2020)

in a headwater catchments:
time-lapse magnetic resonance
sounding

(C2) Fiber optic DTS
monitoring for estimating
thermal conductivity and
groundwater flux in porous
media: fiber optic DTS and heat
tracer experiments in a sand
tank

Poitiers,
France

http://hplus.ore.fr/en/simon-et-al-2020- wrr-data
(last access: 15 August 2022)

Simon et al.
(2020, 2022)

Ploemeur,
France

(C3) Fiber-optic monitoring of
heat transfer in fractured
media: fiber optic DTS
monitoring during thermal and
solute tracer tests,

http://hplus.ore.fr/en/delabernardie-et-al-2018-wrr-data®
(last access: 15 August 2022)

de La Bernardie
et al. (2018)

Larzac,
France

(C4) Use of gravimeter time
series for hydrological model
calibration in a karst aquifer:
10 years gravimetry time
series using iGrav
uperconducting gravimeter

(C) 1D + time

https://hplus.ore.fr/en/igrav- gravity-dataset
(last access: 15 August 2022)

Fores et al.
(2017, 2018)

Larzac,
France

(C5) Time-lapse absolute
quantum gravity
measurements to monitor
water storage in kartic
environments: gravimeter time
series

https://zenodo.org/record/4279110#.Y dIFQgWCZOMS8
(last access: 15 August 2022)

Cooke et al.
(2021)

Voulund,
Denmark

(C6) Self-potential monitoring
of natural rainfall and saline
tracer infiltrations at the
agricultural test site of
Voulund, Denmark (HOBE
network): self-potential, time
series

https://data.mendeley.com/datasets/6r8898657w/1
(last access: 15 August 2022)

Hu et al.
(2020)

(C7) Fiber-optic and borehole
temperature monitoring of

heat transfer in stream

valleys: fiber optic DTS (distributed
temperature sensing) and

borehole temperature

monitoring of naturally

occurring temperature

fluctuations in groundwater
upwelling areas in wetlands.

Holtum
stream
lowlands,
Denmark

https://water.columbia.edu/people/upmanu-lall

(last access: 15 August 2022)
https://hplus.ore.fr/en/associated- sites/enigma/data-evi- 1
(last access: 15 August 2022)

Tirado-Conde
etal. (2019)

derstanding, modeling, and monitoring hydrogeological sys-
tems. These advances may provide much more accurate es-
timation of subsurface velocity statistics in space and time
in a highly instrumented site to establish upscaled transport
models, for porous and fracture media, at the decameter scale
that capture these dynamics (see next section and Table 1A
and Fig. 8). In critical applications such as subsurface energy
(thermal affected zone, induced seismicity related to fluid in-

https://doi.org/10.5194/hess-27-255-2023

jection) or waste storage, these novel methods will likely be
increasingly used to reduce the risks involved (Table 1B and
Fig. 8). Finally, in more standard hydrogeological applica-
tions, such as water balance studies, aquifer recharge, or av-
erage residence time estimation, such a level of characteriza-
tion is generally not required (Table 1C and Fig. 8).
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Table 2. Continued.
Dimension  Dataset Site Link to dataset Publications
T (D1) 3D seismic imaging of a Poitiers, http://hplus.ore.fr/en/mari-et-al-2009-ogst-data* Mari et al.
%D .% ,, karstic aquifer combined with France (last access: 15 August 2022) (2009)
2 -'é 2 multiple cross borehole tracer https://hplus.ore.fr/en/poitiers/data-poitiers™
E § E tests: 3D seismic bloc and (last access: 15 August 2022)
S § 8 tracertests
= 2 =
° Eo £ (D2) GPR imaging of sand Krauthausen,  https://teodoor.icg.kfa-juelich.de/geonetwork/aaps/search/?uuid=ad404c9f-419a*  Gueting et al.
E 5 & layered aquifer with multiple Germany (last access: 15 August 2022) (2015, 2017)
- 2D profiles and tracer tests:
= crosshole GPR and tracer tests
(E1) Solute and heat tracer Choutuppal,  http://hplus.ore.fr/en/hoffmann-et-al-2021-groundwater-data Hoffmann et al.
tests for characterizing heat India (last access: 15 August 2022) (2021b)
transfer in fractured granite:
convergent and push—pull tests
@ with injection of hot water, cold
g water, and salt
'é (E2) Solute and dissolved gas Mons, https://hplus.ore.fr/en/hoffmann-et-al-2020-hydrogeology-of- the-chalk-data* Hoffmann et al.
5 tracer tests for characterizing Belgium (last access: 15 August 2022) (2020, 2021a)
8 transport in chalk: http://hplus.ore.fr/en/hoffmann-et-al-2020- grl-data*
g convergent and push—pull tests (last access: 15 August 2022)
% with heat, helium, argon, xenon,
\_g and uranine
= (E3) Salt and dissolved oxygen Selke River, https://www.hydroshare.org/resource/51b3933c4987427e94e51e3339237755/ Nogueira et al.
tracer tests for characterizing Falkenstein, (last access: 15 August 2022) (2021a, b)
transport and transit-times in Germany https://www.hydroshare.org/resource/476a188d9f894a77a3ed404949680cab/

a riparian zone: time-series of
EC, dissolved oxygen, and
water temperature and stage

(last access: 15 August 2022)

* with login and password provided upon request.

2.2 Transport, mixing, and reaction

Three-dimensional heterogeneity and temporal fluctuations
of fluxes have a first-order impact on transport and reaction
processes (e.g., Dentz et al., 2011; Rolle and Le Borgne,
2019; Valocchi et al., 2019, Fig. 1). The inherent hetero-
geneity of subsurface environments leads to dispersion dy-
namics, which do not follow the conventional macrodisper-
sion framework based on Fickian dispersion (e.g., Berkowitz
et al., 2006; Neuman and Tartakovsky, 2009). Furthermore,
mixing rates in 3D systems can be fundamentally differ-
ent than predicted from 2D or steady representations of the
subsurface (Lester et al., 2013). At the pore scale, recent
3D imaging techniques (Fig. 2) have shown that 3D flow
topologies driven by pore-scale flow patterns lead to chaotic
flows that strongly enhance mixing rates (Heyman et al.,
2020; Souzy et al., 2020). At the Darcy scale, anisotropic
permeability fields can generate helical flow that play a sim-
ilar role (Ye et al., 2015). In fractured media, intersection of
fractures with fluids of different chemical compositions can
create microbial hot spots with intermittent activity (Bochet
et al., 2020). In coastal aquifers, mixing between freshwa-
ter and saline water trigger reactions, including rock disso-
lution that leads to increased permeability and karst forma-
tion, which develop as hot spots due to medium heterogene-
ity (De Vriendt et al., 2020). Modeling and laboratory inves-
tigations have shown that these transport and reaction rates
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can be further altered by temporal fluctuations in head levels
(Pool and Dentz, 2018) and variable water content (Jiménez-
Martinez et al., 2017). Modeling studies have provided evi-
dence that heterogeneity and temporal fluctuations can exert
a strong control on biogeochemical reaction rates (Li et al.,
2010; Sanz-Prat et al., 2016). However, there is increasing
evidence that reactive transport processes are not well cap-
tured by the macrodispersion framework (Gramling et al.,
2002; de Anna et al., 2014). Yet, in the absence of an al-
ternative upscaling framework, it is still the main reference
for field applications.

