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Abstract. There is a general trend toward the increasing in-
clusion of uncertainty estimation in the environmental mod-
elling domain. We present the Consortium on Risk in the En-
vironment: Diagnostics, Integration, Benchmarking, Learn-
ing and Elicitation (CREDIBLE) Uncertainty Estimation
(CURE) toolbox, an open-source MATLABTM toolbox for
uncertainty estimation aimed at scientists and practitioners
who are not necessarily experts in uncertainty estimation.
The toolbox focusses on environmental simulation models
and, hence, employs a range of different Monte Carlo meth-
ods for forward and conditioned uncertainty estimation. The
methods included span both formal statistical and informal
approaches, which are demonstrated using a range of mod-
elling applications set up as workflow scripts. The workflow
scripts provide examples of how to utilize toolbox functions
for a variety of modelling applications and, hence, aid the
user in defining their own workflow; additional help is pro-
vided by extensively commented code. The toolbox imple-
mentation aims to increase the uptake of uncertainty esti-
mation methods within a framework designed to be open
and explicit in a way that tries to represent best practice
with respect to applying the methods included. Best prac-
tice with respect to the evaluation of modelling assumptions
and choices, specifically including epistemic uncertainties,
is also included by the incorporation of a condition tree that

allows users to record assumptions and choices made as an
audit trail log.

1 Introduction

Environmental simulation models are used extensively for re-
search and environmental management. There is a general
trend toward the increasing inclusion of uncertainty estima-
tion (UE) in the environmental modelling domain, includ-
ing applications used in decision-making (Alexandrov et al.,
2011; Ascough et al., 2008). Effective use of model estimates
in decision-making requires a level of confidence to be es-
tablished (Bennett et al., 2013), and UE is one element of
determining this. Another required element is an assessment
of the conditionality of any UE, i.e. the conditionality asso-
ciated with the implicit and explicit choices and assumptions
made during the modelling and UE process, given the infor-
mation available (e.g. Rougier and Beven, 2013).

Here, we present the Consortium on Risk in the Environ-
ment: Diagnostics, Integration, Benchmarking, Learning and
Elicitation (CREDIBLE) Uncertainty Estimation (CURE)
toolbox, an open-source MATLABTM toolbox for UE asso-
ciated with environmental simulation models. It is aimed at
scientists and practitioners with some modelling experience
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who are not necessarily experts in UE. The toolbox struc-
ture is similar to that of the SAFE (Sensitivity Analysis For
Everybody) toolbox (Pianosi et al., 2016) in that it allows
more experienced users to modify and enhance the code and
to add new UE methods. The implementation of the tool-
box also aims to increase the uptake of UE methods within
a framework designed to be open and explicit in a way that
tries to represent best practice; more specifically, we refer to
best practice with respect to applying the various UE meth-
ods included as well as best practice with respect to being
explicit about modelling choices and assumptions.

As the focus of the toolbox is UE for simulation mod-
els, often with relatively complex structures and many model
parameters, the toolbox employs a range of different Monte
Carlo methods. These are used for the forward propagation of
uncertainties by sampling from input and parameter distribu-
tions defined a priori, for forward UE, or for the estimation of
refined model structures and/or associated posterior parame-
ter distributions when conditioned on observations (condi-
tioned UE). The methods included span both formal statisti-
cal and informal approaches to UE, which are demonstrated
using a range of modelling applications set up as workflow
scripts that provide examples of how to utilize toolbox func-
tions. As noted in the comments in the code, many of the
workflows can be linked to the description of methods in
Beven (2009).

Formal statistical and informal methods are included be-
cause there are no commonly agreed upon techniques for
UE in environmental modelling applications, as evidenced by
continuing debates and disputes in the literature (e.g. Clark
et al., 2011; Beven et al., 2012; Beven, 2016; Nearing et
al., 2016). The lack of a consensus on the most appropri-
ate UE method is to be expected given that the sources of
uncertainty associated with environmental modelling appli-
cations are dominated by a lack of knowledge (epistemic un-
certainties; e.g. Refsgaard et al., 2007; Beven, 2009, 2016;
Beven and Lane, 2022) rather than solely by random variabil-
ity (aleatory uncertainties). Rigorous statistical inference ap-
plies to the latter, but it might lead to unwarranted confidence
if applied to the former, especially where some data might be
disinformative in model evaluation (e.g. Beven and Wester-
berg, 2011; Beven and Smith, 2015; Beven, 2019; Beven and
Lane, 2022).

