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Abstract. Multivariate or compound hydrological-extreme
events such as successive floods, large-scale droughts, or
consecutive drought-to-flood events challenge water man-
agement and can be particularly impactful. Still, the mul-
tivariate nature of floods and droughts is often ignored by
studying individual characteristics only, which can lead to
the under- or overestimation of risk. Studying multivariate
extremes is challenging because of variable dependencies
and because they are even less abundant in observational
records than univariate extremes. In this review, I discuss dif-
ferent types of multivariate hydrological extremes and their
dependencies, including regional extremes affecting multi-
ple locations, such as spatially connected flood events; con-
secutive extremes occurring in close temporal succession,
such as successive droughts; extremes characterized by mul-
tiple characteristics, such as floods with jointly high peak
discharge and flood volume; and transitions between differ-
ent types of extremes, such as drought-to-flood transitions. I
present different strategies to describe and model multivari-
ate extremes and to assess their hazard potential, including
descriptors of multivariate extremes, multivariate distribu-
tions and return periods, and stochastic and large-ensemble
simulation approaches. The strategies discussed enable a
multivariate perspective on hydrological extremes, which al-
lows us to derive risk estimates for extreme events described
by more than one variable.

1 Introduction

In July 2021, a severe and widespread flood event affected
western Germany and parts of Belgium and the Netherlands,
where it led to numerous fatalities and considerable damage
to infrastructure (Kreienkamp et al., 2021; Ibebuchi, 2022).
After such exceptional flood events, we ask the following
question: how frequently do such events occur? To answer
this question, one can rely on frequency analyses which es-
tablish a link between the magnitude and frequency of events.
Such analyses are often performed by focusing on one vari-
able only, i.e. by taking a univariate perspective. In the case
of the Germany flood, this would be e.g. flood peaks in one
individual catchment. While such a focus on one variable en-
ables the development of suitable preparedness and adapta-
tion measures by providing magnitude and frequency esti-
mates of extreme events, it has the following major draw-
back: it neglects that extremes are often not univariate but
multivariate phenomena; i.e. they affect more than one vari-
able. To illustrate the multivariate nature of hydrologic ex-
tremes, let us again look at the 2021 flood. This flood event
was extreme, not just extreme in terms of peak discharge
at one location but also in terms of the flood volume gen-
erated. Furthermore, it affected not just one catchment but
multiple catchments in Germany, Belgium, and the Nether-
lands. This example highlights that the multivariate nature of
hydrological extremes can take multiple forms. In the case
of peak discharge and volume, we are looking at an ex-
treme event characterized by multiple variables, and in the
case of multiple affected locations, we are looking at a re-
gional extreme event. These different types of multivariate
extremes have in common that they involve multiple interde-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2480 M. I. Brunner: Multivariate hydrological extremes

pendent variables, which requires a multivariate perspective.
In this review, I first provide an overview of different types
of multivariate hydrological extremes, including regional ex-
tremes, consecutive extremes, extremes with multiple char-
acteristics, and extreme transitions. In addition, I review the
tools, measures, and descriptors available to describe these
different types of extremes. Second, I present the modelling
approaches available for modelling extremes in a multivari-
ate framework, such as copula models and multivariate sim-
ulation approaches. Last, I discuss the challenges related to
multivariate hydrological extremes, including the regional-
ization of multivariate extremes to ungauged basins and the
assessment of future changes in multivariate extreme events.

2 Types of multivariate hydrological extremes

The multivariate nature of hydrological-extreme events can
take multiple forms (Fig. 1). A first type of multivariate hy-
drological extreme is regional extremes that affect multiple
catchments at once. The 2021 flood in Germany is an ex-
ample of such a regional extreme event (Fig. 1a). Regional
extremes represent a challenge for emergency management
because resources need to be distributed and shared across
regions. A second type of multivariate hydrological extreme
is consecutive extremes, i.e. several extreme events occur-
ring in close temporal succession (Fig. 1b). An example of
such a consecutive extreme event is the multi-year drought
of 2018–2020, characterized by multiple dry summers over
central Europe (Rakovec et al., 2022), which severely im-
pacted water supply and agriculture (Stephan et al., 2021)
and had severe ecological consequences such as forest die-
backs (Sánchez-Pinillos et al., 2022). A third type of multi-
variate extreme is hydrological extremes described by multi-
ple characteristics such as flood peak and volume, as in the
case of the 2021 flood event in Germany (Kreienkamp et al.,
2021) (Fig. 1c). Such extremes, which affect multiple char-
acteristics, challenge water management because hydraulic
structures such as retention basins have to cope not just with
high maximum loads but also with high volumes. A fourth
type of multivariate hydrologic extreme is transitions from
one type of extreme event to another type of extreme event,
such as drought-to-flood transitions (Fig. 1d). An example of
such a drought-to-flood transition event is the multi-year dry
period in California (2011–2016) which was ended by a flood
in 2017 (Swain et al., 2018; He and Sheffield, 2020). Such
transition events can also challenge water management be-
cause regulation measures, which might be reasonable from
the perspective of one type of extreme, may be less useful
from the perspective of the other type of extreme (Ward et al.,
2020). In the following sections, I review the state of knowl-
edge on these four types of multivariate hydrological ex-
tremes, i.e. regional and consecutive extremes, extremes with
multiple characteristics, and extreme transitions. In addition,

I summarize the methodological tools used to study these dif-
ferent types of multivariate hydrological-extreme events.

2.1 Regional extremes

Regional extremes affect multiple locations, catchments, or
river basins at (almost) the same time and are also called
spatially compounding extremes (Zscheischler et al., 2020).
Here, we talk about regional extremes as soon as a local per-
spective is no longer sufficient, i.e. when floods have a larger
spatial extent and more than one catchment is affected, which
requires a multivariate perspective.

2.1.1 Regional floods

Floods can occur simultaneously at multiple locations;
i.e. flood occurrences can be spatially dependent (Fig. 2).

