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Abstract. Hydrological time series (HTS) are the key ba-
sis of water conservancy project planning and construction.
However, under the influence of climate change, human ac-
tivities and other factors, the consistency of HTS has been
destroyed and cannot meet the requirements of mathematical
statistics. Series division and wavelet transform are effective
methods to reuse and analyse HTS. However, they are limited
by the change-point detection and mother wavelet (MWT)
selection and are difficult to apply and promote in practice.
To address these issues, we constructed a potential change-
point set based on a cumulative anomaly method, the Mann–
Kendall test and wavelet change-point detection. Then, the
degree of change before and after the potential change point
was calculated with the Kolmogorov–Smirnov test, and the
change-point detection criteria were proposed. Finally, the
optimization framework was proposed according to the de-
tection accuracy of MWT, and continuous wavelet transform
was used to analyse HTS evolution. We used Pingshan sta-
tion and Yichang station on the Yangtze River as study cases.
The results show that (1) change-point detection criteria can
quickly locate potential change points, determine the change
trajectory and complete the division of HTS and that (2)
MWT optimal framework can select the MWT that conforms
to HTS characteristics and ensure the accuracy and unique-
ness of the transformation. This study analyses the HTS evo-
lution and provides a better basis for hydrological and hy-
draulic calculation, which will improve design flood estima-
tion and operation scheme preparation.

1 Introduction

Under multiple influences of human activities, atmospheric
circulation and other factors, the original evolution of river
runoff is featured by randomness, fuzziness, nonlinearity,
non-stationarity and multi-timescale variation, which breaks
the consistency in the “three properties” of hydrological
time series (HTS; formed by the time arrangement of hy-
drological elements such as rainfall and runoff) (Chen et al.,
2021; Fang and Shao, 2022). Independent and identically dis-
tributed (IID) is an assumption of mathematical statistics in
hydrological and hydraulic calculation (Mat Jan et al., 2020).
When the series cannot meet the IID, analysing its internal
evolution and division will help to improve the accuracy and
decision-making of the hydrological forecasting and opera-
tion scheme preparation by the mathematical model (Li et
al., 2021).

In stochastic hydrology, HTS consist of deterministic com-
ponents and stochastic components. The analysis of their
evolution involves the period, trend and change point (Hobe-
ichi et al., 2022). The period and trend mainly focus on de-
terministic components, while change-point detection is used
to explain the stochastic components caused by various ran-
dom and uncertain factors (Dang et al., 2021). Change-point
detection determines the starting and ending points of period
and trend division; thus it is the key to analysing HTS evo-
lution (Şen, 2021). However, affected by feature uncertainty,
change-point detection has become a complex problem be-
cause the extent, number and occurrence time of change
points must be determined at the same time (Zhao et al.,
2019). The t test, the two-sample Kolmogorov–Smirnov (K-
S) test and the Shapiro–Wilk test are commonly used quan-
titative methods for series variation. In particular, the K-S
test can calculate the degree of change by indicators such as

Published by Copernicus Publications on behalf of the European Geosciences Union.



2326 J. Li et al.: A mother wavelet optimization framework based on change-point detection

asymptotic significance (two-tailed, p); therefore it is widely
used (Jia et al., 2022).

Commonly used change-point detection methods include
graphical methods (cumulative anomaly method, etc.), para-
metric methods (sliding t test and the Lee–Heghinian test,
etc.) and nonparametric methods (ordered clustering method,
Mann–Kendall test, and wavelet change-point detection,
etc.). Graphical methods have the advantages of simple cal-
culation and intuitive results, but the detection accuracy is
low. Parametric methods assume that the series to be anal-
ysed obey a known distribution, which have certain limita-
tions (Liu et al., 2022). Nonparametric methods have higher
detection accuracy but are easily affected by factors such as
parameter settings and series marginal effects (Stasolla and
Neyt, 2019). Malki et al. (2022) used machine learning to
compare the gap between historical data and forecasts from
real-time monitoring data to determine whether the consis-
tency of IoT energy consumption data has changed. Shi et
al. (2022) constructed a single change-point test based on the
covariance, cumulative sum and likelihood ratio of forecast
residuals to detect the potential change point in time series.
Corradin et al. (2022) constructed a Bayesian nonparamet-
ric multivariate change-point detection method by combin-
ing prior distributions with multivariate kernels and argued
that the posterior probability of most change points should
be lower than the posterior estimate. Xie et al. (2022) calcu-
lated the fitted local trend line based on the piecewise linear
representation algorithm and the Akaike information crite-
rion to realize change-point detection and series division and
classified change points into three categories with the help
of the slope and intercept. Change-point detection is of great
significance to series division and is the basis for making full
use of HTS to carry out more research. It can be seen that
there is no unified standard to determine the change point of
HTS. Therefore, this is a field worthy of further study.