Characterizing and imaging transport and reaction dynam-
ics in the field is a critical challenge for a range of fun-
damental and applied questions, such as designing efficient
remediation strategies for contaminated sites (Kitanidis and
McCarty, 2012) or characterizing transport and reaction dy-
namics in mixing zones (Rolle and Le Borgne, 2019). Re-
active hot spots that concentrate a disproportionate amount
of reaction relative to their size tend to develop at the in-
terfaces between surface and subsurface compartments (Mc-
Clain et al., 2003), which include the vadose zone (Jiménez-
Martiinez et al., 2017, see Sect. 2.3), the hyporheic zone
(Hester et al., 2017; Nogueira et al., 2022, see Sect. 2.4), or
the groundwater—seawater interface (Pool and Dentz, 2018;
Dugque et al., 2019).

Classical artificial tracer tests are commonly used to esti-
mate solute transport properties and related parameters. Their
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A. Darcy scale helical flow in anisoptropic
permeability fields (centimeter to meter scale)

B. Chaotic flow dynamics at the pore scale in
granular media (millimeter to centimeter scale)

Figure 2. (a) Experimental evidence of helical flow at Darcy scale
(top, modified from Ye et al., 2015): the black lines show simulated
streamlines, the colored surfaces iso-pressure surfaces, and the red
dots are experimental sampling points. (b) Experimental evidence
of chaotic mixing at the pore scale in 3D porous media (bottom,
modified from Heyman et al., 2020): the color field shows the con-
centration of a continuously injected fluorescent dye, the red line is
the intersection of the plume with a 2D plane transverse to the mean
flow, which shows the stretching and folding patterns that produce
chaotic mixing, and the gray spheres represent selected grains in the
bead pack that create the first successive folding of the plume.

use in highly heterogeneous media is, however, challeng-
ing due to the difficulty of positioning a limited amount of
recovering points leading to low mass recovery (Kemna et
al., 2002; Sanford et al., 2006). When interpreting or invert-
ing tracer breakthrough data, with little information on the
spatial heterogeneity, the range of possible interpretation in
terms of parameter values can be quite large or misleading
(e.g., Hoffmann et al., 2019, Table 2A1). Combining tracer
test recovery with other monitoring methods, such as geo-
physics (e.g., Robert et al., 2012; Hermans et al., 2015b, Ta-
ble 2A1) and model inversion, provides complementary in-
formation that can narrow down the uncertainty in the in-
terpretation. Combining multiple tracers (Klepikova et al.,
2016; Hoffmann et al., 2019, 2021a, b, Fig. 3, Table 2Al,
and E) or tracers with flux measurements such as seepage
meters (Tirado-Conde et al., 2019, Table 2C7; Duque et al.,
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2019) can also provide more constraints on tracer test in-
terpretation, exchanges fluxes estimation, or heterogeneity.
DTS fiber optics techniques provide the opportunity for spa-
tial monitoring of thermal tracers (de La Bernardie et al.,
2018; Klepikova et al., 2016, see also Sect. 2.1 and Ta-
bles 2C3 and 1C7). The combination of tracer experiments
under different configurations (convergent, push pull, etc.)
provides new constraints on transport models, providing the
opportunity to capture the effect of complex 3D fracture net-
works architectures in effective transport models (Kang et al.,
2015; Guihéneuf et al., 2017).

New mobile mass spectrometers have opened up new op-
portunities to use dissolved gas as tracers and measure them
continuously in the field (Brennwald et al., 2016; Chatton et
al., 2017; Popp et al., 2021). Dissolved gases, such as he-
lium, argon and xenon, are conservative tracers with larger
diffusivity compared to solute tracers, thus allowing the ex-
ploration of diffusive processes such as fracture—matrix or
mobile-immobile water interactions (Hoffmann et al., 2020,
Table 2E2). Reactive tracers have offered new methods for
characterizing transport dynamics, including hyporheic ex-
change (Knapp et al., 2017, see also Sect. 2.4).

The use of time-lapse geophysical techniques provides a
promising avenue to characterize the spatial distribution and
temporal evolution of transport and reaction processes, at
scale up to a few hundred meters (e.g., Binley et al., 2015,
Table 2). Extensive geophysical imaging of transport pro-
cesses has mainly been performed using electrical resistiv-
ity tomography (ERT) and ground-penetrating radar (GPR),
even if immediate successes have often been hampered by is-
sues of mass recovery due to unresolved concentration gradi-
ents (Slater et al., 2002; Singha and Gorelick, 2005; Miiller et
al., 2010; Doetsch et al., 2012; Dorn et al., 2012b; Fernandez-
Visentini et al., 2020). A major challenge is thus to up-
scale the non-stationary and non-ergodic solute concentra-
tion fields as well as the macroscopic heterogeneity unre-
solved by geophysics (Gueting et al., 2015, 2017, Table 2D2)
to derive relevant petrophysical relationships. Accounting for
realistic heterogeneity patterns in inversion remains difficult
(both flow and transport) and upscaling is not straightforward
(Singha et al., 2015). In smoothness-constrained tomogra-
phy inversion, there is usually underprediction of magnitudes
and overprediction of target sizes (Day-Lewis et al., 2006).
Overcoming this challenge requires advanced hydrogeophys-
ical imaging (e.g., Hermans et al., 2016b, 2018; Oware et
al., 2019), adapted regularization consistent with the studied
process (e.g., Karaoulis et al., 2014; Hermans et al., 2016a;
Nguyen et al., 2016; Lopez-Alvis et al., 2021), geostatisti-
cal post-processing (Moysey et al., 2005; Nussbaumer et al.,
2019), or coupled inversion (e.g., Hinnel et al., 2010). Re-
cent modeling results suggest that key geostatisical proper-
ties of permeability fields may be inferred from time-lapse
ERT imaging (Fernandez Visentini et al., 2020). New geo-
physically sensitive tracers, allowing density matching with
the resident fluid (Shakas et al., 2017, Table 2B3), provide
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Figure 3. Hydraulic conductivity fields (a, b) and related simulations (¢, d) obtained by inversion of temperature (a—c) and solute tracer
concentration data (b—d) from heat and solute tracer experiments (modified from Hoffmann et al., 2019, Table 2A1).

images of tracer pathways that are not influenced by den-
sity effects. Theoretical work has suggested that tracers that
change their electrical conductivity when reacting could be
imaged by electrical methods, providing new opportunities
to characterize mixing processes in situ (Ghosh et al., 2018).
This idea remains to be tested in the laboratory and field.
Geophysical techniques that have the potential to map and
monitor reactive processes, such as spectral induced polar-
ization (SIP), which consists of measuring the phase shift
of an alternating electrical signal occurring because of po-
larization phenomena in the electrical double layer, by min-
eral precipitation (Leroy et al., 2017) or by the activity of
microorganisms (Kessouri et al., 2019), are highly sensitive
to pore-scale processes and concentration distributions (Izu-
moto et al., 2020, 2022). This makes their interpretation chal-
lenging but potentially very rewarding. The coupling of geo-
physical techniques with pore-scale imaging techniques, in-
cluding micro and millifluidics (Jougnot et al., 2018; Fernan-
dez Visentini et al., 2021; Izumoto et al., 2022) and X-ray
computed tomography (Johansson et al., 2019), represents a
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new avenue of research to understand and quantify the geo-
physical signature of unresolved pore-scale processes. Geo-
physical methods are thus increasingly used for mapping bio-
geochemical processes (Atekwana and Slater, 2009; Knight
etal., 2010). Self-potential (SP) signals are sensitive to redox
conditions in contaminated groundwater (Naudet et al., 2003;
Revil et al., 2009; Arora et al., 2007). Laboratory studies
have shown the correlation between SIP and bacteria activity
using column experiments (Davis et al., 2006; Abdel Aal et
al., 2010; Zhang et al., 2014), and the SIP method has been
applied to detect biogeochemical reactions or root activities
in the field (Wainwright et al., 2016; Flores Orozco et al.,
2012; Ehosioke et al., 2020). However, current interpreta-
tions are largely qualitative or empirical through correlation.
It remains challenging to mechanistically relate the SIP sig-
nal to biological and physiological processes or simply to the
biomass itself. For many applications, the underlying mech-
anisms of the observed polarization are still the subject of
active research and debate (see e.g., Leroy et al., 2017; Eho-
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sioke et al., 2020), while field applications remain limited
(Flores Orozco et al., 2021).