Such spatial dependence can be quantified using differ-
ent types of measures, including pairwise measures, such as
the number of co-occurrences at a pair of catchments (Brun-
ner et al., 2020a) or the correlation between flood magni-
tudes at a pair of catchments (Brunner and Gilleland, 2021);
catchment-specific measures, such as the distance over which
multiple catchments flood near synchronously (i.e. the flood
synchrony scale; Berghuijs et al., 2019) and the expected pro-
portion of sites in a catchment’s vicinity that exceed their
xth quantile during an event in which this catchment exceeds
its xth quantile (conditional spatial dependence; Keef et al.,
2009); or event-based metrics, such as flood extent (Kussul
et al., 2008) and the percentage of catchments affected by
flooding within a certain region (Brunner et al., 2020b) (Ta-
ble 1).

Spatial dependence is related to flood magnitude to a cer-
tain degree. However, spatial dependence has been shown to
increase or decrease with event magnitude when using dif-
ferent dependence measures. Keef et al. (2009) have shown
that conditional spatial dependence is particularly severe for
moderate floods and becomes weaker as events get more ex-
treme. That is, they showed that more extreme events are
more localized than moderate floods. In contrast, Kemter
et al. (2020) have shown a positive relationship between
flood magnitude and extent when using the flood synchrony
scale, i.e. increasing spatial scales with increasing flood mag-
nitude. The strength of spatial dependence also depends on
location and is highly variable across catchments. Berghuijs
et al. (2019) have shown that the distance over which multi-
ple catchments flood near synchronously exceeds the size of
individual catchments in Europe and shows strong regional
variations, with larger floods occurring in lowlands than in
mountain catchments.

Regional floods are shaped by both meteorological and
land surface processes; i.e. precipitation spatial dependence
alone is not sufficient to explain spatial flood dependence
(Brunner et al., 2020a). Regional floods often develop when
a storm meets favourable antecedent conditions, such as
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Figure 1. Illustration of different types of multivariate hydrological-extreme events: (a) regional extremes, (b) consecutive extremes, (c) ex-
tremes with multiple characteristics, and (d) extreme transitions.

Figure 2. Spatial flood connectedness in the United States computed over all seasons. Links indicate stations that have at least 10 flood events
in common. Stations are coloured according to the mean day of flood occurrence.

widespread wet soils, or when multiple catchments experi-
ence synchronous snowmelt (Brunner and Dougherty, 2022).
Therefore, floods are more likely to be spatially connected
with seasonal snowmelt contributions in mountain regions
than in lowland catchments, where floods are mainly driven
by precipitation (Brunner and Fischer, 2022). Besides cli-
mate, spatial flood dependence is shaped by reservoir regula-
tion, which leads to less spatially connected floods in winter
compared to under unregulated conditions (Brunner, 2021).

Regional flood characteristics change over time, but the di-
rection of change is yet unclear. Berghuijs et al. (2019) have
shown historical increases in the distance over which catch-
ments flood near synchronously for catchments in Europe. In
contrast, Rupp et al. (2021) found decreases in the synchrony
of flooding between snowmelt-dominated basins because of
decreases in snowmelt using simulations of future stream-
flow. This finding is in line with results by Brunner and Fis-
cher (2022) and Brunner and Dougherty (2022), who found
stronger spatial connectedness for snowmelt-influenced re-
gions than for rainfall-driven regions. While these studies
provide first evidence for future changes of regional floods
in a warming climate, the direction and magnitude of these
changes need to be quantified using further targeted mod-
elling experiments (see Sect. 3.4). The spatial dependencies
between flood occurrences at multiple locations need to be
considered in flood hazard assessments in order to avoid risk
over- or underestimation (Metin et al., 2020). Such consid-
eration can be achieved by e.g. computing probabilities of
regional flooding (Brunner et al., 2020b).

2.1.2 Regional droughts

Droughts are often regional phenomena; i.e. drought oc-
currences at different locations are dependent. Similarly to
floods, such spatial drought dependence can be quantified
using different types of descriptors. Using a pairwise per-
spective, drought dependence can be quantified by count-
ing the number of drought co-occurrences or the number
of months under concurrent drought (Brunner and Gille-
land, 2021). Taking a regional perspective, regional droughts
can be described by the number of catchments affected by
drought (Teutschbein et al., 2022) or by the drought extent
(Hanel et al., 2018). The main part of the literature study-
ing regional droughts and their extents focuses on meteoro-
logical rather than streamflow droughts (Ganguli and Gan-
guly, 2016; Sharma and Mujumdar, 2017; Perez Arango
et al., 2021; Ionita and Nagavciuc, 2021). Those studies that
have assessed the spatio-temporal variation in hydrological
drought extents found substantial temporal variations in the
number of catchments jointly affected by drought (Hanel
et al., 2018; Brunner et al., 2021b; Teutschbein et al., 2022).

Spatial drought extent is driven by different hydro-
meteorological conditions, including soil moisture deficits,
precipitation deficits, and positive temperature anomalies.
The relative importance of these different drivers varies by
event and season. In winter and spring, large-scale droughts
often co-occur with soil moisture and precipitation deficits,
while they co-occur with positive temperature anomalies
in summer (Brunner et al., 2021b). While there exist first
indications that the relationships between climatic drivers
and drought extent are complex, future studies should focus
on the identification of atmospheric drivers of widespread
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Table 1. Metrics used to describe regional floods and droughts.

Metric Description References Application

Areal coverage Percentage of area or catchments under extreme Rossi et al. (1992), Hannaford et al. (2010), Droughts
conditions Hanel et al. (2018), Brunner et al. (2021b)

Spatial extent Area under extreme conditions derived from gridded Kussul et al. (2008), Rudd et al. (2019) Floods and
data droughts

Conditional spatial Expected proportion of sites in the vicinity D of a Keef et al. (2009) Floods
dependence specific catchment that exceed their pth quantile

during an event in which this catchment exceeds its
pth quantile

Synchrony scale Distance over which multiple rivers flood near Berghuijs et al. (2019) Floods
synchronously

Length scale Range of semi-variogram Touma et al. (2018) Extreme
precipitation

Connectedness Network degree, i.e. number of catchments a Brunner et al. (2020a), Floods and
catchment has co-experienced extreme events with Brunner and Gilleland (2021) low flows

Probability of regional Probability that a certain percentage of catchments Brunner et al. (2020b) Floods
extremes within a region is jointly under extreme conditions

Severity–area–frequency Relationship of specific severity (deficit) and area Henriques and Santos (1999), Droughts
curves coverage for different return periods Hisdal and Tallaksen (2003)

Severity–area–duration Relationship between drought severity (deficit) and Andreadis et al. (2005), Droughts
curves area coverage for different drought durations Sheffield et al. (2009)

streamflow droughts, similarly to studies that assess the link
between atmospheric patterns and/or climate indices and the
spatial extent of meteorological droughts (e.g. McCabe and
Wolock, 2022).