After the change-point detection, the period and trend of
HTS can be further explored. These methods include a cumu-
lative anomaly method, the Mann–Kendall (M-K) test, con-
tinuous wavelet transform (CWT) and mode decomposition
(empirical or extreme point symmetric, etc.) (De Oliveira-
Júnior et al., 2022; Qin et al., 2021). Among them, CWT has
a relatively complete theoretical system, which can compre-
hensively analyse the evolution of HTS and reveal their local-
ization characteristics in the time domain (time variation) and
frequency domain (frequency and amplitude variation), so it
has been widely used in hydrology (Zerouali et al., 2022).
However, the analysis results of CWT highly depend on the
selection of the mother wavelet (MWT). Moradi (2022) opti-
mized MWT by comparing the similarity of cross-correlation
function, signal-to-noise ratio and mean standard error be-
tween the denoised series and the original. Benhassine et al.
(2021) determined the optimal MWT by comparing the min-
imum mean square error between the original image and the
denoised. Strömbergsson et al. (2019) proposed and verified
the validity of using the Shannon entropy of the wavelet co-

efficients as the index for selecting MWT. However, change-
point detection has not been explored by scholars to optimize
the MWT that conforms to the series characteristics.

To solve the above problems, we proposed the change-
point detection criteria based on a cumulative anomaly
method, the M-K test, wavelet change-point detection and
the K-S test, which can detect the consistency of HTS and
complete a reasonable division. Furthermore, based on the
detection accuracy, a MWT optimal framework that con-
forms to series characteristics was proposed, and the evolu-
tion analysis was summarized by CWT. This work proposed,
in a pioneering way, an efficient way to optimize the MWT
based on variance and change-point detention. Using the op-
timal MWT in CWT is helpful in catching the HTS evolution
accurately and fully mining its information, which provides
a feasible way to use inconsistent measured data for hydro-
logical and hydraulic calculations.

2 Methodology

To solve the problems of incomplete change-point detection
and non-unique MWT optimization, we followed the process
of potential change-point set construction, change-point de-
termination, MWT optimization and evolution analysis, and
then we proposed the change-point detection criteria and the
MWT optimization framework, as shown in Fig. 1.

2.1 Wavelet transform and change-point detection

Wavelet transform can be divided into continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). Its
essence is to reveal the similarity between the HTS to be
analysed and the MWT. Therefore, the selection of MWT
is a key factor affecting the accuracy of wavelet transform.
MWT (ϕ(t)) is a wave of finite length and zero mean, with
irregularity and asymmetry. The 16 commonly used MWT
systems are shown in Table 1 (Moradi, 2022; Nielsen, 2001).

2.1.1 Continuous wavelet transform (CWT)

CWT can be used to determine whether there is periodicity in
HTS and identify the main timescales and their local trends.
LetL2(R) denote the measurable square-integrable functions
on the real axis. If HTS X(t) (t = 1,2, . . .,T ) is a CWT in
L2(R), which can be expressed as

WX(a,b)=

+∞∫
−∞

X(t)ϕ∗a,b(t)dt (1)

ϕa,b(t)=
1
√
a
ϕ

(
t − b

a

)
a,b ∈ R, a 6= 0, (2)

where WX(a,b) is the coefficient of CWT; ϕ∗a,b(t) is the
complex conjugate function of ϕa,b(t); t is the time; a is the
timescale factor, which reflects the period length of MWT;
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Figure 1. Study framework and main modules of MWT optimization.

and b is the time position factor, which reflects the transla-
tion of MWT in time.

The multi-timescale variation in wavelet transform refers
to the multi-level structure and localized features of X(t) in
the time domain, which is usually analysed with the help
of the real part or modulus-square contour map of CWT
coefficients. HTS evolution of a certain year on different
timescales can be observed by vertically intercepting the
contour map. At a certain period, the HTS evolution over
time can be observed by horizontally intercepting the contour
map. In addition, the positive wavelet coefficient corresponds
to the wet season. The negative wavelet coefficient corre-
sponds to the dry season. The wavelet coefficient is zero,
which corresponds to the transition point of wet and dry. The

larger the absolute value of the wavelet coefficient, the more
obvious its change.

2.1.2 Discrete wavelet transform (DWT)

Since the measured HTS are usually discrete, by discretizing
Eq. (1), we can get

WX(j,b)=

+∞∫
−∞

X(t)ϕ∗j,b(t)dt (3)

ϕj,b(t)= a
−j
2

0 ϕ
(
a
−j

0 t − kb0
)
, (4)

whereWX(j,b) is the coefficient of DWT, a0 and b0 are both
constants, and j (j = 1,2, . . .,J ) is the decomposition level.
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Table 1. Properties and application range of commonly used MWT systems.