The coupling of heterogeneity, transport, and reaction of-
ten leads to scale effects influencing effective reactive trans-
port parameters (Dentz et al., 2011; Salehikhoo et al., 2013),
leading to a major upscaling challenge in transport charac-
terization and reactive transport modeling at the catchment
scale (Li et al., 2017). Improved time and space resolution
of geophysical and inversion techniques, and the develop-
ment of systems capable of surveying large areas repeatedly
with multiple hydrogeophysical methods, open new perspec-
tives for mapping and monitoring these dynamics in the field
(Folch et al., 2020; Palacios et al., 2020, Table 2B6). As
discussed above, hydrogeophysical imaging of transport and
reaction processes is very attractive, but it requires upscal-
ing the effects of sub-scale transport dynamics to the scales
resolved by geophysical techniques (Fernandez Visentini et
al., 2020). Processes occurring at unresolved scales require
imaging by combining multiple methods across scales, dif-
ferent tracers, and use of integrating data with geostatistics,
modeling, and inversion (Linde and Doetsch, 2016). Similar
challenges occur when imaging the water content distribu-
tion in the vadose zone, as discussed in Sect. 2.3.

In summary, there is increasing evidence that conventional
monitoring techniques and models are not able to capture
the 3D heterogeneity and temporal fluctuations controlling
transport and reaction processes. Four-dimensional imaging
of transport and reaction at laboratory and field scale is crit-
ical to define new effective models able to upscale these
dynamics and predict them in less instrumented sites (Ta-
ble 1A and Fig. 8). Furthermore, recent advances in 4D imag-
ing discussed here will open new opportunities for moni-
toring the fate of contaminants when risk management re-
quires it (e.g., contamination remediation and monitoring,
nuclear waste storage, Table 1B and Fig. 8). Current mon-
itoring techniques and models may be sufficient only in ap-
plications where accurate predictions of transport dynamics
are less critical (Table 1C and Fig. 8).

2.3 Water content dynamics in the vadose zone

The vadose or unsaturated zone is the upper part of the criti-
cal zone. The distribution of fluid phases and their evolution
with time makes it a very complex media, where root systems
and soil micro-organisms further complexify this dynamic
environment (Fig. 1). Understanding, monitoring, and pre-
dicting the quantity (i.e., water content) and movement (i.e.,
water flow) of water are needed to address water quality and
availability issues (e.g., Vereecken et al., 2015). Vadose zone
hydrology usually relies on punctual measurements of phys-
ical variables with established sensors: TDR (time domain
reflectometry, to infer the water content from dielectric per-
mittivity) or tensiometers (to determine the matric potential).
Vadose zone hydrology is still too often viewed by hydro-
geologists as a vertical 1D transit compartment with homo-
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geneous sources (rainwater infiltration) and sinks (evapora-
tion or evapotranspiration) on the way to the aquifer. If such
an approach might be sufficient to estimate average aquifer
recharge rate, punctual measurements and 1D modeling ap-
proaches provide limited information for the characterization
of this strongly 3D environment and its dynamics; thus it is
not sufficient for applications such as precision agriculture.
The varying water content (in time and space) and biological
interactions (e.g., with the roots) are adding a layer of com-
plexity compared to the saturated zone, making its spatial and
dynamical characterization even more challenging.

While geophysical methods can provide fast and inte-
grated measurements to characterize the spatial heterogene-
ity of the vadose zone and imaging the water content distri-
bution (within the limitation of their resolution, e.g., Day-
Lewis et al., 2005), the quantifications of dynamic processes
related to water flow and (reactive) transport still remain an
important challenge.

In vadose zone hydrogeophysics, the most promising ap-
proaches to tackle these challenges rely on using multiple
methods and integrating the measured data in 4D numerical
simulations with joint inversion strategies together with ap-
propriate petrophysical knowledge (e.g., Hubbard and Linde,
2011, Table 2). Surface-based and cross-borehole imaging of
the water content in the vadose zone through measurements
of the electrical conductivity or dielectric permittivity dis-
tribution is well established (e.g., Carriere et al., 2015, 2022,
Table 2B5). The electrical conductivity can be obtained using
low-frequency electrical and electromagnetic methods such
as electrical resistivity tomography and induced polarization
(e.g., Kemna et al., 2012; Revil et al., 2012). Higher fre-
quency methods such as the time domain or frequency do-
main electromagnetics can also be employed from the sur-
face (e.g., Pellerin, 2002) or the air (Auken et al., 2020),
allowing to cover large areas in a limited amount of time,
but show generally a poor vertical resolution at the scale of
the vadose zone. Electrical and electromagnetic methods are
well established in static conditions but also in monitoring
applications (e.g., Singha et al., 2015). The main limitation
of these methods is the limited resolution that masks het-
erogeneities and can mislead quantitative estimation of wa-
ter content or solute concentration using petrophysical re-
lationships established in the laboratory (Day-Lewis et al.,
2005; Jougnot et al., 2018), as already discussed in Sect. 2.2.
Combining several methods (e.g., Blazevic et al., 2020, Ta-
ble 2B1) and improving the petrophysical-based approaches
(e.g., Day-Lewis et al., 2017a) is needed to move towards a
more quantitative use of electrical and electromagnetic meth-
ods.

Ground-penetrating radar (GPR) is the most developed
geophysical method to obtain the water content at high
spatio-temporal resolution through the dielectric permittiv-
ity (e.g., Huisman et al., 2003; Roth et al., 1990; Klotzsche
et al., 2018; Looms et al., 2008). Time-lapse studies using
GPR to monitor water infiltration can provide insights about
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the hydrodynamic (e.g., Léger et al., 2014; Klotzsche et al.,
2019a) and transport properties (e.g., Haarder et al., 2015) of
the vadose zone, and reveal the 3D nature of flow processes,
including lateral flow (Scholer et al., 2012).

Nuclear magnetic resonance (NMR) is sensitive to the
quantity of water in the subsurface. It is based on the res-
onance of the magnetic moment of the protons from water
molecules. NMR can be used from the surface or boreholes
to infer the water content in the vadose zone (e.g., Schmidt
and Rempe, 2020). Recent works have also shown its value
for monitoring the water dynamics through time-lapse mea-
surements (e.g., Mazzilli et al., 2020; Lesparre et al., 2020,
Table 2C1).