Streamflow drought spatial extents have increased in the
United States over time, mainly because of increases in the
extent of small droughts and in temperature (Brunner et al.,
2021b). Further investigations are needed to assess whether
such changes can also be observed in other climate zones
such as tropical, arctic, or alpine regions. The spatial ex-
tents of streamflow droughts have not just changed in the
past; they are also projected to further increase in future, as
demonstrated for Great Britain using climate and hydrologi-
cal model simulations (Rudd et al., 2019). How such changes
translate to other regions remains to be assessed using mod-
elling experiments which focus on reliably reproducing spa-
tial streamflow drought extents.

2.1.3 Descriptors of regional extremes

A diverse range of tools can be used to quantify the spatial
dependence and spatial extents of floods and droughts. These
tools include areal coverage, spatial extent, conditional spa-
tial dependence, synchrony scale, length scale, probability of
regional extremes, connectedness, severity–area–frequency
curves, and severity–area–duration curves (Table 1). A first
category of descriptors describes the spatial extent of ex-
treme events at an event scale. This category comprises areal

coverage, i.e. the percentage of a region or river basin under
extreme conditions; spatial extent, i.e. the area under extreme
conditions, usually derived from gridded data; and condi-
tional spatial dependence, i.e. the expected proportion of
sites in the vicinity of a specific catchment that exceed their
pth quantile during an event in which this catchment exceeds
its pth quantile. While these descriptors focus on describing
individual events, a second group of descriptors summarizes
the behaviour of regional extremes at a catchment scale. For
example, the synchrony scale measures over which distance
around a catchment multiple rivers experience flooding at the
same time. A third group of metrics comprises metrics that
summarize regional relationships in terms of the occurrence
of extremes, e.g. through a semi-variogram or more specifi-
cally the length scale (i.e. the range of the semi-variogram)
or the probability of regional extremes, i.e. the probability
that a certain percentage of catchments within a region is
jointly under extreme conditions. A fourth group of met-
rics includes pairwise measures such as connectedness de-
termined by either the number of co-occurrences at a pair of
catchments or the correlation between flood magnitudes at a
pair of catchments. A last group of descriptors is frequency
or duration curves, e.g. severity–area–frequency curves or
severity–area–duration curves. Depending on which metric is
chosen to describe regional extremes, the results of an anal-
ysis will differ. For example, change assessments may find
different changes in regional extremes when looking at pair-
wise relationships than when focusing on the event scale.
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Figure 3. Temporal hydrological drought variability (droughts were
defined here using a variable threshold at the 15th flow per-
centile): (a) temporal drought occurrence in the Riss catchment at
Warthausen (Austria) and (b) temporal drought occurrence in the
Little Pee Dee catchment at Galivants Ferry (United States).

2.2 Consecutive extremes

Consecutive extremes occur in close temporal succession
in the same catchment or region and are also referred to
as temporally compounding extremes (Zscheischler et al.,
2020). Such temporal clustering behaviour is illustrated in
Fig. 3, which shows time series of drought occurrences for
two example catchments in different hydro-climates. The
first catchment shows temporal drought clustering at sea-
sonal timescales (Fig. 3a), meaning that droughts are likely
to occur in subsequent seasons. The second catchment shows
temporal clustering at longer, i.e. multi-annual, timescales
(Fig. 3b), meaning that the catchment is affected by droughts
in regular multi-annual intervals.

2.2.1 Consecutive floods

Flood events cluster in time; i.e. flood-rich periods in which
floods are more common alternate with flood-poor periods in
which floods are rare (Villarini et al., 2013; Mediero et al.,
2015; Merz et al., 2016; Gu et al., 2016; Liu and Zhang,
2017; Wang et al., 2020). In Europe or China, for exam-
ple, many catchments show temporal clustering for mod-
erate floods at timescales of 1 year to a few years (Merz
et al., 2016; Gu et al., 2016; Lun et al., 2020). However, the
strength of temporal clustering decreases substantially with
timescale and with an increasing flood threshold (Lun et al.,
2020). The temporal flood-clustering behaviour to some de-
gree also depends on the region. For example, catchments
in the Atlantic and continental regions of Europe are more
prone to temporal flood clustering than catchments in Scan-
dinavia (Mediero et al., 2015).

Flood-rich periods with temporally clustered events are
related to climate. Blöschl et al. (2020) and Brönnimann
et al. (2022) have, for example, shown for Europe that his-
toric flood-rich periods occurred under colder-than-normal
climate conditions. Similarly, Villarini et al. (2013), Gu et al.
(2016), and Liu and Zhang (2017) have shown for catch-
ments in Iowa, China, and Australia, respectively, that the

flood-clustering behaviour is influenced by large-scale cli-
mate indices. The pronounced link between climate and
the temporal flood-clustering behaviour suggests that future
changes in temperature and oscillation patterns may lead
to changes in temporal flood clustering. How the temporal
flood-clustering behaviour changes across different climate
zones in a warming climate still needs to be investigated us-
ing simulation-based studies. Such simulation-based studies
require the development of modelling approaches that reli-
ably represent the temporal clustering behaviour of floods.