MWT system Symbol Properties and application range

Orthogonality Biorthogonality Symmetry CWT DWT

Haar haar
√ √ √ √ √

Daubechies db2, db3, db4, db5, db6, db7, db8, db9, db10
√ √ √

∗
√ √

Biorthogonal bior1.1, bior1.3, bior1.5, bior2.2,
bior2.4, bior2.6, bior2.8, bior3.1,
bior3.3, bior3.5, bior3.7, bior3.9,
bior4.4, bior5.5, bior6.8

–
√

–
√ √

Coiflets coif1, coif2, coif3, coif4, coif5
√ √ √

∗
√ √

Symlets sym2, sym3, sym4, sym5, sym6,
sym7, sym8

√ √ √
∗

√ √

Morlet morl – –
√ √

–

Mexican hat mexh – –
√ √

–

Meyer meyr
√ √ √ √ √

∗

Gaussian gaus1, gaus2, gaus3, gaus4,
gaus5, gaus6, gaus7, gaus8

– –
√ √

–

Dmeyer dmey – –
√

–
√

ReverseBior rbio1.1, rbio1.3, rbio1.5, rbio2.2,
rbio2.4, rbio2.6, rbio2.8, rbio3.1,
rbio3.3, rbio3.5, rbio3.7, rbio3.9,
rbio4.4, rbio5.5, rbio6.8

–
√ √ √ √

Complex Gaussian cgau1, cgau2, cgau3, cgau4, cgau5,
cgau6, cgau7, cgau8

– –
√

– –

Complex Morlet cmor1-1.5, cmor1-1,
cmor1-0.5, cmor1-0.1

– –
√

– –

Frequency B-spline fbsp1-1-1.5, fbsp1-1-1, fbsp1-1-0.5,
fbsp2-1-1, fbsp2-1-0.5, fbsp2-1-0.1

– –
√

– –

Fejér–Korovkin fk4, fk6, fk8, fk14, fk18, fk22
√ √ √

∗
√ √

Shannon shan1-1.5, shan1-1, shan1-0.5,
shan1-0.1, shan2-3

– –
√

– –

Note that “
√

” means has this property. “
√
∗” means approximately having this property. “–” means does not have this property.

BothWX(a,b) andWX(j,b) are the values output byX(t)
through the unit impulse response filter, which can reflect the
evolution of X(t) in the time domain and frequency domain
at the same time. In practical applications, it is often decom-
posed with the help of dyadic DWT, i.e. a0 = 2 and b0 = 1,
and Eq. (4) can be expressed as

ϕj,b(t)= 2
−j
2 ϕ(2−j t − k). (5)

According to the dyadic DWT, the theoretical maximum
value J of decomposition level j is

J = [log2(TX(t))], (6)

where [·] represents the rounding operation, and TX(t) repre-
sents the length of the X(t).

2.1.3 Wavelet change-point detection

Variance is one of the important parameters to detect whether
HTS has fundamentally changed. Wavelet change-point de-
tection is based on the maximal overlap discrete wavelet
transform (MODWT). By calculating the variance of wavelet
coefficients to be analysed one by one (Strömbergsson et al.,
2019), the number and location of change point at a confi-
dence level of 95 % can be determined through the MATLAB
software toolbox.
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(1) MODWT multi-resolution analysis

Decompose X(t) into T-dimensional column vectors
W1,W2, . . .,WJ and VJ , where WJ is calculated from the
MODWT wavelet coefficient of X(t) within τj1t , and VJ
consists of τj+11t and higher dimensional MODWT scaling
coefficients. X(t) can be expressed as

X =

J∑
j=1

Dj + Sj , (7)

whereDj =WF

jF
k h
∗

j (k = 0,1, . . .,T−1) is the j th maximal-

overlap detail. Sj = V F
jF

k g
∗

j is the j th maximal-overlap

smooth. hj and gj are the high-frequency filter and the low-
frequency filter, respectively. F is a T × T dimensional ma-
trix that cyclically shifts hj by one unit.

(2) MODWT variance decomposition

After a series of decompositions are performed on the vari-
ance of X(t) part by part, on the premise that the wavelet
coefficient is stable, it can be expressed as

‖X‖2 =

J∑
j=1
‖Wj‖

2
+‖Vj‖

2. (8)

Based on the above decomposition, the evolution of
wavelet coefficient variance of X(t) with time in different
timescales can be obtained, and the point where the variance
changes can be recorded as the change point. It is worth not-
ing that the MWT used for change-point detection needs to
be biorthogonal (see Table 1).

2.2 Traditional change-point detection method

Change point detection has always been a significant issue
in hydrology. However, except for the deterministic runoff
changes caused by human activities such as large-scale river
regulation, reservoir construction or operation (seasonal and
above regulation capacity), there exist many uncertain fac-
tors, such as whether there is a change point in HTS, how
many change points exist and the specific occurrence time
of each change point. Therefore, it is necessary to integrate
multiple detection methods. The main methods used in this
study are as follows.

2.2.1 Cumulative anomaly method

The cumulative anomaly method is a graphic method. The
cumulative anomaly value of X(t) at a certain time can be
expressed as

JP[X(t)] =
N∑
t=1
[X(t)−X], (9)

where JP[·] is the cumulative anomaly value of X(t), and T
and X are the length and mean of X(t), respectively.

The cumulative anomaly curve can be obtained by draw-
ing the cumulative anomaly value in chronological order. Ac-
cording to the curve fluctuation, the change trend and poten-
tial change point of HTS can be identified. If the cumulative
anomaly value is greater than 0, it indicates that the HTS is
in an up trend; otherwise, the HTS is in a downtrend. The
point that changes the trend can be regarded as the potential
change point.