From established P-wave velocity tomography (e.g., Brad-
ford, 2002) to more recent imaging of surface wave veloci-
ties and Poisson ratios (e.g., Pasquet et al., 2015, Table 2B4),
active seismic methods are developing toward a much more
quantitative characterization of the water content distribution
(e.g., Pride, 2005). Surface waves appear promising for mon-
itoring of water content dynamics (Dangeard et al., 2018, Ta-
ble 2B4), and combining time-lapse imaging of seismic to-
mography and ERT will allow providing a more quantitative
imaging (Blazevic et al., 2020, Fig. 4 Table 2B1). This use
of complementary methods, in terms of resolution and sen-
sitivity to properties (electrical conductivity and mechanical
properties), opens up new perspective such as joint inversion
(e.g., Doetsch et al., 2010) and petrophysical-based inversion
(e.g., Wagner et al., 2019). Passive seismic is also receiv-
ing increasing attention, as ambient noise can be used as a
source to monitor hydrosystems. Recent works on seismic
noise monitoring have been conducted using ballistic waves
to monitor water table variations (Garambois et al., 2019).
The development of distributed acoustic sensing will allow
the acquisition of denser and larger-scale monitoring data in
this direction (e.g., Zhan, 2020).

Another passive method that is increasingly used in the
vadose zone is the self-potential method (e.g., Revil and Jar-
dani, 2013). It consists of measuring naturally occurring elec-
trical voltages that result from various coupling mechanisms,
for instance, electrokinetic coupling when water flows in a
porous medium or in a fractured system (e.g., Jougnot et
al., 2020; Robert et al., 2011). A promising approach is to
implant the SP electrodes in the ground at different loca-
tions and depths, and the measured signal is then integrated
over the volume delimited by the electrodes, allowing ver-
tical and lateral monitoring. Recent works of SP monitor-
ing have shown the usefulness of SP to monitor infiltration
(Jougnot et al., 2015; Hu et al., 2020, see Table 2C6) and
root water uptake (Voytek et al., 2019). These works have
shown the need for further improving petrophysical models
to shift the use of SP towards a more quantitative paradigm.

Lastly, gravity is a well-established passive geophysical
method that is suitable to monitor water movement (Fores
et al., 2017, 2018, Table 2C4). Due to its very large foot-
print that integrates the density distribution from the cen-
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ter of the Earth, there is a crucial need for more accurate
and sensitive gravimeters, e.g., quantum absolute gravime-
ters (Cooke et al., 2021, Table 2C5). The non-uniqueness
of gravity signals requires the inclusion of complementary
information (e.g., geodetic or hydrological data) for signal
separation. Time-lapse gravimetry has been used to identify
and constrain subsurface water storage changes, e.g., in ar-
tificial recharge facilities (Kennedy et al., 2016), to sepa-
rate precipitation and groundwater mass signals (Delobbe et
al., 2019), to locate karst storage dynamics (Pivetta et al.,
2021), and identify evapotranspiration patterns (Carriere et
al., 2022). Time-lapse gravity data have also been success-
fully used to improve the calibration of groundwater mod-
els (Christiansen et al., 2011a, b). Further data acquisition
procedures and treatments that enhance sensitivity to local
processes (e.g., gravity gradients and hydrological modeling
coupled with gravity measurements; Cooke et al., 2020, Ta-
ble 2C5) are needed to provide more quantitative interpreta-
tions.

In summary, the 3D nature of the subsurface is made even
more complex in the vadose zone by its partial saturation and
the evolution of the water phase, both in terms of saturation
and spatial distribution, as well as by the presence of root
systems and microorganisms. Detailed studies of processes
in the vadose zone at highly instrumented sites open new
opportunities for the quantification of transport and reaction
processes from lab to field scales (Table 1A and Fig. 8). At
a more intermediate scale, 4D imaging unveils preferential
flow paths for infiltration or contaminant transport processes
and water availability for plants through their root system, al-
lowing to optimize irrigation systems (Table 1B and Fig. 8).
At a much larger scale, such precise imaging is rendered im-
possible due to the subsurface complexity, in which case sim-
ple 1D hypothesis can lead to quantitatively reliable results
(e.g., for quantitative assessment of mass balance or aquifer
recharge, Table 1C and Fig. 8).

2.4 Groundwater—surface water interactions

The interface between groundwater (GW) and surface wa-
ter (SW) is a structurally complex, dynamic transition zone
that modulates fluxes of water, solutes, and heat between
the two adjoining compartments (Lewandowski et al., 2019,
Fig. 1). These fluxes in turn affect several processes that
are relevant for the management of water quantity (e.g., wa-
ter supply via bank filtration, groundwater recharge), qual-
ity (e.g., pollutant attenuation, nutrient transformations —
eutrophication), and aquatic ecology (e.g., environmental
flows, habitat, and refugia) (Fig. 5).

Exchange and turnover patterns in the GW-SW transi-
tion zone are defined by nested spatial controls ranging from
regional topography and geology (Winter, 1999) to local
variability of streambed permeability (Kalbus et al., 2009;
Irvine et al., 2012; Tang et al., 2017) and morphology evo-
lution (Trauth et al. 2015; Partington et al., 2017), the spa-
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Figure 4. (a) Acquisition setup used by Blazevic et al. (2020) to jointly monitor the infiltration of water with ERT and seismic lines cross in
the infiltration area. (b) Picture of the infiltration test, above a pit instrumented with TDR. Temporal evolution of relative change in properties
inferred from (c) the ERT and (d) the seismic data along the North—South profile at different times (i.e., successive acquisitions) during the
infiltration, respectively (modified after Blazevic et al., 2020, Table 2B1). One can see the preferential water flow from North to South,

indicating lateral flow in the vadose zone.
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Figure 5. Conceptual depiction of the GW-SW interface and the
nested controls of spatio-temporal patterns of exchange and solute
turnover in the transition zone between GW and SW (using a river—
aquifer system as an example). (a) Primary spatial controls defined
by regional topography and geology, (b) secondary spatial controls
defined by local aquifer and stream bed geologic heterogeneities as
well as streambed morphology, and (¢) temporal controls caused
by river flow dynamics. Processes and management aspects that are
affected by these exchange and turnover patterns are shown in light
blue.
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tial arrangement of subsurface hydrofacies (Fleckenstein et
al., 2006; Frei et al., 2009; Carlier et al., 2018), and their
anisotropy (Gianni et al., 2018) and reactive zones (Frei et al.,
2012; Loschko et al., 2016). Temporal dynamics are mainly
imposed by the surface water system (Dudley-Southern and
Binley, 2015; Trauth and Fleckenstein, 2017; Song et al.,
2020), as SW heads can change significantly over short —
event — timescales, while head changes in GW occur more
gradually (e.g., at seasonal timescales). The resulting fluctu-
ations in hydraulic gradients affect subsurface mixing (Hes-
ter et al., 2017; Bandopadhyay et al., 2018; Nogueira et al.,
2022) as well as transit times and reactive turnover (Zar-
netske et al., 2012; Trauth and Fleckenstein, 2017).

While a sufficient, mechanistic understanding of the links
and feedbacks between flow and turnover processes at small
spatial and temporal scales will clearly be needed for a sound
management of water quality and ecosystem services in cou-
pled GW-SW systems (Hester and Gooseff, 2010; Morén et
al., 2017; Hester et al., 2018), the same level of process detail
may not be required to evaluate conjunctive use of GW and
SW for the management of larger-scale water quantity (Scan-
lon et al., 2016). In other words, the level of detail needed
will also depend on the scale of the problem and the ques-
tions asked.
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Recent years have seen significant advances in methods
and technologies for the small-scale characterization and
simulation of coupled GW-SW systems. Methods particu-
larly suited for the study of GW—SW interactions, to name a
few, include in situ and high-resolution sensing of tempera-
tures (Constantz, 2008; Vogt et al., 2010) and solute concen-
trations (Blaen et al., 2016; Brandt et al., 2017), tracer tech-
niques to characterize exchange flows (Mallard et al., 2014;
Schilling et al., 2017a; Popp et al., 2021), transit times, and
reactions (Schmidt et al., 2012; Knapp and Cirpka, 2017),
and process-based, integrated modeling of coupled GW-SW
systems (Schilling et al., 2017b; Trauth and Fleckenstein,
2017; Broecker et al., 2019; Nogueira et al., 2021b, Ta-
ble 2E3) and geophysics (McGarr et al., 2021, Table 2A2).
Here, we briefly discuss some key research fields related to
the heterogeneous and dynamical nature of GW-SW sys-
tems, which have and likely will continue to contribute to
an improved understanding of GW-SW interactions.