2.2.2 Consecutive droughts

Drought events can occur successively or cluster in time as
highlighted by studies looking at the occurrence of multi-
year droughts and studies assessing the temporal clustering
behaviour of droughts. A first body of literature provides ev-
idence for the occurrence of multi-year droughts from both
a meteorological and a hydrological perspective. The occur-
rence of multi-year precipitation deficits has, for example,
been documented for France (Vidal et al., 2010), central Eu-
rope (Moravec et al., 2021), and the United States (Goodrich,
2007; Diffenbaugh et al., 2015; Abatan et al., 2017; Bales
et al., 2018), and the occurrence of multi-year streamflow
deficits has been documented for different parts of Europe
(Parry et al., 2012; Folland et al., 2015; Hanel et al., 2018;
Brunner and Tallaksen, 2019) and Chile (Alvarez-Garreton
et al., 2021). A second body of literature shows that both me-
teorological and hydrological drought occurrences are highly
variable in time, with alternations between drought-rich and
drought-poor periods at multi-year (Moreira et al., 2015;
Noone et al., 2017; Yue et al., 2021), decadal (Ionita et al.,
2012; Tong et al., 2018; Barker et al., 2019), and multi-
decadal timescales (Tanguy et al., 2021). However, some
other studies also provide contrasting evidence by showing
a lack of cyclicity in precipitation deficits (Pelletier and Tur-
cotte, 1997; Bunde et al., 2013).

Brunner and Tallaksen (2019) have shown that catchments
experiencing multi-year droughts are mostly characterized
by a rainfall-dominated flow regime, while catchments with
melt-dominated flow regimes are generally not affected by
multi-year droughts. In addition, Brunner and Stahl (2023)
have shown that the temporal clustering of hydrological
droughts is substantially more pronounced than the cluster-
ing of precipitation deficits. That is, climatic drivers are in-
sufficient to explain the temporal clustering of hydrological
droughts, suggesting that additional land surface processes,
such as snow storage or the absence thereof, seasonal and in-
terannual groundwater level variations, temporal soil mois-
ture variability, or fluctuations in glacier melt contributions,
are needed to explain hydrological drought-clustering be-
haviour. Catchments prone to temporal hydrological drought
clustering are often arid and lack substantial snow storage
(Brunner and Stahl, 2023). As a consequence, changes in
the number of catchments showing temporal hydrological
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Table 2. Metrics used to describe consecutive floods and droughts.

Metric Description References Application

Number of consecutive Count of the number of successive extreme Hanel et al. (2018), Droughts
events events or years Brunner and Tallaksen (2019)

Extreme-event transition Probability of observing a subsequent extreme event Moon et al. (2018) Droughts
probabilities given that an extreme event has occurred in the

previous time unit (e.g. month)

Hurst exponent Measure of the long-term memory of a time series Hurst (1956), Tatli (2015), Droughts
Noorisameleh et al. (2021)

Average power spectrum Average power over all frequencies after the Fourier Pelletier and Turcotte (1997) Droughts
transform

Dispersion index Quantifies the departure from a homogeneous Poisson Vitolo et al. (2009), Mediero et al. (2015), Floods and
process Merz et al. (2016) droughts

Ripley’s K Measures the average number of extreme events in the Ripley (1981),Dixon (2013), Extreme
temporal neighbourhood of extreme events Tuel and Martius (2021), precipitation,

Tuel et al. (2022) floods, and
droughts

Kernel estimation Estimates the time variation of extreme-event counts Cowling et al. (1996), Mudelsee et al. (2003), Floods
as smooth functions of time Merz et al. (2016)

Scan statistics Maximum number of observed counts in a series of Lun et al. (2020) Floods
overlapping sliding windows

Cox regression model Cox processes are Poisson processes with a randomly Villarini et al. (2013) Floods
varying rate of occurrence. Cox regression models
can be used to examine the dependence of the rate
of occurrence on covariate processes.

drought clustering may be expected in a warming climate
because of increases in aridity and decreases in snowmelt.
Similarly, multi-year droughts may become more frequent in
a future climate as flow regimes transition from snow domi-
nated to rainfall dominated (Brunner and Tallaksen, 2019).
Detailed modelling assessments are needed to show how
the probability of occurrence of multi-year droughts and
the temporal-clustering behaviour of droughts are going to
change in the future. Such assessments require an adequate
representation of temporal streamflow dependencies.

2.2.3 Descriptors of consecutive extremes

The persistence and periodic features of hydrological ex-
treme events have been documented using a range of mea-
sures including the Hurst exponent, power spectra derived us-
ing the Fourier transform, dry-to-dry transition probabilities,
and others (Table 2). A very simple measure to characterize
consecutive extremes is the number of consecutive events,
e.g. the number of successive extreme months or years. Also
related to individual events, one can compute extreme-event-
transition probabilities, i.e. the probability of observing a
subsequent extreme event given that an extreme event has oc-
curred in the previous time unit (e.g. week, month, or year).
Instead of focusing on events, the temporal persistence of ex-
tremes can be summarized for entire time series of extreme

events, for example by the Hurst exponent, which measures
the long-term memory of a time series, or the average power
spectrum, i.e. the average power over all frequencies after the
Fourier transform. In addition, consecutive extreme events
can be described by measures that characterize the temporal-
clustering behaviour of extreme events, including the disper-
sion index, which quantifies the departure of an observed
process from a homogeneous Poisson process; Ripley’s K ,
which counts the average number of extreme events in the
temporal neighbourhood of extreme events; and the kernel
estimation, which estimates the time variation of extreme-
event counts as a smooth function of time. Another possibil-
ity for describing consecutive extremes is to identify flood-
or drought-rich and flood- or drought-poor periods using scan
statistics. That is, unusual periods in the observations that are
inconsistent with the assumption of independent and identi-
cally distributed random variables, i.e. periods encompassing
very few or very many events, are identified with a moving-
window approach. If it is of interest not only to describe
consecutive extremes but also to identify their drivers, one
can rely on Cox regression models, which examine the de-
pendence of the rate of occurrence of extremes on covariate
processes, e.g. different types of teleconnection patterns. The
choice of a specific descriptor will depend on the specific re-
search question or application, i.e. on whether one would like
to test for clustering significance, in which case Ripley’s K
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Figure 4. Illustration of flood and drought characteristics: (a) floods
– peak discharge, volume, and duration; (b) droughts – minimum
flow, deficit, and duration.

or the dispersion index can be used; whether one would like
to identify specific periods particularly abundant in extremes
occurrence, in which case scan statistics or kernel estimation
can be used; or whether one would like to explain temporal
dependence, in which case one can rely on Cox regression
models.

2.3 Extremes with multiple characteristics

Droughts and floods are characterized by multiple character-
istics such as deficit and duration or peak discharge and flood
volume, respectively (see Fig. 4). These characteristics can
be mutually interdependent, as illustrated by some examples
in Fig. 5 for different drought and flood characteristics.