2.2.2 Mann–Kendall (M-K) test

The M-K test analyses the number, location, trend and signif-
icance of change points in HTS by setting a confidence level
α and calculating statistics (UFk and UBk ). The UFk statistics
of X(t) is calculated as follows:

UFk [X(t)] =
S
X(t)
k −E

[
S
X(t)
k

]√
Var

[
S
X(t)
k

] , (10)

where UFk [X(t)] is the statistical series ofX(t) calculated in
order, and SX(t)k is the rank sum of time k in X(t), which is
the cumulative value of the numbers at time k greater than
time i (1≤ k ≤ i). E[SX(t)k ] and Var[SX(t)k ] are the mean and
variance of SX(t)k , respectively.

When UFk [X(t)]> 0,X(t) shows an upward trend; on the
contrary, it shows a downward trend. The statistic UBk [X(t)]
is obtained by repeating Eq. (10) in the reverse order. Draw
UFk [X(t)] andUBk [X(t)] in the same figure. If the two statis-
tics intersect within the confidence interval U0.05 =±1.96
(confidence level 95 %), the time corresponding to the inter-
section is the change point of X(t).

2.2.3 Kolmogorov–Smirnov (K-S) test

The K-S test can determine whether the distributions of the
two series are the same according to the maximum vertical
distance between the two empirical distributions. The empir-
ical distribution of X(t) is

Fn[X(t)] =
1
T

T∑
t=1

In
[−∞,T ][X(t)], (11)

where In
[−∞,T ][X(t)] is the indicator function of X(t).

The original hypothesis H0 is as follows: F1[X(t)] =

F2[X(t)]; that is, the empirical distribution of the two se-
ries is consistent. The alternative hypothesisH1 is as follows:
F1[X(t)] 6= F2[X(t)]; that is, the empirical distribution is in-
consistent. To quantify the difference between the empirical
distributions, a maximum difference D is proposed, calcu-
lated as

D = sup
−∞<X(t)<∞

|F1[X(t)] −F2[X(t)]|. (12)
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DT ,α is used to represent the rejection domain when the se-
ries capacity is T at significant level α. When D ≥DT ,α , re-
ject H0; otherwise, accept H0. To further quantify the signif-
icance of the difference, p is introduced to concretize α. The
value of α is usually 95 % or 99 %, and the corresponding
p is 0.05 and 0.01. If p ≤ 0.01, it indicates that the deter-
mination result is strong and H0 should be rejected; that is,
the two series obey different distributions and are not consis-
tent. If 0.01≤ p ≤ 0.05, the determination result is weak. In
this case, p is considered to be marginal, and H0 is usually
rejected. If p > 0.05, H0 is acceptable.

2.3 Change-point detection criteria

Based on the change-point detection results of various meth-
ods, the potential change-point set PCP(n) (n= 1,2, . . .,N )
of HTS is constructed with deduplication and sorting. To de-
termine the change point, it is necessary to further calculate
the degree of change (p) before and after potential change
points with the help of the K-S test. At a confidence level
of 99 %, first, record the starting point and ending point of
X(t) as PCP(0) and PCP(N+1) respectively, and arrange the
potential change-point set in chronological order. Secondly,
take PCP(0) as the starting point and PCP(1) as the change
point, and use K-S test to successively calculate the p of the
end point from PCP(2) to PCP(N + 1). Finally, the change
point and its trajectory (connection of change points) ofX(t)
are determined according to the change-point detection cri-
teria:

– Criterion 1. Before and after the change point of X(t),
p < 0.01.

– Criterion 2. The change point can realize the continuous
division of X(t) from PCP(0) to PCP(N + 1).

– Criterion 3. The trajectory contains the largest number
(m= 1,2, . . .,M) of change points.

– Criterion 4. The p ofM−1 in the trajectory is the min-
imum value.

2.4 MWT optimization framework

By comparing RCP(n) and the results of wavelet change-
point detection, a MWT that conforms to HTS characteristics
can be selected. The MWT optimization framework includes
the construction of potential change-point set, change-point
detection and optimal MWT determination. Among them,
the potential change-point set is built to improve the effi-
ciency of change-point detection, and the specific optimiza-
tion steps are as follows:

– Optimization step (1). Select candidate wavelet with the
highest change-point detection accuracy.

– Optimization step (2). When two or more candidate
wavelets have the same detection accuracy, the MWT or

the MWT system with the highest frequency in different
statistic series (length, flow, etc.) of the same hydrolog-
ical station is selected as the optimal one.

After optimization, we can perform CWT according to the
MWT conforming to HTS characteristics and analyse its evo-
lution. For DWT, HTS can be more accurately decomposed
and reconstructed, providing a good basis for hydrological
forecasting and reservoir operation scheme formulation.