The use of heat as a natural tracer has become a popu-
lar tool to characterize GW—-SW exchange patterns due to
the natural temperature differences between GW and SW
and the relative ease and accuracy of temperature measure-
ments using standard sensors. This field has evolved sig-
nificantly since some of the earlier seminal works (Stone-
strom and Constantz, 2003; Schmidt et al., 2006) and has em-
braced novel technologies such as DTS (Krause et al., 2012;
Rose et al., 2013) and hand-held (Glaser et al., 2016; Mar-
ruedo Arricibita et al., 2018) or airborne infrared imagery
(Lewandowski et al., 2013). The suite of methods available
today allows for high-resolution assessment of temperatures
in space and time for a qualitative mapping of GW-SW ex-
change patterns (Anibas et al., 2011; Krause et al., 2012) or
a quantification of exchange fluxes (Schornberg et al., 2010;
Munz and Schmidt, 2017). Temperature data can constrain
and improve numerical models of coupled GW-SW systems
(Munz et al., 2017). Due to their relative ease of use, heat-
based methods have become a robust and standard tool to
characterize GW-SW exchange patterns. New opportunities
may arise from a smart combination of different techniques
(Tirado-Conde et al., 2019, Table 2C7) or the use of ac-
tively heated fiber optics (Simon et al., 2021), a technique
(see also Sect. 2.1) that has been used punctually to quantify
streambed flow dynamics in zones of groundwater upwelling
(Briggs et al., 2016) and which is in current development
for quantifying GW-SW exchange patterns along stream sec-
tions (Simon et al., 2022, Table 2C2).

The concentration of oxygen is a key variable that defines
the redox state of the transition zone between GW and SW
and with that the potential for important reactions like den-
itrification (Zarnetske et al., 2012). Understanding the dy-
namics of oxygen consumption is therefore important for
evaluating nutrient turnover in hyporheic and riparian zones
(Marzadri et al., 2012; Trauth et al., 2015, 2018). A key reac-
tion consuming oxygen in these zones is aerobic respiration,
which has been shown to depend on transit times (Zarnetzke
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et al., 2011a; Diem et al., 2014) and the availability of labile
organic carbon as the main electron donor (Zarnetske et al.,
2011b). Field deployable optode-based oxygen sensors have
enabled high-resolution measurements of oxygen concentra-
tions in time (Diem et al., 2014; Vieweg et al., 2016) and
space (Brandt et al., 2017), allowing for robust assessments
of respiration dynamics at the GW-SW interface (Vieweg et
al., 2016). Based on such data, the strong temperature de-
pendence of aerobic respiration rates has been demonstrated
(Diem et al., 2014), which may dominate turnover rates com-
pared to the effects of variable transit times (Nogueira et
al., 2021a, Table 2E3). Similar effects were found to af-
fect complex spatio-temporal patterns of riparian denitrifi-
cation, which seem to be jointly controlled by hydraulically-
driven variability in exchange fluxes and transit times, sup-
ply of organic carbon as an electron donor from stream wa-
ter and riparian sediments, and seasonal temperature varia-
tions (Trauth et al., 2018; Lutz et al., 2020; Nogueira et al.,
2021b, Table 2E3). Besides high-resolution data sets of key
variables like oxygen concentration, it is often the combina-
tion of these rich data sets with innovative methods for anal-
ysis and modeling (e.g., Diem et al., 2014; Lutz et al., 2020;
Nogueira et al., 2021a, b, Table 2E3) that advances our mech-
anistic understanding of the processes and feedbacks that de-
fine the functionality of GW—SW interfaces.

Another promising and still evolving field in the area of
GW-SW interactions has been the use of mechanistic mod-
els in explorative mode to test hypotheses and to investi-
gate process interactions and feedbacks (Fleckenstein et al.,
2010; Brunner et al., 2017). Important insights into physics
of flow, transport, and turnover processes in the hyporheic
zone (HZ) have been gained based on such modeling stud-
ies. This includes the effects of ambient groundwater flow on
hyporheic exchange (Cardenas and Wilson, 2007; Trauth et
al., 2013, 2015), intermeander and parafluvial flows (Boano
et al., 2006), reactions and turnover in the HZ (Boano et al.,
2010; Trauth et al., 2014, 2015), effects of geologic hetero-
geneity on hyporheic flows and reactions (Laube et al., 2018;
Bardini et al., 2013), and the influence of stream flow dynam-
ics on hyporheic exchange and turnover (Trauth and Fleck-
enstein, 2017; Singh et al., 2020). Similar modeling studies
have been conducted for riparian zones and river corridors,
addressing aspects such as the effects of streamflow varia-
tions on riparian solute turnover (Gu et al., 2012), effects of
bank filtration processes on solute mobilization from riparian
zones (Mahmood et al., 2019), the effects of riverbed hetero-
geneity on GW-SW exchange patterns (Tang et al., 2017),
or the presence and dynamics of unsaturated conditions at
the stream—aquifer interface (Schilling et al., 2017b). Some
studies have also used modeling experiments to address mix-
ing processes at GW—SW interfaces, which are important for
mixing-dependent reactions (Hester et al., 2017). These stud-
ies have addressed effects of flow geometries and hydraulics
on mixing in hyporheic and riparian zones (Bandopadhyay
etal., 2018; Lee et al., 2021; Nogueira et al., 2022) or effects
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of geologic heterogeneity at the groundwater—seawater inter-
face on calcite dissolution and karstification (De Vriendt et
al., 2020), as discussed in more detail in Sect. 2.2. Advances
in modeling capabilities, including a seamless, integral sim-
ulation of flow and reactive transport in GW-SW systems
(Broeker et al., 2019; Li et al., 2020), together with rich data
sets from highly instrumented field sites to test these mod-
els, will help to improve our mechanistic understanding of
small-scale GW-SW interactions.

In summary, many functionalities of the GW-SW inter-
face related to water quality (e.g., hyporheic attenuation of
nutrients and pollutants) and aquatic ecology (provision of
habitat and refugia for aquatic organisms) are clearly defined
by small-scale processes operating in 4D and need to be char-
acterized and evaluated accordingly. A suite of field methods
and modeling tools exists to characterize the relevant pro-
cess patterns and dynamics in sufficient detail to develop new
conceptual ideas about system functioning or to advise so-
lutions to site-specific problems (Table 1A and Fig. 8). Al-
though the heterogeneity of the SW—GW interface leads to a
large variability in the exchange fluxes at (deca)metric scale
(e.g., Ghysels et al., 2021, Table 1B and Fig. 8), larger-scale
assessments of GW-SW exchange for water quantity (e.g.,
conjunctive use scenarios) or base flow management (e.g.,
environmental flows) can often be achieved with much sim-
pler, integral approaches (Table 1C and Fig. 8).