Assessing the impact of epistemic uncertainties for envi-
ronmental modelling requires assumptions about their na-
ture (which are difficult to define); thus, the output from any
UE will be conditional upon these assumptions. This poses
the question of what is good practice with respect to eval-
uating assumptions and choices made during the modelling
process and what is good practice with respect to commu-
nicating the meaning of any subsequent analyses (Walker et
al., 2003; Sutherland et al., 2013; Beven et al., 2018b; see
also the TRACE (TRAnsparent and Comprehensive Ecolog-
ical model documentation) framework of Grimm et al., 2014,
for documentation on the modelling process). Beven and Al-

cock (2012) suggest a condition tree approach that records
the modelling choices and assumptions made during analyses
and, thus, provides a clear audit trail (e.g. Beven et al., 2014;
Beven and Lane, 2022). The audit trail consequently provides
a vehicle that promotes transparency, best practice and com-
munication with stakeholders (Refsgaard et al., 2007; Beven
and Alcock, 2012). To encourage best practice, the process
of defining a condition tree and recording an audit trail has
been made an integral part of the CURE toolbox via a condi-
tion tree graphical user interface (GUI).

Other freely available toolboxes for forward
UE include the Data Uncertainty Engine (DUE;
http://harmonirib.geus.info/due_download/index.html, last
access: 2 July 2023; Brown and Heuvelink, 2007) and the
SIMLAB toolbox (https://ec.europa.eu/jrc/en/samo/simlab,
last access: 2 July 2023; Saltelli et al., 2004). For con-
ditioned UE, the following freely available toolboxes are
accessible: GLUEWIN (https://joint-research-centre.ec.
europa.eu/macro-econometric-and-statistical-software/
econometric-software/gluewin_en, last access:
2 July 2023; Ratto and Saltelli, 2001), UCODE 2014
(http://igwmc.mines.edu/freeware/ucode, last access:
2 July 2023; Poeter et al., 2014), the MATLABTM

Framework for Uncertainty Quantification (UQLAB;
http://www.uqlab.com, last access: 2 July 2023; Wagener
and Kollat, 2007), the Interactive Probabilistic Predictions
software (http://www.probabilisticpredictions.org, last ac-
cess: 2 July 2023; McInerney et al., 2018) and the DREAM
toolbox (http://faculty.sites.uci.edu/jasper/files/2015/03/
manual_DREAM.pdf, last access: 2 July 2023; Vrugt et al.,
2008, 2009; Vrugt, 2016). The reader is also referred to
the broader review of uncertainty tools undertaken by the
Uncertainty Enabled Model Web (UNCERTWEB) Euro-
pean research project (Bastin et al., 2013), which includes
tools supporting elicitation, visualization, uncertainty and
sensitivity analysis. While links exist for these toolboxes, it
is not clear if all continue to be maintained and supported.
The CURE toolbox presented here is open source and brings
together formal and informal modelling methodologies,
underpinned by different philosophies, that users are encour-
aged to explore via the example workflows (Table 1). It also
offers a method not included in previous toolboxes (i.e. the
coupled generalized likelihood uncertainty estimation and
limits of acceptability, GLUE-LoA, method; Beven, 2006;
Blazkova and Beven, 2009; Hollaway et al., 2018; Beven et
al., 2022) and explicitly sets out to encourage best practice
regarding the conditionality of modelling results using the
condition tree approach.

2 Choosing a workflow

Table 1 lists the example workflows included in the first re-
lease of the CURE toolbox and the methods employed, with
references to published papers where the methods have been
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Table 1. Toolbox workflow examples and the uncertainty estimation methods employed.