2.3.1 Floods

Floods are characterized by multiple characteristics, includ-
ing peak discharge, volume, and duration (Fig. 4a), which are
interdependent (Mediero et al., 2010; Serinaldi and Grimaldi,
2011). For example, flood duration and volume or flood
volume and flood peak show strong correlations (Fig. 5);
i.e. they show bivariate dependence. These variable rela-
tionships vary with the flood generation process; e.g. flash
floods, short-rain floods, long-rain floods, and rain-on-snow
floods show different forms and strengths of variable depen-
dence (Renard and Lang, 2007; Szolgay et al., 2015; Brun-
ner et al., 2017). Because of such variations in variable de-
pendence with flood generation processes, variable depen-
dence also varies between low- and high-elevation catch-
ments (Gaál et al., 2015). For Austrian catchments, Gaál
et al. (2015) found weaker variable dependence in alpine
than in lowland catchments because of a mix of flood gen-
eration processes. In addition to elevation, variable depen-
dence has also been shown to vary with catchment size. Us-
ing a global dataset, Rahimi et al. (2021) have shown that
the strength of variable dependence increases with the catch-
ment area. However, overall, variable dependence seems to
be more strongly related to climatic factors than to physio-
graphic factors (Gaál et al., 2015). Because of the link be-
tween climatic flood drivers and variable dependence, the
strength of variable dependence is changing in a warming
climate. For example, Bender et al. (2014) found an increase

in the dependence between flood volume and peak discharge
for the Rhine River, and Ben Aissia et al. (2014) detected
decreases and increases in such dependence for two catch-
ments in Québec. These temporal-change patterns of variable
dependence are spatially heterogeneous and cannot be ex-
plained by one hydro-meteorological driver alone. Instead,
changes in variable dependence are the result of an inter-
play between changes in precipitation, snowmelt, and soil
moisture, resulting in dependence increases in some regions
and dependence decreases in other regions (Brunner et al.,
2019c). The interdependencies between different flood vari-
ables and their potential future changes need to be considered
in multivariate hazard and climate impact assessments. That
is, flood frequency analyses need to consider variable depen-
dencies if multiple variables are of interest for the applica-
tion. For example, the dependence between peak and volume
should be considered when deriving flood estimates for hy-
draulic design.

2.3.2 Droughts

Similarly to floods, droughts can be described by differ-
ent characteristics, including drought intensity, deficit, and
duration (Fig. 4b), which are also interdependent (Shiau,
2006; Lee et al., 2013; Salvadori and Michele, 2015; Brun-
ner et al., 2019d). Such bivariate interdependence is found
for e.g. drought deficit and duration or drought deficit and
intensity (Fig. 5a and b). The strength of dependence varies
with climate (Van Loon et al., 2014). Drought deficit in-
creases most strongly with duration in cold seasonal climates
because snow accumulation during winter prevents the re-
covery from summer drought and in monsoonal, Savannah,
and Mediterranean climate zones where summer droughts
continue into the winter (Van Loon et al., 2014). This rela-
tionship between drought variable dependence and climate
suggests that the variable interdependence may change in a
warming climate. How climate change specifically affects the
dependence between different pairs of variables needs to be
assessed using targeted modelling experiments focusing on
an accurate representation of variable dependencies in hy-
drological models.

2.3.3 Descriptors of extremes with multiple
characteristics

The interdependencies between multiple characteristics of
hydrological-extreme events can be assessed using various
dependence measures, including different correlation and tail
dependence measures focusing on bivariate variable relation-
ships (Table 3). Linear relationships can be quantified using
Pearson’s correlation coefficient, while nonlinear relation-
ships can be described using Spearman’s or Kendall’s rank
correlation coefficients. If the focus is not on the bulk of
the distribution but on its tails, one can use the extremal de-
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Figure 5. Illustration of the relationship between different drought and flood variables for Fish River in Maine, United States: (a) drought
duration and deficit, (b) drought deficit and intensity, (c) flood duration and volume, and (d) flood volume and peak discharge.

pendence coefficient, which describes the probability of one
variable being extreme given that the other one is extreme.

2.4 Extreme transitions

Consecutive drought and flood periods can seriously chal-
lenge water and emergency management because of trade-
offs between long-term water storage and short-term flood
control (Di Baldassarre et al., 2017; He and Sheffield, 2020)
and substantial effects on water quality (Mosley, 2015; Pul-
ley et al., 2016). Recent examples of such events include the
transition from a very dry spring in 2017 to extremely wet
conditions in July in several parts of Germany (Becker et al.,
2017), the multi-year dry period in California (2011–2016)
which was ended by a flood in 2017 (Swain et al., 2018; He
and Sheffield, 2020), or the dry 2010–2012 period in the UK
that ended with record summer rainfall (Marsh et al., 2013).

2.4.1 Droughts to floods

Studies looking at transitions from dry to wet periods mainly
focus on transitions in meteorological states, i.e. transitions
from negative to positive precipitation or moisture anoma-
lies (Yang et al., 2013; Liu et al., 2018; Shi et al., 2021;
Ansari and Grossi, 2022). These meteorological studies in-
dicate large spatial variability in dry-to-wet-period transition
times ranging from a few months to multiple years (De Luca
et al., 2020). In contrast, little is known about consecutive
hydrological drought–flood events, i.e. transitions between
extremes in streamflow data. For the Amazonas River, Es-
pinoza et al. (2012) studied the abrupt transition from an
extreme drought in September 2010 to very high discharge
in April 2011, and Parry et al. (2016) studied drought ter-
mination for river basins in the UK. Still, little is known
about the atmospheric and land surface conditions that lead
to rapid drought-to-flood transitions and about how transi-
tion times and characteristics vary in space and time. Further
research is needed in order to better understand the varia-
tions of transition times across hydro-climates and the hydro-
climatic drivers of rapid drought–flood transitions. Studies
looking at future changes in transitions between dry and wet

meteorological states suggest more frequent and rapid transi-
tions between wet and dry extremes (Chen and Ford, 2023).
Hydrological simulation experiments are needed to assess
how these changes in transitions from dry to wet states trans-
late into changes in transitions from hydrological droughts
to floods. The possibility of rapid drought–flood transitions
under both current and future climate conditions needs to be
integrated in disaster risk reduction strategies (Ward et al.,
2020).