3 Numerical methods development for 4D data
integration and inversion

Numerical representation methods and numerical techniques
have become essential tools in both understanding and fore-
casting subsurface models (e.g., Karatzas, 2017). Most com-
mon software suites in hydrogeology allow to model the
subsurface using properties distributed in 3D. The tempo-
ral derivatives being an essential component of underlying
physical equations, the transient character of hydrogeologi-
cal processes is most often already included. When a math-
ematical formulation of the process exists, numerical meth-
ods allow simulating the response to any scenarios as long
as the distribution of the involved hydrogeological param-
eters is provided. Specific models can handle non-linearity
related to time-varying properties as illustrated by coupled
models for unsaturated flow or geomechanics (Siminek et
al., 2018; Davy et al., 2018). However, next to accuracy re-
lated to solvers and their parameterization (numerical dis-
persion, instability, non-convergence), numerical models re-
main dependent on the accuracy of the underlying mathemat-
ical representation of the modeled process. Previous sections
have highlighted that experimental work remains necessary
to characterize complex processes such as mixing and trans-
port or GW-SW interactions (Heyman et al., 2020).
Nevertheless, several challenges remain to properly simu-
late heterogeneous groundwater reservoirs and their dynam-
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ics with numerical models. A key aspect is to feed the models
with the appropriate data input (e.g., Schilling et al., 2018).
Subsurface processes are influenced by the heterogeneity in
subsurface properties. If the latter is essential for the pur-
pose of the model, this should be reflected in the data in-
put through sufficiently dense spatially distributed data (e.g.,
Guillaume et al., 2019). Even with powerful computers, sim-
ulating the transient response of a catchment-scale model
with limited resolution might still take several hours, days, or
even weeks (e.g., Hayley et al., 2014). The same is true for
high-resolution geophysical models such as full-waveform
GPR or 3D electromagnetics (e.g., Oldenburg et al., 2013;
Klotzsche et al., 2019b; Zhou et al., 2020; Haruzi et al., 2022)
and coupled approaches (Coulon et al., 2021). Including geo-
physical data in hydrogeological models is thus even more
challenging. Surrogate models can be used to speed up simu-
lation processes, but their accuracy remains dependent on the
training process, which can be problematic in highly hetero-
geneous media (Linde et al., 2017; Kopke et al., 2018; Mo
et al., 2020). Small-scale heterogeneity is present in many
geological contexts (e.g., Bayer et al., 2011). Even if it is
relevant for the objective of the model, it must thus often be
neglected due to limited computational resources. This some-
times leads to unrealistic outputs, in particular for transport
processes (e.g., Hoffmann et al., 2019, Table 2A1). This may
be addressed by upscaling heterogeneous systems and defin-
ing equivalent properties at larger scale, but this is very chal-
lenging for transport processes with multiple physical scales
and non-equilibrium phenomena (Li et al., 2017; Icardi et al.,
2019).

Even if simulating small-scale heterogeneity would be-
come possible, the actual distribution of properties is al-
ways unknown. The limited amount of noise-contaminated
data do not allow to unequivocally recover this distribution
through inverse modeling (Zhou et al., 2014), even when
distributed geophysical data are available (Hermans et al.,
2015a; Mari et al., 2009, Table 2D1). On the one hand, deter-
ministic approaches have to simplify the parameter estima-
tion problem to make it well-posed (e.g., smoothing, zona-
tion or pilot-points) and are therefore limited for tackling un-
certainty related to 4D processes. On the other hand, stochas-
tic approaches such as Markov Chain Monte Carlo (MCMC)
methods (e.g., Vrugt et al., 2013), using more or less com-
plex and realistic geostatistical representations of the hetero-
geneity and more or less wide prior distribution (Linde et al.,
2015b), often require thousands to millions of simulations
to converge, especially when spatial uncertainty is included
(e.g., de Pasquale et al., 2019). The transient aspects are also
commonly simplified, due to a lack of data or the simplifi-
cation of boundary conditions. In most applications, numer-
ically resolving a time-dependent system of partial deriva-
tive equations based on spatially distributed parameters in 3D
with a high spatial and temporal resolution remains utopic.
It is therefore of uttermost importance to understand which
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simplifying assumptions can be applied without degrading
the predictive capability of the model (Schilling et al., 2018).

Fractured aquifers are even more complicated to model.
Fracture networks have complex 3D geometries and are
therefore difficult to characterize from mostly 1D or 2D data
(Le Goc et al., 2017; Day-Lewis et al., 2017b). Modeling
flow in fractures occurs at a smaller scale, which brings ad-
ditional challenges in terms of gridding (Schidle et al., 2019)
and inversion (Ringel et al., 2019). Combined with a higher
degree of heterogeneity and uncertainty than in porous me-
dia, it increases the abovementioned issues preventing effi-
cient modeling.

Nevertheless, recent advances shed light on some in-
novative solutions to tackle those problems. For fractured
aquifers, recent studies in fracture modeling such as realistic
flow characterization and mechanical coupling using discrete
fracture networks (Davy et al., 2018; Maillot et al., 2016; Lei
et al., 2017), innovative inverse methodologies (Pieraccini,
2020), and characterization techniques (Dorn et al., 2011,
2012a, 2013; Shakas and Linde, 2017; Molron et al., 2020,
2021, Table 2B2) pushed forward our ability to account for
the complexity of fractured media. More generally, cloud
computing combined with increasing computational power
is one avenue to allow modeling the subsurface at a higher
4D resolution for an increasing number of applications in
the future (Hayley, 2017; Kurtz et al., 2017). The ongoing
efforts for coupling different simulators, both in hydrogeol-
ogy and hydrogeophysics, will also favor the incorporation of
larger, more informative data sets (e.g., Commer et al., 2020).
The incorporation of geophysical data, especially at the large
scale, has remained limited for a long time by the use of em-
pirical and local petrophysical relationship (Rubin and Hub-
bard, 2005). The combination of large-scale airborne elec-
tromagnetic data combined with advanced machine learning
approaches for their integration will likely contribute to the
broader use of 3D and 4D data sets in hydrogeology account-
ing for the inherent uncertainty at that scale (e.g., Vilhelmsen
et al., 2019; Gottschalk and Knight, 2022).

Although Bayesian methods such as MCMC are widely
recognized in the scientific literature for inversion, predic-
tion, and uncertainty quantification (Ferre, 2020), they have
not been widely adopted by practitioners because of their
computational burdens, especially for complex geometries.
Recent developments in machine learning such as deep neu-
ral networks (DNNs) have shown that complex spatial pat-
terns can be efficiently reduced to a manageable number
of dimensions. DNNs allow to simplify complex subsurface
models with millions of cells to a few tens of dimensions
while maintaining their geometrical complexity represented
by a prior parameter distribution. This opens the possibility
to apply McMC or global optimization methods at a reason-
able cost, as recently demonstrated by Laloy et al. (2018) and
Lopez-Alvis et al. (2021) (see Fig. 6). Since the parameter-
ization of the prior is a key to obtain realistic solutions, the
identification of realistic geological scenarios through falsi-

Hydrol. Earth Syst. Sci., 27, 255-287, 2023

"Traditional" inversion

true model
forward operator

structured
model solution

variable
z

training VAE

structured models
generation

1 DNN-based inversion with prior falsification

Figure 6. Adapted deep neural network-based (DNN) inversion
scheme using a variational autoencoder (VAE) to represent complex
geological structure in a latent space represented by sparse variable
in which a stochastic gradient descent (SGD) can be applied to con-
verge towards a more geologically realistic solution, modified from
Lopez-Alvis et al. (2022).

fication techniques (e.g., Hermans et al., 2015a; Linde et al.,
2015a; Lopez-Alvis et al., 2019) or assembled prior (Lopez-
Alvis et al., 2022) can further improve stochastic inversion
by reducing the range of the prior.