Workflow Uncertainty estimation method Example Short description
model

1 Forward (independent sampling) CHASM1,b Application of uniform
sampling of statistical
distributions

2 Forward (independent sampling) HYMOD2 Fuzzy parameter distributions

3 Forward (dependent sampling – HYMOD Marginal gamma distributions
copula) and rank-correlation-derived

copula

4 Forwarda (dependent sampling – LISFLOOD3,b Application of covariant
copula) model4 fitted as copula for

inflows to LISFLOOD

5 Conditioned; adaptive metropolis HYMOD Single-chain MCMC; formal
MCMC4,5,6 likelihood

6 Conditioned; DREAM7 HYMOD Multi-chain MCMC; formal
likelihood

7 Conditioned; DREAM8 HYMOD Multi-chain MCMC with
thresholding of informal
likelihood measure

8 Conditioned; DREAM PROTECH4,b Multi-chain MCMC using
thresholding of informal
likelihood measure

9 Conditioned; GLUE9 HYMOD GLUE using threshold of
informal likelihood measure

10 Conditioned; GLUE PROTECHb GLUE using threshold of
informal likelihood measure.

11 Conditioned; GLUE-LoA HYMOD GLUE using a single variable
limits of acceptability

12 Conditioned; GLUE-LoA10 PROTECHb GLUE using multi-variable
limits of acceptability

13 Analysis of rainfall–runoff Event analysis11 Derivation of limits of
observations acceptability based on event

runoff coefficients

14 Conditioned; GLUE-LoA Dynamic GLUE using limits of
TOPMODEL11 acceptability based on runoff

coefficients

a In this example, the input was sampled in a forward uncertainty analysis, but the LISFLOOD model was conditioned in a prior
analysis. 1 Almeida et al. (2017). 2 Wagener et al. (2001). 3 Neal et al. (2013). 4 Haario et al. (2001). 5 Roberts and
Rosenthal (2001). 6 Roberts and Rosenthal (2009). 7 Differential evolution adaptive metropolis (Vrugt, 2016). 8 Sadegh and
Vrugt (2014). 9 Generalized likelihood uncertainty estimation (GLUE; Beven and Binley, 1992). 10 Blazkova and Beven (2009).
b Owing to long model run times, this example uses pre-run simulation output. 11 Beven et al. (2022).

applied. A variety of workflows covering forward UE and
both formal statistical and informal methods of conditioned
UE are given. Figure 1 provides an illustration of the choices
that might be made in deciding on a workflow within the
CURE toolbox (see also the earlier decision trees of this type

in Pappenberger et al., 2006, and Beven, 2009). Forward UE
methods (workflows 1 and 2) must be used when there are
no observational data with which to condition the model out-
put. The outcomes will then be directly dependent on the
assumptions about the prior distributions and covariation of
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Figure 1. The decision tree guiding users towards different methodologies and workflows.

parameters and input variables. Copula methods are used to
sample covariates (workflows 3 and 4). In the case of both
forward and conditioned UE workflows, input uncertainties
are parameterized to be applied as ranges or distributions, for
example, as multipliers or an additive bias applied when the
model is run.

When observational data are available, formal statistical
likelihood methods (workflows 5 and 6) will be most ap-
propriate in cases where any model residuals can be as-
sumed to be aleatory and represented by a simple stochas-
tic model. Where such assumptions are difficult to jus-
tify because of epistemic sources of uncertainty, there is
a choice between approximate Bayesian estimation (ABC)
using Markov chain Monte Carlo (MCMC) sampling and
GLUE methods. Within ABC, a threshold of acceptability
for some informal summary measure of performance is cho-
sen. MCMC sampling is implemented using the DREAM
code described in Vrugt (2015); the reader is also referred
to Vrugt (2016) for a more recent description. This aims to
produce an ensemble of model parameter sets comprising the
samples from the final iterations of the DREAM algorithm
(defined by the user) that are considered to be equally proba-
ble (workflows 7 and 8). Convergence of the sampling can be
tested using the Gelman and Rubin (1992) diagnostic statis-
tic.

Within GLUE each model is associated with a likelihood
measure that initially reflects sampling of the assumed prior
distributions and is then modified during the conditioning
process. GLUE allows for different ways of updating the

likelihood measure, including both Bayesian multiplication
and fuzzy operators (Beven and Binley, 1992, 2014). Uni-
form independent priors across specified ranges are often as-
sumed when there is a lack of robust knowledge about the pa-
rameters but, as in the options for the forward UE workflows,
other prior distributions can be used. Deciding on whether
a model is acceptable or behavioural can again be based
on some informal summary measure of performance (work-
flows 9 and 10) or some predefined limits of acceptability
(workflows 11 and 12). A particular case of defining limits
of acceptability for rainfall–runoff models based on histori-
cal event runoff coefficients as a way of reflecting epistemic
uncertainties in observed input and output is included (work-
flows 13 and 14). Vrugt and Beven (2018) demonstrated an
adaptive sampling methodology for applying the limits of ac-
ceptability (DREAM(LoA)) that aims to find feasible samples
that satisfy all of the limits applied. The DREAM algorithm
used in workflows 7 and 8 can be adapted to be used in this
way.