2.4.2 Descriptors of extreme transitions

The transitions between dry and wet periods have been de-
scribed using transition times and transition frequencies, as
summarized in Table 4. The transition time describes the time
that elapses between dry and wet periods, while the transition
frequency describes the frequency of transitions between dry
and wet periods.

3 Modelling multivariate extremes

Assessments of the frequency and magnitude of multivariate
hydrological-extreme events are facilitated by various tools
and approaches such as describing multivariate phenomena
with suitable univariate metrics, bivariate distributions and
return period definitions, multivariate distributions, multi-
variate stochastic simulation approaches, and hydrological
models.

3.1 Univariate metrics for multivariate extremes

Different approaches have been developed to quantify the
frequency of multivariate extremes. The easiest work-around
for dealing with multivariate extremes is to describe the com-
plex phenomena with a suitable univariate descriptor, such
as describing regional floods by flood extent. Such univari-
ate descriptors can be used in a univariate frequency anal-
ysis to determine the frequency and magnitude of events.
Such a univariate frequency analysis first defines a sample
of extreme events using either a block maxima or minima or
a peak-over-threshold or threshold level approach (Meylan
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Table 3. Metrics used to describe hydrological extremes with multiple characteristics.

Dependence measure Description References Application

Pearson’s correlation Measure of linear correlation between two data Edwards (1976) Droughts
coefficient samples and floods

Spearman’s rank Measure of rank correlation between two data Spearman (1904), Genest and Favre (2007) Droughts
correlation coefficient samples and floods

Kendall’s rank correlation Measure of rank correlation between two data Kendall (1937), Genest and Favre (2007) Droughts
coefficient samples and floods

Extremal dependence or tail Probability of one variable being extreme given Coles et al. (1999), Coles (2001) Droughts
dependence coefficient the other one is extreme that and floods

Table 4. Metrics used to describe transitions between extreme events.

Transition measure Description References Application

Transition time Time between dry and wet periods De Luca et al. (2020), Chen and Ford (2023) Dry to wet
conditions

Transition frequency Frequency of transitions between dry and wet periods Chen and Ford (2023) Dry to wet
conditions

et al., 2012). Second, it fits a suitable theoretical distribution
to the sample of extreme events. In the case of block maxima,
one usually works with a generalized extreme value (GEV)
distribution and in the case of threshold exceedances with
a generalized Pareto distribution (GPD) (Coles, 2001). The
goodness of fit of the distribution chosen is assessed using
a test for extreme values such as the Anderson–Darling or
Cramér–von Mises test (Laio, 2004). Once a suitable distri-
bution has been identified, one can use the probability dis-
tribution function to determine the probability of occurrence
of a certain event or the quantile function to determine the
magnitude of an event with a certain non-exceedance proba-
bility or return period (Fig. 6). The relationship between the
non-exceedance probability p and the corresponding return
period T is expressed as follows:

T = µ/(1−p), (1)

where µ is the mean inter-arrival time between two succes-
sive events, which is defined as 1 divided by the number
of flood occurrences per year (Gumbel, 1941; Salvadori and
De Michele, 2010; Brunner et al., 2016). Using this relation-
ship, one can answer questions such as how often an extreme
event with a certain magnitude occurs or how big an event
with a certain return period is.

3.2 Bivariate distributions and return periods

In many cases, however, univariate descriptors of multivari-
ate extremes as described above do not exist, e.g. when we
are interested in floods characterized by multiple variables
such as magnitude, volume, and duration. Because multivari-
ate definitions of return periods are difficult to establish, one

Figure 6. Illustration of the relationship between extreme-event fre-
quency and magnitude.

often tries to break down the problem to bivariate relation-
ships, for which bivariate distributions and return period def-
initions exist. The joint distribution of variables that are in-
terdependent can be represented using bivariate distributions
such as the bivariate generalized extreme value distribution
(Coles, 2001) or copula models, which allow for a more flexi-
ble representation of different variable dependence structures
and different univariate distributions for the margins (Genest
and Favre, 2007). The copula approach is rooted in the repre-
sentation theorem by Sklar (1959), which states that the joint
cumulative distribution function FXY of a pair of continuous
random variables (X,Y ) at (x,y) can be expressed by

FXY (x,y)= C (FX(x),FY (y)) ,x,y ∈ R, (2)

where FX(x) and FY (y) are realizations of the marginal dis-
tributions of X and Y , whose dependence is modelled by a
copula C (Nelsen, 2006; Joe, 2015). This copula approach
allows one to select an appropriate model for the depen-
dence between X and Y independently from the choice of
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the marginal distributions. In order to identify a suitable cop-
ula for a pair of variables, five steps have to be taken:

1. Quantify the strength of dependence and evaluate the
form of dependence between the variables using rank-
based correlation measures and dependence plots (Gen-
est and Favre, 2007).

2. Choose a number of copula families.

3. Estimate the copula parameters for each copula family.

4. Perform goodness-of-fit tests to exclude unsuitable cop-
ulas (Genest et al., 2009).

5. Choose one of the admissible copulas using selection
criteria such as the Akaike or Bayesian information cri-
terion.

For an introduction to copulas with application examples,
the reader is referred to Genest and Favre (2007), and for
detailed theoretical introductions, the reader is referred to
Nelsen (2006) and Joe (2015).