3 Data and study area

The Yangtze River originates from the southwest of the
Tanggula Mountains on the Qinghai–Tibet Plateau. Its main
stream flows through central China from west to east, with a
total length of about 6300 km, and the total catchment area is
1.8× 106 km2, accounting for about 18.8 % of the total area
of China. The main stream from Yibin to Yichang is called
the upstream, with a length of about 4504 km and an area of
about 1× 106 km2. With the superposition and collection of
upstream floods to the Yichang hydrological station (Yichang
station), it tends to form a process of high peaks and large
volumes (Wang et al., 2021). The Pingshan hydrological sta-
tion (Pingshan station) on the Jinsha River controls about half
of catchment area and one-third of the flood season average
flow of Yichang station and is the basic source of upstream
flooding. Therefore, exploring the runoff evolution at Ping-
shan station and Yichang station will help to scientifically
arrange the watershed storage space to alleviate the frequent
floods in flood seasons and water shortages in dry seasons
in the middle and lower Yangtze River. The overview of the
upper Yangtze River is shown in Fig. 2, and the hydrological
parameters of the tow stations are shown in Table 2.

The flood season of Pingshan station is from June to
November, and the flood season of Yichang station is from
May to October. The three months with the largest flow on
the two stations are both from July to September (accounting
for 49.96 % and 54.18 % of the year, respectively). In 2012,
Pingshan station was moved down 24 km to Xiangjiaba hy-
drological station. In addition, the runoff of Pingshan station
should consider the influence of the upstream Ertan Reser-
voir (seasonal regulation, water storage in May 1998), and
Yichang station should consider the Three Gorges Reservoir
(annual regulation, water storage in June 2003). Combin-
ing the above factors, the measured runoff data of Pingshan
station (1950–2011) and Yichang station (1950–2016) were
used to test the applicability of the change-point detection
framework and the MWT optimization framework proposed
in this study, and the runoff evolution of the two stations was
analysed by CWT.
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Figure 2. Location of the study area.

Table 2. Main hydrological parameters of Pingshan station and Yichang station.

River Jinsha Yangtze
Hydrological station Pingshan Yichang

Catchment area Area (km2) 485 099 1 005 501
Proportion (%) 48.2 100

Annual average water volume Volume (108 m3) 1147 3410
Proportion (%) 33.6 100

Annual distribution of runoff Flood season (month) 6–11 5–10
Flow (m3 s−1) 44 850 127 700
Proportion (%) 81.34 78.67

4 Results and discussion

The statistical series of the two stations used in the study in-
cludes Pingshan annual mean runoff series (Pingshan annual
series, PAS), Pingshan 6–11 mean runoff series (Pingshan
flood season series, PFSS), Yichang annual mean runoff se-
ries (Yichang annual series, YAS) and Yichang 5–10 mean
runoff series (Yichang flood season series, YFSS), collec-
tively referred to as “4-Series”.

4.1 Construction of potential change-point set

The cumulative anomaly method, M-K test and wavelet
change-point detection were used to detect the potential
change points in the 4-Series. At the same time, by compar-
ing the annual series and the flood season series at the same
station, we further analysed the sensitivity of the three meth-
ods to the variation of flow amplitude and the influence of
flood season on the annual series.

4.1.1 Results of cumulative anomaly method and M-K
test

The points causing the trend change can be regarded as po-
tential change points, and the detection results of the cumu-
lative anomaly method are shown in Fig. 3. At a confidence
level of 95 % (the upper and lower critical lines are ±1.96),
the intersection of UFk and UBk is a potential change point,
and the M-K test results are shown in Fig. 4. Potential change
points in the two figures were marked in red.

The number of potential change points of 4-Series de-
tected by the cumulative anomaly method is 15, 15, 16 and
18 (Fig. 3). However, the number detected by the M-K test is
2, 2, 0 and 0 (Fig. 4). In addition, there are differences in the
potential change-point detection results between the annual
series and the flood season series, indicating that the cumula-
tive anomaly method has a certain response ability to flow
changes. However, the consistent rate of potential change
points in Pingshan station is 100 %, while Yichang station
is 37.5 % and 33.33 %, respectively. This means that the re-
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Figure 3. Potential change points of the cumulative anomaly method at Pingshan station and Yichang station.

sponse ability can only be reflected when the flow variation
reaches a certain extent.

The change-point detection results of M-K test at Ping-
shan station (Fig. 4a and b) are concentrated around 1956
and 2005. During the same timescale, the intersection of the
flood season series is slightly later than the annual series, but
the amplitude of UFk and UBk is lower, which indirectly re-
flects the flood season in Pingshan station being relatively
gentle, but the difference between the wet and dry seasons of
the year is obvious. The YFSS is the opposite. In addition, the
detection results of M-K test for 4-Series are basically con-
sistent, insensitive to flow variation. The detected number of
potential change points is small. It can be included that the
cumulative anomaly method is more suitable for construct-
ing the potential change-point set of HTS. A more accurate
locating of the change point needs other methods.