It should be noted that the examples associated with each
workflow are intended to be illustrative. They cannot all be
described in detail in this publication, which is intended to
introduce the toolbox. However, the MATLABTM code is
freely available and can be easily adapted by users for their
own application. Extensive comments are included in each
workflow to aid this process.
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Figure 2. Overall structure of the CURE toolbox.

3 The CURE toolbox, version 1.0, structure

The CURE toolbox essentially has two linked structures.
There is an overall structure with which the user interacts
throughout the analysis (Fig. 2) and an underlying folder
structure (Fig. 3) containing the toolbox functions and ex-
ample model-specific files. The toolbox folder structure has
specific folders for the UE methods where method-specific
functions are collated (e.g. method-specific sampling and di-
agnostics and visualization) and for the individual example
modelling applications (i.e. the model functions and input
files as well as any links to any “external models”, such
as models not coded as a MATLABTM function but which
can be executed from the command line). Folders also ex-
ist for general (i.e. not method-specific) sampling methods,
visualizations and utility functions. Additionally, there are
project folders for each example workflow where audit trail
logs, diagnostics and results are written.

The functions for general sampling of parameter distri-
butions (e.g. uniform, low-discrepancy or Latin hypercube
sampling of the large number of supported distributions) are
common with the SAFE toolbox of Pianosi et al. (2016).
In addition, and of particular importance for forward uncer-
tainty analysis, the sampling functions have been extended
to represent parameter and forcing-input dependencies us-
ing copulas (e.g. Workflow 3 in Table 1 uses copula sam-
pling based on results from previous analyses to describe
parameter dependencies for forward uncertainty propaga-

Figure 3. Outline of the folder structure of the CURE toolbox.

tion). Other specific sampling functions are associated with
the adaptive sampling (“online” sampling) for Markov chain
Monte Carlo (MCMC) approaches, implemented using the
DREAM algorithm of Vrugt (2016), where distributions and
correlation structures are modified as the chain(s) evolve.
Modelling diagnostics, both numerical and graphical, are
provided for both online adaptive sampling and “offline”
methods (i.e. those that are not adaptively sampled within
a given method). In the case of online MCMC methods, vi-
sualization of the evolution of the states of the chain(s) and
tests for convergence to stationary distributions are included
(e.g. Fig. 4a, b).

In the case of formal statistical likelihood methods (e.g.
Evin et al., 2013, 2014, and the recent “universal likelihood”
of Vrugt et al., 2022), residual model fitting can be carried
out interactively, using command line prompts, and can form
part of a workflow (or can be used in a stand-alone manner).
The approach uses Box–Cox transformations, which provide
flexibility in transforming the data to remove heteroscedas-
ticity and non-normality (Box and Cox, 1964), and also pro-
vides for fitting an autoregressive model of suitable order in
an iterative way, as proposed by Beven et al. (2008). Fig-
ure 4c and d, for example, show the use of the residual model-
fitting visualizations in Workflow 5. The visualizations also
serve as an approximate check of the residual model assump-
tions when analysing posterior simulations.
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Figure 4. Visualization of simulation diagnostics in conditioning of HYMOD parameters in Workflow 5 using DREAM with a formal
likelihood: (a) the evolution of 12 chains using DREAM, (b) the evolution of the Gelman–Rubin convergence statistic for five parameters
and (c, d) the visualization of structural parameters during residual model fitting.

For the GLUE methods (see Beven and Binley, 1992,
2014; Beven and Freer, 2001; Beven et al., 2008; Beven and
Lane, 2022), diagnostics are included for the exploration of
the acceptable parameter space and which criterion (or crite-
ria) and at which time steps (or locations) simulations were
rejected. There are also method-specific and generic toolbox
functions for the visualization and presentation of simulation
results and associated uncertainties (e.g. see Fig. 5 for the
application in Workflow 1). Results are both alphanumerical
and graphical; alphanumerical results (including those from
diagnostic statistics and summary variables where appropri-
ate) can be automatically written to the audit trail log, and
plots are saved to the project folder.