Such bivariate distributions are needed to compute return
periods in a bivariate context, e.g. when hydraulic design re-
lies on two variables such as peak discharge and flood vol-
ume. In the univariate setting, the return period T is uniquely
defined, as described by Eq. (1). In the bivariate and more
generally the multivariate setting, the definition of the return
period of an observed event is not unique. Instead, one has to
choose one out of several definitions depending on the prob-
lem at hand (Serinaldi, 2015). In a multivariate framework,
the return period can be defined as the return period TD of a
dangerous event as follows:

TD =
µ

Pr[X ∈D]
, (3)

whereD is a set of events defined to be dangerous according
to some reasonable criterion, and Pr[X ∈D] is the probabil-
ity that the random variable X lies in this dangerous region
D. In a multivariate setting, D can be defined in different
ways depending on the application at hand, e.g. using the
conditional probability distribution, joint probability distri-
butions, or the Kendall distribution (Gräler et al., 2013; Brun-
ner et al., 2016). These distributions are typically expressed
using bivariate copula models. For example, if the definition
of dangerous events spans all those events where the two
variables (e.g. peak discharge and flood volume) jointly ex-
ceed a certain threshold, one would use the joint “AND” re-
turn period definition. This joint AND return period T (u,v)
uses a copula C, expressed as

T (u,v)=
µ

1− u− v+C(u,v)
, (4)

where u and v are realizations of U and V , i.e. uniform rep-
resentations of FX and FY . An alternative to this joint return
period definition is the Kendall return period, i.e. the mean

inter-arrival time of dangerous events (events more critical
than the design event) (Salvadori et al., 2011). The separa-
tion between dangerous and non-dangerous events is made
based on the Kendall distribution function KC :

KC(t)= P [C(u,v)≤ t], (5)

where t is the critical probability level. The probability level
t corresponding to the design return period TK can be calcu-
lated from the inverse of the 2-D Kendall distribution func-
tion as

TK =
µT

1−KC(t)
. (6)

For an overview of more alternative bivariate return period
definitions, the reader is referred to Gräler (2014) or Brunner
et al. (2016). Such bivariate return period definitions can be
used to quantify the return period of events characterized by
two variables, e.g. droughts described by drought deficit and
duration or floods described by flood peak and volume (Sal-
vadori, 2004; Serinaldi and Grimaldi, 2011; Serinaldi, 2016;
Brunner et al., 2017, 2019d). However, return periods are
difficult to generalize to higher-than-two-dimensional data
(Gräler et al., 2013). An exception is the three-dimensional
data for which the Kendall return period can also be com-
puted by determining the corresponding probability level t
(Salvadori et al., 2011).

3.3 Multivariate distributions

Different models for multivariate extremes have been pro-
posed in the literature, including multivariate distributions
such as the logistic model (Kotz and Nadarajah, 2000); con-
ditional exceedance models (Heffernan and Tawn, 2004;
Neal et al., 2013; Keef et al., 2013); the multivariate skew
t distribution (Ghizzoni et al., 2010, 2012); hierarchical
Bayesian models (Yan and Moradkhani, 2015); max-stable
models (Ribatet, 2013); the multivariate generalized Pareto
distribution (Rootzén and Tajvidi, 2006; Rootzén et al.,
2018); and copula models such as pair-copula constructions
(Gräler, 2014; Schulte and Schumann, 2015; Bevacqua et al.,
2017), factor copula models (Lee and Joe, 2017), vine cop-
ulas (Bedford and Cooke, 2002; Gräler et al., 2013), chi-
square copulas (Bárdossy, 2006; Quessy et al., 2016), or the
Fisher copula (Favre et al., 2018; Brunner et al., 2019b).
Classical multivariate distributions such as the logistic model
have mostly been defined for the bivariate or trivariate cases
because the complexity linked to the solution of multivari-
ate problems increases strongly with the dimension (Kotz
and Nadarajah, 2000). This dimensionality problem can be
overcome by using conditional exceedance models as pro-
posed by Heffernan and Tawn (2004), which can be ap-
plied to phenomena of any dimension, e.g. to model spa-
tial extremes (Keef et al., 2013; Neal et al., 2013). In such
a spatial-extreme context, these models are defined in terms
of the statistical distribution of a variable (e.g. streamflow) at
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a set of locations on the condition of the variable exceed-
ing a certain threshold at one of these locations. Applica-
tions are not limited to spatial extremes and could also be
extended to extremes with multiple characteristics by quan-
tifying the conditional distribution of one variable (e.g. flood
peak) being extreme given that another variable (e.g. flood
volume) is high (Salvadori et al., 2014). However, in order
to account for the full range of possible models, the use of
conditional-exceedance models requires the fitting of several
models (e.g. by conditioning on each variable once). Multi-
variate distributions of higher dimension also exist for both
componentwise maxima and threshold exceedances. Max-
stable distributions arise from the limiting behaviour of vec-
tors of componentwise maxima (block maxima) (Segers,
2012; Ribatet, 2013), and there exist a number of paramet-
ric max-stable models, e.g. Brown–Resnick processes, the
Smith model, or the Hüsler–Reiss model (Davison et al.,
2012). Max-stable process models have e.g. been used to
model the spatial dependence of rainfall extremes (Davison
et al., 2012; Le et al., 2018). Similarly, multivariate gener-
alized Pareto distributions result from the limit distributions
of exceedances over multivariate thresholds of different vari-
ables (Rootzén and Tajvidi, 2006; Rootzén et al., 2018; Kiril-
iouk et al., 2019). These multivariate generalized Pareto dis-
tributions can be applied to a wider range of applications than
max-stable models because they do not require the definition
of pairwise extremes. Another flexible alternative to max-
stable models is multivariate copula models such as vine
copulas, which extend to more than two to three dimensions
(Bedford and Cooke, 2002; Gräler et al., 2013). Vine copulas
construct high-dimensional copulas by mixing conditional
bivariate copulas in a stagewise procedure, i.e. by modelling
pairwise dependencies with bivariate copulas (Gräler et al.,
2013).

3.4 Simulation of multivariate extremes

Multivariate extreme events are even less abundant in ob-
servational records than univariate extremes. This lack of
data challenges frequency analysis because reliable distribu-
tion fitting requires sufficiently large datasets. To overcome
the problem of a limited sample size, different simulation
approaches have been proposed, which enable the simula-
tion of long time series or large event sets. These simulation
approaches include statistical and physically based models.
Both types of approaches aim to generate large samples of
data with similar distributional and spatio-temporal charac-
teristics as the limited observed data. Such large simulation
ensembles can be used to refine water management plans or
to develop suitable adaptation strategies to drought and flood
events.