Another recent innovation is to propose physically-based
geostatistical upscaling, allowing to translate the small-scale
spatial uncertainty at a larger scale (Benoit et al., 2021).
Combining those recent advances with accurate fast approx-
imations of the forward model (Linde et al., 2017) should
allow for more accurate representations of spatial variabil-
ity within affordable computational time. As an alterna-
tive, approximations of the inverse problems using ensemble
Kalman generator (e.g., Nowak, 2009; Bobe et al., 2020; Tso
et al., 2021) or normalization and linearization approaches
(e.g., Holm-Jensen and Hansen, 2019) can also provide a rel-
atively fast, though realistic, approximation of the solution to
the inverse problem.

Alternatively, recent studies have proposed to investi-
gate more prediction-oriented strategies to simulate com-
plex hydrogeological systems (Sun and Sun, 2015; Ferre,
2017; Scheidt et al., 2018). For example, Bayesian Eviden-
tial Learning (BEL) proposes to use a set of simulations from
realistic numerical models including the 4D complexity to
learn a statistical relationship between a predictor (data set)
and a target (model output, see Fig. 7), making it a model-
driven machine learning approach, circumventing the chal-
lenges of non-linear inversion while providing a proxy for
global sensitivity analysis (Hermans et al., 2018). The sta-
tistical learning requires reducing the dimensionality of the
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problem so that part of the complexity may remain unre-
solved (Park and Caers, 2020). If such a statistical relation-
ship exists, this approach has the advantage to require only
a limited amount of simulations to derive the posterior dis-
tribution of the prediction, typically only a few hundreds to
a few thousands. The latter are independent and can be fully
parallelized. Propagating noise in the statistical relationship
is also straightforward (Hermans et al., 2016b). Such direct
forecasting is possible because predictions often have a much
lower dimensionality than models. The efficiency of such an
approach makes it particularly interesting for experimental
and optimum design studies under uncertainty (Thibaut et
al., 2021, 2022). Nevertheless, when the data—prediction re-
lationship is complex and highly non-linear, BEL might over-
estimate uncertainty (Michel et al., 2020), for instance when
the prior uncertainty is large (Hermans et al., 2019). In such a
case, classical inversion might still be needed (Scheidt et al.,
2018). Recent advances have shown that BEL can also esti-
mate the model parameter distributions and be used as a more
traditional inversion technique (Yin et al., 2020; Michel et al.,
2020). However, such more advanced applications require
further development of appropriate tools to identify highly
non-linear relationships (Park and Caers, 2020) which will
inevitably come at a larger computational cost (Michel et al.,
2023).

Although these recent developments are promising solu-
tions to integrate large 4D data sets within efficient simu-
lation and inversion framework to forecast the behavior of
aquifers, they still need to be more widely evaluated and
used, including for complex field cases. New mechanistic
models developed based on 4D data sets will need to be inte-
grated in numerical models. The validation with case studies
in different contexts will demonstrate if new inversion and
prediction methods, including machine learning approaches,
are adapted to the incorporation of the 4D complexity of
hydrogeological processes. Synthetic numerical studies and
global sensitivity analysis should help us to identify which
simplifications can be reasonably made in applications at the
large scale and/or with limited budget preventing the acqui-
sition of dense data sets.

4 When is a coupled spatial and temporal
characterization needed?

Although spatial heterogeneity and temporal variations by
default influence all the processes occurring in the subsur-
face, a full 4D characterization coupled with a numerical
model is not always necessary. Throughout the paper, we
identified three levels of applications requiring a decreas-
ing amount of resolution. Table 1 and Fig. 8 summarize
and classify the different scales and processes according to
their requirement for spatio-temporal monitoring, including
4D imaging.
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Figure 7. Framework of Bayesian Evidential Learning applied to
the prediction of heat storage in an aquifer from a tracer exper-
iment monitored by geophysics. (1) A prior model of the spatial
heterogeneity is defined and sampled. (2) Both the predictor (data
set such as a tracer experiment) and the target (prediction of heat
storage) are simulated. For the predictor, a petrophysical transform
is used to generate the corresponding geophysical data. (3) Dimen-
sion reduction techniques are applied to both data and prediction.
(4) A statistical relationship between data and prediction is learned.
(5) The posterior distribution of the prediction for field observed
data is generated using the statistical relationship. (6) The posterior
is back-transformed in the physical space (modified from Hermans
et al., 2018).

A. Processes for which high-resolution space—time data
are needed to improve mechanistic models. Previous
sections have discussed how the acquisition of spa-
tially and temporally distributed data is crucial for hy-
drological processes understanding. Observation gaps
severely impede our ability to understand, model, and
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Figure 8. Indicative temporal and spatial scales of some processes
in hydrogeology for which accurate mechanistic models are still
lacking (in reddish colors), for which 4D monitoring might be cru-
cial (blueish and greenish colors), and for which 4D might be un-
necessary (grayish colors), see also Table 1.

predict a series of critical subsurface processes (see Ta-
ble 1A and Fig. 8). The acquisition of dense 4D data
sets is needed to obtain new insights into internal mech-
anisms and process hierarchies, identify the dominant
processes,which govern a specific response of the sys-
tem, and ultimately develop upscaled models that cap-
ture these dynamics. High-resolution space—time data
can thus help us to characterize the influence of het-
erogeneity and temporal dynamics, and thus understand
and quantify how the small-scale processes must be up-
scaled to larger scales or to which level they can be sim-
plified. This is crucial to develop new conceptual ideas
about system functioning, to advise on solutions to site-
specific problems, or to design accurate numerical mod-
els.

B. Processes for which high-resolution space—time moni-
toring is desirable at the scale of individual sites. This
is for example the case for precision agriculture for
which knowing the spatio-temporal distribution of the
soil moisture is a central element to implement efficient
irrigation solutions or for site-risk management to avoid
the spreading of contaminations. The oil industry has
been aware of the importance of the spatio-temporal
variations of their reservoirs for decades, and related re-
search has been supported by economic interests. It has
less been the case for hydrogeology, except for the char-
acterization of storage site for nuclear waste or more
recently induced seismicity related to geothermal ex-
ploitations. An increase in the number of applications
include 4D investigations and monitoring is expected
(see Table 1B and Fig. 8). Hydrology has been using re-
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mote sensing data for decades and a similar trend is now
visible with airborne electromagnetic data in hydroge-
ology. This is a first step towards the generalization of
the integration, to some extent, of 3D and 4D data in
groundwater models, even at the catchment scale and
beyond. A key challenge will be to determine which
resolution and which sampling rate is necessary to prop-
erly account for the underlying subsurface complexity,
which requires testing and validating these methods at
highly instrumented observatories and sharing the pro-
duced space—time datasets.

C. Processes for which 4D data may not be necessary. In
some cases, the principle of parsimony applies and sim-
ple models can be calibrated explaining sparse data (see
Table 1C and Fig. 8). For example, the management of
water resources based on meteorological and produc-
tion data using simple water balance approaches has
been applied successfully in many contexts for decades.
We may obtain reasonable estimates of groundwater
volumes and fluxes from sparse hydrogeological data,
so that a fine-scale characterization of the heterogene-
ity might not be needed or working in steady-state
conditions might be sufficient. Estimating an average
recharge rate for bypassing the complex processes oc-
curring in the vadose zone has been proved to be effi-
cient in many contexts.