4.1.2 Results of wavelet change-point detection

Among the 16 commonly used MWT systems, 8 of them sat-
isfy the biorthogonality (59 MWT systems in total). In this
study, 59 MWT systems were used to detect the potential
change points of 4-Series one by one, and the number of de-
composition layers used is five. However, only five MWT
systems can detect the change points of 4-Series, as shown
in Table 3.

From Table 3, the number of potential change points de-
tected by a single MWT is between 1 and 3. The top two
potential change points of the PAS are 1992 and 1999, of
the PFSS 1999 and 2000, of the YAS 1961 and 1968, and
of the YFSS 1975 and 2005. The number of 4-Series of
change points detected is 19, 18, 19 and 17 respectively.
Compared with the cumulative anomaly method and M-K
test, the wavelet change-point detection has the highest con-
tribution to the construction of the potential change-point set,
followed by the cumulative anomaly method.
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Figure 4. Potential change points of the M-K test at Pingshan station and Yichang station.

As the MWT changes, the detection results are quite dif-
ferent. For the same hydrological station and the same MWT,
there is also a difference in the detection results between the
annual series and the flood season series, indicating that the
wavelet change-point detection is very sensitive to the flow
variation of HTS. Furthermore, the detection results of Ping-
shan station are concentrated in 1959–2000, while those of
Yichang station are concentrated in 1959–2004. Compared
with the series length used in the study (Pingshan 1950–2011
and Yichang 1950–2016), the detection results are suscepti-
ble to marginal effects, and the potential change points at
both ends of the series (before and after 10 years) may be
ignored.

4.2 Results of change-point detection

We deduplicated and sorted the above detection results as
potential change-point sets for each series, with capacities
of 31, 30, 31 and 28, respectively. The degree of change
(p) before and after each potential change point was calcu-

lated by the K-S test. Traditional change-point detection of-
ten adopts the method of traversal series. Take PAS as an ex-
ample (62 years in total); because the starting point, change
point and end point are changing, its p value is calculated∑60
n=1

∑n
i=1i = 35990 times. After constructing the poten-

tial change-point set, the number of calculation is reduced
to
∑29
n=1

∑n
i=1i = 4060, and the efficiency is improved by

88.72 %, and the calculation results are shown in Fig. 5a.
The change-point trajectories (marked with red lines and blue
dots) and alternative trajectories of 4-Series were determined
according to the detection criteria in Sect. 2.3, as shown in
Fig. 5b and c.

For PAS, the starting point of the change-point trajectory is
1950. We need to find the grid point with p < 0.01 in Fig. 5a-
1. Then, with the change point as the starting point and the
ending point as the change point, find the grid point with
p < 0.01 until 2011. At a confidence level of 99 %, there are
three points in Fig. 5a-1 that meet the requirements of Crite-
rion 1, namely 1950–1998–2005 (Trajectory 1), 1950–1998–
2007 (Trajectory 2) and 1950–1999–2005 (Trajectory 3), and
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Table 3. Wavelet change-point detection results of biorthogonal MWT at Pingshan station and Yichang station (number of decomposition
layers is 5). Bold font represents the optimal MWT or change point. The number represents the HTS corresponding to the optimal MWT or
change point.

MWT systems Symbol PAS1 PFSS2 YAS3 YFSS4

Daubechies db2 1999 1985 1999 1996 1975 1961 1977 1975
db3 – 1985 1968 –
db4 1999 1995 1992 1999 1992 1962 1960
db5 – 2000 1963 – –
db63 2000 1965 2000 1965 20023 1972
db7 – – 1962 2000
db812 19981 1992 19982 1991 2004 2005
db9 1965 1964 1966 1998
db10 1983 1959 – 1992 1965 1994 1967

Symlets sym2 1999 1985 1999 1996 1975 1961 1977 1975
sym3 – 1985 1968 –
sym4 1996 1990 1996 1959 1959
sym5 – 1983 2003 –
sym6 1989 1963 1962 1969 2005
sym7 1967 – – –
sym8 1989 – 1998 1999

Coiflets coif1 – – 1968 1961 –
coif2 1990 1960 1964 1971 2005 1972
coif3 – – 1966 1993
coif4 1993 1992 1993 1990 1990 –
coif5 1968 1968 1998 1985 1969

Dmeyer dmey 1969 1966 1968 1965 – –

Fejér–Korovkin fk4 1996 1996 1995 1971 1975 1969
fk6 – – 1968 –
fk8 19981 1992 1990 19982 1989 1961 1984 1959
fk144 – 2000 1966 20034

fk18 – 1966 2000 1992
fk22 – 1959 – 1983

The change point and the optimal MWT are marked with the same number (in the upper right corner) as the series.

p is shown in Fig. 5b. It can be seen that Criterion 1 can ef-
fectively narrow the selection range of change points from
many potential points. Criterion 2 requires further search ex-
tending to 2011, which can fully explore the change point
and ensure the continuity of the trajectory. When there are
multiple alternative trajectories with an inconsistent number
of change points, Criterion 3 requires to select the one with
the most points, which helps to divide the series in detail.
Figure 5b–e show all alternative trajectories that meet the re-
quirements of the above three detection criteria. According
to Criterion 4, select the year with small p of the first M − 1
change points one by one, which can make the series before
and after the change point have a large degree of change.