There exists a variety of stochastic modelling approaches
which differ in their capability of representing distribu-
tional and/or temporal characteristics of hydrological data.
The most commonly used direct stochastic simulation ap-

proaches, i.e. approaches that directly simulate streamflow
using a stochastic model, belong to the two classes of para-
metric and nonparametric models. Parametric models in-
clude autoregressive-moving-average (ARMA) models and
their modifications (Stedinger and Taylor, 1982; Papalexiou,
2018) and fractional Gaussian noise models (Mandelbrot,
1965, 1971; Mejia et al., 1972; Hosking, 1984). Nonpara-
metric models include different bootstrap approaches (Salas
and Lee, 2010; Herman et al., 2016; Srinivas and Srinivasan,
2006; Srivastav and Simonovic, 2014) and kernel density es-
timation (Lall and Sharma, 1996; Sharma et al., 1997). Other
simulation approaches for extreme events include the con-
ditional exceedance model by Heffernan and Tawn (2004)
(Keef et al., 2013; Diederen et al., 2019; Neal et al., 2013),
max-stable models (Segers, 2012; Ribatet, 2013; Oesting and
Stein, 2018), or copula models (Gräler, 2014; Brunner et al.,
2019b). In addition to these time domain models, there exist
frequency domain models that simulate surrogate data with
the same Fourier spectra as the raw data (Theiler et al., 1992;
Prichard and Theiler, 1994; Schreiber and Schmitz, 2000).
Such methods are based on the randomization of the phases
of the Fourier transform and are known as the amplitude-
adjusted Fourier transform (AAFT) (Lancaster et al., 2018;
Radziejewski et al., 2000; Serinaldi and Kilsby, 2017; Brun-
ner et al., 2019a). They have been successfully applied to
simulate spatially consistent streamflow time series in multi-
ple catchments (Brunner and Gilleland, 2020).

In addition to these statistical approaches, streamflow can
be simulated using physically based approaches. These ap-
proaches rely on a hydrological model which is driven with
large ensembles of stochastically or physically generated cli-
mate input data. Examples of physically based large climate
ensembles include single-model, initial-condition large en-
sembles (SMILEs; Deser et al., 2012, 2020) and reforecast
simulations, i.e. forecasts generated for past periods (Hamill
et al., 2006). Climate SMILEs and reforecast simulations
have been used in combination with hydrological models to
generate large ensembles of streamflow time series (van der
Wiel et al., 2019; Willkofer et al., 2020; Brunner et al.,
2021c; Brunner and Slater, 2022).

4 Challenges and future directions

Quantifying the frequency and magnitude of multivariate ex-
tremes is challenging for multiple reasons. Here, I discuss
some of these challenges and how they could be addressed in
future research.

1. Multivariate extremes are scarce in observational
records. Therefore, frequency analyses are often asso-
ciated with large uncertainties, and it is challenging to
study the processes governing such extreme events. To
overcome the problems related to a limited sample size,
simulation approaches can be used (see Sect. 3.4). How-
ever, these simulations need to represent different types
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of data features, including distribution, temporal, spa-
tial, and variable dependencies. Representing all these
features simultaneously is challenging. Novel simula-
tion approaches that capture a range of different types
of dependencies are needed.

2. Multivariate frequency analysis requires dependence
modelling. Modelling such dependence is feasible in
smaller dimensions (e.g. in the bivariate setting) but
becomes more complex and more computationally de-
manding in larger dimensions. Identifying suitable de-
pendence structures in high dimensions is not always
straightforward, and further flexible dependence struc-
tures are needed to represent temporal, spatial, and vari-
able dependencies at the same time.

3. Multivariate extremes are subject to change. Extreme
events are affected by various factors including land use
changes, climate, and water management (e.g. Slater
et al., 2021; Blum et al., 2020; Brunner, 2021). The ef-
fects of these changes on hydrological extremes are not
limited to their univariate characteristics but extend to
their dependence structure (Brunner et al., 2019c). Such
non-stationarities in variable dependence need to be ac-
counted for in global change impact assessments.

4. Variable dependencies need to be transferred to un-
gauged catchments. Predicting the frequency and mag-
nitude of extreme events in ungauged basins is challeng-
ing. Different methods (i.e. regionalization approaches)
are available to predict hydrological extremes or model
parameters in ungauged catchments using information
from gauged catchments, including similarity metrics
or linear and nonlinear regression models. While such
techniques are established in the univariate case, region-
alizing multivariate extremes is more challenging be-
cause variable dependence needs to be maintained. For
example, regionalizing flood peaks and flood volumes
individually may destroy the dependence between the
two variables (Brunner et al., 2018; Kiran and Srini-
vas, 2022). Novel regionalization approaches that re-
spect such variable dependencies are needed.

5. Variable dependence needs to be represented in sta-
tistical and process-based models. The representation
of variable dependencies in statistical and hydrologi-
cal modelling is non-trivial. For example, hydrologi-
cal model simulations represent neither the dependence
between flood peaks and flood volume (Brunner and
Sikorska, 2018) nor the spatial flood coherence (Brun-
ner et al., 2021a) very well. The representation of such
dependencies in hydrological models needs to be im-
proved by developing suitable model calibration ap-
proaches that take into account variable dependencies
in addition to individual variables.

5 Conclusions

Multivariate hydrological extreme events can jointly affect
multiple regions, occur in close temporal succession, be char-
acterized by multiple characteristics, or represent transitions
from one type of extreme to another one. These different
types of extreme events have in common that they involve
multiple interrelated variables, whose dependence needs to
be accounted for in frequency analysis and risk estimation.
However, studying extreme events in a multivariate frame-
work is challenging because of the scarceness of multivari-
ate extreme events in observational records and the need to
model variable interdependencies. Assessments of the prob-
ability and magnitude of multivariate hydrological extremes
may profit from advances in the following areas: (1) the de-
velopment of (stochastic) simulation approaches that repre-
sent different types of variable dependencies and allow for
the generation of large datasets; (2) the development of flexi-
ble dependence structures that represent dependencies of dif-
ferent strength and form; and (3) the development of hydro-
logical model calibration procedures that enable the calibra-
tion of models with respect to temporal, spatial, and vari-
able dependencies. These method developments will facil-
itate change assessments for different types of multivariate
hydrological extremes such as large-scale floods, successive
droughts, or rapid drought-to-flood transitions. Such assess-
ments are strongly needed in order to adapt water manage-
ment strategies to future changes in impactful multivariate
drought and flood events.
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