4 Condition tree implementation within CURE

An important part of any CURE toolbox application is the
way that users can explore and document modelling choices,
assumptions and uncertainties using the condition tree GUI
(e.g. Fig. 6). The GUI aids in the elicitation of primary mod-
elling uncertainties, their likely sources and how they are to

be treated during the analysis. It is also designed to elicit
other important choices and assumptions, including those re-
garding elements of the analysis assumed to be associated
with insignificant uncertainties and perhaps treated deter-
ministically; for example, where only one model structure is
considered or where uncertainties are assumed negligible for
certain elements or are perhaps subsumed into other uncer-
tain elements. Similar to the incorporation of UE, the con-
dition tree would be completed, ideally, as an integral part
of any modelling application and can help in the definition
of an appropriate workflow structure. This is particularly im-
portant in considering epistemic sources of uncertainty. We
fully understand that non-probabilistic approaches to UE re-
main controversial (e.g. Nearing et al., 2016) but have, in
the past, demonstrated that the assumptions required to use
formal statistical methods (e.g. the recent paper of Vrugt et
al., 2022) may lead to overconfidence in the resulting infer-
ence when epistemic uncertainties are important (Beven and
Smith, 2015; Beven, 2016). Because epistemic uncertainties
are the result of a lack of knowledge, their nature and impacts
cannot be defined easily. That means that, effectively, there
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Figure 5. Visualization of results: (a) the distribution of the simulated minimum factor of safety from a forward UE using the CHASM
landslide model in Workflow 1; (b) the 5th, 50th and 95th percentiles of simulated discharge (black lines) and observed discharge (red circles)
from an MCMC-conditioned UE method using HYMOD; and (c) the posterior parameter distributions for the same CHASM example and
(d), both showing all and acceptable parameter sets from a GLUE analysis using the PROTECH model (Workflow 10).

can be no right answer (e.g. Beven et al., 2018a, b; Beven
and Lane, 2022); therefore, the recording of assumptions in
the audit trail for analysis should be a requisite of any analy-
sis to allow for later evaluation by others.

The GUI takes the form of a number of simple, sequential
dialogue boxes in which the user is asked to enter text. In the
initial release of the toolbox there are five primary dialogue
boxes covering the following:

1. project aims and model(s)/model structures considered;

2. modelling uncertainties – overview, covering the model
structure, parameters, input and observations for model
conditioning;

3. uncertainties – observations for model conditioning –
specific, covering the associated uncertainties and basis
for assessing simulation performance;

4. uncertainties – input – specific, covering the sampling
strategy, distributions and dependencies;

5. uncertainties – parameters – specific, covering the
choice of parameters, sampling strategy, distributions
and dependencies.

The information, elicited using the dialogue boxes, can be
automatically written to the project audit trail log during the
initial phase of entry; the audit trail log remains editable as
the user defines their own workflow and during any subse-
quent modifications to the analysis contained within a work-
flow.

5 Defining a workflow

An a priori consideration of modelling uncertainties via the
condition tree is an optional first step to help choose and
structure an appropriate workflow. The decision tree in Fig. 1
can also be used as a guide in this respect. These are comple-
mented by the toolbox documentation and help text, which
are available via the workflows and functions. Documenta-
tion and help are in the form of targeted comments within
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Figure 6. Condition tree example: GUI dialogue box for (a) the project set-up, (b) the condition tree navigation pane and (c) part of an
example audit trail log.

the code, and function header text is available by typing the
help “function name” in the command line (e.g. headers may
include a definition of function variables and references for
a specific UE method). Each workflow is also linked, where
possible, to the relevant chapters of Beven (2009); these are
specified in the header text of each workflow script. Clarifi-
cation of the terminology used in the help and documenta-
tion is provided by a glossary of terms included as part of the
toolbox.

It is assumed that the user has completed any necessary
pre-processing analyses such as forcing-input uncertainty
assessment and disinformation screening (e.g. Beven and
Smith, 2015) as well as an assessment of uncertainties associ-
ated with conditioning observations, where used. An excep-
tion is the interactive toolbox facility for fitting residual mod-
els mentioned earlier, where formal statistical likelihoods are
to be used.

The example workflows have been chosen to span the UE
methods included in the toolbox and, in some cases, provide
comparison of different UE methods for similar modelling

applications. The structure of the workflows themselves in-
cludes the primary steps to be “populated” that are outlined
in the following.