Based on the change-point detection criteria, the year in
which the series consistency has changed due to human fac-
tors (water storage of large reservoirs, etc.) can be deter-
mined (Fig. 5b–e red line). The change-point trajectory of
PFSS is consistent with PAS, while YFSS lags behind YAS

by 1 year. The reason could be related to the interannual vari-
ation of runoff. The flood season of Pingshan station is from
June to November, accounting for 81.34 % of the annual av-
erage runoff. The upstream Ertan Reservoir (water storage
in May 1998) has seasonal regulation capacity, so it can
have a direct impact on PFSS, which is divided into 1950–
1997, 1998–2004 and 2005–2011. However, the flood season
of Yichang station is from May to October, and the runoff
in May accounts for 7.1 % of the year. The annual mean
runoff from 2001 to 2004 is 13154.73, 12454.25, 12991.84
and 13115.10 m3 s−1 respectively. The monthly mean runoff
in flood season from 2001 to 2004 is 20010.98, 18895.22,
20690.22 and 19841.30 m3 s−1 respectively. For the hydro-
logical regime, 2002 is a year with less water inflow, while
2003 is the opposite. However, affected by the Three Gorges
Reservoir, the water inflow in 2002 is closer to 2003–2010
in the flood season series, while the annual series is closer to
1950–2001. It indirectly shows that the change-point detec-
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Figure 5. Change-point trajectory of Pingshan station and Yichang station (confidence level 99 %).

tion framework proposed in this study considers the influence
of both human factors and hydrological regime on the series.
The HTS division results of Pingshan station and Yichang
station are shown in Fig. 5b–e. Dividing series helps ensure
consistency of HTS and provides a basis for better informa-
tion mining through statistical analysis methods.

4.3 Results of MWT optimization

Based on the change-point trajectories, the detection accu-
racy of the three methods was calculated, and the MWT op-
timization can be completed according to the optimization
framework in Sect. 2.4. The screening process is shown in
Table 3, and the optimization results of MWT are shown in
Table 4.

Combining the MWT optimization results in Tables 3
and 4, it is found that the change point is the key to series di-

vision, and optimization step (1) can quickly locate the MWT
that conforms to the series characteristics. For Pingshan sta-
tion, the annual series of MWT meeting optimization step (1)
is db8, and the flood season series are db8 and fk8. The opti-
mization step (2) is selected according to the runoff physical
cause at the same station, which makes it easier to analyse the
evolution of the two series from the time–frequency space of
the same MWT. Therefore, the optimal MWT of PFSS is db8.

When the optimal MWT of the series is determined,
the accuracy of wavelet change-point detection is generally
higher than the cumulative anomaly method and the M-K test
(Table 4). Except for YAS, the contribution rate of wavelet
change-point detection to the overall potential change point
is also higher than both of them. The results show that the
MWT optimization framework proposed in this study can ac-
curately screen the optimal MWT of each series. The wavelet
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Table 4. Change point and optimal MWT of Pingshan station and Yichang station (Confidence Level 99 %).

Detection Cumulative anomaly M-K test Wavelet change point Optimal
method detection MWT

Accuracy Contribution∗ Accuracy Contribution∗ Accuracy Contribution∗

PAS 6.67 % 48.39 % 50 % 6.45 % 50 % 61.29 % db8
PFSS 6.67 % 50 % 50 % 6.67 % 50 % 60 % db8, fk8
YAS 6.25 % 51.62 % 0 0 50 % 32.26 % db6
YFSS 5.56 % 64.29 % 0 0 50 % 60.71 % fk14

∗ Contribution refers to the percentage of change points provided by the detection method for the potential change-point set.

transform based on the MWT conforming to the series char-
acteristics is helpful to improve the rationality of the analysis.

4.4 Analysis of HTS evolution based on CWT

Based on the optimization results of MWT in Table 4, the
evolution of 4-Series was analysed by CWT. To further ex-
plore the influence of MWT, Haar, Morlet and Mexican hat
(referred to as three common wavelets) were used in CWT of
PAS, as shown in Fig. 6a. The analysis results of the optimal
MWT are shown in Fig. 6b–e.

The three common wavelets have great differences in the
analysis results of the main periods of PAS, namely 10a and
35a, 10a and 29a, and 3a and 10a (Fig. 6a). Furthermore, they
frequently alternate between wet and dry in the short time pe-
riod and exhibit a distinct “wet–dry–wet” evolution over the
long time period. Compared with Fig. 6b, the CWT of three
common wavelets is relatively scattered in the timescale of 0
to 60a, and the Morlet and Mexican hat wavelets show a wet
period after 1998, which does not reflect the regulation effect
of the Ertan Reservoir on Pingshan station, and the accuracy
of the analysis results is questionable. According to histor-
ical records, during the flood season in June 1998, a basin-
wide flood occurred in the middle and lower Yangtze River
due to continuous heavy rain in Dongting Lake and Panyang
Lake below Yichang station (Zhang et al., 2021). From the
timescale (Fig. 6b and c), Pingshan station and Yichang sta-
tion suffer continuous dry years, which is consistent with the
actual situation. Based on the analysis of integrated moisture
transport, land-falling atmospheric rivers geometric metrics
and large-scale climatic circulations, Ayantobo et al. (2022)
believed that the extreme rainfall in the Yangtze River basin
had a declining period after 1999, which was consistent with
the analysis results of this study. We believe that optimizing
the MWT that conform to series characteristics based on the
change-point detection is a suitable approach.