In summary, although a few large-scale applications do not
require a high level of spatial characterization and temporal
monitoring, a large spectrum of processes are highly sensi-
tive to 4D dynamics. We identify two complementary strate-
gies to deal with this challenge. The first consists of de-
veloping upscaled models that capture the effect of spatial
and temporal fluctuations. This requires first acquiring and
sharing high-resolution space—time datasets at highly instru-
mented observatories (see Sect. 5). The second is to imple-
ment a site-specific 4D imaging strategy in critical applica-
tions that require it and have the corresponding budget. This
requires as a first step to validate recent 4D imaging tech-
niques in some dedicated observatories, where the degree of
knowledge is sufficient to establish the relevant space—time
resolution depending on the targeted process and application
(see Sect. 5).

It is not evident to know a priori if 4D imaging is desirable.
If a more systematic use of global sensitivity analysis and the
multiplication of case studies should help the community to
reveal when this is actually necessary, we also propose to
consider some key elements when evaluating the need for a
thorough spatio-temporal characterization of the reservoir at
the three envisaged scales:

— Is there evidence for small-scale heterogeneity influenc-
ing the considered phenomenon?

— Are there any existing mechanistic models explaining
the observed phenomena? Are these effective models in
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agreement with available observations at highly instru-
mented sites?

Is there a technology available to monitor the desired
4D variations?

Do transient phenomena have an influence on the re-
sults?

Does the lack of data have an influence on the decision
to ignore spatial heterogeneity or temporal variations?

Is there evidence in the literature (e.g., global sensitivity
analysis) that the processes at hand are not sensitive to
the heterogeneity?

5 The need for highly instrumented and long-term
hydrogeological observatories

Over the last decades, highly instrumented field sites have
been equipped to explore, monitor, and model subsurface
processes (e.g., Bogena et al., 2018). Long-term observations
of subsurface environments, typically more than 10 years,
are motivated by the broad range of responses and transit
times of these systems that provide resilience to hydrolog-
ical systems to environmental changes. When characterizing
processes beyond the laboratory scales, the exhaustive 4D
characterization of processes becomes a challenging task.
While it is illusory and not necessary to equip all subsur-
face systems with 4D imaging techniques, the use of high
spatial and temporal resolution techniques in few highly in-
strumented field observatories during passive monitoring and
active experiments is a key step to establish effective mod-
els that capture the effect of 3D heterogeneity and temporal
dynamics and can be used and parameterized in other less
instrumented sites. The insights gained at these sites is thus
a basis for simplifications and generalizations, which can be
used to improve modeling concepts for management beyond
the specific field sites. In particular, these datasets should al-
low unraveling the importance of 4D dynamics and the in-
fluence of different processes on hydrogeophysical signals.
Furthermore, these field observatories provide platforms to
test and validate emerging 4D imaging techniques, evalu-
ate their accuracy and potential, and establish the required
space—time resolution depending on the targeted process. We
thus argue that hydrogeological observatories provide a key
step between theory and laboratory experiments on one side
and practical field applications on the other side.

Auvailable datasets related to such sites often combine fixed
geophysical and hydrogeological sensing systems for the
short-term monitoring of experimental campaigns, but also
for the long-term monitoring of natural systems required to
characterize physical and chemical heterogeneity and target
hotspots, which cannot be easily accessed by classical obser-
vations. Related studies often provide parameterized hydro-
logical models for the interpretation.

https://doi.org/10.5194/hess-27-255-2023

A non-exhaustive list of time-lapse hydrogeological and
hydrogeophysical datasets, selected based on their online
availability and space—time resolution, is given in Table 2.
As can be seen, 4D data openly available are still scarce
given the large variability of geological systems and appli-
cations. Because such extensive spatially and temporally re-
solved imaging can only be achieved on few sites, we ar-
gue that it is important to archive and share such datasets
in open databases. In particular, these data are critical to
(1) test and validate model hypotheses and predictive ca-
pabilities, (ii) to develop appropriate inverse modeling ap-
proaches adapted to the high level of heterogeneity of sub-
surface environments, and (iii) evaluate the added value of
different imaging techniques in order to optimize the de-
sign of monitoring strategies on other sites. Table 2 will
be made available through the website at https://hplus.ore.
fr/en/database/4d-hydrogeology-dataset (last access: 15 Au-
gust 2022), which will be open to contributions to enrich the
datasets with new data.

6 Concluding remarks

In this paper, we have illustrated that advances in our un-
derstanding of complex subsurface processes hinge on our
ability to observe/image key parameters and state variables
with the relevant spatial and temporal resolution. Key ap-
plications where the coupling of spatial heterogeneity and
temporal fluctuations might be essential include flow het-
erogeneity and dynamics, transport and reaction, unsaturated
flow and transport, and surface—groundwater interactions. In
specific applications, data availability is always limited due
to budget, time, and space constraints, and conceptual sim-
plifications are required. In this context, field observatories
linked to open database and techniques dedicated to the ac-
quisition of spatially and temporally resolved data sets are
essential to (i) build appropriate models based on spatially
and temporally resolved measurements and (ii) test and vali-
date relevant sensors and methodologies.

New technologies are advancing our ability to close ob-
servation gaps and image the subsurface heterogeneity and
dynamics for processes of relevance in hydrogeology. Such
data collected across scales and with dense networks could
lead to a better description of the processes and the develop-
ment of new mechanistic models as well as the proper def-
inition of effective parameters and upscaling approaches to
do away with the complexity at larger scales. Considering
the spatial heterogeneity of the subsurface quickly requires
the use of efficient and reliable numerical models. Includ-
ing small-scale heterogeneity automatically calls for high-
resolution models with refined grids leading to high if not
unacceptable computation times. In addition, the uncertainty
inherent to subsurface systems can only be properly dealt
with by stochastic approaches that require many simulations
to characterize the ensemble of possible outcomes. The cur-
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rent computational power available for the scientific commu-
nity, and for practitioners in the industry, is not sufficient to
systematically tackle groundwater reservoirs with their full
4D complexity. Simplifications, such as ignoring the small-
scale heterogeneity or ignoring some transient processes, are
always needed and can in many cases provide useful results
for groundwater management.

Nevertheless, the hydrogeological community is still of-
ten facing model predictive outcomes that are not consis-
tent when validation data become available. Even though the
4D complexity is not always the cause, it can probably ex-
plain why some models have poor predictive capability. Ide-
ally, hydrogeological conceptual models should initially con-
sider the 4D complexity of the system and only deviate from
this rigorous description when there is no significant effect on
the prediction or decision-making process. Such conceptual
simplifications of hydrogeological systems should be based
on strong experimental or numerical evidences and should
not constitute the default hypothesis because of lack of data
or computational power.

High-resolution space—time observations are needed to
improve mechanistic models of hydrological processes and
for their upscaling, as well as for the monitoring at the field
scale when significant risks for humans or the environment
are associated. Although 4D data are less needed at larger
scales for which averaging models are often satisfactory, we
expect they will become more crucial at this scale as well
in the future to tackle the challenges of sustainable develop-
ment linked to water availability. In that sense, the existence
of large 4D data sets linked to field observatories and mod-
els can only be beneficial for the community. Similarly, the
more systematic use of Monte Carlo simulations, prediction-
oriented approaches, or global sensitivity analyses, although
computationally expensive, can provide the necessary back-
ground information, at least for processes that can be prop-
erly characterized by mathematical models.
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ble 2 together with a link to access them.
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