The condition tree GUI project set-up and interactive dia-
logue boxes are as follows:

1. set up input and observations;

2. set up parameter ranges, distributions and sampling
strategy;

3. define performance measure (if conditioned UE);

4. simulations (online or offline; MATLABTM function or
external model);

5. post-processing, including diagnostics, results, propa-
gation and visualization of uncertainty.

Associated with these main steps, example workflows in-
clude automatic “text writes” that are appended to the audit
trail log for each analysis. These include specific choices that
are made when implementing steps 1–5 above, such as the

Hydrol. Earth Syst. Sci., 27, 2523–2534, 2023 https://doi.org/10.5194/hess-27-2523-2023
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Table 2. Parameters and uniform distribution sampling ranges for the application of the PROTECH model to Lake Windermere (Workflow
12 application).

Parameter Meaning Min Max

EPSW Background light extinction coefficient 0.15 0.35
Pf Growth rate factor for phosphorus 0.5 2.5
Nf Growth rate factor for nitrate 0.5 1.5
Sif Growth rate factor for silica 0.5 1.5
Kz Vertical effective eddy diffusion coefficient 0.05 0.4
WWf Waste water treatment works adjustment factor for phosphorus 0.05 0.6

Figure 7. PROTECH application to the Lake Windermere example
in Workflow 12: observed chlorophyll data (red circles), limits of
acceptability (green circles), and predictions of models that satisfy
all of the chlorophyll, R-type and CS-type algae limits.

ranges of parameter values used and their distributions, the
sampling strategy employed, and diagnostic and simulation
results.

In general, users will not need to modify any toolbox func-
tions; they will only need to build a workflow. However,
given the requirement for online simulation performance to
be assessed for MCMC methods as well as the many per-
mutations of performance measures and ways of combining
them where multiple criteria are used, users are also required
to specify the function that returns an overall measure of in-
dividual simulation performance. In addition, where external
models are to be used for online approaches, additional modi-
fications may be required for modification of input/parameter
files using some form of wrapper code.

6 An example workflow

The CURE workflows can be applied to a wide range of geo-
science applications, including the water science examples

set out in Table 1. In particular, CURE is well suited to the
specification of assumptions about epistemic uncertainties,
to conditioning using uncertain observational data and to re-
jectionist approaches to model evaluation (see also Beven et
al., 2018a, b, 2022; Beven and Lane, 2022). Here, we pro-
vide some more detail on the application of the PROTECH
model within such a multi-variable rejectionist conditioning
framework (Workflow 12 in Table 1). The full workflow and
output are given in the Supplement.

PROTECH is a lake algal community model that has been
applied to predict concentrations for functional classes of al-
gae in Lake Windermere in Cumbria, UK (Page et al., 2017
). It is a 1D model with water volumes related to the lake
bathymetry and runs with a daily time step. In this case, the
model is provided in an executable form and was run of-
fline for randomly sampled parameter sets; thus, the work-
flow takes the simulated output files as input. The model re-
quires flow, weather and nutrient information as input. A re-
duced set of six parameters was sampled, as in Table 2 (see
Page et al., 2017, for a more complete analysis). Model eval-
uation is based on limits of acceptability for three variables:
chlorophyll and the concentrations of R-type and CS-type al-
gae. Figure 7 shows the resulting chlorophyll output for the
surviving models from the analysis after evaluation against
all three sets of limits of acceptability. The full workflow and
resulting audit trail and output figures are presented in the
Supplement.

7 Toolbox evolution

The toolbox structure is such that new methods can be eas-
ily added, and it will be subject to ongoing development and
augmentation with additional workflow examples. It is hoped
that the CURE toolbox will contribute to the ongoing devel-
opment and testing of UE methods and good practice with
respect to their application. In particular, the condition tree
approach could be further developed via feedback from tool-
box users and end users of the conditional uncertainty es-
timates. The toolbox is freely available for non-commercial
research and education from https://www.lancaster.ac.uk/lec/
sites/qnfm/credible (Page et al., 2021).
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Code availability. The CURE MATLABTM toolbox, ver-
sion 1.0, is an open-source MATLABTM code hosted
at Lancaster University. It can be downloaded from
https://www.lancaster.ac.uk/lec/sites/qnfm/credible (Page et
al., 2021) (contact n.chappell@lancaster.ac.uk) and was first made
available in 2021.

Data availability. All of the data needed to run the examples con-
tained in this paper are supplied with the CURE toolbox, version
1.0 (Page et al., 2021).
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