According to the analysis, the main periods of PAS are 10a
and 30a, and the flood season series are 10a and 29a. The
long-period scale of flood season is slightly earlier than the
annual series, indicating that the annual adjustment of Ping-
shan station has a certain buffer capacity. On the short-period
scale 10a, the two series show the phenomenon of frequent

alternation of wet and dry seasons, but the consecutive dry
seasons from 1926 to 1968 and 1998 to 2004 have a serious
impact on the series. Especially after 1998, due to the opera-
tion of Ertan Reservoir, the runoff reduction in the annual se-
ries is larger than that in flood season, so attention should be
paid to the annual water demand of river channels and cities
along the route. From 2005 to 2011, Pingshan station had the
wet season, and attention should be paid to flood control and
flood resource utilization. The main periods of YAS are 9a
and 27a, and the main periods of flood season series are 9a
and 31a. Similarly, Yichang station frequently alternates be-
tween wet and dry on the short-period scale. The annual se-
ries shows the evolution of “wet–dry–wet–dry–wet” on the
long-period scale, while the flood season series shows “wet–
dry–wet–dry”. After 2002–2003, YFSS did not enter the wet
season as the annual series, indicating that the operation of
the Three Gorges Reservoir has a large reduction in the flood
season. On the premise of ensuring the storage of the down-
stream reservoir at the end of the flood season, it is helpful
to adjust the annual and interannual distribution of the runoff
in the Yangtze River and improve the utilization efficiency of
water resources.

5 Conclusion

Hydrological time series (HTS) is the basis of water con-
servancy project planning and construction. However, under
the multiple effects of human activities and other factors, the
consistency of HTS is destroyed. It is necessary to analyse
its evolution to ensure the rationality of hydrological and hy-
draulic calculation. Wavelet transform is one of the widely
used analysis tools of evolution in hydrology, but the its anal-
ysis accuracy is closely related to mother wavelet (MWT).
To solve these two problems, with the help of the cumulative
anomaly method, the Mann–Kendall (M-K) test and wavelet
change-point detection, we proposed the change-point de-
tection criteria and a MWT optimization framework in this
study and took Pingshan station and Yichang station on the
Yangtze River as study cases to test their effectiveness. The
main conclusions are as follows:
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Figure 6. Results of CWT at Pingshan station and Yichang station (wavelet variance and real part of a contour map, with a confidence level
of 99 %).

1. Change-point detection criteria. Based on the three
change-point detection methods, a potential change
point set of HTS is constructed, which can make up
for the limitations of a single method affected by fac-
tors such as parameter settings and marginal effects
and improve the calculation efficiency. In addition, with
the help of the Kolmogorov–Smirnov (K-S) test, we
proposed the detection criteria to quickly confirm the

change-point trajectory from the beginning to the end
of HTS. While ensuring the uniqueness of the result, the
change point formed by the combined action of multi-
ple factors can be accurately identified to complete the
series division.

2. MWT optimization framework. Based on the change-
point detection accuracy of wavelet change-point detec-
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tion, the MWT consistent with the series characteristics
can be selected to ensure the accuracy of wavelet trans-
form to analyse the HTS evolution and provide a good
basis for hydrological and hydraulic calculation.

It is found that the change points of the Pingshan annual
series and the Pingshan flood season series both are 1998 and
2005, the Yichang annual series are 2002 and 2011, and the
Yichang flood season series are 2003 and 2012. In addition,
the optimal MWT of 4-Series is db8, db8, db6 and fk8 re-
spectively. The Ertan Reservoir has a greater impact on the
annual runoff of Pingshan station, while the Three Gorges
Reservoir only reduces the runoff of the Yichang station to a
large extent during the flood season. Limited by the data, we
did not explore the evolution of the two stations after 2017.
It is also found that the wavelet change-point detection is
not sufficient enough to detect the potential change point of
10 years before and after the series.

Appendix A

Table A1. Acronym list.

Order Acronym Full name

1 HTS Hydrological time series
2 MWT Mother wavelet
3 IID Independent and identically distributed
4 K-S Kolmogorov–Smirnov
5 M-K Mann–Kendall
6 CWT Continuous wavelet transform
7 DWT Discrete wavelet transform
8 MODWT Maximal overlap discrete wavelet transform
9 PAS Pingshan annual series
10 PFSS Pingshan flood season series
11 YAS Yichang annual series
12 YFSS Yichang flood season series
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